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Numerical methods based on rational Krylov spaces have become an indispensable
tool of scientific computing. In this thesis we study rational Krylov spaces by considering
rational Krylov decompositions; matrix relations which, under certain conditions,
are associated with these spaces. We investigate the algebraic properties of such
decompositions and present an implicit Q theorem for rational Krylov spaces.

We derive standard and harmonic Ritz extraction strategies for approximating
the eigenpairs of a matrix and for approximating the action of a matrix function
onto a vector. While these topics have been considered previously, our approach
does not require the last pole to be infinite, which makes the extraction procedure
computationally more efficient.

Typically, the computationally most expensive component of the rational Arnoldi
algorithm for computing a rational Krylov basis is the solution of a large linear system
of equations at each iteration. We explore the option of solving several linear systems
simultaneously, thus constructing the rational Krylov basis in parallel. If this is not
done carefully, the basis being orthogonalized may become poorly conditioned, leading
to numerical instabilities in the orthogonalization process. We introduce the new
concept of continuation pairs which gives rise to a near-optimal parallelization strategy
that allows to control the growth of the condition number of this nonorthogonal basis.
As a consequence we obtain a more accurate and reliable parallel rational Arnoldi
algorithm. The computational benefits are illustrated using our high performance C++
implementation.

We develop an iterative algorithm for solving nonlinear rational least squares
problems. The difficulty is in finding the poles of a rational function. For this purpose,
at each iteration a rational Krylov decomposition is constructed and a modified linear
problem is solved in order to relocate the poles to new ones. Our numerical results
indicate that the algorithm, called RKFIT, is well suited for model order reduction
of linear time invariant dynamical systems and for optimisation problems related to
exponential integration. Furthermore, we derive a strategy for the degree reduction of
the approximant obtained by RKFIT. The rational function obtained by RKFIT is
represented with the aid of a scalar rational Krylov decomposition and an additional
coefficient vector. A function represented in this form is called an RKFUN. We develop
efficient methods for the evaluation, pole and root finding, and for performing basic
arithmetic operations with RKFUNs.

Lastly, we discuss RKToolbox, a rational Krylov toolbox for MATLAB, which
implements all our algorithms and is freely available from http://rktoolbox.org.
RKToolbox also features an extensive guide and a growing number of examples. In
particular, most of our numerical experiments are easily reproducible by downloading
the toolbox and running the corresponding example files in MATLAB.
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1 Introduction & background

1.1 Introduction

Published in 1984, Axel Ruhe’s paper “Rational Krylov sequence methods for eigenvalue

computation” presents “a new class of algorithms which is based on rational functions of

the matrix” [86]. In fact, what the author does is essentially to suggest replacing, within

iterative eigenvalues algorithms, the space span{b, Ab, . . . , Am−1b}, where A ∈ CN,N

and b ∈ CN , with the more general space span{ψ1(A)b, ψ2(A)b, . . . , ψm(A)b}, where

ψ1, ψ2, . . . , ψm are arbitrary functions. He soon realises that “besides polynomials,

which we have treated, the only feasible choice computationally is rational functions.”

The paper obtains almost no attention in the following decade, and this lack of interest

is probably due to two main factors. First, the paper reports no numerical experiments,

and, thus, competitiveness and reach of the method remain unclear. Moreover, adequate

guidance for choosing the best or at least good rational functions was not provided; this

second problem remains an active area of current (and future) research. Fortunately,

Ruhe himself reconsiders the method and his subsequent work [87, 88, 89] published in

1994 lay the foundation for the theory of rational Krylov methods as we know it today.

His initial investigation of the topic converges in the 1998 paper [90], and by that time

other researchers have started contributing to the theory and application of rational

Krylov methods; see, e.g., [24, 37, 73].

Originally devised for the solution of large sparse eigenvalue problems, these methods

have proved themselves a key tool for an increasing number of applications over the

last two decades. Examples of rational Krylov applications can be found in model

25



26 CHAPTER 1. INTRODUCTION & BACKGROUND

order reduction [34, 37, 49, 51, 71], computation of the action of matrix functions

on vectors [7, 31, 33, 35, 40, 56], solution of matrix equations [8, 32, 75], nonlinear

eigenvalue problems [59, 67, 91, 109], and nonlinear rational least squares fitting [10, 11].

The use of rational functions is justified by their approximation properties, which are

often superior to linear schemes such as polynomial interpolation, in particular when

approximating functions near singularities or on unbounded regions of the complex

plane; see, e.g., [18, 105].

Computationally, the most costly part of rational Krylov methods is the solution of

shifted linear systems of the form (A− ξjI)xj = bj for xj, for many indices j, where

the matrix A, and vectors bj are given (I denotes the identity matrix). The parameters

ξj ∈ C are called poles of the rational Krylov space, and the success of rational Krylov

methods heavily depends on their choice. If good poles are available, using just a few

of them may suffice to solve the problem at hand. Otherwise, the solution of a large

number of shifted linear systems may be needed, rendering the process computationally

unfeasible. Finding good pole parameters is highly non-trivial and problem-dependent.

Despite the large number of applications, rational Krylov methods are not yet fully

understood. One of our main contributions is the development of a new theory of

rational Arnoldi decompositions, which provides a better understanding of rational

Krylov spaces, and ultimately allows rational Krylov methods themselves to be used,

in an inverse manner, to find near-optimal pole parameters in certain applications.

The rational Arnoldi algorithm used to construct an orthonormal basis for a rational

Krylov space with a matrix A leads to a decomposition of the form

AVm+1Km = Vm+1Hm,

called rational Arnoldi decomposition (RAD). The range R(Vm+1) of Vm+1 spans the

rational Krylov space in question. We provide a better understanding of rational

Krylov spaces and the interplay of their defining parameters (starting vector b and

poles ξj) by studying such, and related, decompositions. Specifically, in Chapter 2 we

describe the complete set of RADs associated with rational Krylov spaces, and present

a new rational implicit Q theorem about the uniqueness of RADs. In practice, the

rational implicit Q theorem is useful as it allows for certain transformations of RADs

to be performed at a reduced computational cost. Such transformations consist of two

steps. First, the transformation is applied to the reduced pencil (Hm, Km), instead
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of the operator A, and second, the RAD structure is recovered and reinterpreted.

Concrete examples and applications are discussed in Chapters 5–6. Furthermore, we

consider the variant of the rational Arnoldi algorithm for real-valued matrices with

complex-conjugate poles which constructs real-valued decompositions of a form similar

to RADs [87]. The presentation of [87] is extended and formalised and an implicit Q

theorem for the obtained quasi-RADs is proposed. Finally, we discuss decompositions

of the form AVm+1Km = BVm+1Hm which correspond to rational Krylov spaces related

to a matrix pencil (A,B) instead of a single matrix A. In particular, we show how to

reduce them to RADs so that the established theory can be transferred directly. The

use of nonstandard inner products is included in Chapter 2 as well.

In Chapter 3 we review known strategies, based on projections, for extracting

information from RADs, and develop new ones, highlighting their potential benefit.

Specifically, for an RAD of the form AVm+1Km = Vm+1Hm, one can, for instance,

approximate some of the eigenvalues of A with some of the eigenvalues of the smaller

matrix V †m+1AVm+1, while f(A)b may be approximated by Vm+1f(V †m+1AVm+1)V †m+1b,

which requires the computation of the potentially much smaller matrix function

f(V †m+1AVm+1). Forming the projected matrix V †m+1AVm+1 at each iteration m of

the rational Arnoldi algorithm may, however, be computationally too expensive.

If Vm+1 is orthonormal and the mth pole ξm = ∞ is infinity, then the last row

of Km is zero. Consequently, the RAD reduces to AVmKm = Vm+1Hm, and thus

V †mAVm = V ∗mAVm = HmK
−1
m , which allows us to bypass the explicit projection

V †mAVm. As this is applicable only when the last, mth, pole is infinite, the authors in

[58] have considered adding and removing a temporary infinite pole after each iteration

of the rational Arnoldi algorithm. We suggest new formulas that do not depend in

such a manner on the poles. For instance, we show that f(A)b may be approximated

as (Vm+1Km)f(K†mHm)(Vm+1Km)†b, independently of any of the poles or their order

of appearance.

