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Abstract. The RKFIT algorithm outlined in [M. Berljafa and S. Güttel, Generalized
rational Krylov decompositions with an application to rational approximation, SIAM J. Matrix
Anal. Appl., 2015] is a Krylov-based approach for solving nonlinear rational least squares prob-
lems. This paper puts RKFIT into a general framework, allowing for its extension to nondiagonal
rational approximants and a family of approximants sharing a common denominator. Furthermore,
we derive a strategy for the degree reduction of the approximants, as well as methods for their conver-
sion to partial fraction form, for the efficient evaluation, and root-finding. We also discuss commons
and differences of RKFIT and the popular vector fitting algorithm. A MATLAB implementation of
RKFIT is provided and numerical experiments, including the fitting of a MIMO dynamical system
and an optimization problem related to exponential integration, demonstrate its applicability.
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1. Introduction. Rational approximation problems arise in many areas of engi-
neering and scientific computing. A prominent example is that of system identification
and model order reduction, where calculated or measured frequency responses of dy-
namical systems are approximated by (low-order) rational functions [20, 26, 2, 23, 19].
Some other areas where rational approximants play an important role are analogue
filter design [7], time stepping methods [43], transparent boundary conditions [28, 17],
and iterative methods in numerical linear algebra (see, e.g., [32, 42, 18, 27, 33]). Here
we focus on discrete rational approximation in the least squares (LS) sense.

In its simplest form the weighted rational LS problem is the following: given
data pairs {(λi, fi)}Ni=1 with pairwise distinct λi, and positive weights {wi}Ni=1, find a
rational function r of type (m,m), that is, numerator and denominator of degree at
most m, such that

N∑

i=1

wi|fi − r(λi)|2 → min. (1.1)

The weights can be used to assign varying relevance to the data points. For example,
when the function values fi are known to be perturbed by white Gaussian noise, then
the wi can be chosen inversely proportional to the variance.

Even in their simplest form (1.1), rational LS problems are challenging. Finding a
rational function r = pm/qm in (1.1) corresponds to a nonlinear minimization problem
as the denominator qm is generally unknown, and solutions may depend discontin-
uously on the data, be non-unique, or even non-existent. An illustrating example
inspired by Braess [10, p. 109] is to take fixed m ≥ 1 and N > 2m, and let

λi =
i− 1

N
, and fi =

{
1 if i = 1,

0 if 2 ≤ i ≤ N. (1.2)
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Then the sequence of rational functions rj(z) = 1/(1 + jz) makes the misfit for (1.1)
arbitrarily small as j → ∞, but the fi do not correspond to values of a type (m,m)
rational function (there are too many roots). Hence a rational LS solution does not

exist. If, however, the data fi are slightly perturbed to f̂i = rj(λi) for an arbitrarily
large j, then of course rj itself is a LS solution to (1.1).

A very common approach for solving (1.1) approximately is linearisation. Con-
sider again the data (1.2) and the problem of finding polynomials pm and qm of degree
at most m such that

N∑

i=1

wi|fiqm(λi)− pm(λi)|2 → min. (1.3)

This problem has a trivial solution with qm ≡ 0 and to exclude it we need some nor-
malisation like, for example, a “point-wise” condition qm(0) = 1. Under this condition
the linear problem (1.3) is guaranteed to have a nontrivial solution (pm, qm), but the
solution is clearly not unique; since fi = 0 for i ≥ 2, any admissible denominator poly-
nomial qm with qm(0) = 1 corresponds to a minimal solution with pm 6≡ 0. On the
other hand, for the normalisation condition qm(1) = 1, the polynomials qm(z) = z and
pm ≡ 0 solve (1.3) with zero misfit. This example shows that linearised rational LS
problems can have non-unique solutions, and these may depend on normalisation con-
ditions. With both normalisation conditions, the rational function r = pm/qm with
(pm, qm) obtained from solving the linearised problem (1.3) may yield an arbitrarily
large (or even infinite) misfit for the nonlinear problem (1.1).

The pitfalls of nonlinear and linearised rational approximation problems have not
prevented the development of algorithms for their solution. An interesting overview
of algorithms for the nonlinear problem based on repeated linearisation, such as
Wittmeyer’s algorithm, is given in [3]. Robust solution methods for the linearised
problem using regularised SVD are discussed in [22, 21].

The aim of this paper is to present and analyse an extension of the RKFIT
algorithm initially outlined in [6]. RKFIT is an iterative method for solving rational

LS problems more general than (1.1). For given matrices {A,F} ⊂ CN×N and a

vector b ∈ CN , RKFIT attempts to find a rational function r such that

‖Fb − r(A)b‖22 → min. (1.4)

Note that this problem contains (1.1) as a special case with F = diag(fi), A =

diag(λi), b = [
√
w1 . . .

√
wN ]T . For RKFIT the matrices A and F are not required

to be diagonal. In many applications F is a matrix function of A or an approximation
thereof, i.e., F = f(A) or F ≈ f(A).

A main contribution of this work compared to [6] is the extension of RKFIT to
nondiagonal approximants, i.e., allowing to compute rational functions of the general
type (m+ k,m) with k ≥ −m. Further, we extend RKFIT to rational approximation

problems involving a family of matrices {F [j]}`j=1 ⊂ CN×N , and a block of vectors

B = [b1 . . . bn] ∈ CN×n. More precisely, we seek a family of rational functions

{r[j]}`j=1 of type (m + k,m), all sharing a common denominator qm, such that the
relative misfit is minimal, i.e.,

misfit =

√√√√
∑`
j=1 ‖D

[j][F [j]B − r[j](A)B]‖2F∑`
j=1 ‖D

[j]F [j]B‖2F
→ min. (1.5)
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The matrices F [j] may, for instance, correspond to values of a parameter-dependent

matrix function like F [j] = exp(−tjA), and in section 6 we consider an application of

such a problem. The matrices D[j] act as element-wise weights, whereas the vectors
in B can be viewed as spectral weights relative to the eigenpairs of A.

To summarize our terminology, here is a list of the data in problem (1.5):

A : interpolation node matrix of size N ×N ,

F [j] : interpolation data matrices of size N ×N ,

D[j] : element-wise weight matrices of size N ×N ,

B : block of spectral weight vectors, an N × n matrix,

r[j] : rational functions sharing the same denominator qm,

(m+ k,m) : type of the rational functions r[j] with k ≥ −m.

We show how rational Krylov techniques can be used to tackle problems of the
form (1.5). The outgrowth of this work is a new MATLAB implementation of RKFIT,
which is part of the Rational Krylov Toolbox [5] available online1. One particularity
of RKFIT is its ease of use. For example, with ` = 1 and the matrices A, F, B and a
vector of initial poles xi being defined in MATLAB, the user simply calls

[xi, r, misfit] = rkfit(F, A, B, xi)

to obtain a rational function r represented as a MATLAB object of class RKFUN,
which stands for rational Krylov function. The toolbox implements several RKFUN
methods, for example, the evaluation of r at scalar arguments or as a matrix func-
tion; the commands r(z) and r(A,B) evaluate r(z) and r(A)B, respectively (where
A and B can be different from the matrices used for the construction of r). The con-
version of an RKFUN to partial fraction form (the residue command), root-finding
(roots), or easy-to-use plotting (ezplot) are provided as well. The use of MAT-
LAB’s object-oriented programming capabilities for these purposes is inspired by the
Chebfun system [14].

Alongside the extension of RKFIT to nondiagonal approximants in section 2,
another contribution of this paper is Theorem 2.2 which shows that RKFIT solves
(1.4) exactly if F is a rational matrix function of type (m + k,m). In section 3 we
propose a procedure for automatically decreasing the degree parameters m and k,
thereby reducing possible deficiencies in the rational approximants. That section also
contains Theorem 3.1, which relates the roots of a rational Krylov function to the
eigenvalues of a matrix pencil. Based on this theorem, we present a new procedure to
obtain good starting guesses for RKFIT after a degree reduction has been performed.

