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COLLOCATION METHODS FOR EXPLORING PERTURBATIONS
IN LINEAR STABILITY ANALYSIS∗

HOWARD C. ELMAN† AND DAVID J. SILVESTER‡

Abstract. Eigenvalue analysis is a well-established tool for stability analysis of dynamical
systems. However, there are situations where eigenvalues miss some important features of physical
models. For example, in models of incompressible fluid dynamics, there are examples where linear
stability analysis predicts stability but transient simulations exhibit significant growth of infinitesimal
perturbations. This behavior can be predicted by pseudo-spectral analysis. In this study, we show
that an approach similar to pseudo-spectral analysis can be performed inexpensively using stochastic
collocation methods and the results can be used to provide quantitative information about instability.
In addition, we demonstrate that the results of the perturbation analysis provide insight into the
behavior of unsteady flow simulations.
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1. Introduction. This study is concerned with a refined understanding of the
classic problem of stability of dynamical systems. Let

∂u

∂t
= f(u, t), (1.1)

represent a dynamical system, where u : Rd × [0, T ]→ R, f : R× [0, T ]→ R, and let
u(s) denote a steady solution to (1.1), i.e.,

∂u(s)

∂t
= f(u(s), t) = 0 for all t.

Let γ = γ(x, 0) represent a small perturbation of u(s). Suppose the perturbed quan-
tity û(x, 0) := u(s)(x) + γ(x, 0) is taken as an initial condition for (1.1), for which
integration leads to a solution û(x, t) = u(s)(x) + γ(x, t). If û(x, t) reverts to u(s)(x)
(γ(x, t)→ 0) as t increases, then the steady solution is said to be stable; otherwise it
is unstable. In typical applications, f(u, t) = fα(u, t) depends on a parameter α, as

does the resulting steady solution u
(s)
α , and we are interested in the set of values of α

for which u
(s)
α is stable.

Spatial discretization of (1.1) leads to a discrete version of it, which has the form

M
∂u

∂t
= f(u, t), (1.2)

where u and f(u, t) are finite-dimensional vectors of size nu, the size of the spatial
discretization. For finite-element discretization, M is a mass matrix. As above, we
wish to know if a steady solution u(s) to (1.2) is stable.
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Linear stability analysis addresses this question by examining the eigenvalues of
the algebraic system

Jv = λMv, (1.3)

where J = ∂f
∂u (u(s)) is the Jacobian matrix of f with respect to u, evaluated at u(s);

see, for example, [11, Ch. 1]. A necessary condition for stability of u(s) is that all
eigenvalues λ of (1.3) have negative real part. If any eigenvalue has positive real part,
then there exists an arbitrary small perturbation γ such that if u(s) +γ is used as an
initial condition for (1.2), the integrated solution will not revert to u(s).

A problematic aspect of linear stability analysis is that it fails to account for
transient effects that may take a long time to resolve. In particular, it may happen
that the solution of the system (1.1) with initial condition u(x, 0) = u(s)(x) + γ(x),
consisting of a small perturbation of a steady solution, exhibits large growth over a
significant period of time even if u(s) is linearly stable. This is discussed for mod-
els of flow in [19, Sections 2.3,4.1], [21, Sections 20,22]. It can be explained using
pseudospectra: the ε-pseudospectrum of the Jacobian matrix, defined for M = I in
(1.3), is the set of eigenvalues of J + E for ‖E‖ ≤ ε. (A generalization to forms of
M considered in the present study is discussed in [10].) Transient growth is exhibited
when some elements of this set protrude into the right-half of the complex plane [21].

As observed in [10], it is not practical to compute pseudospectra for large-scale
systems such as those arising from models of fluid dynamics. Our aim in this study is
to develop and explore a simpler procedure to study the sensitivity of the eigenvalues
of (1.3) when the dynamical system comes from models of incompressible flow. The
methodology derives from a two-fold procedure:

1. Introduce a simple way to construct perturbed versions of the eigenvalue
problem (1.3) using spatial perturbations that depend on a finite number of
parameters.

2. Approximate the critical eigenvalues of the perturbed problem using a surro-
gate function defined by interpolation.

This requires the solution of a relatively small number of perturbed eigenvalue prob-
lems determined from a special set of parameter values, using sparse-grid methods
[1, 20]. The surrogate function interpolates the critical eigenvalues obtained from
these eigenvalue problems and provides a means of approximating the critical eigen-
values for an additional set of perturbed problems. The surrogate function is very
inexpensive to evaluate. As a result, it is possible to generate many samples of (ap-
proximate) eigenvalues in order to gain an understanding of the effects of perturbation.
We apply this technique to the eigenvalue problems arising from stability analysis of
the incompressible Navier-Stokes equations.

An outline of the remainder of the paper is as follows. In Section 2, we de-
scribe the collocation strategy and show in detail how it is developed for the Navier-
Stokes equations. In Section 3, we describe two benchmark problems we use to test
the methodology and show how the perturbed eigenvalues behave with respect to
Reynolds numbers and sizes of perturbation, and in Section 4, we demonstrate that
the behavior of perturbed eigenvalues predicts the behavior of transient solutions ob-
tained from perturbed flow conditions. Finally, Section 5, we make some concluding
remarks.