Rational functions can be decomposed into partial fractions, and this simple property

makes rational Krylov methods highly parallelisable; several basis vectors spanning the

rational Krylov space can be computed at once. Unfortunately, the basis constructed

in this way may easily become ill-conditioned [98, 99]. Chapter 4 is devoted to the

study of the influence of internal parameters when constructing an RAD in order to



28 CHAPTER 1. INTRODUCTION & BACKGROUND

monitor the condition number of the basis. We also provide a high performance C++

implementation which shows the benefits of the parallelisation.

Finally, in Chapter 6 we consider the problem of approximating, in a least squares

sense, f(A)b as r(A)b, where r is a rational function. This is a nonlinear optimisation

problem, since the poles of r are unknown. We propose an iterative algorithm, called

rational Krylov fitting (RKFIT) for its solution. At each iteration an RAD is constructed

and a modified linear problem is solved in order to relocate the poles of r to new

(hopefully better) ones. The relocation of poles itself is studied in Chapter 5, and

it is based on the rational implicit Q theorem. This theoretical observations lead

to the notion of rational Krylov decompositions, which are a more general class of

decompositions than RADs, and, from a practical point of view, they allow us to

monitor the various transformation arising in the RKFIT algorithm. A distinct feature

of our RKFIT algorithm is the degree reduction strategy which allows for further fine

tuning once a solution r is obtained. We test RKFIT for model order reduction and

exponential integration problems and show that the new approach is superior to some

existing methods. The rational function r obtained by RKFIT is represented with the

aid of a scalar RAD and an additional coefficient vector. A function represented in

this form is called a rational Krylov function (RKFUN). In Chapter 7 we show how

to use RKFUNs in order to, for instance, evaluate r(z) or perform basic arithmetic

operations.

Alongside our theoretical contribution, we discuss RKToolbox, a rational Krylov

toolbox for MATLAB, which implements all our algorithms and is freely available

for download from http://rktoolbox.org; see also [9]. The main features of the

toolbox are the rat krylov and rkfit functions and the RKFUN class. The function

rat krylov, for instance, provides a flexible implementation of the rational Arnoldi

algorithm. There are 18 different ways to call rat krylov, and furthermore, several

parameters can be adjusted. Typing help rat krylov in MATLAB command line

provides all the details. RKToolbox also features a large collection of utility functions,

basic unit testing, an extensive guide and a growing number of examples. In particular,

most of our numerical experiments are easily reproducible by downloading the toolbox

and running the corresponding example files in MATLAB. The usage of the main

features of the toolbox is explained in the RKToolbox corner sections which conclude

http://rktoolbox.org
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most of the forthcoming chapters.

In the remainder of the chapter we review standard results from (numerical) linear

algebra needed for our developments. General results are considered in Section 1.2,

while in Section 1.3 we focus on polynomial Krylov methods.

1.2 Background material

In this section we review some of the fundamental definitions and matrix properties

that we use through the thesis, others are introduced when needed. We stress that

this is a brief review, and refer the interested reader to [42, 60, 64, 100] for a thorough

discussion on these topics.

Matrices and vectors. We shall often denote matrices with uppercase Latin letters

while for their elements we shall use the corresponding lowercase Latin letters with

indices indicating the row and column they reside in. For instance,

A = [aij] =




a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN1 aN2 . . . aNN


 ∈ CN,N .

With AT we denote the transpose of A, i.e., the matrix whose element on the position

(i, j) is the (j, i) element aji of A. Analogously, with A∗ = A
T

we denote the conjugate

transpose of A, where A denotes element-wise conjugation. With

IN =




1
1

. . .

1


 ≡ diag(1, 1, . . . , 1)

we denote the identity matrix. The subscript N may be removed if the dimension of

the matrix is clear from the context. The kth column of IN is denoted by ek, and

referred to as a canonical vector. With 0 we shall denote a zero matrix of any size,

while for vectors only we may also use 0.

We say that a square matrix A ∈ CN,N is upper (lower) triangular if aij = 0

(aji = 0), whenever i > j. A triangular matrix A is called strictly triangular if ajj = 0

for all j. If A is both upper and lower triangular, we say that it is a diagonal matrix.
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On the other hand, we say that a rectangular matrix A ∈ CN,M is upper (lower)

trapezoidal if aij = 0 (aji = 0), whenever i > j.

Eigenvalues and eigenvectors. Let A ∈ CN,N . If (λ,0 6= x ) ∈ C× CN satisfies

Ax = λx , (1.1)

then λ is called an eigenvalue of A and x its corresponding eigenvector. Any matrix

A ∈ CN,N has N eigenvalues, not necessarily mutually distinct, and they are the zeros

of the characteristic polynomial χA(z) = det(A − λI) of A. Here, det : CN,N → C

denotes the determinant of the matrix; see, e.g., [64, p. 8]. We denote the set containing

all the eigenvalues of A by

Λ(A) = {z ∈ C| det(A− λI) = 0}.

The matrix A can be expressed in the Jordan canonical form

Z−1AZ = J = diag(J1, J2, . . . , J`), with

Jk = Jk(λk) =




λk 1

λk
. . .
. . . 1

λk


 ∈ Cnk,nk ,

(1.2)

where Z is nonsingular, λk are the eigenvalues of A, and n1 + n2 + . . .+ n` = N . The

matrix Jk is called a Jordan block. The Jordan canonical form is typically useful from a

theoretical viewpoint. Since the Jordan form is not continuous and is thus numerically

unstable, when designing numerical algorithms one usually resorts to the so called

Schur form Q∗AQ = T, where Q ∈ CN,N is a unitary matrix and T is upper triangular.

A matrix Q ∈ CN,N is called unitary if QQ∗ = I. Note that Λ(A) = {tjj}Nj=1, and Q

can be chosen so that the elements on the diagonal of T appear in any order.

Generalised eigenvalues and eigenvectors. Let A,B ∈ CN,N . The pair (A,B) is

called a pencil. If (λ,0 6= x ) ∈ C× CN satisfies the equation

Ax = λBx , (1.3)

then λ is called a generalised eigenvalue of (A,B) and x its corresponding generalised

eigenvector. The set of all generalised eigenvalues of (A,B) is denoted by

Λ(A,B) = {z ∈ C| det(A− zB) = 0}.



1.2. BACKGROUND MATERIAL 31

Clearly, Λ(A, I) = Λ(A). The analogue of the Schur form for a matrix to pencils is

the generalised Schur form (T, S) = (Q∗AZ,Q∗BZ), where Q,Z ∈ CN,N are unitary

and T, S ∈ CN,N are upper triangular. If for some j, tjj and sjj are both zero, then

Λ(A,B) = C. Otherwise, we have Λ(A,B) = {tjj/sjj|sjj 6= 0}.
When A,B ∈ RN,N , the generalised real Schur form (T, S) = (Q∗AZ,Q∗BZ), where

Q,Z ∈ RN,N are orthogonal, T is upper quasi-triangular and S is upper triangular,

may be of interest instead of the generalised Schur form. A matrix Q ∈ RN,N is said to

be orthogonal if QQT = I, while T = [Tij] ∈ RN,N is said to be upper quasi-triangular

if it is block upper triangular and Tjj are either of size 1-by-1 or of size 2-by-2.

Functions of matrices. Let A ∈ CN,N have the Jordan canonical form (1.2). We

say that the function f is defined on the spectrum of A if the values

f (j)(λk), j = 0, 1, . . . , nk − 1, k = 1, 2, . . . , `

exist. If f is defined on the spectrum of A, then

f(A) := Zf(J)Z−1 = Z diag(f(J1), f(J2), . . . , f(J`))Z
−1,

where

f(Jk) =




f(λk) f ′(λk) . . . f
(nk−1)

(λk)
(nk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)



∈ Cnk,nk .

