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1. Introduction

Let X be a complex affine variety and k its coordinate algebra. Equiva-
lently, k is a unital algebra over the complex numbers which is commutative,
finitely generated, and nilpotent-free. A k-algebra is an algebra A over the
complex numbers C which is a k-module (with an evident compatibility be-
tween the algebra structure of A and the k-module structure of A). A is not
required to have a unit. A is not required to be commutative. A k-algebra
A is of finite type if as a k-module A is finitely generated. This paper will re-
view Morita equivalence for k-algebras and will then review — for finite type
k-algebras — a weakening of Morita equivalence called spectral equivalence.

The spectrum of A is, by definition, the set of equivalence classes of irre-
ducible A-modules. For any finite type k-algebra A, the spectrum of A is
in bijection with the set of primitive ideals of A. The spectral equivalence
relation preserves the spectrum of A and also preserves the periodic cyclic
homology of A. However, the spectral equivalence relation permits a tearing
apart of strata in the primitive ideal space which is not allowed by Morita
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equivalence.

A key example illustrating the distinction between Morita equivalence and
spectral equivalence relation is provided by affine Hecke algebras associated
to affine Weyl groups. Let A be the group algebra, with coefficients C,
of of an affine Weyl group. For each non-zero complex number ζ there is
the affine Hecke algebra (with equal parameters) Aζ . Here A1 = A and
Aζ ≃ A1/ζ . Except for ζ in a finite set of roots of unity, none of which is
1, the algebras Aζ are spectrally equivalent. In §10, we give examples of
affine Hecke algebras Aζ which are spectrally equivalent, but not Morita
equivalent, to A1.

The ABPS (Aubert-Baum-Plymen-Solleveld) conjecture asserts that if G
is a connected split reductive p-adic group, then the finite type algebra which
Bernstein assigns to any given Bernstein component is spectrally equivalent
to the coordinate algebra of the associated extended quotient — and that the
spectral equivalence can be chosen so that the resulting bijection between
the Bernstein component and the extended quotient has properties as in the
statement of ABPS.

2. An example

If X,Y,Z, . . . are affine algebraic varieties over the complex numbers C,
thenO(X),O(Y ),O(Z), . . . will denote the coordinate algebras ofX,Y,Z, . . .

Let X be a complex affine variety. Set k = O(X) . Let Y be a sub-variety
of X.

IY denotes the ideal in O(X) determined by Y .
IY = {ω ∈ O(X) ∣ ω(p) = 0 ∀p ∈ Y }

Let A be the algebra of all 2×2 matrices whose diagonal entries are in O(X)
and whose off-diagonal entries are in IY . Addition and multiplication in A
are matrix addition and matrix multiplication. As a k-module, A is the
direct sum of O(X)⊕O(X) with IY ⊕ IY .

A = ( O(X) IY
IY O(X) )

Set B = O(X)⊕O(Y ), so that B is the coordinate algebra of the disjoint
union X ⊔ Y . We have O(Y ) = O(X)/IY . As a k = O(X)-module, B is
the direct sum O(X)⊕ (O(X)/IY ). The algebras A and B are not Morita
equivalent, but are equivalent in the new equivalence relation.

A ∼ B A ≁
Morita

B
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3. k-algebras

k denotes the coordinate algebra of a complex affine variety X.

k = O(X)
Equivalently, k is a unital algebra over the complex numbers which is unital,
commutative, finitely generated, and nilpotent-free. The Hilbert Nullstel-
lensatz implies that there is an equivalence of categories

unital commutative
finitely generated
nilpotent-free C-algebras

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

∼ affine complex al-
gebraic varieties

( )
op

O(X)↦X

Here op denotes the opposite category.

Definition 3.1. A k-algebra is a C-algebra A such that A is a unital (left)
k-module with:

λ(ωa) = ω(λa) = (λω)a ∀(λ,ω, a) ∈ C × k ×A
and

ω(a1a2) = (ωa1)a2 = a1(ωa2) ∀(ω, a1, a2) ∈ k ×A ×A.

Remark 3.2. A is not required to have a unit.

Notation. Z(A) is the center of A. Z(A) ∶= {c ∈ A ∣ ca = ac ∀a ∈ A}.

Remark 3.3. Let A be a unital k-algebra. Denote the unit of A by 1A.
ω ↦ (ω)1A ω ∈ k is then a unital morphism of C-algebras

k Ð→ Z(A)
i.e. unital k-algebra = unital C-algebra A with a given unital morphism of
C-algebras

k Ð→ Z(A)

Definition 3.4. Let A,B be two k-algebras. A morphism of k-algebras is
a morphism of C-algebras

f ∶A→ B

which is also a morphism of (left) k-modules,

f(ωa) = ωf(a) ∀(ω, a) ∈ k ×A.
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Definition 3.5. Let A be a k-algebra. A representation of A [or a (left)
A-module] is a C-vector space V with given morphisms of C-algebras

AÐ→ HomC(V,V )
k Ð→ HomC(V,V )

such that

(1) k Ð→ HomC(V,V ) is unital.
(2) (ωa)v = ω(av) = a(ωv) ∀(ω, a, v) ∈ k ×A × V .

From now on in this article, A will denote a k-algebra.

A representation of A
AÐ→ HomC(V,V )
k Ð→ HomC(V,V )

will often be denoted
A→ HomC(V,V )

it being understood that the action of k on V

k → HomC(V,V )
is part of the given structure.