2. Approach. In this section, we describe the methodology we will use to ex-
plore the sensitivity to perturbation of the eigenvalue problem (1.3), which is based
on sampling. We first outline the approach in general terms in Section 2.1, and then
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we continue in Section 2.2 with a more detailed statement of how the ideas are applied
to a specific benchmark problem, the incompressible Navier-Stokes equations.

2.1. General approach. Let u(s) be a steady solution to (1.2) and let δ be
a small perturbation of u(s). We will specify δ = δ(ξ) to depend on a vector of
parameters ξ := (ξ1, ξ2, . . . , ξm)T with δ(0) = 0, and we will explore a perturbed
eigenvalue problem

Ĵ(u(s), δ(ξ)) v = λ̂(ξ)Mv, (2.1)

with the aim of understanding the impact of the perturbation δ on the eigenvalues
{λ̂}. One way to define Ĵ is to evaluate the Jacobian at the perturbed velocity,
Ĵ(u(s), δ) := J(u(s) + δ). In this study, which concerns the incompressible Navier-
Stokes equations, we will insist that the perturbation is not dissipative. Details on the
structure of the perturbation and its parameter dependence are given in Section 2.2.

Remark 1.1. We call attention here to an important aspect of the issue under study.
Classic linear stability analysis concerns the sensitivity of the steady solution u(s)

to perturbation. Our (different) concern here, like that of [21], is the sensitivity of
the eigenvalues λ to perturbation, and in particular whether the conclusions reached
from stability analysis predict behavior. To highlight this distinction, we use different
symbols for perturbation depending on context: γ is used for perturbations arising in
linear stability analysis, and δ for perturbations of eigenvalue problems as in (2.1).

Given the eigenvalue problem (2.1), let

g(ξ) := rightmost eigenvalue of (2.1), (2.2)

where, if there is a complex conjugate pair of rightmost eigenvalues, g(ξ) can be
taken to be the eigenvalue with positive imaginary part. One way to explore the
sensitivity of (1.3) is by sampling ξ, that is, to evaluate g(ξ) for a large set of sample
values of ξ. If this function is very sensitive, that is, if small changes in δ(ξ) lead
to large changes in g(ξ), then linear stability analysis may not provide an accurate
assessment of stability; conversely, if g is not sensitive to perturbation, then linear
stability analysis is likely to yield insight.

The point of view here is that the study of perturbation is done by sampling a
large number of nearby problems. A potential downside is that this approach requires
the solution of many eigenvalue problems (2.1), one for each choice of ξ and resulting
δ(ξ), which tends to incur a high computational cost. To reduce this expense, instead
of evaluating the function of (2.2) (by solving an eigenvalue problem), we will replace
g(ξ) with an approximation, a surrogate function g(I)(ξ), which is inexpensive to
compute and therefore can be evaluated cheaply for many samples of ξ. For this, we
will use the method of collocation designed to construct approximations to functions
on high-dimensional spaces [1, 20]. This entails evaluation of g(ξ) at a relatively small

number of special points, {ξ(1), ξ(2), . . . , ξ(nξ)}. The surrogate function is then taken
to be the polynomial interpolant of g,

g(I)(ξ) :=

nξ∑
k=1

g(ξ(k)) `k(ξ), (2.3)

where {`k(ξ)} are multidimensional Lagrange interpolation polynomials,

`k(ξ(`)) = δk`, 1 ≤ k, ` ≤ m.
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For the interpolation points, we use sparse grids derived from the extrema of one-
dimensional Chebyshev polynomials [1].

2.2. Application to the Navier–Stokes equations. We will explore these
ideas when the dynamical system (1.1) comes from the incompressible Navier–Stokes
equations, and we now describe a way to specify a perturbation δ(ξ) for this bench-
mark problem for use in (2.1). To this end, consider the Navier–Stokes equations

~ut − ν∇2~u+~u · ∇~u+∇p = ~0,

−∇ ·~u = 0,
(2.4)

posed on a domain D ⊂ Rd, d = 2 or 3, with boundary conditions

~u = ~w on ∂DD, ν
∂~u

∂n
−~np =~0 on ∂DN ,

for ∂D = ∂DD ∪ ∂DN consisting of the portions of the boundary of D on which
Dirichlet or Neumann boundary conditions hold. In a typical scenario (see [9, p. 413]),
~w is a time-dependent inflow function that rapidly goes to a steady state, and the
Neumann boundary condition is applied at an outflow boundary. Let H1(D) be the
Sobolev space of functions on D with first derivatives in L2(D), and let

H1
E := {~u ∈ H1(D)d |~u = ~w on ∂DD}, H1

E0
:= {~v ∈ H1(D)d |~v =~0 on ∂DD}.

For fixed time t ∈ (0,∞), the weak formulation of (2.4) is to find ~u(·, t) ∈ H1
E ,

p(·, t) ∈ L2(D) such that

∫
D~ut ·~v + ν

∫
D∇~u : ∇~v +

∫
D(~u · ∇~u) ·~v −

∫
D p (∇ ·~v) =

∫
D
~f ·~v

for all ~v ∈ H1
E0

−
∫
D q (∇ ·~u) = 0 for all q ∈ L2(D).