There exist other, equivalent, definitions of f(A). For our purposes, we state the

definition of f(A) related to Hermite interpolation. Note that the minimal polynomial

of A is defined as the unique monic polynomial ψ of lowest degree such that ψ(A) = 0.

By considering the Jordan canonical form (1.2) we can see that

ψ(z) =
s∏

j=1

(z − λj)νj , (1.4)

where λ1, λ2, . . . , λs are the distinct eigenvalues of A and νj is the dimension of the

largest Jordan block where λj appears. Finally, if f is defined on the spectrum of A,

and (1.4) is the minimal polynomial of A, then

f(A) := p(A),



32 CHAPTER 1. INTRODUCTION & BACKGROUND

where p is the unique polynomial of degree less then degψ such that

f (j)(λk) = p(j)(λk), j = 0, 1, . . . , νk − 1, k = 1, 2, . . . , s.

The polynomial p is called the Hermite interpolating polynomial. For a proof of

equivalence between the two definitions see, e.g., [60, Theorem 1.12].

LU factorisation. If zero is not an eigenvalue of A ∈ CN,N , then A is said to be

nonsingular and there exists a unique matrix A−1 ∈ CN,N such that AA−1 = A−1A = I.

The matrix A−1 is called the inverse of A. A common task in numerical linear algebra

is to solve a linear system of equation Ax = b, where A is nonsingular and b ∈ CN

is a given vector. The sought-after vector x ∈ CN is given by x = A−1b, and can

be computed by forming the LU factorisation A = LU of A, if it exists. Here, L is

a unit lower triangular matrix, i.e., it is lower triangular with all diagonal elements

being equal to one. The matrix U is upper triangular. In practise, the factorisation

PA = LU , where P is a permutation matrix, that is, an orthogonal matrix with

elements being equal to either zero or one, is more often used, since it always exists if

A is nonsingular, and, moreover, it enjoys better numerical properties. If PA = LU ,

then x = U−1[L−1(Pb)] can be formed by permuting the elements of b, followed by

forward substitution and then back substitution; see, e.g., [42, Section 3.1].

QR factorisation. Let A ∈ CN,M . The factorisation A = QR, with unitary Q ∈ CN,N

and upper trapezoidal R ∈ CN,M is called the QR factorisation of A. If N > M

and Q =
[
Q1 Q2

]
with Q1 ∈ CN,M , then Q1 is called an orthonormal matrix. If,

furthermore, R =
[
RT

1 0
]T

with R1 ∈ CM,M , then A = Q1R1 is called the thin QR

factorisation of A.

Singular value decomposition. Let A ∈ CN,M . The decomposition

A = UΣV ∗, Σ = diag(σ1, σ2, . . . , σp) ∈ RN,M , p = min{N,M},

where U and V are unitary and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, is called the singular value

decomposition of A. The scalars σj are called the singular values of A. The columns of

U and V are the left and right singular vectors of A, respectively. The rank of A is

equal to the number r of nonzero singular values of A. The pseudoinverse A† of A is

defined as A† = V diag(σ−1
1 , σ−1

2 , . . . , σ−1
r , 0, 0, . . . , 0)U∗.
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1.3 Polynomial Krylov methods

We now provide a brief overview of polynomial Krylov methods, the predecessor of

rational Krylov methods. More detailed expositions can be found in, e.g., [76, 94, 95].

Let A ∈ CN,N be a matrix and 0 6= b ∈ CN a nonzero starting vector. For any m ∈ N0,

the polynomial Krylov space of order m+ 1 for (A, b) is defined as

Km+1(A, b) := span{b, Ab, A2b, . . . , Amb}.

There exists a uniquely defined integer 1 ≤ d ≡ d(A, b) ≤ N such that

K1(A, b) ⊂ K2(A, b) ⊂ · · · ⊂ Kd−1(A, b) ⊂ Kd(A, b) = Kd+1(A, b).

We call d(A, b) the invariance index for (A, b). We shall typically assume that

m < d(A, b), so that Km+1(A, b) is of full dimension m+ 1 and is isomorphic to Pm,

i.e., any w ∈ Km+1(A, b) corresponds to a polynomial p ∈ Pm satisfying w = p(A)b,

and vice versa.

Polynomial Arnoldi algorithm. With the polynomial Arnoldi algorithm given in

Algorithm 1.1, one can compute an orthonormal basis {v1, v2, . . . , vm+1} for Km+1(A, b).

The starting vector b is normalised to v1 in line 1, and then a new direction Avj is

added to the basis, cf. line 3. The Gram–Schmidt procedure is employed in lines 4–5

to orthonormalise the newly added vector. The process is repeated for j = 1, 2, . . . ,m.

By introducing

Vm+1 =
[
v1 v2 . . . vm+1

]
∈ CN,m+1, and Hm =

[
h1 h2 . . . hm

]
∈ Cm+1,m,

where hj =
[
hTj hj+1,j 0 . . . 0

]T
, we obtain the decomposition AVm = Vm+1Hm.

Here, Vm+1 is orthonormal while Hm is an unreduced upper Hessenberg matrix. Recall

that a matrix Hm ∈ Cm+1,m is called upper Hessenberg if all the elements below the

first subdiagonal are zero, i.e., if i > j + 1 implies hij = 0. Further, we say that Hm is

unreduced if none of the elements on the first subdiagonal are zero, i.e., hj+1,j 6= 0.

Implicit Q theorem. Let us now recall the implicit Q theorem (see, e.g., [42, 102])

which plays an important role for the practical application of the polynomial Arnoldi

algorithm.
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Algorithm 1.1 Polynomial Arnoldi algorithm.

Input: A ∈ CN,N , b ∈ CN , and m < d(A, b).
Output: Decomposition AVm = Vm+1Hm, with V ∗m+1Vm+1 = Im+1.

1. Set v1 := b/‖b‖2.
2. for j = 1, 2, . . . ,m do
3. Compute wj+1 := Avj.
4. Orthogonalize v̂j+1 := wj+1 − Vjhj, where hj := V ∗j wj+1.
5. Normalize vj+1 := v̂j+1/hj+1,j, where hj+1,j := ‖v̂j+1‖2.
6. end for

Theorem 1.1. Let Q ∈ CN,N be a unitary matrix, and Q∗AQ = H be an unreduced

upper Hessenberg matrix. Then the first column of Q determines uniquely, up to

unimodular scaling, the other columns of Q.

One of the applications of the implicit Q theorem is the efficient implementation of

the shifted QR iteration (see, e.g., [42, 102]) for the decomposition AVm = Vm+1Hm,

which may accelerate the convergence of specific Ritz values. Instead of the shifted

QR iteration for A, the theorem allows for the shifted QR iteration to be applied on

the typically smaller matrix Hm in an implicit two-step process. First, we change the

leading vector Vm+1e1 of Vm+1 by applying a suitable transformation Vm+1GG
−1Hm,

and second, we recover the upper Hessenberg structure of G−1Hm without affecting

the leading column of Vm+1G. This is further discussed for the more general, rational,

case at the end of Section 5.1.

Gram–Schmidt procedure. The Gram–Schmidt procedure used in Algorithm 1.1 is

often referred to as classical Gram–Schmidt, and in finite precision arithmetic may cause

numerical instabilities. A more robust approach is that of the modified Gram–Schmidt

procedure, where, instead of line 4, we have:

for k = 1, 2, . . . , j do

Compute hkj = v ∗kwj+1, and update wj+1 := wj+1 − hkjvk.
end for

In this case line 5 reduces to:

Orthogonalize vj+1 := wj+1/hj+1,j, where hj+1,j := ‖v̂j+1‖2.

Furthermore, it is common to perform the orthogonalization, with both methods, twice.

Interested discussions and analyses on this topic can be found in, e.g., [13, 14, 38, 39, 47].
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In our forthcoming discussions we shall keep the presentation as in Algorithm 1.1, but

one should be aware that a more sophisticated implementation is needed in practice.