Definition 3.6. A representation ϕ∶A→ HomC(V,V ) is non-degenerate iff
AV = V . i.e. for any v ∈ V , ∃ v1, v2, . . . , vr ∈ V and a1, a2, . . . , ar ∈ A with

v = a1v1 + a2v2 +⋯ + arvr.

Definition 3.7. A representation ϕ∶A→ HomC(V,V ) is irreducible if AV ≠
{0} and /∃ a sub-C-vector space W of V with:

{0} ≠W , W ≠ V
and

ωw ∈W ∀(ω,w) ∈ k ×W
and

aw ∈W ∀(a,w) ∈ A ×W
Definition 3.8. Two representations of the k-algebra A

ϕ1∶A→ HomC(V1, V1)
ϕ2∶A→ HomC(V2, V2)

are equivalent if ∃ an isomorphism of C-vector spaces

T ∶V1 → V2

with
T (av) = aT (v) ∀ (a, v) ∈ A × V

and
T (ωv) = ωT (v) ∀ (ω, v) ∈ k × V
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The spectrum of A, also denoted Irr(A), is the set of equivalence classes of
irreducible representations of A.

Irr(A) ∶= {Irreducible representations of A}/ ∼ .

4. The “k-action for free” lemma

For a k-algebra A, AC denotes the underlying C algebra of A.
AC is obtained from A by forgetting the action of k on A.

For AC there are the usual definitions :
A representation of AC [or a (left) AC-module] is a C-vector space V with a
given morphism of C-algebras

AC Ð→ HomC(V,V )

An AC-module V is irreducible if ACV ≠ {0} and /∃ a sub-C-vector space W
of V with:

{0} ≠W , W ≠ V
and

aw ∈W ∀(a,w) ∈ AC ×W

Two representations of AC

ϕ1∶A→ HomC(V1, V1)
ϕ2∶A→ HomC(V2, V2)

are equivalent if ∃ an isomorphism of C-vector spaces

T ∶V1 → V2

with

T (av) = aT (v) ∀ (a, v) ∈ A × V

Irr(AC):={Irreducible representations of AC}/∼.

An AC-module V for which the following two properties are valid is strictly
non-degenerate

● ACV = V
● If v ∈ V has av = 0 ∀a ∈ AC, then v = 0.

Lemma 4.1. Any irreducible AC-module is strictly non-degenerate.

Proof. Let V be an irreducible AC-module. First, consider ACV ⊂ V . ACV
is preserved by the action of AC on V . Cannot have ACV = {0} since this
would contradict the irreducibility of V . Therefore ACV = V.
Next, set

W = {v ∈ V ∣av = 0 ∀a ∈ AC}
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W is preserved by the action of AC on V . W cannot be equal to V since this
would imply ACV = {0}. Hence W = {0}.

�

Lemma 4.2. Let A be a k-algebra, and let V be a strictly non-degenerate
AC-module. Then ∃ a unique unital morphism of C algebras

k → HomC(V,V )
which makes V an A-module.

Proof. Given v ∈ V , choose v1, v2, . . . , vr ∈ V and a1, a2, . . . , ar ∈ A with
v = a1v1 + a2v2 +⋯ + arvr

For ω ∈ k, define ωv by :
ωv = (ωa1)v1 + (ωa2)v2 +⋯ + (ωar)vr

The second condition in the definition of strictly non-degenerate implies that
ωv is well-defined. �

Lemma 4.2 will be referred to as the “k-action for free lemma”.

Notation. If V is an A-module, VC will denote the underlying AC-module.
VC is obtained from V by forgetting the action of k on V .

Lemma 4.3. If V is any irreducible A-module, then VC is an irreducible
AC-module.

Proof. Suppose that VC is not an irreducible AC-module. Then ∃ a sub-C-
vector space W of V with:

0 ≠W, W ≠ V
and

aw ∈W ∀(a,w) ∈ A ×W
Consider AW ⊂ W . AW is preserved by both the A-action on V and the
k-action on V . Thus if AW ≠ {0}, then V is not an irreducible A-module.
Hence AW = {0}. Consider kW ⊃ W . kW is preserved by the k-action
on V and is also preserved by the A-action on V because A annihilates
kW . Since A annihilates kW , cannot have kW = V . Therefore {0} ≠ kW ,
kW ≠ V , which contradicts the irreducibility of the A-module V . �

A corollary of Lemma 4.2 is :

Corollary 4.4. For any k-algebra A, the map

Irr(A)→ Irr(AC)
V ↦ VC

is a bijection.

Proof. Surjectivity follows from lemmas 4.1 and 4.2. For injectivity, let
V,W be two irreducible A-modules such that VC and WC are equivalent
AC-modules. Let T ∶V →W be an isomorphism of C vector spaces with

T (av) = aT (v) ∀ (a, v) ∈ A × V
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Given v ∈ V and ω ∈ k, choose v1, v2, . . . , vr ∈ V and a1, a2, . . . , ar ∈ A with
v = a1v1 + a2v2 +⋯ + arvr

Then
T (ωv) = T ((ωa1)v1 + (ωa2)v2 +⋯ + (ωar)vr)

= (ωa1)Tv1 + (ωa2)Tv2 +⋯ + (ωar)Tvr
= ω(a1Tv1 + a2Tv2 +⋯ + arTvr)
= ω(Tv).