(2.5)

Linear stability analysis uses a linearized form of the first (momentum) equation
of (2.4)–(2.5). Given a steady velocity field ~u (i.e., ~ut = 0), consider a perturbation
~u+~γ. Substitution of this perturbed velocity into the quadratic term from (2.4) gives

(~u+~γ) · ∇(~u+~γ) = ~u · ∇~γ +~γ · ∇~u+~γ · ∇~γ ≈ ~u · ∇~γ +~γ · ∇~u,

where the approximation on the right is made under the assumption that ~γ is small.
Addition of the diffusion operator and specification of a perturbed weak formula-
tion then leads to a trilinear form associated with the linearized convection-diffusion
operator,

a(~γ,~v;~u) := ν

∫
D
∇~γ : ∇~v +

∫
D

(~u · ∇~γ) ·~v +

∫
D

(~γ · ∇~u) ·~v. (2.6)

Mixed finite-element discretization of (2.5) uses finite-dimensional subspaces Xh
0

⊂ H1
E0

and Y h ⊂ L2(D) together with Xh
E ⊂ H1

E containing functions that interpolate
the Dirichlet boundary data at element nodes lying in ∂DD. We will assume that this
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discretization is div-stable [13, Sect. 2.2]. The discrete weak formulation is to find
~uh ∈ Xh

E and ph ∈ Y h such that

∫
D[~uh]t ·~vh + ν

∫
D∇~uh : ∇~vh +

∫
D(~uh · ∇~uh) ·~vh −

∫
D ph (∇ ·~vh) =

∫
D
~f ·~vh

for all ~vh ∈ Xh
0 ,

−
∫
D qh (∇ ·~uh) = 0 for all qh ∈ Y h.

(2.7)

Let ~u
(s)
h be a discrete steady solution to (2.7), i.e., [~u

(s)
h ]t = 0. The eigenvalue

problem (1.3) is derived from a linearized discrete formulation associated with (2.7)
where the aim is to find eigenvalues λh and associated eigenfunctions satisfying

a(~uh,~vh;~u
(s)
h )−

∫
D ph(∇ ·~vh) = λh

∫
D~uh ·~vh for all~vh ∈ Xh

0 ,∫
D qh(∇ ·~uh) = 0 for all qh ∈ Y h.

(2.8)

Here, we have linearized around a steady flow velocity field ~u
(s)
h satisfying (2.7).

Remark 2.1. A complete discussion of the development of the trilinear form a(·, ·; ·)
of (2.6) and the derivation of (2.8) is given in [9, Sections 8.2–8.3]. This form also
arises from use of Newton’s method for solving the nonlinear system of equations
arising from implicit time discretization of (2.5).

Let the dimensions of Xh
0 and Y h be nu and np, respectively. Let u(s) be the

vector of coefficients of the steady finite-element solution~u
(s)
h appearing in (2.8). Then

the eigenvalue problem (1.3) has the structure[
F BT

B 0

] [
u
p

]
= λ

[
−Q 0

0 0

] [
u
p

]
. (2.9)

Here, F = F (u(s)) is the matrix of order nu derived from the bilinear form a(·, ·;~u(s)
h ),

B and BT are matrix representations of negative-divergence and gradient operators,
respectively (B is of size np × nu), and Q is a velocity mass matrix, also of order nu.

Remark 2.2. The matrix on the right side of (2.9) is singular, and the resulting
infinite eigenvalue can lead to instability in eigenvalue computations [17]. This can

be avoided by replacing the matrix by

[
−Q αBT

αB 0

]
, which leaves the finite eigenvalues

intact and maps the infinite eigenvalue to 1/α, see [4].1

We want to explore the sensitivity of our modified eigenvalue problem to pertur-
bation. For this, we add a small perturbation c(~uh,~vh;~δh) to a(~uh,~vh;~δh) in (2.8).
The perturbation is defined in two steps. First, we specify a discretely divergence-free
vector field ~δh, that is, one satisfying∫

D
qh (∇ ·~δh) = 0 for all qh ∈ Y h. (2.10)

1We use this variant of the mass matrix with α = −1/10 in all of our computations. The
resulting mapped eigenvalue λ = −10 is far enough from the near-critical ones that it does not affect
the results.
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Second, the field ~δh is used to generate a nondissipative perturbation ch(~uh,~vh;~δh)

of ah(~uh,~vh;~δh). To illustrate the construction, we will suppose that Th denotes a
subdivision of D ⊂ R2 into triangular or rectangular elements. The extension to
three-dimensional problems is perfectly straightforward.

Assertion 2.1. Suppose that φh ∈ H1(D) is a finite element function defined on Th

and that ~δh is defined locally on every element k ∈ Th , ~δh|k := ~δ
(k)

h , via

~δ
(k)

h = curl φ
(k)
h =

[
−∂φ(k)

h /∂x2, ∂φ
(k)
h /∂x1

]T
, (2.11)

so that~δ
(k)

h is divergence-free on each element. Then~δh :=
∑
k∈Th

~δ
(k)

h satisfies (2.10).

Proof. For any function qh ∈ Y h,∫
D
qh (∇ ·~δh) =

∑
k∈Th

∫
k

q
(k)
h (∇ · curl φ

(k)
h︸ ︷︷ ︸

=0

) = 0. �

Note that the local construction (2.11) generates a discontinuous velocity field so that

in general ~δh 6∈ H1(D)
d
.