We point out that initially, in sections 2 and 3, we only consider problem (1.4),
which is a special case of (1.5) for a single rational function (` = 1) and a single
vector B = b (n = 1). The generalization to the full problem (1.5) is discussed
in section 4. In section 5 we develop a new approach for the efficient evaluation
of the RKFUNs produced by RKFIT. We also show how to compute the roots of
RKFUNs and how to convert them into partial fraction form. Numerical examples
are given in section 6, including the fitting of a MIMO dynamical system and a new
pole optimization approach for exponential integration. An appendix discusses the
connections of RKFIT and other approximation algorithms, in particular, the popular
vector fitting method [26].

1
http://rktoolbox.org
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Algorithm 2.1 High-level description of RKFIT. RKToolbox [5]: rkfit

1. Take initial guess for qm.
2. repeat
3. Set search space S := Qm+1(A, b, qm).

4. Set target space T := Km+k+1(A, qm(A)−1b).
5. Find v̂ = argmin v∈S

‖v‖2=1
‖ (I − PT )Fv‖2.

6. Let q̂m ∈ Pm be such that v̂ = q̂m(A)qm(A)−1b.
7. Set qm := q̂m.
8. until stopping criteria is satisfied.
9. Construct wanted rational approximant r.

2. The RKFIT algorithm. The nondiagonal version of the RKFIT algorithm
considered here aims to find a rational function r = pm+k/qm of type (m + k,m)
which solves problem (1.4). As the denominator qm is not known and (1.4) depends
nonlinearly on it, RKFIT tries to iteratively improve a starting guess for qm by solving
a linearised problem at each iteration. Once a satisfactory qm is obtained, the linear
part pm+k is easily found.

The method is succinctly described in Algorithm 2.1. Different from the basic
version presented in [6], it makes use of two linear spaces in CN , a search space S
and a target space T , both of which are (rational) Krylov spaces. Given a matrix

A ∈ CN×N , a (so-called) starting vector b ∈ CN , an integer m ≥ 0, and a nonzero
polynomial qm ∈ Pm with roots disjoint from the spectrum of A, we define the
associated rational Krylov space of order m as

Qm+1(A, b, qm) := {pm(A)qm(A)−1b : pm ∈ Pm}.

The roots of qm are called poles of the rational Krylov space and they are denoted by
ξ1, ξ2, . . . , ξm. For convenience, we sometimes refer to qm itself as poles of the rational
Krylov space. If deg(qm) < m, then m − deg(qm) of the poles are set to ∞, and we
refer to them as formal (multiple) roots of qm. If all poles are set to ∞, we obtain
the (polynomial) Krylov space Km+1(A, b) := {pm(A)b : pm ∈ Pm} as a special case
of a rational Krylov space.

By PT in line 5 of Algorithm 2.1 we denote the orthogonal projection onto T . The
essence of Algorithm 2.1 is the relocation of poles in line 7. Since with any polynomial
q̂m ∈ Pm we can associate a vector v̂ = q̂m(A)qm(A)−1b ∈ S, and the other way
around, we may identify q̂m, the improvement of qm, by looking for the corresponding
vector v̂ ∈ S. Theorem 2.2 below, a consequence of the following Lemma 2.1, provides
insight into the RKFIT pole relocation, i.e., lines 5–7 of Algorithm 2.1.

Lemma 2.1. Let qm, q
?
m ∈ Pm be nonzero polynomials with roots disjoint from

the spectrum of A ∈ CN×N . Fix −m ≤ k ∈ Z, and let b ∈ CN be such that 2m+ k <
M(A, b). Assume that F = p?m+k(A)q?m(A)−1 for some p?m+k ∈ Pm+k. Define S and

T as in lines 3 and 4 of Algorithm 2.1, respectively, and let V̂m+1 be an orthonormal

basis of S. Then the matrix (I−PT )FV̂m+1 has a nullspace of dimension ∆m+1 if and
only if ∆m is the largest integer such that p?m+k/q

?
m is of type (m+k−∆m,m−∆m).

Proof. Let v̂ = p̂m(A)qm(A)−1b ∈ S, with p̂m ∈ Pm being arbitrary. Then

F v̂ = p?m+k(A)q?m(A)−1p̂m(A)qm(A)−1b =: p2m+k(A)q?m(A)−1qm(A)−1b
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has a unique representation in terms of p2m+k/(q
?
mqm) since 2m+k < M . Assume that

F v̂ ∈ T . In this case we also have the representation F v̂ = p̃m+k(A)qm(A)−1b, with a
uniquely determined p̃m+k ∈ Pm+k. By the uniqueness of the rational representations
we conclude that p2m+k/(q

?
mqm) = p̃m+k/qm, or equivalently, q?m divides p2m+k =

p?m+kp̂m. Hence, the poles of p?m+k−∆m/q
?
m−∆m ≡ p?m+k/q

?
m must be roots of p̂m. The

other ∆m roots of p̂m can be chosen freely, giving rise to the (∆m + 1)-dimensional
subspace

N :=
{
p∆m(A)q?m−∆m(A)qm(A)−1b

∣∣∣ p∆m ∈ P∆m

}
⊆ S, (2.1)

whose elements v̂ are such that F v̂ ∈ T . Hence, ∆m + 1 is the dimension of the
nullspace of (I − PT )FV̂m+1.

Theorem 2.2. Let qm, q
?
m, F,A, b,m, k,S, and T be as in Theorem 2.1. Then

p?m+k and q?m are coprime and either deg(p?m+k) = m + k or deg(q?m) = m if and
only if Fv ∈ T is solved uniquely (up to scaling) by v ∈ S. This solution is given by
v? = γq?m(A)qm(A)−1b with some nonzero scaling factor γ ∈ C.

The theorem asserts that if Fb = pm+k(A)q?m(A)−1b and ∆m = 0, then the

“roots” of v? = γq?m(A)qm(A)−1b match the unknown poles q?m and the next ap-
proximate poles become qm := q?m. Hence RKFIT identifies the exact poles within
one iteration independently of the starting guess qm. If ∆m > 0 the exact m −∆m
poles are also found, but additional ∆m superfluous poles at arbitrary locations are
present as well. In section 3 we develop a procedure for automatically reducing the
denominator degree m by ∆m and adapting k. Comments regarding the convergence
of RKFIT when dealing with noisy data (and roundoff) or when Fb cannot be ex-
actly represented as r(A)b for a rational function r of type (m + k,m) are included
in section A.5 of the appendix.

In the remaining part of this section we discuss line-by-line how Algorithm 2.1
can be implemented using rational Krylov techniques. These considerations are also
important for developments in the forthcoming sections.

• Line 3: An orthonormal basis V̂m+1 ∈ CN×(m+1) for the search space S =

R(V̂m+1) can be obtained with the rational Arnoldi algorithm which, given A, b
and qm, constructs a decomposition of the form

AV̂m+1K̂m = V̂m+1Ĥm, (2.2)

where (Ĥm, K̂m) is an (m + 1) ×m upper-Hessenberg pencil satisfying |ĥj+1,j | +
|k̂j+1,j | 6= 0 for j = 1, . . . ,m and with {ĥj+1,j/k̂j+1,j}mj=1 being the (formal) roots
of qm, i.e., the poles of the rational Krylov space S. A decomposition of the form
(2.2) is called a rational Arnoldi decomposition (RAD). For details of the rational
Arnoldi algorithm and properties of RADs we refer to [4, 6, 35, 37, 38].

• Line 4: Since T = Qm+k+1(A, b, qm), we can compute an orthonormal basis
Vm+k+1 for T using once again the rational Arnoldi algorithm. A computationally
more economic alternative is to reuse (2.2). Indeed, if k = 0, we simply have T = S.
Otherwise, S either has to be expanded (if k > 0) or compressed (if k < 0) to get T :
– In the case of superdiagonal approximants (k > 0), T = Qm+k+1(A, b, qm) is

the rational Krylov space of dimension m + k + 1 with m poles being the roots
of qm and additional k poles at infinity. In order to get an orthonormal basis
for Qm+k+1(A, b, qm), we expand (2.2) into AVm+k+1Km+k = Vm+k+1Hm+k by
performing k additional polynomial steps with the rational Krylov algorithm.
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Let us, for convenience, label by Vm+k+1 := V̂m+k+1 the orthonormal basis for
T when k ≥ 0. Thus, PT = Vm+k+1V

∗
m+k+1.