Hence T ∶V → W intertwines the k-actions on V,W and thus V,W are
equivalent A-modules. �

5. Central character

An ideal I in a k-algebra A is primitive if I is the null-space of an ir-
reducible representation of A, i.e. ∃ an irreducible representation of A
ϕ∶A→ HomC(V,V ) with

I = {a ∈ A ∣ ϕ(a) = 0}
Prim(A) denotes the set of all primitive ideals in A. The evident map

Irr(A)→ Prim(A)
sends an irreducible representation to its null-space. On Prim(A) there is
the Jacobson topology. If S is any subset of Prim(A), S ⊂ Prim(A), then
the closure S of S is :

S ∶= {I ∈ Prim(A) ∣ I ⊃ ∩L∈SL}

A k-algebra A is of finite type if, as a k-module, A is finitely generated. For
any finite type k-algebra A, the following three statements are valid :

● If ϕ∶A → HomC(V,V ) is any irreducible representation of A, then
V is a finite dimensional C vector space and ϕ∶A → HomC(V,V ) is
surjective.

● The evident map Irr(A)→ Prim(A) is a bijection.
● Any primitive ideal in A is a maximal ideal.

Since Irr(A) → Prim(A) is a bijection, the Jacobson topology on Prim(A)
can be transferred to Irr(A) and thus Irr(A) is topologized. Equivalently,
Irr(A) is topologized by requiring that Irr(A) → Prim(A) be a homeomor-
phism.

For a finite type k-algebra A (k = O(X)), the central character is a map
Irr(A)Ð→X

defined as follows. Let ϕ
AÐ→ HomC(V,V )
k Ð→ HomC(V,V )

be an irreducible representation of A. IV denotes the identity operator of V
IV (v) = v ∀v ∈ V.
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For ω ∈ k = O(X), define
Tω ∶V → V

by
Tω(v) = ωv ∀v ∈ V.

Tω is an intertwining operator for A → HomC(V,V ). According to Lemma
4.3 plus Schur’s Lemma Tω is a scalar multiple of IV .

Tω = λωIV λω ∈ C
The map

ω ↦ λω

is a unital morphism of C algebrasO(X)→ C and thus is given by evaluation
at a unique (C rational) point pϕ of X.

λω = ω(pϕ) ∀ω ∈ O(X)
The central character Irr(A)Ð→X is

ϕ↦ pϕ

Remark. Corollary 4.4 states that Irr(A) depends only on the underlying C
algebra AC. The central character Irr(A)→X, however, does depend on the
structure of A as a k-module. A change in the action of k on AC will change
the central character.

The central character Irr(A)→X is continuous where Irr(A) is topologized
as above and X has the Zariski topology. For a proof of this assertion see [11,
Lemma 1, p.326]. From a somewhat heuristic non-commutative geometry
point of view, AC is a non-commutative complex affine variety, and a given
action of k on AC, making AC into a finite type k-algebra A, determines a
morphism of algebraic varieties AC →X.

6. Morita equivalence for k-algebras

Definition 6.1. Let B be a k-algebra. A right B-module is a C-vector space
V with given morphisms of C-algebras

Bop Ð→ HomC(V,V )
k Ð→ HomC(V,V )

such that:

(1) k → HomC(V,V ) is unital

(2) v(ωb) = (vω)b = (vb)ω ∀(v,ω, b) ∈ V × k ×B.

Bop is the opposite algebra of B. V is non-degenerate if V B = V .

Remark. “Right B-module” = “Left Bop-module.”

With k fixed, let A, B be two k-algebras. An A−B bimodule, denoted AVB,
is a C vector space V such that :

(1) V is a left A-module.
(2) V is a right B-module.
(3) a(vb) = (av)b ∀ (a, v, b) ∈ A × V ×B.



ON THE SPECTRA OF FINITE TYPE ALGEBRAS 9

(4) ωv = vω ∀ (ω, v) ∈ k × V .

An A − B bimodule AVB is non-degenerate if AV = V = V B. IV is the
identity map of V . (IV (v) = v ∀v ∈ V.) A is an A − A bimodule in the
evident way.

Definition 6.2. A k-algebraA has local units if given any finite set a1, a2, . . . , ar
of elements of A, ∃ an idempotent Q ∈ A (Q2 = Q) with

Qaj = ajQ = aj j = 1,2, . . . , r.

An algebra with local units is referred to in [ ] as an “idempotented algebra”.

Definition 6.3. Let A, B be two k-algebras with local units. A Morita
equivalence (between A and B) is given by a pair of non-degenerate bimod-
ules

AVB BWA

together with isomorphisms of bimodules
α∶V ⊗BW → A

β∶W ⊗A V → B
such that there is commutativity in the diagrams:

V ⊗BW ⊗A V
IV ⊗β //

α⊗IV
��

V ⊗B B
≅
��

A⊗A V ≅
// V

W ⊗A V ⊗BW
IW⊗α

//

β⊗IW
��

W ⊗A A
≅
��

B ⊗B V ≅
// W

The linking algebra. Let A, B two k-algebras with local units, and suppose
given a Morita equivalence

AVB BWA α∶V ⊗BW → A β∶W ⊗A V → B

The linking algebra is

L(AVB,BWA) ∶= ( A V
W B

)

i.e. L(AVB,BWA) consists of all 2 × 2 matrices having (1, 1) entry in A,
(2, 2) entry in B, (2, 1) entry in W , and (1, 2) entry in V . Addition and
multiplication are matrix addition and matrix multiplication. Note that α
and β are used in the matrix multiplication.
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L(AVB,BWA) is a k-algebra. With ω ∈ k, the action of k on L(AVB,BWA)
is given by

ω ( a v
w b

) = ( ωa ωv
ωw ωb

)

Remark. A Morita equivalence between A and B determines an equiva-
lence of categories between the category of non-degenerate left A-modules
and the category of non-degenerate left B-modules. Similarly for right mod-
ules. Also, a Morita equivalence determines isomorphisms (between A and
B) of Hochschild homology, cyclic homology, and periodic cyclic homology.