Assertion 2.2. Let the perturbation operator on element k ∈ Th be given by

c
(k)
h (u

(k)
h , v

(k)
h ;~δ

(k)

h ) :=

∫
k

(~δ
(k)

h · ∇u
(k)
h ) v

(k)
h −

1

2

∫
∂k

u
(k)
h v

(k)
h
~δ

(k)

h ·~n, (2.12)

Then c
(k)
h is skew-adjoint on Th, and

ch(uh, vh;~δh) :=
∑
k∈Th

c
(k)
h (u

(k)
h , v

(k)
h ;~δ

(k)

h )

is skew-adjoint on D.2

Proof. Since ~δh 6∈ H1(D)
d
, we need to apply Green’s theorem on each element:

∫
k
(~δ

(k)

h ·∇u
(k)
h ) v

(k)
h =

∫
k
(v

(k)
h
~δ

(k)

h )·∇u(k)
h = −

∫
k
∇ · (v(k)

h
~δ

(k)

h )u
(k)
h +

∫
∂k
u

(k)
h v

(k)
h
~δ

(k)

h ·~n

=−
∫
k
(v

(k)
h ∇ ·~δ

(k)

h +~δ
(k)

h ·∇v
(k)
h )u

(k)
h +

∫
∂k
u

(k)
h v

(k)
h
~δ

(k)

h ·~n

=−
∫
k
(~δ

(k)

h · ∇v
(k)
h )u

(k)
h +

∫
∂k
u

(k)
h v

(k)
h
~δ

(k)

h ·~n,

where the last equality follows from (2.10). It follows that∫
k

(~δ
(k)

h · ∇u
(k)
h ) v

(k)
h −

1

2

∫
∂k

u
(k)
h v

(k)
h
~δ

(k)

h ·~n =−
∫
k

(~δ
(k)

h · ∇v
(k)
h )u

(k)
h +

1

2

∫
∂k

u
(k)
h v

(k)
h
~δ

(k)

h ·~n,

that is., c
(k)
h is skew-adjoint. Summation over all the elements establishes the same

property for ch. �

2In this discussion, uh and vh are discrete scalar functions. For vector-valued arguments, e.g.,
~uh = ([uh]1, [uh]2)T , ch(~uh,~vh;~δh) =

∑
i ch([uh]i, [vh]i;~δh) is the sum of contributions from indi-

vidual scalar components.
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The perturbed variant of (2.8) is

a(~uh,~vh;~u
(s)
h ) + c(~uh,~vh;~δh)−

∫
D ph(∇ ·~vh) = λ̂h

∫
D~uh ·~vh for all~vh ∈ Xh

0 ,∫
D qh(∇ ·~uh) = 0 for all qh ∈ Y h.

This leads to the perturbed matrix eigenvalue problem (2.1)[
F +N(ξ) BT

B 0

] [
u
p

]
= λ̂

[
−Q αBT

αB 0

] [
u
p

]
, (2.13)

where the perturbation matrix N(ξ) is associated with the skew-adjoint operator ch.
By construction, N is a skew-symmetric matrix, NT = −N , for all parameter values
ξ independent of the boundary conditions of the flow problem.

It remains to specify the finite element function φh used in Assertion 2.1 to define
the vector field ~δh. Following [18], we take φh(x, ξ) ∈ H1(D) to be a parameter-
dependent scalar potential specified using a covariance function C(x(1), x(2)) for x(i) ∈
D. In particular, given C, let C := C(x,x) be the covariance matrix of order n con-
sisting of the vertices in the subdivision associated with Xh

0 , so that Cij = C (xi, xj).
Now let φ be an n-dimensional zero-mean stationary random process with covariance
matrix C, i.e., C = E(φφT ), where “E” refers to expected value. If C = σ2VΘV T

is an eigenvalue–eigenvector decomposition (scaled by the variance), then φ can be
defined using a discrete Karhunen–Loève (KL) expansion

φ(ξ) := σVΘ1/2ξ = σ

n∑
j=1

√
θj vj ξj , (2.14)

where the eigenvector vj is the jth column of V and {ξj}nj=1 are uncorrelated ran-
dom variables with zero mean and unit variance [16, Section 5.4]. It is often the
case that many of the eigenvalues are small and some of the terms in (2.14) can
be removed without significant loss of accuracy. We will choose m < n such that(∑n

j=m+1 θj

)/(∑n
j=1 θj

)
≤ 5/100, and, in the sequel, ξ := (ξ1, . . . , ξm)T will repre-

sent an m-dimensional vector of parameters and φ(ξ) is defined using the truncated
KL-expansion

φ(ξ) := σ

m∑
j=1

√
θj vj ξj . (2.15)

This ξ-dependent coefficient vector (of length n) then characterizes a piecewise-defined
linear or bilinear function φh(ξ). For the computational results described in Section 3,
we take the smooth covariance function

C(x(1), x(2)) := σ2 exp

−
(x(1)

1 − x
(2)
1

c1

)2

+

(
x

(1)
2 − x

(2)
2

c2

)2
 , (2.16)

where c1 and c2 are correlation lengths. We will also assume that {ξj} in (2.15) are
mutually independent, with each satisfying a truncated Gaussian distribution with
range [−3, 3], so that ξj has the density function

ρ(ξ) =


1

erf(3
√

2)
1√
2π

exp
(
ξ2

2

)
for |ξ| ≤ 3

0 for |ξ| > 3.
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1

6

?
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-� 20

Fig. 3.1. Symmetric step domain and velocity/pressure solutions for ν = 1/220.