– In the subdiagonal case (k < 0), the target space is T = Km+k+1(A, qm(A)−1b).

Note that Qm+1(A, b, qm) = Km+1(A, qm(A)−1b). Therefore, we aim at trans-
forming the RAD (2.2) for Qm+1(A, b, qm) into an RAD

AVm+1Km = Vm+1Hm (2.3)

for Km+1(A, qm(A)−1b). An orthonormal basis for T is then given by truncat-
ing Vm+1 to Vm+k+1, the first m + k + 1 columns of Vm+1. Using a sequence
of Givens rotations in a QZ fashion (as explained in [39, p. 495] or [4, Sec-

tion 5.2]) we get unitary matrices Qm+1 and Zm such that Km = Q∗m+1K̂mZm

is upper-triangular and Hm = Q∗m+1ĤmZm is upper-Hessenberg. Fittingly,

the poles hj+1,j/kj+1,j of (2.3) with Vm+1 = V̂m+1Qm+1 are all at infinity.

Hence R(Vj+1) = Kj+1(A, qm(A)−1b) for j = 0, 1, . . . ,m, and we can set PT =
Vm+k+1V

∗
m+k+1.

• Line 5: Defining the matrix

S = FV̂m+1 − Vm+k+1

(
V ∗m+k+1FV̂m+1

)
∈ CN×(m+1), (2.4)

a solution is given by v̂ = V̂m+1ĉ, where ĉ is a right singular vector of S corre-
sponding to a smallest singular value σmin.

• Lines 6–7: What we need in line 3 as input for the rational Arnoldi algorithm are
the poles of the rational Krylov space that is being constructed, that is, the roots
of q̂m. Let Qm+1 be unitary with first column Qm+1e1 = ĉ, then the roots of q̂m
are the eigenvalues of the m×m pencil

([
0 Im

]
Q∗m+1Ĥm,

[
0 Im

]
Q∗m+1K̂m

)
; (2.5)

see [6, Section 5] for details.
• Line 9: The approximant r of type (m+ k,m) is computed by LS approximation

of Fb from the target rational Krylov space T . More precisely, if Vm+k+1 is an
orthonormal basis for T , then the approximant r is represented by a coefficient
vector c ∈ Cm+k+1 such that r(A)b = ‖b‖2Vm+k+1c. The coefficient vector is
given by

c = V ∗m+k+1

(
Fb
)
/‖b‖2. (2.6)

Computing the coefficient vector c at each iteration does not significantly increase
the computational complexity because Fb needs to be computed only once. The
availability of c also enables the cheap evaluation of the relative misfit (1.5), which
allows to stop the RKFIT iteration when a desired tolerance εtol is achieved.

3. Tuning degree parameters m and k. In some applications, one may want
to construct a rational function of sufficiently small misfit without knowing the re-
quired degree parameters m and k in advance. In such situations one can try to fit the
data with high enough (for instance maximal one is willing to use) degree parameters
and then, after RKFIT has found a sufficiently good approximant, reduce m and k
without deteriorating much the approximation accuracy. In this section we present a
strategy for performing this reduction.
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We assume to have at hand an (m + k,m) approximant r such that ‖Fb −
r(A)b‖2 ≤ ‖Fb‖2εtol. We then propose the following three-step procedure. (1)
Reduce m to m − ∆m ≥ 0, with ∆m such that m − ∆m + k ≥ 0. (2) Find a
lower-degree approximant of type (m−∆m+ k,m−∆m). (3) Reduce k if required.
These steps are discussed in the following three subsections for the case that F is a
rational matrix function, while in subsection 3.4 we provide a numerical illustration.
In subsection 3.5 we discuss the case when F is not a rational matrix function. This
is followed by another numerical illustration in subsection 3.6.

3.1. Reducing the denominator degree m. Assume that F is a rational
matrix function. Our reduction procedure for m is based on Lemma 2.1, which asserts
that a defect ∆m + 1 of the matrix S = (I − PT )FV̂m+1 corresponds to F being of
type (m − ∆m + k,m − ∆m). Due to numerical roundoff, the numerical rank of S
related to a given tolerance ‖Fb‖2εtol (with, e.g., εtol = 10−15) is computed. More
precisely, we reduce m by the largest integer ∆m ≤ min{m,m+ k} such that

σm+1−∆m ≤ ‖Fb‖2εtol, (3.1)

where σ1 ≥ . . . ≥ σm+1 are the singular values of S.

3.2. Finding a lower-degree approximant. If ∆m ≥ 1, then m needs to
be reduced and a new approximant of lower numerator and denominator degree is
required. As seen in the proof of Lemma 2.1, the ∆m+1 linearly independent vectors
spanning N all share as the greatest common divisor (GCD) the polynomial q?m−∆m,
and its roots should be used as poles of the reduced-degree rational approximant. The
following theorem shows how these roots can be obtained from the pencil (Ĥm, K̂m)
in (2.2).

Theorem 3.1. Let (2.2) be an RAD for Qm+1(A, b, qm) with m+ 1 < M(A, b),

and let the rj ≡ V̂m+1cj for j = 1, . . . ,∆m + 1 be linearly independent. Assume
that the numerators of rj share as GCD a polynomial of degree m − ∆m. Let X ∈
C(m+1)×(m+1) be a nonsingular matrix with Xej = cj for j = 1, . . . ,∆m+1. Introduce

K̂? =
[
O Im−∆m

]
X−1K̂m

[
O

Im−∆m

]
, Ĥ? =

[
O Im−∆m

]
X−1Ĥm

[
O

Im−∆m

]
.

Assume further that K̂? is nonsingular. Then the roots of the GCD are the eigenvalues
of the (m−∆m)× (m−∆m) generalized eigenproblem (Ĥ?, K̂?).

Proof. We transform the RAD (2.2) into AVm+1Km = Vm+1Hm, where Vm+1 =

V̂m+1X, Km = X−1K̂mY , and Hm = X−1ĤmY , and with Y = blkdiag(I∆m,K?)
−1.

Written in scalar form, we hence have for all z ∈ C the relation

zr(z)Km = r(z)Hm ⇐⇒ r(z)
(
zKm −Hm

)
= 0T ,

where r(z) = [r1(z) . . . r∆m+1(z) r∆m+2(z) . . . rm+1(z)]. Introduce K? and
H? as the bottom-right (m−∆m)×(m−∆m) submatrices ofKm andHm, respectively.

Since Λ(Ĥ?, K̂?) = Λ(H?,K?), we only need to show that Λ(H?,K?) are the roots of
the GCD.

Let λ be a common root of {rj}∆m+1
j=1 . Then the last m − ∆m columns of

r(λ)(λKm − Hm) = 0T assert that λ is a generalized eigenvalue of (H?,K?) with

left eigenvector r?(λ)∗ = [r∆m+2(λ) . . . rm+1(λ)]∗ 6= 0. This handles simple roots.
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1Fig. 3.1: Degree reduction when fitting a rational matrix function; see section 3.4.

Let us now assume that λ is a root of multiplicity 2. Note that K? = Im−∆m.
Differentiating the scalar RAD with respect to λ gives

r ′(λ)
(
λKm −Hm

)
+ r(λ)Km = 0T ⇐⇒ r ′(λ)

(
λKm −Hm

)
= −r(λ)Km.

The last m−∆m columns in the latter relation give

r ′?(λ)
(
λK? −H?

)
= −r?(λ)K? = −r?(λ) 6= 0T .

In particular r ′?(λ) 6= 0T . Further r ′?(λ)
(
λK? − H?

)2
= −r?(λ)

(
λK? − H?

)
= 0T .

Hence r ′?(λ) is a generalized eigenvector for the eigenvalue λ of (H?,K?), which is
hence of multiplicity two or greater. The proof for roots of higher multiplicity follows
the same argument.