A Morita equivalence between two finite type k-algebras A,B preserves
the central character i.e. there is commutativity in the diagram

Irr(A) ÐÐÐ→ Irr(B)
×××Ö

×××Ö
X ÐÐÐ→

IX
X

where the upper horizontal arrow is the bijection determined by the given
Morita equivalence, the two vertical arrows are the two central characters,
and IX is the identity map of X.
Example. For n a positive integer, let Mn(A) be the k-algebra of all n × n
matrices with entries in A. If A has local units, A and Mn(A) are Morita
equivalent as follows. For m,n positive integers, denote by Mm,n(A) the set
of all m×n (i.e. m rows and n columns) matrices with entries in A. Matrix
multiplication then gives a map

Mm,n(A) ×Mn,r(A)Ð→Mm,r(A)
With this notation, Mn,n(A) = Mn(A) and M1,1(A) = M1(A) = A. Hence
matrix multiplication gives maps

M1,n(A) ×Mn(A)Ð→M1,n(A) Mn(A) ×Mn,1 Ð→Mn,1(A)

Thus M1,n(A) is a right Mn(A)-module and Mn,1(A) is a left Mn(A)-
module.
Similarly, M1,n(A) is a left A-module and Mn,1(A) is a right A-module.
With A = A and B = Mn(A), the bimodules of the Morita equivalence are
V =M1,n(A) and W =Mn,1(A).
Note that the required isomorphisms of bimodules

α∶V ⊗BW → A

β∶W ⊗A V → B
are obtained by observing that the matrix multiplication maps

M1,n(A) ×Mn,1(A)→ A

Mn,1(A) ×M1,n(A)→Mn(A)
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factor through the quotientsM1,n(A)⊗Mn(A)Mn,1(A), Mn,1(A)⊗AM1,n(A)
and so give bimodule isomorphisms

α∶M1,n(A)⊗Mn(A)Mn,1(A)→ A

β∶Mn,1(A)⊗AM1,n(A)→Mn(A)
If A has local units, then α and β are isomorphisms. Therefore A and
Mn(A) are Morita equivalent.

If A does not have local units, then α and β can fail to be isomorphisms,
and there is no way to prove that A and Mn(A) are Morita equivalent. In
examples, this already happens with n = 1, and there is then no way to
prove (when A does not have local units) that A is Morita equivalent to A.
For more details on this issue see below where the proof is given that in the
new equivalence relation A and Mn(A) are equivalent even when A does not
have local units.

A finite type k-algebra A has local units iff A is unital.

7. Spectrum preserving morphisms

Let A, B two finite type k-algebras, and let f ∶A → B be a morphism of
k-algebras.

Definition 7.1. f is spectrum preserving if

(1) Given any primitive ideal J ⊂ B, ∃ a unique primitive ideal I ⊂ A
with I ⊃ f−1(J)

and

(2) The resulting map
Prim(B)→ Prim(A)

is a bijection.

Example 7.2. Let A, B two unital finite type k-algebras, and suppose given
a Morita equivalence

AVB BWA α∶V ⊗BW → A β∶W ⊗A V → B

With the linking algebra L(AVB,BWA) as above, the inclusions

A↪ L(AVB, VWA)↩ B

a↦ ( a 0
0 0

) ( 0 0
0 b

)↤ b

are spectrum preserving morphisms of finite type k-algebras. The bijection
Prim(B)←→ Prim(A)

so obtained is the bijection determined by the given Morita equivalence.

Remark. If f ∶A → B is a spectrum preserving morphism of finite type k-
algebras, then the resulting bijection

Prim(B)←→ Prim(A)
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is a homeomorphism. For a proof of this assertion see [6, Theorem 3, p.342].
Consequently, if A, B are two unital finite type k-algebras, and

AVB BWA α∶V ⊗BW → A β∶W ⊗A V → B

is a Morita equivalence, then the resulting bijection
Prim(B)←→ Prim(A)

is a homeomorphism.

Definition 7.3. An ideal I in a k-algebra A is a k-ideal if ωa ∈ I ∀ (ω, a) ∈
k × I.

Remark. Any primitive ideal in a k-algebra A is a k-ideal.

Given A,B two finite type k-algebras, let f ∶A → B be a morphism of k-
algebras.

Definition 7.4. f is spectrum preserving with respect to filtrations if ∃ k-
ideals

0 = I0 ⊂ I1 ⊂ ⋯ ⊂ Ir−1 ⊂ Ir = A in A

and k ideals

0 = J0 ⊂ J1 ⊂ ⋯ ⊂ Jr−1 ⊂ Jr = B in B

with f(Ij) ⊂ Jj , (j = 1,2, . . . , r) and Ij/Ij−1 → Jj/Jj−1, (j = 1,2, . . . , r) is
spectrum preserving.