Solving linear systems and eigenproblems. The polynomial Arnoldi algorithm

may be used for solving large and sparse or structured linear systems of equations. If

AVm = Vm+1Hm and Hm =
[
Im 0

]
Hm, then xm := VmH

−1
m V ∗mb provides an approxi-

mation to A−1b, provided that A and Hm are nonsingular. This procedure is known

as the full orthogonalization method (FOM). An alternative is the generalised minimal

residual method (GMRES), where Vm+1H
†
mV

∗
mb ≈ A−1b is used instead. Moreover,

some of the eigenvalues of Hm may provide good approximations to eigenvalues of A.

In applications, these are typically the eigenvalues having larger module. Therefore,

by replacing A with (A − ξI)−1 in the polynomial Arnoldi method, one may obtain

good approximations to eigenvalues of A close to any ξ ∈ C. This is referred to

as the shift-and-invert Arnoldi algorithm, and the rational Krylov method of Ruhe

[86, 87, 88, 89, 90], which we cover in Chapter 2, generalises it by allowing the pa-

rameter ξ to change from one iteration to the next. Because of this connection to

the polynomial Arnoldi algorithm, we shall refer to the rational Krylov method as the

rational Arnoldi algorithm.
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2 Rational Krylov spaces
and related decompositions

In this chapter we study various algebraic properties of rational Krylov spaces, using

as starting point a rational Arnoldi decomposition

AVm+1Km = Vm+1Hm, (2.1)

where A ∈ CN,N is a given matrix and the matrices Vm+1 ∈ CN,m+1 and Km, Hm ∈
Cm+1,m are of maximal column rank. The rational Arnoldi algorithm by Ruhe [89, 87,

90] naturally generates decompositions of the form (2.1) in which case it is known (by

construction) that the columns of Vm+1 are an (orthonormal) basis of a rational Krylov

space. Different choices of the so called continuation combinations in the rational

Arnoldi algorithm give rise to different decompositions, but all of them correspond

to the same rational Krylov space. We answer the converse question of when a

decomposition (2.1) is associated with a rational Krylov space, and, furthermore,

discuss its uniqueness. The goal is to provide fundamental properties, important for

the developments of forthcoming chapters, of decompositions (2.1) related to rational

Krylov spaces.

The outline of this chapter is as follows: in Section 2.1 we review the rational Arnoldi

algorithm and derive the related decomposition (2.1). The notion of a rational Arnoldi

decomposition is formally introduced in Section 2.2. We relate these decompositions to

the poles and the starting vector of a rational Krylov space and establish some of their

properties. Section 2.3 provides a rational implicit Q theorem about the uniqueness

of such decompositions, while Section 2.4 is devoted to a variant of (2.1) with all the

matrices being real-valued. Rational Krylov spaces were initially proposed for the

purpose of solving large sparse generalised eigenvalue problems [86, 89, 87, 90]; in

37
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Section 2.5 we consider the possibility of working with a pencil (A,B), with A,B ∈ CN,N ,

instead of A only. This leads to decompositions of the form AVm+1Km = BVm+1Hm,

and naturally opens the question of considering nonstandard inner products. Finally,

in Section 2.6 we show how to use the RKToolbox to construct decompositions of the

form (2.1), highlighting the flexibility and freedom the RKToolbox provides yet still

keeping the exposition concise.

2.1 The rational Arnoldi algorithm

Let A ∈ CN,N be a matrix, 0 6= b ∈ CN a nonzero starting vector, and let qm ∈ Pm be

a nonzero polynomial that has no roots in Λ(A), with m ∈ N0. The rational Krylov

space of order m for (A, b, qm) is defined as [86, 89]

Qm+1(A, b, qm) := qm(A)−1Km+1(A, b). (2.2)

The roots of qm are the poles of Qm+1(A, b, qm). Note that qm(A) is nonsingular

since no root of qm is an eigenvalue of A and therefore Qm+1(A, b, qm) is well defined.

Clearly, Qm+1(A, b, qm) is independent of nonzero scaling of b and/or qm. Further, the

spaces Qm+1(A, b, qm) and Km+1(A, b) are of the same dimension for all m. Therefore

Qm+1(A, b, qm) is A-variant if and only if m+ 1 < d(A, b). We shall often denote the

poles of a the rational Krylov space by {ξj}mj=1 and thus may also use the notation

Qm+1(A, b, {ξj}mj=1) = Qm+1(A, b, qm). If deg(qm) < m, then m− deg(qm) of the poles

are set to infinity. In this case we refer to infinity as a formal (multiple) root of

qm. To handle both finite and infinite poles in a unifying way we may also use the

representation ξ = µ/ν, for an adequate choice of scalars µ, ν ∈ C.

The rational Arnoldi algorithm [89, 90] constructs an orthonormal basis Vm+1 for

(2.2) in a Gram–Schmidt fashion as described in Algorithm 2.2. In line 1 we normalise

the starting vector b. The main part of the algorithm consists of lines 2–11 where an

orthonormal basis for Qm+1(A, b, qm) is constructed iteratively.

In line 3 we select a continuation pair (ηj/ρj, tj) which is used in line 4 to expand

the space R(Vj).

Definition 2.1. We call (ηj/ρj, tj 6= 0) ∈ C×Cm a continuation pair of order j. The

value ηj/ρj is its continuation root, and tj its continuation vector.
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Algorithm 2.2 Rational Arnoldi algorithm. RKToolbox: rat krylov

Input: A ∈ CN,N , b ∈ CN , poles {µj/νj}mj=1 ⊂ C \ Λ(A), with m < d(A, b).
Output: Decomposition AVm+1Km = Vm+1Hm, with V ∗m+1Vm+1 = Im+1.

1. Set v1 := b/‖b‖2.
2. for j = 1, 2, . . . ,m do
3. Choose an admissible continuation pair (ηj/ρj, tj) ∈ C× Cj.

4. Compute wj+1 := (νjA− µjI)−1(ρjA− ηjI)Vjtj.
5. Orthogonalize v̂j+1 := wj+1 − Vjcj, where cj := V ∗j wj+1.
6. Normalize vj+1 := v̂j+1/cj+1,j, where cj+1,j := ‖v̂j+1‖2.
7. Set kj := νjcj − ρjtj and hj := µjcj − ηjtj, where tj =

[
tj
0

]
, and cj =

[
cj

cj+1,j

]
.

8. end for

The notion of continuation vector has already been used in the literature, though

not consistently. For instance, in [90] the author refers to Vjtj as the continuation

vector, while in [73] the term is used to denote (ρjA− ηjI)Vjtj. The terminology of

“continuation combinations” is adopted in [10, 109, 90] for the vectors tj. With the

notion of continuation pair, we want to stress that the two components are equally

important; see Chapter 4.

The Möbius transformation (νjA−µjI)−1(ρjA− ηjI) with fixed pole µj/νj and the

chosen (continuation) root ηj/ρj 6= µj/νj is applied onto Vjtj in order to produce wj+1.

The continuation pair must be such that wj+1 6∈ R(Vj), as otherwise we cannot expand

the space. Such admissible continuation pairs exist as long as j < d(A, b); a thorough

discussion on the selection of continuation pairs is included in Chapter 4. For now it is

sufficient to add that (admissible) continuation pairs correspond to linear parameters

and do not affect the space (in exact arithmetic, at least). Lines 5–6 correspond to the

Gram–Schmidt process, where wj+1 is orthogonalised against v1, v2, . . . , vj to produce

the unit 2-norm vector vj+1. From lines 4–6 we deduce

wj+1 = Vj+1cj = (νjA− µjI)−1(ρjA− ηjI)Vjtj, and hence (2.3a)

(νjA− µjI)Vj+1cj = (ρjA− ηjI)Vjtj. (2.3b)

Rearranging the terms with and without A we obtain

AVj+1(νjcj − ρjtj) = Vj+1(µjcj − ηjtj), (2.4)

which justifies the notation

kj := νjcj − ρjtj, and hj := µjcj − ηjtj, (2.5)
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used in line 7. Note that hj+1,j = µjcj+1,j and kj+1,j = νjcj+1,j , with cj+1,j 6= 0. Hence,

hj+1,j/kj+1,j is equal to the jth pole. Concatenating (2.4) for j = 1, 2, . . . ,m provides

AVm+1Km = Vm+1Hm, (2.6)

with the jth column of Hm ∈ Cm+1,m being [h
T
j 0T ]T ∈ Cm+1, and analogously for the

matrix Km. It is convenient to consider (2.6) even if m = 0, in which case one can think

of the pencil (Hm, Km) as being of size 1-by-0, and we only have the matrix A and the

normalised starting vector v1. This corresponds to the initial stage of Algorithm 2.2,

i.e., right after line 1.