Remark 3.2. The assumption that K? is nonsingular is used in the proof of
Theorem 3.1 for the case of repeated roots only. We conjecture that this assumption
can be removed also when there are multiple roots, and that it follows from the fact
that the numerators of {rj}∆m+1

j=1 have as GCD a polynomial of degree m−∆m.

3.3. Numerator degree revealing basis. We now assume that the denomi-
nator degree m := m − ∆m has already been reduced and a new approximant r of
type (m+k,m) such that ‖Fb− r(A)b‖2 ≤ ‖Fb‖2εtol has been found. Reducing the
numerator degree is a linear problem and we can guarantee the misfit to stay below
εtol after the reduction.

Let T = Km+k+1(A, qm(A)−1b) be the final target space such that r(A)b ∈ T ,

and let Vj be an orthonormal basis for Kj(A, qm(A)−1b) for j = 1, . . . ,m + k + 1.
As the vectors in Vj have ascending numerator degree, this basis reveals the degree

of r(A)b by looking at the trailing expansion coefficients c ∈ Cm+k+1 satisfying
r(A)b/‖b‖2 = Vm+k+1c.

Introduce c−i = [O Ii]c ∈ Ci for i = 1, . . . ,m+ k. By the triangle inequality,

∥∥∥Fb/‖b‖2 − Vm+k+1c + Vm+k+1

[
0
c−i

] ∥∥∥
2
≤
∥∥∥Fb/‖b‖2 − Vm+k+1c

∥∥∥
2

+
∥∥∥
[

0
c−i

] ∥∥∥
2
.

The degree of the numerator of r can therefore be reduced to m+ k−∆k, where ∆k
is the maximal integer 1 ≤ i ≤ m+ k such that

‖c−i‖2 ≤ ‖Fb‖2εtol − ‖Fb − r(A)b‖2, (3.2)
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or ∆k = 0 if such an integer i does not exist. The last ∆k components of c may hence
be truncated, giving c∆ ∈ Cm+k−∆k+1 such that r∆ ≡ Vm+k−∆k+1c∆ still satisfies
‖Fb − r∆(A)b‖2 ≤ ‖Fb‖2εtol.

3.4. Example: Degree reduction for a rational matrix function. In Fig-
ure 3.1 we report some results for the degree reduction procedure when fitting Fb,
where F = A(A+I)−1(A+3I)−2, A = tridiag(−1, 2,−1) ∈ RN×N , and b = e1 ∈ RN ,
with N = 150. Note that F is of type (1, 3). The initial poles of the search space are
all at infinity.

The table on the left shows the number ∆m+1 of singular values of (I−PT )FV̂m+1

below the tolerance ‖Fb‖2εtol = 10−15, for different choices ofm and k. For the choice
(m + k,m) = (3, 9), for instance, we obtain ∆m = 2, and hence the reduced type is
(1, 7). In this case m is not fully reduced because k was chosen too small. For the
choice (m + k,m) = (8, 6) we obtain ∆m = 3, giving the reduced type (5, 3). The
roots of the GCD are −1 and −3 ± i2.32 × 10−7. With these three finite poles and
another two poles at infinity, the type (5, 3) approximant r produces a relative misfit
7.02×10−17. The expansion coefficients cQ of r in the orthonormal rational basis are
listed to the right of the table. They indicate that the last two poles at infinity are
actually superfluous, and r is of type at most (3, 3). Only the expansion of r in the
orthonormal polynomial basis, as explained in subsection 3.3, reveals that r is of type
(1, 3). The coefficients cK in this polynomial basis are also given.

3.5. General F . The following lemma extends Lemma 2.1 to the case when F
is not necessarily a rational matrix function.

Lemma 3.3. Let qm, A, b,m, k,S, T , and V̂m+1 be as in Lemma 2.1. Assume that

for F ∈ CN×N we have found a rational approximant r = pm+k/qm of type (m+k,m)

such that ‖Fb − r(A)b‖2 ≤ ‖Fb‖2εtol. If the matrix (I − PT )FV̂m+1 has ∆m + 1
singular values smaller than ‖Fb‖2εtol, then there exists a (∆m + 1)-dimensional
subspace Ng ⊆ S, containing b, such that

min
p∈Pm+k

∥∥F v̂ − p(A)qm(A)−1b
∥∥

2
≤ ‖Fb‖2εtol

for all v̂ ∈ Ng, ‖v‖2 = 1.

Proof. Consider a thin SVD of the matrix (I − PT )FV̂m+1 = UΣW ∗, where

Σ = diag(σ1, . . . , σm+1) ∈ R(m+1)×(m+1) and σm+1 ≤ · · · ≤ σm−∆m ≤ ‖Fb‖2εtol by

assumption. Equivalently, (I − PT )FV̂m+1W = UΣ. Then the final ∆m+ 1 columns

of V̂m+1W form a basis for Ng. It follows from the assumption ‖Fb − r(A)b‖2 ≤
‖Fb‖2εtol that b ∈ Ng.

Recall that if F is a rational matrix function, then the space Ng defined in

Lemma 3.3 corresponds to the exact nullspace N = K∆m+1(A, q?m−∆m(A)qm(A)−1b)
defined in (2.1), where the (numerators of the) rational functions share as GCD the
polynomial q?m−∆m. In the general case Ng is only a subspace of the larger rational
Krylov space S, and the rational functions present in Ng do not necessarily share

a common denominator. However, for every v̂ = p̂m(A)qm(A)−1b ∈ Ng the vector

F p̂m(A)qm(A)−1b is well approximated in the 2-norm by some vector p(A)qm(A)−1b,
with p ∈ Pm+k. This suggests that the polynomials p̂m corresponding to vectors
v̂ ∈ Ng share an approximate GCD (see, e.g., [8]) whose roots approximate the poles
of a “good” rational approximation r(A)b for Fb. We therefore propose to use the
same reduction procedure as suggested by Theorem 3.1.
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1Fig. 3.2: Degree reduction when fitting a non-rational matrix function; see section 3.6.

As there is no guarantee that after reduction RKFIT will be able to find an
approximant of relative misfit below εtol, the use of a safety parameter εsafe is rec-
ommended. More precisely, we reduce m by the largest integer ∆m ≤ min{m,m+k}
such that

σm+1−∆m ≤ ‖Fb‖2εtolεsafe, (3.3)

where σ1 ≥ . . . ≥ σm+1 are the singular values of S. By default we use εsafe = 0.1.

3.6. Example: Degree reduction for a non-rational matrix function.

Figure 3.2 illustrates our reduction strategy for the function F =
√
A+A2, where

A = tridiag(−1, 2,−1) ∈ RN×N and N = 150. The vector b is chosen as b = e1. The
poles of the search space are obtained after three RKFIT iterations with all initial
poles at infinity.

The table on the left shows the number ∆m+1 of singular values of (I−PT )FV̂m+1

below ‖Fb‖2εtolεsafe = 10−5 for different choices of m and k. For the choice (m +
k,m) = (9, 10) we obtain ∆m = 4, implying the reduced type (5, 6). The choice
(m + k,m) = (11, 6) is reduced down to (9, 4) as ∆m = 2. Representing this new
approximant in the numerator degree-revealing basis allows for a further reduction
to type (5, 4). The table on the right visualizes how many RKFIT iterations are
required after reduction to reobtain an approximant of misfit below εtol = 10−4,
using the approximate GCD strategy for selecting the poles to restart RKFIT with.
Note that in most instances the misfit remains acceptable after the reduction, while in
the other only one RKFIT iteration is needed to obtain an acceptable approximation.
This shows the benefit of the developed reduction strategy. (Another example is given
in section 6.1.)

4. Extensions. In this section we discuss extensions of RKFIT for solving prob-
lems of the more general form (1.5).

4.1. Family of rational functions. In order to tackle the more general prob-

lem (1.5) of finding a family {r[j]}`j=1 of rational functions with a common denomina-
tor we only need to modify line 5 in Algorithm 2.1 to
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5. Find v̂ = argmin v∈S
‖v‖2=1

∑`
j=1 ‖D

[j] (I − PT )F [j]v‖22.