8. Algebraic Variation of k-structure

Let A be a unital C-algebra, and let
Ψ∶k → Z (A[t, t−1])

be a unital morphism of C-algebras. Here t is an indeterminate,so A[t, t−1]
is the algebra of Laurent polynomials with coefficients in A. As above Z
denotes “center”. For ζ ∈ C× = C − {0}, ev(ζ) denotes the “evaluation at ζ”
map:

ev(ζ)∶A[t, t−1]→ A

∑ajt
j ↦∑ajζ

j

Consider the composition

k
ΨÐ→ Z (A[t, t−1]) ev(ζ)Ð→ Z(A).

Denote the unital k-algebra so obtained by Aζ . ∀ζ ∈ C× = C − {0}, the
underlying C-algebra of Aζ is A.

(Aζ)C = A ∀ζ ∈ C×

Such a family {Aζ}, ζ ∈ C×, of unital k-algebras, will be referred to as an
algebraic variation of k-structure with parameter space C×.
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9. Spectral Equivalence

With k fixed, consider the collection of all finite type k-algebras. On this
collection, spectral equivalence is, by definition, the equivalence relation gen-
erated by the two elementary steps :

Elementary Step 1. If ∃ a morphism of k-algebras f ∶ A → B which is spec-
trum preserving with respect to filtrations, then A ∼ B.

Elementary Step 2. If ∃ {Aζ}, ζ ∈ C×, an algebraic variation of k-structure

with parameter space C×, such that each Aζ is a unital finite type k-algebra,
then for any ζ, η ∈ C×,Aζ ∼ Aη.

Thus, two finite type k-algebras A,B are equivalent iff ∃ a finite sequence
A0,A1,A2, . . . ,Ar of finite type k-algebras with A0 = A,Ar = B, and for each
j = 0,1, . . . , r − 1 one of the following three possibilities is valid :

● a morphism of k-algebras Aj → Aj+1 is given which is spectrum pre-
serving with respect to filtrations.

● a morphism of k-algebras Aj ← Aj+1 is given which is spectrum pre-
serving with respect to filtrations.

● {Aζ}, ζ ∈ C×, an algebraic variation of k-structure with parameter
space C×, is given such that each Aζ is a unital finite type k-algebra,
and η, τ ∈ C× have been chosen with Aj = Aη,Aj+1 = Aτ .

To give a spectral equivalence relating A and B, the finite sequence of ele-
mentary steps (including the filtrations) must be given. Once this has been
done, a bijection of the primitive ideal spaces and an isomorphism of periodic
cyclic homology [5, 6] are determined:

Prim(A)←→ Prim(B) HP∗(A) ≅ HP∗(B)

Proposition 9.1. If two unital finite type k-algebras A,B are Morita equiv-
alent (as k-algebras) then they are spectrally equivalent.

A ∼
Morita

B Ô⇒ A ∼ B

Proof. LetA, B two unital finite type k-algebras, and suppose given a Morita
equivalence

AVB BWA α∶V ⊗BW → A β∶W ⊗A V → B

The linking algebra is

L(AVB,BWA) ∶= ( A V
W B

)
The inclusions

A↪ L(AVB, VWA)↩ B
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a↦ ( a 0
0 0

) ( 0 0
0 b

)↤ b

are spectrum preserving morphisms of finite type k-algebras. Hence A and
B are spectrally equivalent. �

According to the above, a Morita equivalence of A and B gives a homeo-
morphism

Prim(A) ≃ Prim(B)
However, the bijection

Prim(A)←→ Prim(B)
obtained from a spectral equivalence might not be a homeomorphism, as in
the following example — which is the example in §2 revisited.

Example. We recall the example in §2.

A = ( O(X) IY
IY O(X) )

B = O(X)⊕O(Y ).
Let M2(O(X) denote the algebra of all 2 × 2 matrices with entries in

O(X). Consider the algebra morphisms

AÐ→M2(O(X)⊕O(Y ))←Ð O(X)⊕O(Y )

T ↦ (T, t22∣Y ) (Tω, θ)↤ (ω, θ)
where

T = ( t11 t12

t21 t22
) Tω = ( ω 0

0 0
)

The filtration of A is given by

{0} ⊂ ( O(X) IY
IY IY

) ⊂ A

and the filtration of M2(O(X))⊕O(Y ) is given by

{0} ⊂M2(O(X)⊕ {0}) ⊂M2(O(X))⊕O(Y ).
The rightward pointing arrow is spectrum preserving with respect to the

indicated filtrations. The leftward pointing arrow is spectrum preserving
(no filtrations needed). We infer that

A ∼ B.
Note that

Prim(A) =

= X with each point of Y replaced by two points
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and
Prim(B) = Prim(O(X)⊕O(Y ))

=X ⊔ Y
The spaces Prim(A) and Prim(B) are not homeomorphic, and so we have

A ≁
Morita

B

Remark. Unlike Morita equivalence, spectral equivalence works well for
finite type k-algebras whether or not the algebras are unital, e.g. A and
Mn(A) are spectrally equivalent even when A is not unital. See Proposition
9.3 below.

Remark. For any k-algebraA there is the evident isomorphism of k-algebras
Mn(A) ≅ A⊗CMn(C). Hence, using this isomorphism, if W is a representa-
tion ofA and U is a representation ofMn(C), thenW⊗CU is a representation
of Mn(A).
Notation. As in 6 above Mn,1(C) denotes the n×1 (i.e. n rows, 1 column)
matrices with entries in C. Matrix multiplication gives the usual action of
Mn(C) on Mn,1(C).