The rational Arnoldi algorithm is a generalisation of the polynomial and shift-and-

invert Arnoldi algorithms, and the latter two can be recovered with a specific choice of

poles and continuation pairs, as the following two examples demonstrate.

Example 2.2. Let µj/νj ≡ 1/0, and (ηj/ρj, tj) ≡ (0/− 1, ej), for j = 1, 2, . . . ,m. Then

in line 4 of Algorithm 2.2 we compute wj+1 = AVjej = Avj . Furthermore, the formulas

for kj = ej, and hj = cj simplify. Overall, we retrieve AVm+1Im = AVm = Vm+1Hm,

same as with the polynomial Arnoldi algorithm; cf. Section 1.3.

Example 2.3. Recall the shift-and-invert Arnoldi decomposition (A − σI)−1Vm =

Vm+1Cm. By multiplying it from the left with (A − σI) and rearranging the terms

we obtain (2.6) with Km = Cm, and Hm = σCm + Im. This can be obtained with

Algorithm 2.2 by setting µj/νj ≡ σ/1, and (ηj/ρj, tj) ≡ (−1/0, ej), for all iterations

j = 1, 2, . . . ,m.

The polynomial Arnoldi algorithm uses repeatedly a pole at infinity, while the

shift-and-invert Arnoldi algorithm uses a finite pole σ at each iteration. The rational

Arnoldi algorithm allows for poles to change from one iteration to the next. The

success of rational Krylov methods heavily depends on these parameters. If good

poles are available, only a few may suffice to solve the problem at hand. Otherwise,

the solution of a large number of shifted linear systems may be needed to construct

the space, thus rendering the process computationally unfeasible. Finding good pole

parameters is highly non-trivial and problem-depend. We discuss the selection of poles

in Chapters 4–6.
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2.2 Rational Arnoldi decompositions

In the following we aim to establish a correspondence between rational Krylov spaces

and matrix decompositions of the form (2.6). As a consequence, we are able to study

the algebraic properties of rational Krylov spaces using these decompositions.

Definition 2.4. Let Km, Hm ∈ Cm+1,m be upper Hessenberg matrices. We say that

the pencil (Hm, Km) is an unreduced upper Hessenberg pencil if |hj+1,j|+ |kj+1,j| 6= 0

for all j = 1, 2, . . . ,m.

We are now ready to introduce the notion of a rational Arnoldi decomposition,

which is a generalisation of decompositions generated by Ruhe’s rational Arnoldi

algorithm [89, 90]. Although these decompositions have been considered before, ours

is the most general definition (cf. Theorem 2.10 below). Other approaches typically

exclude the possibility to have poles at both zero and infinity, by requiring Hm to be

unreduced; see, e.g., [24, 55, 90]. The introduction of unreduced pencils allows us to

bypass this restriction.

Definition 2.5. Let A ∈ CN,N . A relation of the form (2.6) is called a rational

Arnoldi decomposition (RAD) of order m if Vm+1 ∈ CN,m+1 is of full column rank,

(Hm, Km) is an unreduced upper Hessenberg pencil of size (m + 1)-by-m, and none

of the quotients {hj+1,j/kj+1,j}mj=1, called poles of the decomposition, is in Λ(A). The

columns of Vm+1 are called the basis of the RAD and they span the space of the RAD.

If Vm+1 is orthonormal, we say that (2.6) is an orthonormal RAD.

The terminology of basis and space of an RAD is inspired by [101, 103] where

decompositions related to the polynomial Arnoldi algorithm are studied. It is notewor-

thy that both Hm and Km in the RAD (2.6) are of full rank, which follows from the

following lemma (for β = 0 and α = 0, respectively).

Lemma 2.6. Let (2.6) be an RAD, and let α, β ∈ C be such that |α|+ |β| 6= 0. The

matrix αHm − βKm is of full column rank m.

Proof. Consider auxiliary scalars α̂ = 1 and any β̂ ∈ C such that α̂hj+1,j − β̂kj+1,j 6= 0

for j = 1, 2, . . . ,m. Multiplying the RAD (2.6) by α̂ and subtracting β̂Vm+1Km from

both sides gives

(α̂A− β̂I)Vm+1Km = Vm+1

(
α̂Hm − β̂Km

)
. (2.7)

The choice of α̂ and β̂ is such that α̂Hm − β̂Km is an unreduced upper Hessenberg
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matrix, and as such of full column rank m. In particular, the right-hand side of (2.7) is

of full column rank m. Thus, the left-hand side, and in particular Km, is of full column

rank. This proves the statement for the case α = 0. For the case α 6= 0, consider

α̂ = α and β̂ = β in (2.7). If αHm − βKm is unreduced, then it is of full column

rank and the statement follows. If, however, αHm − βKm is not unreduced, then

we have αhj+1,j − βkj+1,j = 0 for at least one index j ∈ {1, 2, . . . ,m}. Equivalently,

β/α = hj+1,j/kj+1,j; that is, β/α equals the jth pole of (2.6) and hence αA − βI is

nonsingular. Finally, since Vm+1 and Km are of full column rank, the left-hand side of

(2.7) is of full column rank. It follows that αHm − βKm is of full column rank as well,

and the proof is complete.

Furthermore, any RAD (2.6) can be transformed into an orthonormal RAD using

the thin QR factorization Vm+1 = Qm+1Rm+1. Setting V̂m+1 = Qm+1, K̂m = Rm+1Km,

and Ĥm = Rm+1Hm, we obtain the decomposition

AV̂m+1K̂m = V̂m+1Ĥm, (2.8)

satisfying R(V̂j+1) = R(Vj+1), and hj+1,j/kj+1,j = ĥj+1,j/k̂j+1,j for all j = 1, 2, . . . ,m.

Definition 2.7. The RADs (2.6) and (2.8) are called equivalent if they span the same

space and have the same poles.

Note that we do not impose equal ordering of the poles for two RADs to be

equivalent. Additionally, it follows from Lemma 2.8 below that equivalent RADs have

the same starting vector, up to nonzero scaling. We shall often assume, for convenience,

the RAD to be orthonormal. We now show that the poles of a rational Krylov space

are uniquely determined by the starting vector and vice versa.

Lemma 2.8. Let Qm+1(A, b, qm) be a given A-variant rational Krylov space. Then the

poles of Qm+1(A, b, qm) are uniquely determined by R(b), or equivalently, the starting

vector of Qm+1(A, b, qm) is uniquely, up to scaling, determined by the (formal) roots of

the polynomial qm.

Proof. We first show that for a given A-variant polynomial Krylov space Km+1(A, q),

all vectors w ∈ Km+1(A, q) that satisfy Km+1(A, q) = Km+1(A,w) are of the form w =

αq , for a nonzero scalar α ∈ C. Assume, to the contrary, that there exists a polynomial

pj with 1 ≤ deg(pj) = j ≤ m such that w = pj(A)q . Then Am+1−jw ∈ Km+1(A,w),

but for the same vector we have Am+1−jw = Am+1−jpj(A)q 6∈ Km+1(A, q). This is a

contradiction to Km+1(A, q) = Km+1(A,w).
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To show that the poles are uniquely determined by the starting vector b, assume

that Qm+1(A, b, qm) = Qm+1(A, b, q̂m). Using the definition of a rational Krylov space

(2.2), this is equivalent to Km+1(A, qm(A)−1b) = Km+1(A, q̂m(A)−1b). Multiplying

the latter with qm(A)q̂m(A) = q̂m(A)qm(A) from the left provides the equivalent

Km+1(A, q̂m(A)b) = Km+1(A, qm(A)b). This space is A-variant, hence by the above

argument we know that qm(A)b = αq̂m(A)b, for a nonzero scalar α ∈ C. This vector

is an element of Km+1(A, b) which is isomorphic to Pm. Therefore qm = αq̂m and

hence qm and q̂m have identical roots. Similarly one shows that if Qm+1(A, b, qm) =

Qm+1(A, b̂, qm), then b = αb̂ with α 6= 0.