Once again, a solution is v̂ = V̂m+1ĉ, where ĉ is a right singular vector corresponding
to a smallest singular value of the matrix

S = [ST1 ST2 . . . ST` ]T ∈ CN`,m+1, where (4.1)

Sj = D[j]
[
F [j]V̂m+1 − Vm+k+1

(
V ∗m+k+1F

[j]V̂m+1

)]
∈ CN,m+1. (4.2)

The ` rational approximants {r[j]}`j=1 may be represented by the coefficient vectors

c[j] =
(
D[j]Vm+k+1

)†(
D[j]F [j]b

)
/‖b‖2, (4.3)

which reduces to c[j] = V ∗m+k+1

(
F [j]b

)
/‖b‖2 if D[j] = IN . The remaining parts of

RKFIT, with the exception of the degree reducing strategy, are unaffected. In order

to make sure that all of {r[j]}`j=1 share the same denominator, the reduction of m
should be based on the singular values of S, and not the individual Sj . The numerator

reduction can be performed for each r[j] individually.

4.2. Block case. Let us consider the case B = [b1 . . . bn] ∈ CN×n with
n > 1. Introduce the Nn×Nn matrices

D [j] = In ⊗D[j], F [j] = In ⊗ F [j], and A = In ⊗A, (4.4)

where In ⊗X = blkdiag(X, . . . ,X). Since

‖D[j][F [j]B − r[j](A)B]‖2F = ‖D [j][F [j]vec(B)− r[j](A)vec(B)]‖22

we recover the single-column case n = 1 considered so far, with b = vec(B).
Our implementation [5] supports the case n > 1, and takes advantage of the

structure present in (4.4) so that only {D[j], F [j]}`j=1 and A are stored, while D [j],F [j],

and A are never constructed explicitly. In fact D[j], F [j], and A are not explicitly

needed either, as all that is required is the ability to compute D[j]x , F [j]x , Ax for
arbitrary x ∈ CN , as well as the ability to solve shifted linear systems (A− ξI)x = v .

4.3. Avoiding complex arithmetic. If {D[j], F [j]}`j=1, A, and B are real-
valued and the set of starting poles {ξj}mj=1 is closed under complex conjugation,
we can use the “real version” of the rational Arnoldi algorithm and avoid complex
arithmetic; see [36]. The matrix S in (4.1) is guaranteed to be real-valued and the gen-
eralized eigenproblem (2.5) is real-valued as well. This guarantees the relocated poles
to appear in complex-conjugate pairs. For more details we refer to [4, Section 6.1.4].

5. Working with rational functions. After the RKFIT algorithm has termi-
nated, a rational function r of type (m+ k,m) is represented by the pencil (Hd,Kd),
satisfying AVd+1Kd = Vd+1Hd with d := max{m,m + k}, and with the coefficients

c = V ∗d+1Fb/‖b‖2. We now show how to perform computations with such an RKFUN
representation r ≡ (Hd,Kd, c).

5.1. Evaluation. We consider the evaluation r(Â)b̂ where Â ∈ CN̂×N̂ and b̂ ∈
CN̂ . For this we require Λ(Â) not to contain any of the poles ξ1, . . . , ξm of r. Note

that Â and b̂ may be different from A and b used to obtain r. Indeed, they may be of
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different dimensions as well. For example, if N̂ = 1 and b̂ = 1, we retrieve the scalar
evaluation r(z). Derivatives of r can be evaluated by using a Jordan block for Â. For

example, if Â = [ λ 1
0 λ ] and b̂ = [0 1]T , then r(Â)b̂ = [r′(λ) r(λ)]T .

The pencil (Hd,Kd) encodes recurrence relations for orthogonal rational functions
r1, r2, . . . , rd+1 such that rj(A)b/‖b‖2 = vj , the jth column of Vd+1; see [6]. In this

notation, we have r =
∑d+1
j=1 cjrj , where c = [c1 c2 . . . cd+1]T . This suggests a

two-step procedure for computing r(Â)b̂. First, we construct Wd+1 ∈ CN×(d+1) so

that rj(Â)b̂ = Wd+1ej , and second, we form r(Â)b̂ = Wd+1c.
Let us elaborate on the first part. We need to form an RAD-like decomposition

ÂWd+1Kd = Wd+1Hd (5.1)

by rerunning the rational Arnoldi algorithm with the starting vector Wd+1e1 = b̂.
Note that (5.1) is equivalent to

(ρÂ− ηI)Wd+1(νHd − µKd) = (νÂ− µI)Wd+1(ρHd − ηKd),

for any scalars µ, ν, ρ, η ∈ C such that µρ 6= νη. By taking µ/ν ≡ hj+1,j/kj+1,j we
can compute

Wd+1ej+1 ≡ wj+1 = γ−1
j

[
(νÂ− µI)−1(ρÂ− ηI)Wj(νhj − µkj)−Wj(ρhj − ηkj)

]
,

where γj = ρhj+1,j − ηkj+1j for j = 1, 2, . . . , d.
We have overloaded the feval function in MATLAB for RKFUN objects to im-

plement this evaluation procedure. The function can be invoked by typing either
feval(r, A, b) or r(A, b).

5.2. Root-finding. For finding the roots of r we recall that r(A)b/‖b‖2 =
Vd+1c = pd(A)qm(A)−1b. Let us assume that c 6= e1, otherwise r(A)b = c1b, i.e., r
has no roots. Define P = Im+1 − 2uu∗, where u = (γc − e1)/‖γc − e1‖2 and γ ∈ C
is a unimodular scalar such that γe∗1c is real and nonnegative. It follows from [6,
Theorem 4.4] that the roots of pd are the eigenvalues of the d× d pencil

([
0 Id

]
PHd,

[
0 Id

]
PKd

)
.

If k < 0, then among the d eigenvalues there are −k infinite eigenvalues, or numeri-
cally, eigenvalues of large modulus. In our implementation roots of the RKToolbox [5]
we hence sort the roots by their magnitudes and return only the m+ k smallest ones.

5.3. Conversion to partial fraction form. Here we only consider the case
k ≤ 0, i.e., d = m, and pairwise distinct finite poles ξ1, . . . , ξm; generalizations are
discussed in section 7. The conversion of a type (m + k,m) rational function r into
partial fraction form can be achieved by transforming the rational Arnoldi decompo-
sition AVm+1Km = Vm+1Hm in such a way that it reveals the residues. We aim to
transform the latter RAD into

AWm+1




0
1

1
. . .

1




= Wm+1




1 1 · · · 1
ξ1

ξ2
. . .

ξm



, (5.2)
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Algorithm 5.2 Conversion to partial fraction form. RKToolbox [5]: residue

Input: Upper-Hessenberg pencil (Hm,Km) with finite distinct poles.
Output: Invertible matrices Lm+1 and Rm representing the conversion.

1. Set Rm = ([0 Im]Km)−1, Hm := HmRm, and Km := KmRm.

2. Set Lm+1 = blkdiag(1, Q−1
m ), where [0 Im]HmQm = Qmdiag(ξ1, . . . , ξm).

3. Update Rm := RmQm, Hm := Lm+1HmQm, and Km := Lm+1KmQm.

4. Introduce Dm+1 = [−e1 Km].
5. Update Lm+1 := Dm+1Lm+1, Hm := Dm+1Hm, and Km := Dm+1Km.
6. Update Rm := RmDm, Hm := HmDm, Km := KmDm, where Dm = diag(1/h1j).
7. Redefine Dm := diag(1/kj+1,j), and Dm+1 := blkdiag(1, Dm).
8. Update Lm+1 := Dm+1Lm+1, Hm := Dm+1Hm, and Km := Dm+1Km.

where Wm+1e1 = v1. One then easily verifies that the columns of Wm+1 satisfy

wj+1 = (A− ξj)−1v1. This conversion is achieved via left- and right-multiplication of
the pencil (Hm,Km) by invertible matrices given in Algorithm 5.2.