Mn(C) ×Mn,1(C)Ð→Mn,1(C)
This is the unique irreducible representation of Mn(C). For any k-algebra
A, if W is a representation of A, then W ⊗CMn,1(C) is a representation of
Mn(A).
Lemma 9.2. Let A be a finite type k-algebra and let n be a positive integer.
Then:
(i) If W is an irreducible representation of A, W⊗CMn,1(C) is an irreducible
representation of Mn(A).
(ii) The resulting map Irr(A)→ Irr(Mn(A)) is a bijection.

Proof. For (i), suppose given an irreducible representation W of A. Let J be
the primitive ideal in A which is the null space of W . Then the null space
of W ⊗CMn,1(C) is J ⊗CMn(C).Consider the quotient algebra
A⊗CMn(C)/J⊗CMn(C) = (A/J)⊗CMn(C). This is isomorphic to Mrn(C)
where A/J ≅Mr(C), and so W ⊗CMn,1(C) is irreducible.

Proposition 9.3. Let A be a finite type k-algebra and let n be a positive
integer, then A and Mn(A) are spectrally equivalent.

Proof. Let f ∶A →Mn(A) be the morphism of k-algebras which maps a ∈ A
to the diagonal matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a 0 . . . 0
0 a . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It will suffice to prove that f ∶A→Mn(A) is spectrum preserving.
Let J be an ideal in A. Denote by J◇ the ideal in Mn(A) consisting of all
[aij] ∈Mn(A) such that each aij is in J . Equivalently, Mn(A) is A⊗CMn(C)
and J◇ = J ⊗CMn(C). It will suffice to prove
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(1) If J is a primitive ideal in A, then J◇ is a primitive ideal in Mn(A).
(2) If L is any primitive ideal in Mn(A), then ∃ a primitive ideal J in

A with L = J◇.

For (1), J primitiveÔ⇒ J◇ primitive, because the quotient algebraMn(A)/J◇
is (A/J)⊗CMn(C) which is (isomorphic to) Mrn(C) where A/J ≅Mr(C).
For (2), since C is commutative, the action of C on A can be viewed as both
a left and right action. Matrix multiplication then gives a left and a right
action of Mn(C) on Mn(A)

Mn(C) ×Mn(A)→Mn(A)
Mn(A) ×Mn(C)→Mn(A)

for which the associativity rule
(αθ)β = α(θβ) α,β ∈Mn(A) θ ∈Mn(C)

is valid.
If V is any representation of Mn(A), the associativity rule

(αθ)(βv) = α[(θβ)v] α,β ∈Mn(A) θ ∈Mn(C) v ∈ V
is valid.

Now let V be an irreducible representation of Mn(A), with L as its null-
space. Define a (left) action

Mn(C) × V → V
of Mn(C) on V by proceeding as in the proof of Lemma 4.2 (the “k-action for
free” lemma) i.e. given v ∈ V , choose v1, v2, . . . , vr ∈ V and α1, α2, . . . , αr ∈
Mn(A) with

v = α1v1 + α2v2 +⋯ + αrvr
For θ ∈Mn(C), define θv by :

θv = (θα1)v1 + (θα2)v2 +⋯ + (θαr)vr
The strict non-degeneracy, Lemmas 4.1 and 4.3, of V implies that θv is well-
defined as follows. Suppose that u1, u2, . . . , us ∈ V and β1, β2, . . . , βr ∈Mn(A)
are chosen with

v = α1v1 + α2v2 +⋯ + αrvr = β1u1 + β2u2 +⋯ + βsus
If α is any element of Mn(A), then
α[(θα1)v1 + (θα2)v2 + ⋯ + (θαr)vr − (θβ1)u1 − (θβ2)u2 − ⋯ − (θβs)us] =
(αθ)[α1v1 + α2v2 +⋯ + αrvr − β1u1 − β2u2 −⋯ − βsus] = (αθ)[v − v] = 0

Use f ∶A→Mn(A) to make V into an A-module
av ∶= f(a)v a ∈ A v ∈ V

The actions of A and Mn(C) on V commute. Thus for each θ ∈Mn(C), θV
is a sub-A-module of V , where θV is the image of v ↦ θv. Denote by Eij
the matrix in Mn(C) which has 1 for its (i, j) entry and zero for all its other
entries. Then, as an A-module, V is the direct sum

V = E11V ⊕E22V ⊕⋯⊕EnnV
Moreover, the action of Eij on V maps EjjV isomorphically (as an A-
module) onto EiiV . Hence as an Mn(A) = A ⊗C Mn(C) module, V is
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isomorphic to (E11V ) ⊗C Cn — where Cn is the standard representation
of Mn(C) i.e. is the unique irreducible representation of Mn(C).

V ≅ (E11V )⊗C Cn
E11V is an irreducible A-module since if not V = (E11V ) ⊗C Cn would not
be an irreducible A⊗CMn(C)-module.
If J is the null space (in A) of E11V , then J◇ = J⊗CMn(C) is the null space
of V = (E11V )⊗C Cn and this completes the proof. �

10. Affine Hecke Algebras

Let G be a connected reductive complex Lie group with maximal torus
T . W denotes the Weyl group

W = NG(T )/T
and X∗(T ) is the character group of T . NG(T ) is the normalizer (in G) of
T . The semi-direct product X∗(T ) ⋊W is the affine Weyl group of G. For
each non-zero complex number q, there is the affine Hecke algebra Hq(G).
This is an affine Hecke algebra with equal parameters and H1(G) is the
group algebra of the affine Weyl group:

H1(G) = C[X∗(T ) ⋊W ] = O(T ) ⋊W.
Hq is the algebra generated by Tx, x ∈X∗(T ) ⋊W , with relations

TxTy = Txy, if `(xy) = `(x) + `(y), and
(Ts − q)(Ts + 1) = 0, if s ∈ S.