The rational Arnoldi algorithm generates RADs of the form (2.6), in which case it is

known (by construction) that R(Vm+1) spans a rational Krylov space. In Theorem 2.10

below we show that the converse also holds; we show that for every rational Krylov space

Qm+1(A, b, qm) there exists an RAD (2.6) spanning Qm+1(A, b, qm) and conversely,

if such a decomposition exists it spans a rational Krylov space. In particular, this

shows that our Definition 2.5 indeed describes the complete set of RADs associated

with rational Krylov spaces. To proceed it is convenient to write the polynomial qm in

factored form, and to label separately all the leading factors

q0(z) = 1, and qj(z) =

j∏

`=1

(
h`+1,` − k`+1,`z

)
, j = 1, 2, . . . ,m, (2.9)

with some scalars {h`+1,`, k`+1,`}m`=1 ⊂ C such that ξ` = h`+1,`/k`+1,`. Since (2.2) is

independent of the scaling of qm any choice of the scalars h`+1,` and k`+1,` is valid as

long as their ratio is ξ`. When we make use of (2.9) without specifying the order of

appearance of the poles, we mean any order. The fact that qj | qj+1 gives rise to a

sequence of nested rational Krylov spaces, as we now show.

Proposition 2.9. Let Qm+1(A, b, qm) be a rational Krylov space of order m, and let

(2.9) hold. Then

Q1 ⊂ Q2 ⊂ · · · ⊂ Qm+1, (2.10)

where Qj+1 = Qj+1(A, b, qj) for j = 0, 1, . . . ,m.

Proof. Let ` ∈ {0, 1, . . . ,m}. We need to show that Q` ⊂ Q`+1. Let v ∈ Q` be

arbitrarily. By the definition of Q`, there exists a polynomial p` ∈ P` such that

v = q`(A)−1p`(A)b. Then, p`+1 ∈ P`+1 defined by p`+1(z) :=
(
h`+1,` − k`+1,`z

)
p`(z) is

such that v = q`+1(A)−1p`+1(A)b, which shows that v ∈ Q`+1.
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Finally, we are ready to establish the announced relation between rational Krylov

spaces and RADs.

Theorem 2.10. Let Vm+1 be a vector space of dimension m + 1. Then Vm+1 is a

rational Krylov space with starting vector b ∈ Vm+1 and poles ξ1, ξ2, . . . , ξm if and only

if there exists an RAD (2.6) with R(Vm+1) = Vm+1, v1 = b, and poles ξ1, ξ2, . . . , ξm.

Proof. Let (2.6) hold and define the polynomials {qj}mj=0 as in (2.9). These are nonzero

polynomials since the pencil (Hm, Km) is unreduced. We show by induction that

Vj+1 := span
{
v1, v2, . . . , vj+1

}
= qj(A)−1Kj+1(A, b), (2.11)

for j = 1, 2, . . . ,m, and with b = v1. In particular, for j = m we obtain Vm+1 =

qm(A)−1Km+1(A, b). Consider j = 1. Reading (2.6) column-wise, first column only,

and rearranging the terms yields

q1(A)v2 = (h21I − k21A) v2 = (k11A− h11I) v1. (2.12)

Therefore, v2 = q1(A)−1 (k11A− h11I) v1 ∈ q1(A)−1K2(A, b) which together with the

fact v1 ∈ q1(A)−1K2(A, b) proves (2.11) for j = 1. Let us assume that (2.11) holds for

j = 1, 2, . . . , n− 1 < m. We now consider the case j = n. Comparing the nth column

on the left- and the right-hand side in (2.6) and rearranging the terms gives

(
hn+1,nI − kn+1,nA

)
vn+1 =

n∑

`=1

(k`nA− h`nI) v`, (2.13)

and hence qn(A)vn+1 =
n∑

`=1

(k`nA− h`nI) qn−1(A)v`. (2.14)

By the induction hypothesis v` ∈ qn−1(A)−1Kn(A, b), therefore

(k`nA− h`nI) qn−1(A)v` ∈ Kn+1(A, b), ` = 1, 2, . . . , n. (2.15)

It follows from (2.14) and (2.15) that vn+1 ∈ qn(A)−1Kn+1(A, b). The induction

hypothesis asserts {v1, v2, . . . , vn} ⊆ qn(A)−1Kn+1(A, b) which concludes this direction.

Alternatively, let Vm+1 = qm(A)−1Km+1(A, b) be a rational Krylov space with a

basis {v1, v2, . . . , vm+1} satisfying (2.11). Thus for n = 1, 2, . . . ,m there holds

vn+1 ∈ qn(A)−1Kn+1(A, b)⇔
(
hn+1,nI − kn+1,nA

)
vn+1 ∈ qn−1(A)−1Kn+1(A, b).

Since Kn+1(A, b) = Kn(A, b) ∪ AKn(A, b) we have qn−1(A)−1Kn+1(A, b) = Qn ∪ AQn.

Consequently, there exist numbers {h`n, k`n}n`=1 ⊂ C such that (2.13) holds. These
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zK6 −H6 =
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¯××
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±







(a) Upper Hessenberg structure.

det



×××××
¬××××

­×××
¯×

°








 = p3(z) (−1)2q3(z)−1q5(z)

(b) Contribution from a minor.

Figure 2.1: Sketch illustrating the proof of Theorem 2.12. Part (a) shows the upper-Hessenberg
structure of the shifted pencil zKj −Hj , for j = 6. The elements marked with numbers, like

¬ = zk21− h21, are those carrying the poles. The contribution of the element ⊗ = zk46− h46

in the Laplace expansion of the determinant det(zK6 − H6) along the last column of the
matrix is (−1)4+6(zk46 − h46) det(M⊗). Here, M⊗ is the minor of zK6 −H6 resulting from
the removal of the 4th row and the last column, and is shown in part (b).

relations can be merged into matrix form to get (2.6) with the pencil (Hm, Km) being

unreduced as a consequence of qm being a nonzero polynomial.

Clearly, an RAD related to a rational Krylov space Vm+1 with a given starting

vector and poles is not unique; not only can the poles be ordered arbitrarily, but also

the scalars {h`n, k`n}n+1
`=1 can be chosen in a nonunique way. The different RADs are,

however, equivalent. We comment further on the uniqueness in Section 2.3. Let us

now introduce the following terminology.

Definition 2.11. We say that (2.6) is an RAD for Qm+1(A, b, qm) if (2.6) is an RAD

spanning Qm+1(A, b, qm), with Vm+1e1 being collinear to b, and if the poles of (2.6)

coincide with the poles of Qm+1(A, b, qm).

Elaborating further on the proof of the previous theorem, we retrieve an explicit

formula for the vectors vj, given in Theorem 2.12 below. This result appears to some

extent in [86, 89], stated up to a normalization factor and given without proof. We

stress that the result holds irrespectively of the RAD being orthonormal or not.

Theorem 2.12. Let (2.6) be an RAD. Then

vj+1 = pj(A)qj(A)−1v1, j = 1, 2, . . . ,m, (2.16)

where pj(z) = det
(
zKj −Hj

)
, and the polynomials qj are given by (2.9).

Proof. The proof goes by induction on j. For j = 1, (2.16) follows from (2.12).

Assume (2.16) has been established for j = 1, 2, . . . , n < m and insert it into (2.14),

giving rise to

qn(A)vn+1 =
n∑

`=1

(k`nA− h`nI) qn−1(A)p`−1(A)q`−1(A)−1v1. (2.17)
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We obtain (2.16) for j = n+ 1 by noticing that the right-hand side of (2.17) represents

the Laplace expansion of det (zKn −Hn) along the last column. Indeed

qn(A)vn+1 =
n∑

`=1

(−1)`+n (k`nA− h`nI) p`−1(A)(−1)n−`q`−1(A)−1qn−1(A)v1.