A Matlab implementation of this distribution is given in [3] and described in [2].

3. Benchmark problems and structure of eigenvalues. We will illustrate
these ideas for two benchmark problems. In this section, we specify the problems
and their features of interest, the eigenvalues associated with linear stability analysis
and the effect of perturbation of these eigenvalues. Each of these is a model of flow
through a channel for which there are inflow and outflow boundaries. The position
of the outflow boundary is far enough downstream that the flow is fully developed.
The spatial approximation is done using Q2–P−1 (biquadratic velocity; discontinuous
linear pressure) mixed approximation [9, Section 3.3.1], implemented in the ifiss
software package [7, 8]. The discretization level is “grid level” 6 in ifiss, which for
uniform grids corresponds to an element size of 1/32 (giving 64 elements along the
vertical interval [−1, 1]).

3.1. Expansion flow around a symmetric step. The domain D is a rectan-
gular duct with a symmetric expansion, with boundary conditions

• parabolic profile ~u(−1, y) = (1− 4y2, 0) at the inflow boundary (−1, y), |y| ≤ .5
• natural conditions ν ∂ux

∂x = p,
∂uy

∂x = 0 at the outflow boundary (20, y), |y| ≤ 1

• no-flow conditions ~u = 0 along fixed walls
(x,±1), 0 ≤ x ≤ 20; (x,±.5),−1 ≤ x ≤ 0; (0, y), .5 ≤ |y| ≤ 1.

Details of the domain and a sample solution are shown in Figure 3.1. The discretiza-
tion is defined on a uniform grid of square elements. The key feature of this solution
is that it is reflectionally symmetric with respect to the centerline y = 0, i.e., the
stream function ψ satisfies ψ(x, y) = −ψ(x,−y). It follows that for the velocity,

ux(x, y) = ux(x,−y), uy(x, y) = −uy(x,−y). (3.1)

This flow problem exhibits a pitchfork bifurcation [6]: as the viscosity decreases
through a critical value (approximately ν = 1/220.5), the rightmost eigenvalue of
(2.9), which is real, changes from negative (indicating linear stability) to positive
(instability). Figure 3.2 shows the ten rightmost eigenvalues for three values of ν in
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�
���

ν λ

1/210 −2.7× 10−3

1/220 −1.4× 10−4

1/250 5.8× 10−3

Fig. 3.2. Eigenvalues for the symmetric step problem

.

ν = 1/210 ν = 1/220

Fig. 3.3. Surrogate perturbed rightmost eigenvalues for the symmetric step problem, for σ = .1,
.2, and .3, and ν = 1/210 (left) and ν = 1/220 (right).

this range and the rightmost eigenvalues (detail in the inset) for each choice, whose
values are also identified on the right.

We explored the sensitivity of the rightmost negative eigenvalues using the per-
turbed eigenvalue problem (2.13). This was derived using correlation lengths c1 =
c2 = 2 in (2.16), which resulted in a finite expansion (2.15) with m = 19 terms. The
surrogate function g(I) of (2.3) used to estimate eigenvalues was constructed from a
two-level sparse grid on the m-dimensional parametper space, which in turn resulted
in nξ = 761 sparse grid nodes. Thus, it is necessary to solve 760 eigenvalue problems,
that is, find the rightmost eigenvalues of 760 perturbed systems (2.13), one for each
sparse-grid node. (One of the sparse-grid nodes is ξ = 0, which corresponds to an
unperturbed system.) Once these are available, the estimates of eigenvalues for other
choices of ξ can be obtained by evaluating g(I). We implemented the sparse-grid
interpolation using the matlab toolbox spinterp [14, 15].

The behavior of the perturbed (estimated) eigenvalues is illustrated in Figure 3.3.
In these tests, for three values of the standard deviation in (2.15), σ = .1, .2 and .3
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� -8

6

?

2

.5

.5

Fig. 3.4. Obstacle domain and velocity/pressure solutions for ν = 1/185.6.

(this can be viewed as a measure of the size of the perturbation), we computed one
million eigenvalue estimates. These are shown in the figure, for ν = 1/210 on the
left and ν = 1/220 on the right. For both values of ν, the rightmost unperturbed
eigenvalue (center of the set of perturbations) is negative, showing that the associated
steady solution is stable, but for the smaller, closer-to-critical value ν = 1/220, some
of the perturbed eigenvalues are positive, whereas all the perturbations are negative
for ν = 1/210. The two figures have the same horizontal scaling, indicating that the
magnitude of the perturbations does not depend on ν. The bounding dashed lines
show that the magnitude of perturbations varies linearly with σ.

3.2. Flow around a square obstacle. In this case, the domain is a rectangular
duct containing a square obstacle, with boundary conditions

• parabolic profile ~u(−1, y) = (1− 4y2, 0) at the inflow boundary (0, y), |y| ≤ 1

• natural conditions ν ∂ux

∂x = p,
∂uy

∂x = 0 at the outflow boundary (8, y), |y| ≤ 1

• no flow conditions ~u = 0 along the top and bottom walls (x,±1), 0 ≤ x ≤ 8, and
on the obstacle, a square centered at (2, 0) with sides of length 0.5.