` is the length function on X∗(T ) ⋊W.
S is the set of order 2 generators of the finite Coxeter group W .
Using the action of W on T , form the quotient variety T /W and let k be its
coordinate algebra,

k = O(T /W )
For all q ∈ C×, Hq(G) is a unital finite type k-algebra.

Theorem 10.1 (Lusztig). Except for q in a finite set of roots of unity, none
of which is 1, Hq(G) is spectrally equivalent to H1(G) :

Hq(G) ∼H1(G).
Proof. Let J be Lusztig’s asymptotic algebra [16, 2.7]. As a C-vector space,
J has a basis {Tx ∶ x ∈ X∗(T ) ⋊W}, and there is a canonical structure of
associative C-algebra on J . Except for q in a finite set of roots of unity
(none of which is 1) Lusztig constructs a morphism of k-algebras

φq ∶Hq(G)Ð→ J
which is spectrum preserving with respect to filtrations. The algebra Hq(G)
is viewed as a k-algebra via the canonical isomorphism

O(T /W ) ≅ Z(Hq(G)).
Lusztig’s map φq maps Z(Hq(G)) to Z(J) and thus determines a unique
k-structure for J such that the map φq is a morphism of k-algebras. J with
this k-structure will be denoted Jq. Hq(G) is then spectrally equivalent to
H1(G) by the three elementary steps

Hq(G)↝ Jq ↝ J1 ↝H1(G).
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The second elementary step (i.e. passing from Jq to J1) is an algebraic
variation of k-structure with parameter space C×. The first elementary step
uses Lusztig’s map φq, and the third elementary step uses Lusztig’s map φ1.
Hence (provided q is not in the exceptional set of roots of unity—none of
which is 1) Hq(G) is spectrally equivalent to

H1(G) = C[X∗(T ) ⋊W ] = O(T ) ⋊W.
�

As observed in section 11 below, Irr(H1(G)) = T //W . Thus the spectral
equivalence of Hq(G) to H1(G) determines a bijection

T //W ←→ Irr(Hq(G))
Here T //W is the extended quotient for the action of W on T . See section
11 below.

With q = 1, there is commutativity in the diagram

T //W ÐÐÐ→ Irr(H1(G))
×××Ö

×××Ö
T /W ÐÐÐ→

IT /W
T /W

where the left vertical arrow is the projection of the extended quotient on
the ordinary quotient and the right vertical arrow is the central character
for H1(G) = C[X∗(T ) ⋊W ] = O(T ) ⋊W .

Theorem 10.2. Consider the affine Hecke algebra Hq ∶=Hq(SL3(C)). For
∣q∣ ≠ 1, Hq is not Morita equivalent to H1.

Proof. We consider Hochschild homology HH∗. We note that HH∗ is Morita
invariant. We have the isomorphism of Solleveld [14, Theorem 2(a)] onto

the W -invariant algebraic forms on T̃ :
HH∗(Hq) ≅ Ω∗(T̃ )W ,(1)

T̃ ∶= {(w, t) ∈W × T ∶ w(t) = t}.
The right-hand-side is independent of q.

For every q under consideration there is a canonical isomorphism Z(Hq) ≅
O(T )W , and the resulting action of O(T )W on (1) does depend on q. To be
precise, the action on Ω(Twi ) is the same as the action via the embedding

Twi → T ∶ t↦ cw,it

where Twi is a connected component of Tw ≅ (w,Tw) ⊂ T̃ and
cw,i ∶X∗(T )→ {qn ∶ n ∈ Z}

is defined in [14, Theorem 1(c)].
Since any Morita equivalence preserves the center of an algebra, its Hochschild

homology and the action of the center on that, we can deduce a necessary
condition for Morita equivalence H(R, q) and H(R, q′). Namely, there must
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exist an automorphism of T /W that sends every sub-variety cw,iT
w
i /ZW (w)

to a sub-variety cw′,i′T
w′

i′ /ZW (w′).
For the affine Hecke algebra with (X,R) of type Ã2 it was shown in [17,

§3] that this condition is only fulfilled if q′ = q or q′ = 1/q . �

It appears that the above condition on subvarieties of T /W is rather
strong, at least when R is not a direct product of root systems A1. On this
basis we conjecture that Theorem 10.2 holds for any affine Hecke algebra
whose root system contains non-perpendicular roots.

11. Extended quotient

Let Γ be a finite group acting as automorphisms of a complex affine variety
X.

Γ ×X →X.

For x ∈X, Γx denotes the stabilizer group of x:
Γx = {γ ∈ Γ ∶ γx = x}.

Let Irr(Γx) be the set of (equivalence classes of) irreducible representations
of Γx. These representations are on finite dimensional vector spaces over
the complex numbers C.

The extended quotient, denoted X//Γ, is constructed by replacing the orbit
of x (for the given action of Γ on X) by Irr(Γx). This is done as follows :

Set X̃ = {(x, τ) ∣x ∈ X and τ ∈ Irr(Γx)}. Endowed with the topology that
sees only the first coordinate, this is an algebraic variety (in the sense of e.g.