The algorithm consists of four parts. The first corresponds to lines 1–3, and
it transforms the pencil so that the lower m × m part matches that of (5.2). The
matrix [0 Im]Km is invertible since it is upper-triangular with no zero elements on
the diagonal (there are no infinite poles), and hence Rm is well defined in line 1. The
second part corresponds to lines 4–5, and it zeroes the first row in Km. The third
part, line 6, takes care of the first row in Hm, setting all its elements to one. After this

transformation, as the fourth part, we rescale [0 Im]Km in lines 7–8, to recover Im.
The process corresponds to transforming the original Hm and Km as Hm :=

Lm+1HmRm and Km := Lm+1KmRm, and the rational Krylov basis Vm+1 is trans-

formed accordingly asWm+1 = Vm+1L
−1
m+1. Given a coefficient representation r(A)b =

‖b‖2Vm+1cm+1 in the basis Vm+1, we arrive at the partial fraction expansion

r(A)b = ‖b‖Wm+1dm+1 = d0b +

m∑

j=1

dj(A− ξjI)−1b,

with residues dm+1 = Lm+1cm+1 = [d0 d1 . . . dm]T .
The transformation of Vm+1 into the partial fraction basis Wm+1 has condition

number cond(Lm+1), which can be arbitrarily bad in particular if some of the poles
ξj are close together. Our implementation residue in the RKToolbox [5] therefore
supports the use of MATLAB’s variable precision arithmetic as well as the use of the
Advanpix Multiprecision Toolbox [1].

6. Numerical experiments. In the following we demonstrate RKFIT with nu-
merical experiments. MATLAB files for reproducing these experiments are part of
the RKToolbox [5], among other examples (including those in [6]). Additionally, an
RKFIT-based method for computing perfectly matched layers for Helmholtz problems
on nonhomogeneous media has been developed and tested in [17].

6.1. MIMO dynamical system. We consider a model for the transfer function
of the multiple-input/multiple-output (MIMO) system ISS 1R taken from [11]. There
are 3 input and 3 output channels, giving ` = 9 functions to be fitted. We use
N = 2 × 561 sampling points λj given in [11], appearing in complex-conjugate pairs
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on the range ±i[10−2, 103]. The data are closed under complex conjugation, and hence

we can work with block-diagonal real-valued matrices A and {F [j]}`j=1 as explained
in section 4.3. The magnitudes of the ` = 9 transfer functions to be fitted are plotted
in Figure 6.1(a).

For the first experiment we try to find rational functions of type (70, 70), and
then reducing their degrees. A tolerance of εtol = 10−3 is used. In Figure 6.1(b) two
convergence curves are shown, one for RKFIT as described in the previous sections
(solid line), and the other for an RKFIT variant that enforces the poles to be stable
(dashed line). A pole ξ ∈ C is stable if its real part is nonpositive, <(ξ) ≤ 0, and
this is enforced in the pole relocation step by simply flipping the real parts of the
poles if necessary. At convergence the poles happen to be stable in both cases. The
initial poles were all placed at infinity and the misfit at iteration 0 corresponds to
these initial poles. Both RKFIT variants achieve a misfit below εtol at iteration 4,
after which the degree reduction discussed in section 3 takes place. The denominator
degree m = 70 is reduced to m − ∆m = 56 without stability enforcement, and to
m−∆ms = 54 with stability enforcement. For the latter case, the 70 poles obtained
after the fourth iteration and the 54 poles corresponding to the approximate GCD
are plotted in Figure 6.1(c). The misfit achieved to the new 56 (respectively 54)
poles corresponds to iteration 5. As this misfit is still below εtol no further RKFIT
iterations are required.

For the second experiment we compare RKFIT with the vector fitting code VFIT
[13, 24, 26] for two different choices of initial poles, and with different normalization
conditions for VFIT. (We briefly review VFIT in subsection A.2 of the appendix.)
The results are reported in Figure 6.1(d). Here we search for type (m− 1,m) approx-
imants with m = 56, do not enforce the poles to be stable, and do not perform any
further degree reductions. The solid convergence curves are obtained with initial poles
of the form −ξ/100± iξ, with the ξ being logarithmically spaced on [10−2, 103]. This
is regarded as a good initial guess in the literature. The dashed curves result when
using as initial poles the eigenvalues of a real random matrix. In both cases RKFIT
outperforms VFIT, independently of the normalization condition used by VFIT. De-
pending on the 56 initial poles, RKFIT requires either 4 or 6 iterations. This has to
be compared to Figure 6.1(b), where the 56 poles selected by our reduction strategy
immediately gave a misfit below εtol so that no further iterations were required. This
validates our approximate GCD strategy for choosing the poles after degree reduction.

6.2. Pole optimization for exponential integration. Let us consider the
problem of solving a linear constant-coefficient initial-value problem

Ku ′(t) + Lu(t) = 0, u(0) = u0,

at several time points t1, . . . , t`. Problems like this arise, for example, after space-
discretization of parabolic PDEs via finite differences or finite elements, in which
case K and L are large sparse matrices. Assuming that K is invertible, the exact
solutions u(tj) are given as u(tj) = exp(−tjK−1L)u0, and a popular approach for

approximating u(tj) is to use rational functions r[j] of the form

r[j](z) =
σ

[j]
1

ξ1 − z
+

σ
[j]
2

ξ2 − z
+ · · ·+ σ[j]

m

ξm − z
,
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Fig. 6.1: Low-order model approximation to the MIMO system ISS from [11]. The frequency
responses are plotted in figure (a). In (b) the progress of RKFIT is given for m = 70 infinite
starting poles. At iteration 4 the degree reduction takes place. The 70 poles after convergence
and 54 selected ones (for the case when stability of poles in enforced) are illustrated in figure
(c). Figure (d) presents a comparison with VFIT, when searching for (55, 56) approximants,
and using two different starting guesses. More details are given in section 6.1.

constructed so that r[j](K−1L)u0 ≈ u(tj). Note that the poles of r[j] do not depend
on tj and we have

r[j](K−1L)u0 =

m∑

i=1

σ
[j]
i (ξiK − L)−1Ku0,

the evaluation of which amounts to the solution of m decoupled linear systems. Such
fixed-pole approximants have great computational advantage, in particular in combi-
nation with direct solvers (the LU factorization of ξiK−L can be used for all tj) and
on parallel computers.

The correct design of the pole-residue pairs (ξi, σ
[j]
i ) is closely related to the

scalar rational approximation of e−tz, a problem which has received considerable
attention in the literature [34, 32, 42, 18, 9]. Let us assume that L is Hermitian
positive semi-definite, K is Hermitian positive definite, and define the vector K-norm
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as ‖v‖K =
√
v∗Kv . Then

‖ exp(−tjK−1L)b − r[j](K−1L)b‖K ≤ ‖b‖K max
λ∈Λ(L,K)

|e−tjλ − r[j](λ)|

≤ ‖b‖K max
λ≥0
|e−tjλ − r[j](λ)|, (6.1)

with Λ(L,K) denoting the set of generalized eigenvalues of (L,K).

In order to use RKFIT for finding poles ξ1, . . . , ξm of the rational functions r[j]

such that the right-hand side (6.1) of the inequality is small for all j = 1, . . . , `, we
propose a surrogate approach similar to that in [9]. Let A = diag(λ1, . . . , λN ) be a
diagonal matrix with “sufficiently dense” eigenvalues on λ ≥ 0. In this example we
take N = 500 logspaced eigenvalues on the interval [10−6, 106]. Further, we define

` = 41 logspaced time points tj on the interval [10−1, 101], and the matrices F [j] =

exp(−tjA). We also define b = [1 . . . 1]T to assign equal weight to each eigenvalue
of A and then run RKFIT for finding a family of type (m − 1,m) rational functions

r[j] with m = 12 so that

absmisfit =
∑̀

j=1

‖F [j]b − r[j](A)b‖22

is minimized. Note that

absmisfit ≥
∑̀

j=1

‖F [j]b − r[j](A)b‖2∞ =
∑̀

j=1

(
max
λ∈Λ(A)

|e−tjλ − r[j](λ)|
)2

,

and hence a small misfit implies that all r[j] are accurate uniform approximants for
e−tjλ on the eigenvalues Λ(A). If these eigenvalues are dense enough on λ ≥ 0 one
can expect the upper error bound (6.1) to be tight.