A representative steady solution that retains the reflectional symmetry is shown in
Figure 3.4. In this case, there is a symmetry-breaking Hopf bifurcation for ν ≈ 1/186;
that is, for ν in this range there is a complex conjugate pair of rightmost eigenvalues
whose real parts change from negative to positive as ν is reduced. Figure 3.5 shows the
100 smallest eigenvalues for three values of ν, two near critical (ν = 1/175 and 1/185.6
and one super-critical (ν = 1/200), as well as a detail of the rightmost eigenvalues.

The behavior of the perturbed (estimated) eigenvalues is illustrated in Figure 3.6.
In this case, we computed 100, 000 eigenvalue estimates for three values of the standard
deviation in (2.15), σ = .1, .2 and .3. These are shown in the figure, for ν = 1/175 on
the left and ν = 1/185.6 on the right. For both values of ν, the rightmost unperturbed
eigenvalue (center of the set of perturbations) has negative real part, showing that
the associated steady solution is stable, but for the close-to-critical value ν = 1/185.6,
some of the perturbed eigenvalues have a positive real part. As for the step problem,
it can be readily seen that the magnitude of the perturbations does not depend on
ν. Once again, the bounding dashed lines show that the magnitude of perturbations
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��*

ν Re(λ)

1/175 −2.9× 10−2

1/185.6 −3.0× 10−4

1/200 3.7× 10−2

Fig. 3.5. Eigenvalues for the obstacle problem

.

Fig. 3.6. Real parts of surrogate perturbed rightmost eigenvalues for the obstacle problem, for
σ = .1, .2, and .3, and ν = 1/175 (left) and ν = 1/185.6 (right).

varies linearly with σ.

4. Unsteady flow simulations. In this section, we explore the connection be-
tween time integration of the Navier–Stokes equations and the eigenvalue perturbation
results in the previous section. We will do this by computing time-accurate solutions
of the Navier–Stokes equations using the adaptive (stabilized) Trapezoidal Rule (sTR)
time stepping methodology built into ifiss. The suitability of sTR for long-time in-
tegration is discussed in [12]. Full details of the ifiss implementation of sTR can be
found in section 10.2.3 of [9]. (Stabilization is based on time step averaging, which
prevents the “ringing” to which TR is susceptible for stiff systems.) In what fol-
lows, we present results obtained from a nonlinear version of the integrator, denoted
(sTRk), where a fixed number (k = 1 or k = 2) of Picard corrections are performed
at every time step. We present results for the benchmark problems of Sections 3.1
and 3.2. Our objective is to test the sensitivity of the reference flow with respect
to instantaneous spatial perturbations, loosely simulating a laboratory experiment
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Fig. 4.1. First phase for symmetric step flow with ν = 1/250.

where a reference steady flow is subject to an external disturbance, and the flow is
monitored to see if it returns to the steady state.

4.1. Evolution of expansion flow around a symmetric step. Motivated by
the eigenvalue calculations shown in Section 3.1, we consider the three distinct values
of the viscosity parameter ν = 1/210 (linearly stable), ν = 1/220 (close to critical)
and ν = 1/250 (unstable).

We model the laboratory scenario computationally via a two-stage process.

1. We start from a quiescent state and a tiny time step (1e-9). The inflow
profile is smoothly ramped up to a fully developed flow using an exponential
startup. The sTR2 integration is then carried out for 330 time steps with
a relatively tight accuracy tolerance (i.e., a bound on an estimate of local
truncation error), 3e-5. The number of steps taken is arbitrary but needs
to be chosen large enough so that the reference flow is visually steady. More
precisely, when this phase is complete, the instantaneous acceleration a(t),

defined in terms of the flow velocity ~uh(·, t) at time t by a(t) =

√∫
Ω

(
∂~uh

∂t

)2

,

should be around 10−2 or even less.
At the point in time, T say, where the first stage is completed, the integration
is interrupted and a perturbation is added to the flow field ~uh(·, T ). The

perturbation is of the form~δh specified in Assertion 2.1 where the associated
scalar field φh derives from (2.15)–(2.16). We construct the field with σ = .3.3

2. The time integration is then restarted without reducing the time step, us-
ing sTR1 in place of sTR2 (because it is marginally less dissipative). The
restarted integration is continued for a fixed number (typically, 200 or 700)
time steps, stopping prematurely only if the time reaches T ∗=1e14 — which
we interpret as reaching a “computational steady-state” — at which point
the acceleration a(T ∗) will almost certainly be smaller than unit roundoff.

3It is also necessary to scale the perturbation so as not to “shock” the transient simulation —
the perturbation field is thus scaled by a factor of 1e-5. This ensures that the magnitude of the
perturbation is comparable to the time accuracy used for the simulation.
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perturbation

Fig. 4.2. Structure of two scalar potentials φh used to generate velocity perturbations ~δh

.

The mean vorticity ω(t), or the average vertical velocity at the outflow,

ω(t) =

∫
Ω

∇×~uh(·, t) =

∫
∂DN

uy(·, t) ds,

provides a convenient way of assessing the degree of departure from the reflectionally
symmetric flow (for which ω=0). At the conclusion of the first phase of the time
integration, a pseudo-steady flow is computed for each of the three values of ν. The
evolution of the mean vorticity and the acceleration visualized in Figure 4.1 shows
that a symmetric flow is established for ν = 1/250 before the interruption is made
after 330 time steps; this corresponds to time T ≈ 32.