[9]), although it is usually not separated. Then Γ acts on X̃ by

Γ × X̃ → X̃,

γ(x, τ) = (γx, γ∗τ),
where γ∗∶ Irr(Γx)→ Irr(Γγx). X//Γ is defined by :

X//Γ ∶= X̃/Γ,
i.e. X//Γ is the usual quotient for the action of Γ on X̃.

The projection X̃ → X (x, τ) ↦ x is Γ-equivariant and so passes to
quotient spaces to give the projection of X//Γ onto X/Γ.

π1∶X//ΓÐ→X/Γ
Denote by trivx the trivial one-dimensional representation of Γx. The inclu-
sion

X ↪ X̃

x↦ (x, trivx)
is Γ-equivariant and so passes to quotient spaces to give an inclusion

X/Γ↪X//Γ
This will be referred to as the inclusion of the ordinary quotient in the
extended quotient.

Let O(X) be the coordinate algebra of the complex affine variety X and
let O(X) ⋊ Γ be the crossed-product algebra for the action of Γ on O(X).
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There are canonical bijections
Irr(O(X) ⋊ Γ)←→ Prim(O(X) ⋊ Γ)←→ (X//Γ)

where Prim(O(X)⋊Γ) is the set of primitive ideals inO(X)⋊Γ and Irr(O(X)⋊
Γ) is the set of (equivalence classes of) irreducible representations of O(X)⋊
Γ. The irreducible representation of O(X)⋊Γ associated to x, τ) ∈ (X//Γ is

Ind
O(X)⋊Γ
O(X)⋊Γx

(Cx ⊗ τ).
Here Cx∶O(X)→ C is the irreducible representation of O(X) given by eval-

uation at x ∈X. Ind
O(X)⋊Γ
O(X)⋊Γx

is induction from O(X) ⋊ Γx to O(X) ⋊ Γ .

Prim(O(X) ⋊ Γ) is endowed with the Jacobson topology, which makes it a
(not necessarily separated) algebraic variety. This structure can be trans-
ferred via the canonical bijection Prim(O(X)⋊Γ)←→X//Γ to X//Γ. Hence
X//Γ is a complex algebraic variety. In many examples X//Γ is not sepa-
rated, and is not an affine variety.

12. A conjectural refinement of the Bernstein program

Let F be a non-archimedean local field, and let G be a connected reductive
algebraic group over F . Let s be a point in the Bernstein spectrum B(G)
of G. Attached to s there is a complex torus Ts and a finite group Ws acting
on Ts.

We denote the space of (equivalence classes of) irreducible smooth com-
plex G-representations by Irr(G). We have the Bernstein decomposition

Irr(G) = ⊔
s∈B(G)

Irrs(G)

and the (restriction of) the cuspidal support map
Sc ∶ Irrs(G)→ Ts/Ws

see [13, VI.7.1.1]. The map Sc is finite-to-one and the quotient Ts/Ws has
the structure of a complex affine algebraic variety.

Bernstein constructs a finite type ks-algebra As with the property that
Irr(As) is in bijection with the Bernstein component Irrs(G). Here ks is
the coordinate algebra of T s/W s:

ks = O(T s/W s)
The classical theory leaves open the geometric structure of each compo-

nent Irrs(G). Here is a conjectural refinement of the Bernstein program.
The set Irrs(G) has the structure of a scheme (possibly non-separated),
and there is an algebraic family of finite morphisms {πζ ∶ ζ ∈ C×} such that
πq = Sc, π1 = ρ:

Irrs(G) Irrs(G) Irrs(G)

Sc
×××Ö

×××Ö
πζ

×××Ö
ρ

T s/W s T s/W s T s/W s
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This, for split groups, will follow from the following

Conjecture 12.1. Let G be a connected reductive split algebraic group over
F . For each Bernstein component in the smooth dual of G, Bernstein’s
finite type ks-algebra As is spectrally equivalent to the crossed-product algebra
O(T s)⋊W s. In addition, the spectral equivalence between As and O(T s)⋊W s

can be chosen such that the resulting bijection
Irrs(G)←→ T s//W s

satisfies a number of conditions itemized in [2].

Moussaoui [12], building on the work of many mathematicians e.g. [4],
[7], [8], [10], has verified the ABPS conjecture (without the spectral equiva-
lence) for all the split classical p-adic groups. A different proof of the ABPS
conjecture (without the spectral equivalence) for split classical groups was
first obtained by Solleveld [15]. Solleveld’s approach is more general since it
works as soon as we know that the algebra Aζ is an extended affine Hecke
algebra. The spectral equivalence is established for GLn(F ) in [7], and for
the principal series of the exceptional group G2, see [1]. A more involved
version of the spectral equivalence is proved in our paper on the inner forms
of SLn(F ), see [3].

An essential feature of Moussaoui’s work is the compatibility of the ex-
tended quotient structure (for each Bernstein component) with the local
Langlands correspondence (LLC). Moussaoui proves that, independently of
what is happening in the smooth dual, an extended quotient structure is
present in the enhanced Langlands parameters — and that the LLC con-
sists of isomorphisms of extended quotients. This phenomenon was first
observed in the special case of GLn in [7].

A foundational issue in local Langlands is to make precise the properties
that uniquely determine the correspondence. It appears, at the present time,
that one of these properties should be (using enhanced Langlands param-
eters) that the correspondence should consist of isomorphisms of extended
quotients.

Part of this is (as in [12] et al.) that the extended quotient structure
should appear independently on the Galois side and the representation the-
ory side.
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