Figure 6.2(a) shows the convergence of RKFIT, starting from an initial guess
of m = 12 poles at infinity (iteration 0 corresponds to the absolute misfit of the
linearised rational approximation problem). We find that RKFIT attains its smallest
absolute misfit of ≈ 3.44 × 10−3 after 6 iterations. From iteration 7 onwards the
misfit slightly oscillates about the stagnation level. To evaluate the quality of the
common-pole rational approximants for all ` = 41 time points tj , we perform an
experiment similar to that in [42, Figure 6.1] by approximating u(tj) = exp(−tjL)u0

and comparing the result to MATLAB’s expm. Here, L ∈ R2401×2401 is a finite-
difference discretization of the scaled 2D Laplace operator −0.02∆ on the domain
[−1, 1]2 with homogeneous Dirichlet boundary condition, and u0 corresponds to the
discretization of u0(x, y) = (1 − x2)(1 − y2)ex on that domain. Figure 6.2(b) shows

the error ‖u(tj)−r[j](L)u0‖2 for each time point tj (solid curve with circles), together

with the approximate upper error bound ‖ exp(−tjA)b − r[j](A)b‖∞ (dotted curve).

We see that the error is approximately uniform and smaller than 6.21×10−5 over the

whole time interval [10−1, 101]. The m = 12 poles of the rational functions r[j] are
shown in Figure 6.2(c) (circles).

Another approach for obtaining a family of rational approximants is to use contour
integration [42]. Applying an m-point quadrature rule to the Cauchy integral

e−tjz =
1

2πi

∫

Γ

e−tjξ

ξ − z dξ ≈
m∑

i=1

σ
[j]
i

ξi − z
=: r̃[j](z)
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12 6.21× 10
−05
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−09

32 2.64× 10
−11

2.44× 10
−10

(d) Quality of RKFIT as m increases.

Fig. 6.2: Approximating exp(−tL)u0 for a range of parameters t with rational approximants
sharing common poles. The convergence behaviour of RKFIT, for approximants of type
(11, 12), is shown in (a). In (b) we show the approximation error for ` = 41 logspaced
time points t ∈ [0.1, 10] for RKFIT (solid curve with circles) and the contour-based approach
(dashed curve with diamonds). The errors of the RKFIT surrogate approximants are also
indicated (these are approximate upper error bound for the RKFIT approximants). In (c) we
show the pole locations of the two families of rational approximants in the complex plane. The
small rectangle shows a five-fold magnification of the RKFIT poles near the origin. The table
in (d) shows the maximal RKFIT error and the approximate upper error bound, uniformly
over all time points tj ∈ [10

−1
, 10

1
], for various degrees m.

on a contour Γ enclosing the positive real axis, one obtains a family of rational func-

tions r̃[j] whose poles are the quadrature points ξi ∈ Γ and whose residuals σ
[j]
i depend

on tj . As has already been pointed out in [42], such quadrature-based approximants
tend be good only for a small range of parameters tj . In Figure 6.2(b) we see that

the error ‖u(tj) − r̃[j](L)u0‖2 increases very rapidly away from t = 1 (dashed curve
with diamonds). We have used the same degree parameter m = 12 as above and the

poles of the r̃[j], which all lie on a parabolic contour [42, formula (3.1)], are shown in
Figure 6.2(c) (diamonds).

We believe that RKFIT may be a valuable tool for designing efficient exponential
integrators based on partial fractions or rational Krylov techniques (see, e.g., [18,
9]). The table in Figure 6.2(d) shows that very high accuracies can be achieved
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with a relatively small degree parameter m. It is also straightforward to incorporate

weight matrices D[j] depending on tj , which may be useful for minimizing the relative
approximation error uniformly over a time interval, instead of the absolute error as
in this example.

7. Summary and future work. We have presented an extension of the RKFIT
algorithm to more general rational approximation problems, alongside with other
improvements concerning the evaluation and transformation of the underlying rational
functions, as well as root-finding. A main feature of the new RKFIT implementation
is its automated degree reduction.

In future work we plan to investigate closer the relation of our degree reduction
procedure to the problem of finding an approximate polynomial GCD [8]. We would
also like to extend the partial fraction conversion to the case of repeated poles (both
finite and infinite), which then amounts to bringing the lower m×m part of the pencil
to Jordan canonical form instead of diagonal form. Such transformation raises the
problem of deciding when nearby poles should be treated as a single Jordan block. A
stable algorithm for computing a “numerical Jordan form” has been discussed in [29].

The automated degree reduction opens the possibility for “Chebfun-like com-
puting” [14] with rational functions, e.g., allowing for summation, multiplication, or
differentiation of rational functions, followed by a degree truncation of the resulting
rational function. However, rational functions are generally more difficult to deal with
than polynomials as, for example, integration is not a closed operation: the integral
of a rational function may contain logarithmic terms.

Other interesting problems include the extension of RKFIT to rational block-
Krylov spaces, with the potential of solving tangential interpolation problems (see,
e.g., [19]), and the application of RKFIT for constructing rational filter functions.
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Serkan Gugercin, and Marc Van Barel for stimulating discussions. We are also grateful
to the anonymous referees who provided many useful suggestions.

Appendix A. Relations to iterative reweighting and vector fitting.

Here we consider scalar rational approximation problems, like the one encountered
in the introduction. In our discussion we refrain from using weights, set ` = 1, and
fix the type of the rational approximant to (m− 1,m), for the sake of simplicity only.

Hence, we consider the following problem: given data {(λi, fi)}Ni=1 with pairwise
distinct λi, find a rational function r of type (m− 1,m) such that

N∑

i=1

|fi − r(λi)|2 → min. (A.1)

A popular approach for solving problems of this form introduced in [26] and designed
to fit frequency response measurements of dynamical systems is vector fitting (VFIT).

As already observed in [6], numerical experiments indicate that RKFIT performs
more robustly than VFIT. The main goal of this section is to clarify the differences
and commons between the two methods. In section A.1 we briefly review the pre-
decessors of VFIT, followed by a derivation of VFIT in section A.2. In section A.3
we reformulate VFIT in the spirit of RKFIT in order to compare the two methods.
Other aspects of VFIT, applicable to RKFIT as well, are discussed in section A.4.
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A.1. Iteratively reweighted linearisation. The first attempt to solve the
nonlinear problem (A.1) was through linearisation [31]. Let us write r = pm−1/qm
with pm−1 ∈ Pm−1 and qm ∈ Pm. Then the relation

N∑

i=1

|fi − r(λi)|2 =

N∑

i=1

|fiqm(λi)− pm−1(λi)|2

|qm(λi)|2

inspired Levy [31] to replace (A.1) with the problem of finding pm−1(z) =
∑m−1
j=0 αjz

j

and qm(z) = 1 +
∑m
j=1 βjz

j such that
∑N
i=1 |fiqm(λi) − pm−1(λi)|2 is minimal. The

latter problem is linear in the unknowns {αj−1, βj}mj=1 and hence straightforward to
solve. However, as qm may vary substantially in magnitude over the nodes λi, the
solution r = pm−1/qm may be a poor approximation to a solution of (A.1).

As a remedy, Sanathanan and Koerner [40] suggested to replace the nonlinear
problem (A.1) with a sequence of linear problems. Once the linearised problem∑N
i=1 |fiqm(λi) − pm−1(λi)|2 → min has been solved, one can set q̂m := qm and

solve a reweighted linear problem
∑N
i=1

|fiqm(λi)−pm−1(λi)|2

|q̂m(λi)|2
→ min. This process can

be iterated until a satisfactory approximation has been obtained or a maximal number
of iterations has been performed.