Moving on to the second stage, we show results for the subcritical cases ν = 1/210
and 1/220, for three representative flow perturbations, each of which derives from a

particular collocation point ξ(k) used in (2.3). For the first of these, no perturbation is
made (this corresponds to the point ξ ≡ 0) and the integration simply continues from
the first-stage stopping point T . The other two are representatives of a “benign”
perturbation and a “lively” perturbation and have the spatial structure shown in
Figure 4.2.

The evolution of the flow after the restart for ν = 1/210 is depicted in Figure 4.3.
The plots at the top of the figure confirm that the unperturbed flow is perfectly
stable: the sTR1 integrator reaches the end time (T ∗=1e14) 66 steps after the restart.
The distinctive jumps in the acceleration are associated with the stabilization of the
integrator, which has the effect of periodically injecting a small amount of dissipation
into the flow. Next, by comparing the plots in the center of the figure with those at
the top, it can be seen that the benign permutation, which respects the reflectional
symmetry, has no effect on the long-term flow evolution. In contrast, as shown in
the bottom plots, the lively perturbation excites visible instability at 60 time steps
after the restart. But (as seen in particular from the acceleration), the size of the
perturbation is not big enough to stop the long-term evolution to the symmetric flow
at the designated end time T ∗.

The evolution of flow for the intermediate viscosity parameter ν = 1/220 is shown
in Figure 4.4. The unperturbed case shown at the top is just about stable: the
sTR1 integrator reaches the end time 75 steps after the restart. An almost identical
evolution is evident in the plots in the middle of the figure, when the perturbation
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Fig. 4.3. Long-term evolution for different perturbations, symmetric step flow with ν = 1/210.
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Fig. 4.4. Long-term evolution for different perturbations, symmetric step flow with ν = 1/220.
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Fig. 4.5. Time-step histories: time step size vs. time step count for various perturbations,
symmetric step, ν = 1/210 (left), ν = 1/220 (right).
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Fig. 4.6. Time-step history and long-term evolution for the unperturbed flow, symmetric step,
ν = 1/250.

to the flow is benign. The time evolution for the lively perturbation shown at the
bottom is noticeably different, however. In this case, the sTR1 integrator rejects time
step 85 and the computational flow evolves to a numerically noisy solution where the
magnitude of the oscillation is of the order of the time-stepping accuracy.

These observations are substantiated in Figure 4.5, which shows the history of
the time step sizes chosen by the adaptive integrator. For each of the plots in this
figure, the switch from the first to the second stage is identified by a vertical dotted
line. When either no perturbation or a benign perturbation is made, the time step
sizes rapidly increase because the integration goes to a steady state for the subcritical
values of ν. This behavior can also be seen for the lively perturbation and ν = 1/210.
In contrast, the integrator behaves differently for ν = 1/220 — here the time step size
is cut back at around 70 time steps after the perturbation is made in order to resolve
the nonstationary solution shown at the bottom of Figure 4.4. Computing solutions
when so close to the stability limit is a delicate business.

Results for the super-critical viscosity parameter ν = 1/250 are in Figure 4.6. In
this instance, no perturbations are needed to excite instability. The time step history
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Fig. 4.7. Snapshots of the (unperturbed) flow, symmetric step, ν = 1/250.

of the complete flow evolution from t=0 to t=1e14 is presented at the top of the
figure. Note the scale on the vertical axis — this is a pretty demanding computational
exercise! The evolution of mean vorticity and acceleration after the interrupt is shown
in the two plots at the bottom of Figure 4.6 and should be contrasted with the results
for the subcritical viscosity shown in Figure 4.4. Just when the symmetric flow looks
to be steady (400 time steps; 70 after the restart) the time step is cut back to O(1)
and after a transient the flow goes to a computational steady state that does not have
reflectional symmetry. This is evident from the flow snapshots plotted at/after the
interrupt shown in Figure 4.7; the particular steady-state solution (top eddy longer
than the bottom one) is solely determined by the build-up of roundoff error. The two
“cups” between 400 and 600 in the time step history shown at the top of Figure 4.6
suggest that the sTR1 algorithm needed two attempts to fix on the specific stationary
solution — it is instructive to contrast this with the evolution that results when
vigorously perturbing the flow close to the critical viscosity, which is shown at the
bottom of Figure 4.5.

4.2. Evolution of flow around an obstacle. Motivated by the eigenvalue
calculations discussed in Section 3.2, we now consider three distinct values of the
viscosity parameter for the obstacle problem: ν = 1/175 (subcritical), ν = 1/185.6
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Fig. 4.8. Time-step history and long-term evolution for the unperturbed flow, obstacle, ν = 1/200.

(close to critical) and ν = 1/200 (unstable). We consider ν = 1/200 first. The same
two-stage process described above gives the results shown in Figure 4.8. These results
should be compared with those in Figure 4.6. The difference is that instead of going
to a nonsymmetric steady state solution, the computational flow evolves to a periodic
(vortex-shedding) solution, at which point the time step becomes essentially constant.
The vortex-shedding solution is persistent — it is unchanged when we run the solver
for another 10,000 time steps. The same long-term behavior is obtained if a pertur-
bation is added at the interrupt point. The different outcomes for the two benchmark
problems are representative of the difference between a pitchfork bifurcation (for the
step) and a Hopf bifurcation (for the obstacle) [5],[9, p. 343].