See also Figure 2.1 for an illustration.

We remark that pj(z) is the determinant of the upper j-by-j submatrix of zKj−Hj ,

whilst (−1)jqj(z) is the determinant of its lower j-by-j submatrix. Clearly, the pencil

(Hm, Km) implicitly defines the scalar rational functions pj/qj , and they satisfy a scalar

RAD (2.18) as we now show.

Theorem 2.13. Let (2.6) be an RAD for Qm+1(A, b, qm). Define rj := pj/qj where

the polynomials pj, qj ∈ Pj for j = 1, 2, . . . ,m are as in (2.16), and r0 ≡ 1. Then for

any z ∈ C such that qm(z) 6= 0 there holds

z
[
r0(z) r1(z) . . . rm(z)

]
Km =

[
r0(z) r1(z) . . . rm(z)

]
Hm. (2.18)

Furthermore, for any z ∈ C there holds

z
[
p

[m]
0 (z) p

[m]
1 (z) . . . p[m]

m (z)
]
Km =

[
p

[m]
0 (z) p

[m]
1 (z) . . . p[m]

m (z)
]
Hm, (2.19)

where p
[m]
j ∈ Pm are polynomials formally defined as p

[m]
j ≡ rjqm, for j = 0, 1, . . . ,m.

Proof. Can be verified column-wise as in the proofs of Theorems 2.10 and 2.12.

The scalar RAD indicates a way of evaluating the rational functions rj at arbitrary

points z ∈ C, excluding the poles, using the information contained in the corresponding

scalar RAD. We remark that the scalar variant of an RAD is well known in the

polynomial case, see, e.g., [76, eq. (3.3.10)].

Theorem 2.14. Let (2.6) be an RAD for Qm+1(A, b, qm), and let the rational functions

rj for j = 0, 1, . . . ,m be as in Theorem 2.13. Then for any w ∈ C such that qm(w) 6= 0

there holds

rj(w) = γ, where γ =
q∗m+1ej+1

q∗m+1e1

,

with qm+1 being the last, i.e., (m + 1)st, column of the Q factor of the full QR

factorisation of Hm − wKm.

Proof. The scalar RAD (2.18) can be shifted to

(z − w)
[
r0(z) r1(z) . . . rm(z)

]
Km =

[
r0(z) r1(z) . . . rm(z)

] (
Hm − wKm

)
,
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which shows, by setting z = w, that indeed q :=
[
r0(w) r1(w) . . . rm(w)

]∗ 6= 0 is

a left null vector of Hm − wKm. (The vector q is nonzero since r0(w) = 1.) Since

Hm − wKm is of full column rank m by Lemma 2.6, the null vector q is unique up to

nonzero scaling. Therefore, q = qm+1/q
∗
m+1e1, and the statement follows.

In Chapter 7 we further discuss scalar RADs, based on which we propose a framework

to work with (scalar) rational functions numerically. The evaluation of rational functions

based on Theorem 2.14 requires the computation of a QR factorisation of a typically

rather small matrix. However, this may become costly if the evaluation in many points

is required, and in Chapter 7 we introduce, among others, a more efficient algorithm.

We remark that some of the roots of rm can yield good approximations to some of

the eigenvalues of A, and in Section 3.1.4 we discuss this in more detail. We shall now

focus again on non-scalar RADs and in particular on the question of uniqueness.

2.3 A rational implicit Q theorem

We now return to the question of uniqueness of RADs for Qm+1(A, b, qm). We need

to restrict ourselves to orthonormal RADs, and consider a fixed ordering of the poles.

This allows us to establish a generalisation of the implicit Q theorem to the rational

case. The theorem asserts that any two orthonormal RADs for Qm+1(A, b, qm), with

poles ordered in the same way, are essentially equal. Let us clarify what it means

for two RADs to be essentially unique. Apart from the column scaling of Vm+1, in

the rational case the decomposition (2.6) is also invariant (in the sense that it spans

the same space, the poles remain unchanged, and the upper Hessenberg structure is

preserved) under right-multiplication by upper triangular nonsingular matrices Tm. We

make this precise.

Definition 2.15. The orthonormal RADs (2.6) and (2.8) are called essentially equal

if there exists a unitary diagonal matrix Dm+1 ∈ Cm+1,m+1 and an upper triangular

nonsingular matrix Tm ∈ Cm,m, such that V̂m+1 = Vm+1Dm+1, Ĥm = D∗m+1HmTm, and

K̂m = D∗m+1KmTm. Essentially equal orthonormal RADs form an equivalence class

and we call any of its elements essentially unique.

Note that two orthonormal RADs may be equivalent but not essentially equal, as

the poles may be ordered differently. We are now ready to generalise the implicit Q
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theorem to the rational case. The proof is partly analogous to that of the polynomial

implicit Q theorem given in [102, pp. 116–117].

Theorem 2.16. Let (2.6) be an orthonormal RAD with poles ξj = hj+1,j/kj+1,j. For

every j = 1, 2, . . . ,m the orthonormal matrix Vj+1 and the pencil (Hj, Kj) are essentially

uniquely determined by Vj+1e1 and the poles ξ1, ξ2, . . . , ξj.

Proof. Let (2.8) be an orthonormal RAD with V̂m+1e1 = Vm+1e1 and ĥj+1,j/k̂j+1,j =

hj+1,j/kj+1,j for all j = 1, 2, . . . ,m. We show by induction that (2.8) is essentially equal

to (2.6). We assume, without loss of generality, that hj+1,j 6= 0 for all j = 1, 2, . . . ,m.

Otherwise, if hj+1,j = 0 for some j, then 0 = ξj /∈ Λ(A) and we can consider Vm+1Km =

A−1Vm+1Hm at that step j, thus interchanging the roles of Hm and Km and using A−1

instead of A. Since (Hm, Km) is unreduced, kj+1,j 6= 0 if hj+1,j = 0. The relation (2.6)

can be shifted for all ξ ∈ C∗ \ Λ(A) to provide

A(ξ)Vm+1L
(ξ)
m = Vm+1Hm, (2.20)

where A(ξ) := (I − A/ξ)−1A and L(ξ)
m := (Km −Hm/ξ). We make frequent use of this

relation, reading it column-wise. It is worth noticing that the jth column of L
(ξj)
m has

all but eventually the leading j components equal to zero, and that L
(ξ)
j is of full rank

for all j and ξ, by Lemma 2.6. Analogous results hold for (2.8). We are now ready to

prove the statement.

Define d1 := 1, so that v̂1 = d1v1. The first column in (2.20) for ξ = ξ1 yields

`
(ξ1)
11 A(ξ1)v1 = h11v1 + h21v2. (2.21)

Since v ∗1v1 = 1 and v ∗1v2 = 0, we have

h11 = `
(ξ1)
11 v ∗1A

(ξ1)v1. (2.22)

We then have

h21v2 = `
(ξ1)
11 A(ξ1)v1 − h11v1,

v2 = `
(ξ1)
11

[
A(ξ1)v1 −

(
v ∗1A

(ξ1)v1

)
v1

]
/h21.

Since ‖v2‖2 = 1 and h21 6= 0 by assumption, we have `
(ξ1)
11 6= 0. Analogously

ĥ11 = ̂̀(ξ1)
11 v ∗1A

(ξ1)v1, v̂2 = ̂̀(ξ1)
11

[
A(ξ1)v1 −

(
v ∗1A

(ξ1)v1

)
v1

]
/ĥ21, and ̂̀(ξ1)

11 6= 0.
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Obviously, v2 and v̂2 are collinear and since they are both of unit 2-norm, there exists

a unimodular scalar d2 ∈ C such that v̂2 = d2v2. Defining t1 := ̂̀(ξ1)
11 /`

(ξ1)
11 , and D2 :=

diag(d1, d2), and making use of A(ξ1)v1 −
(
v ∗1A

(ξ1)v1

)
v1 = ĥ21v̂2/̂̀(ξ1)

11 = h21v2/`
(ξ1)
11 , we

obtain Ĥ1 = D∗2H1T1. From K1 = L
(ξ1)
1 + H1/ξ1 and K̂1 = L̂

(ξ1)
1 + Ĥ1/ξ1 we see that

indeed K̂1 = D∗2K1T1. This proves the statement for j = 1.