A.2. Vector fitting. Vector fitting is a reformulation of the Sanathanan–Koerner
algorithm, where the polynomials pm−1 and qm are not expanded in the monomial
basis, but in a Lagrange basis written in barycentric form. Similarly to RKFIT, in
VFIT one starts with an initial guess qm of degree m for the denominator, but here
with pairwise distinct finite roots {ξj}mj=1 ∩ {λi}Ni=1 = ∅, and iteratively tries to im-
prove it as follows. Write again r = pm−1/qm with pm−1 and qm being unknown.
Then r can be represented in barycentric form with interpolation nodes {ξj}mj=1,

r(z) =
pm−1(z)

qm(z)
=
pm−1/q̂m(z)

qm(z)/q̂m(z)
=

∑m
j=1

ϕj

z−ξj

1 +
∑m
j=1

ψj

z−ξj

. (A.2)

The coefficients ϕj and ψj are the unknowns to be determined. Once found, we use
them to detect better interpolation nodes for the barycentric representation, and it
is hoped that, by iterating the process, those will ultimately converge to the poles of
an (approximate) minimizer r.

The linearised version of (A.2) reads

r(z)

(
1 +

m∑

j=1

ψj
z − ξj

)
=

m∑

j=1

ϕj
z − ξj

. (A.3)

Inserting z = λi and replacing r(λi) with fi in (A.3) for i = 1, . . . , N gives a linear
system of equations




1
λ1−ξ1 . . . 1

λ1−ξm
−f1
λ1−ξ1 . . . −f1

λ1−ξm
...

...
...

...
1

λN−ξ1 . . . 1
λN−ξm

−fN
λN−ξ1 . . . −fN

λN−ξm



[
ϕ
ψ

]
= f , (A.4)

which is solved in the LS sense. Afterwards, the poles {ξj}mj=1 are replaced by the roots

of the denominator 1 +
∑m
j=1

ψj

z−ξj . Iterating this process gives the VFIT algorithm.

The reweighting as in the Sanathanan–Koerner algorithm is implicitly achieved in
VFIT through the change of interpolation nodes for the barycentric representation.
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A.3. On the normalization condition. Although different approaches are
used, both mathematically and numerically, RKFIT and VFIT are similar. However,
there is a considerable difference in the way the poles are relocated. Let us introduce

Cm+1 =




1 1
λ1−ξ1 . . . 1

λ1−ξm
...

...
...

1 1
λN−ξ1 . . . 1

λN−ξm


 , F =



f1

. . .

fN


 ,

and Ĉm = Cm+1

[
0 Im

]T
. We now rewrite (A.4) in the equivalent form

[
Ĉm −FCm+1

]


ϕ
ψ0

ψ


 = 0, (A.5)

with ψ0 = 1. For any fixed ψ ∈ Cm, solving (A.5) for ϕ ∈ Cm subject to ψ0 = 1 in

the LS sense is equivalent to solving Ĉmϕ = FCm+1[1 ψT ]T in the LS sense. Under

the (reasonable) assumption that Ĉm ∈ CN×m is of full column rank with m ≤ N ,

the unique solution is given by ϕ = Ĉ†mFCm+1[1 ψT ]T .

Therefore, when solving (A.4) in VFIT one gets r =
p̂m/qm
q̂m/qm

, where q̂m(z)/qm(z) =

1 +
∑m
j=1

ψj

z−ξj and p̂m(z)/qm(z) =
∑m
j=1

ϕj

z−ξj is the projection of f q̂m/qm onto

the target space, with f being defined on the discrete set of interpolation nodes as
f(λi) = fi and the target space being represented by Ĉm.

Both VFIT and RKFIT solve a LS problem at each iteration, with the projec-
tion space represented in the partial fraction basis (VFIT) or via discrete-orthogonal
rational functions (RKFIT). Apart from the potential ill-conditioning of the partial
fraction basis, the main difference between VFIT and RKFIT are the constraints un-
der which the LS problems are solved. The constraint in VFIT is for q̂/q to have
a unit absolute term, ψ0 = 1. This asymptotic requirement degrades the conver-
gence properties of VFIT, especially when the approximate poles ξj are far from
those of a true minimizer and the nodes λi vary over a large scale of magnitudes.
This was observed in [24], and as a fix it was proposed to use instead the condi-

tion <
{∑N

i=1

(∑m
j=1

ψj

λi−ξj + ψ0

)}
= <

{
Nψ0 +

∑m
j=1

(∑N
i=1

1
λi−ξj

)
ψj

}
= N , in-

corporated as an additional equation in (A.4). This modification to a global nor-
malization condition avoids the problems with point-wise normalization conditions
exemplified in the introduction. VFIT with this additional constrained is known
as relaxed VFIT. The normalization condition in RKFIT is also of global nature,
‖v‖2 = ‖q̂(A)q(A)−1b‖2 = 1; cf. line 5 in Algorithm 2.1.

A.4. On the choice of basis. In VFIT the approximant is expanded in the
basis of partial fractions which may lead to ill-conditioned linear algebra problems, as
can be anticipated by the appearance of Cauchy-like matrices; cf. (A.4). Orthonormal
vector fitting was proposed as a remedy in [12], where the basis of partial fractions was
replaced by an orthonormal basis. Soon after it was claimed [25] that a numerically
more careful implementation of VFIT is as good as the orthonormal VFIT variant
proposed in [12], and hence the orthonormal VFIT never became a reality.

The problem with the orthonormal VFIT [12] is that the orthonormal basis is
computed by a Gram–Schmidt procedure applied to partial fractions, i.e., an ill-
conditioned basis is transformed into an orthonormal one, hence ill-conditioned linear
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algebra is not avoided. The orthonormal basis in RKFIT is obtained from succes-
sively applying a single partial fraction to the last basis vector, which amounts to the
orthogonalisation of a basis with typically lower condition number.

Numerical issues arising in VFIT have been recently discussed and mitigated in
[15, 16]. Our approach avoids these problems altogether.

So far we assumed the interpolation nodes λi to be given. If they can be cho-
sen freely, one can choose them as nodes of certain quadrature rules tailored to the
application in the hope to improve both the numerical stability as well as the approxi-
mation quality. This idea is suggested in [15, 16] for the discretized H2 approximation
of transfer function measurements and it carries over straightforwardly to RKFIT.

A.5. Convergence. As to date, there are no complete convergence analyses for
VFIT and RKFIT available. Both algorithms have the property that if a rational
function is fitted with sufficiently many nodes, then in the absence of rounding errors
this function is recovered exactly; see [30, Corollary III.1] and our Theorem 2.2. Some
further work is available for VFIT. In [30, Section IV], and subsequently in [41], a
degree m = 2 example is constructed where the VFIT fixed-point iteration is repellent
and hence diverges, independently of the starting guess for the poles. Furthermore, it
is known that VFIT does not necessarily satisfy first-order optimality conditions for
the nonlinear LS problem upon convergence to a fixed point [41]. In our numerical
experiments we typically observe that RKFIT reduces the fitting error more efficiently
than VFIT, however, oscillations around a stagnation level may still occur; see, e.g.,
Figure 6.2(a). Furthermore, we observed that for the example specified in [41, Table I],
RKFIT exhibits an oscillatory behavior similar to VFIT.

Despite a few constructed examples of nonconvergence, VFIT has been used suc-
cessfully by the IEEE community for various (large-scale) rational fitting problems.
We have argued and demonstrated with (scalar) examples that RKFIT is more ro-
bust and typically faster convergent than VFIT. Additionally, unlike VFIT, RKFIT is
equipped with an automated degree reduction procedure. Therefore, we believe that
RKFIT may be a useful algorithm for the IEEE community. For nonscalar approxi-
mation problems where A and F are not necessarily diagonalizable, we are currently
not aware of an algorithm similar to RKFIT.
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in Computer Science, Springer Berlin Heidelberg, 1998, pp. 491–502.

[40] C. Sanathanan and J. Koerner, Transfer function synthesis as a ratio of two complex poly-
nomials, IEEE Trans. Automat. Control, 8 (1963), pp. 56–58.

[41] G. Shi, On the nonconvergence of the vector fitting algorithm, IEEE Trans. Circuits Syst. II,
Exp. Briefs, 63 (2016), pp. 718–722.

[42] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational
approximations, BIT, 46 (2006), pp. 653–670.

[43] G. Wanner, E. Hairer, and S. Nørsett, Order stars and stability theorems, BIT, 18 (1978),
pp. 475–489.