To study the flow breakdown mechanism in detail, the second phase of the time
integration is computed with a very small accuracy tolerance (1e-9) using the unsta-
bilised TR1 integrator.4 In all cases discussed below the time integrator is run for
2500 steps after the interrupt. Figure 4.9 shows the evolution of the mean vorticity
and the acceleration using this refined strategy for each value of the viscosity param-
eter, when no perturbation is done. In the super-critical case of ν = 1/200 (bottom),

4Stabilization of TR is not appropriate when the accuracy tolerance is so small.
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Fig. 4.9. Evolution of mean vorticity and flow acceleration for three viscosity parameters, no
perturbations, obstacle flow.
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Fig. 4.10. Zoom of flow evolution for ν = 1/175 and ν = 1/185.6, obstacle flow.

there is a fast breakdown to the vortex-shedding solution. (Note that the evolution is
plotted against physical time in this figure.) For both the subcritical (ν = 1/175) and
near-critical (ν = 1/185.6) cases, there are long delays (until t ≈ 6e7 and t ≈ 1.1e4,
respectively) after the interrupt, after which numerical instability kicks in and (as in
the preceding section) generates a numerically noisy solution. The onset of instability
is dramatically later for the subcritical case.

We explore the breakdowns in more depth in Figure 4.10, which shows magnified
images of the noisy solution measures at the time they become unsteady. These images
show that the magnitudes of the numerical oscillations (of order 1e-8 in the sub-
critical case and 1e-7 in the near-critical case) are comparable to the time-stepping
accuracy. Even when no explicit perturbation is done, time accuracy plays a role in
long-term simulation to compute steady solutions in near-critical regimes.

Continuing this exploration of subcritical cases, we now consider the effects of
perturbations at the interrupt. As in the previous section, we look at one perturba-
tion that respects the reflectional symmetry of the flow solution in Figure 3.4 and
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Fig. 4.11. Short-term evolution for small perturbations, obstacle flow with ν = 1/175. The
inset shows a magnified image of the onset of periodic behavior.

is expected to be “benign” and one that breaks the reflectional symmetry and so is
expected to be “lively”. The results for ν = 1/175 are shown in Figure 4.11 and
those for ν = 1/185.6 are in Figure 4.12. In these figures, the vertical scaling for
the mean vorticities are now set to be equal in order to discern differences for the
two viscosity values. These images should be compared with those corresponding to
analogous experiments with no perturbation in Figures 4.9–4.10. In particular, for the
sub-critical viscosity ν = 1/175 with either type of perturbation, after a long delay,
the solution moves away from a steady state. This is not surprising, since the same
phenomenon occurs when no perturbation is done. The onset of periodic behavior for
the perturbed data is slightly earlier than for no perturbation (and earlier still for the
lively perturbation), but the magnitude of the oscillations is small. The results for
ν = 1/185.6 (Figure 4.12) bear some similarity to these — most notably, the behavior
for the benign perturbation is virtually identical to that for no perturbation (middle
of Figure 4.9). But the sizes of the oscillations are larger for the lively perturbation,
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Fig. 4.12. Short-term evolution for small perturbations, obstacle flow with ν = 1/185.6. The
inset shows a magnified image of the onset of periodic behavior.

and, moreover, for the lively perturbation, the structure of the oscillations for the
near-critical viscosity ν = 1/185.6 is more like that for the super-critical viscosity
(compare the images for lively perturbation in Figure 4.11 with the images in Fig-
ures 4.9–4.10). In contrast, for the sub-critical viscosity ν = 1/175, the structure of
the oscillations is is more like that arising when no perturbation is done.

Finally, when we check to see what happens when the perturbation is significantly
larger (of the order of the perturbation made in computing the pseudo-eigenvalues in
Figure 3.5) we observe that there is a big difference in the time-stepping behavior in
any case where the perturbation is not benign. This is illustrated by the results shown
in the bottom plot in Figure 4.13. In this case the size of the lively perturbation is
big enough to destabilize the integrator and a noisy periodic solution is computed.
This mirrors the vortex-shedding solution that is computed in the unstable case but
has an amplitude that is too small to be seen when plotted.
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Fig. 4.13. Short-term evolution for large perturbations, obstacle flow with ν = 1/185.6.

5. Concluding remarks. Our aims in this study were twofold. First, we have
developed a new approach to assess the stability of dynamical systems by construct-
ing perturbed systems based on collocation methods. This is reminiscent of methods
for computing pseudospectra, but it has the advantage that the process of sampling
(approximate) spectra is significantly less costly. Second, we compared the results of
such assessments with the performance of time-stepping computations for a nontrivial
application, the incompressible Navier-Stokes equations. In particular, for two bench-
mark problems, we examined the behavior of a stable integration scheme for simulat-
ing transient behavior for values of the viscosity in the system that are “sub-critical”,
nearly critical (very slightly smaller than the critical value), and super-critical.

In general, we found that the predictions of instability made by the collocation
method were consistent with the behavior of integrators: in the nearly critical regime
(of parameter values, viscosity in this case), there is more sensitivity to perturba-
tion than in the sub-critical regime, and outcomes are qualitatively like those for
super-critical parameters. We also note that making such assessments is complicated
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somewhat by the delicate nature of computations in regimes at or near stability lim-
its. Eigenvalues and pseudoeigenvalues are not the sole determining factor affecting
stability; the form of the perturbation also plays a significant role.
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