Suppose that, for j = 2, 3, . . . ,m, we have V̂j = VjDj, Ĥj−1 = D∗jHj−1Tj−1, and

K̂j−1 = D∗jKj−1Tj−1, for a diagonal unitary matrix Dj = diag(d1, d2, . . . , dj) and upper

triangular nonsingular matrix Tj−1.

The jth column in (2.20) for ξ = ξj gives

A(ξj)Vjl
(ξj)

j = Vj+1hj. (2.23)

Since v1, v2, . . . , vj+1 are orthonormal we have

hj = V ∗j A
(ξj)Vjl

(ξj)

j . (2.24)

Rearranging the two equations above we deduce

hj+1,jvj+1 = A(ξj)Vjl
(ξj)

j − Vjhj
= A(ξj)Vjl

(ξj)

j − VjV ∗j A(ξj)Vjl
(ξj)

j

=
(
I − VjV ∗j

)
A(ξj)Vjl

(ξj)

j .

Expanding l
(ξj)

j as l
(ξj)

j =: L
(ξj)

j−1zj−1 + qj, where q∗j L
(ξj)

j−1 = 0∗, gives

hj+1,jvj+1 =
(
I − VjV ∗j

)
A(ξj)Vj

(
L

(ξj)

j−1zj−1 + qj

)

=
(
I − VjV ∗j

)
A(ξj)VjL

(ξj)

j−1zj−1 +
(
I − VjV ∗j

)
A(ξj)Vjqj

=
(
I − VjV ∗j

)
A(ξj)Vjqj. (2.25)

To obtain the last equality we have used A(ξj)VjL
(ξj)

j−1 = VjHj−1, which are the first

j − 1 columns in (2.20) with ξ = ξj. Note that since hj+1,j 6= 0 the vector qj is also

nonzero. We label analogously l̂
(ξj)

j =: L̂
(ξj)

j−1ẑj−1 + q̂j, where q̂∗j L̂
(ξj)

j−1 = 0∗, and obtain

ĥj+1,j v̂j+1 =
(
I − V̂jV̂ ∗j

)
A(ξj)V̂j q̂j, q̂∗j L̂

(ξj)

j−1 = 0∗,

ĥj+1,j v̂j+1 =
(
I − VjV ∗j

)
A(ξj)VjDj q̂j, q̂∗jD

∗
jL

(ξj)

j−1 = 0∗,

where in the last equality above we have applied post-multiplication by T−1
j−1. Since

L
(ξj)

j−1 ∈ Cj,j−1 is of full column rank, qj and Dj q̂j are collinear, i.e., there exists a
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nonzero scalar 0 6= γ ∈ C such that Dj q̂j = γqj. As a consequence vj+1 and v̂j+1 are

collinear as well. Furthermore, as ‖vj+1‖2 = ‖v̂j+1‖2 = 1, there exists a unimodular

scalar dj+1 ∈ C such that v̂j+1 = dj+1vj+1. We also observe ĥj+1,j = d∗j+1γhj+1,j.

It remains to find such a tj ∈ Cj that Tj = [Tj−1 tj] is nonsingular and that

additionally Ĥj = D∗j+1HjTj and K̂j = D∗j+1KjTj. From Dj q̂j = γqj we infer

Dj

(
l̂

(ξj)

j − L̂(ξj)

j−1ẑj−1

)
= γ

(
l

(ξj)

j − L(ξj)

j−1zj−1

)
,

l̂
(ξj)

j = D∗jL
(ξj)

j−1

(
Tj−1ẑj−1 − γzj−1

)
+ γD∗j l

(ξj)

j = D∗jL
(ξj)

j tj,

where tj = [ Tj−1ẑj−1−γzj−1
γ ]. Finally, using the equation above, the relation ĥj =

V̂ ∗j A
(ξj)V̂j l̂

(ξj)

j , and again A(ξj)VjL
(ξj)

j−1 = VjHj−1, we derive ĥj = D∗jHjtj . With ĥj+1,j =

d∗j+1γhj+1,j we get Ĥj = D∗j+1HjTj. We can consider K̂j similarly.

A further comment for the case m = N −1 is required. For the polynomial case, i.e.,

KN−1 = IN−1, we have AVN−1 = VNHN−1. The vector hN = V ∗NAVNeN is uniquely

defined by the starting vector andA andAVN = VNHN holds. This last decomposition is

usually stated as the (polynomial) implicit Q theorem and essential uniqueness of HN is

claimed. Let us consider a more general RAD, namely, AVNKN−1 = VNHN−1. Defining

hN := V ∗NAVNkN for an arbitrary kN ∈ CN we see that AVNKN = VNHN . Therefore

we cannot say that
(
HN , KN

)
is essentially unique. In fact, essential uniqueness is

related to both Vm+1 and the pencil
(
Hm, Km

)
concurrently.

In practice, the (rational) implicit Q theorem is useful as it allows for certain

transformations of RADs to be performed at a reduced computational cost. Such

transformations consist of two steps. First, the transformation is applied to the reduced

pencil (instead of the operator A), and second, the RAD structure is recovered and

reinterpreted using our Theorem 2.16.

As already mentioned, a polynomial Krylov space Km+1(A, b) with orthonormal

basis Vm+1 is related to a decomposition of the form

AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m, (2.26)

where Hm is upper Hessenberg. For a rational Krylov space we have an RAD (2.6)

with an upper Hessenberg pencil (Hm, Km) rather than a single upper Hessenberg

matrix Hm. It has been shown, for example in [36, 77, 107, 111], that decompositions

of the form (2.26) with Hm being semiseparable plus diagonal (have a particular rank
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structure, see the aforementioned references) are related to rational Krylov spaces in

the same way as RADs are. Corresponding implicit Q theorems have been developed.

The semiseparable structure can be used to develop (short) recurrences related to

rational Krylov spaces, see for instance [66, 83]. In this thesis we do not dwell upon

these considerations here.

2.4 Complex poles for real-valued matrices

When working with a real-valued matrix A ∈ RN,N and a real-valued starting vector

b ∈ RN , it may be beneficial to consider real-valued RADs. For instance, if λ ∈ C \ R
is an eigenvalue of A, then so is λ. By enforcing (2.6) to be real-valued, we preserve

this structure and can obtain approximate eigenvalues from (2.6) that also appear in

complex-conjugate pairs. We discuss the extraction of approximate eigenpairs from (2.6)

in Section 3.1. Clearly, if µj, νj, ηj, ρj ∈ R, and tj ∈ Rj, then Algorithm 2.2 produces

a real-valued RAD. However, even with complex-valued poles it is possible to obtain

real-valued decomposition of the form (2.6), provided that the poles appear in complex-

conjugate pairs. This was introduced in [87], and we now review it. Our approach is,

however, slightly more general; it incorporates continuation roots ηj/ρj, and further,

we allow for complex-valued continuation vectors tj , and not only real-valued as in [87].

2.4.1. Real-valued rational Arnoldi algorithm. We wish to extend a real-valued

decomposition of the form

AVjKj−1 = VjHj−1, (2.27)

with j − 1 < d(A, b)− 1, with the pole ξj := z ∈ C \Λ(A). If ξj is actually real-valued

or infinity, we can proceed as in Algorithm 2.2 in order to obtain a decomposition of

order j. Otherwise, we simultaneously extend (2.27) from order j − 1 to order j + 1

adding the pole ξj and its complex-conjugate ξj+1 := z, as we now explain. To this

end, let

µj, ηj ∈ C, νj, ρj ∈ R satisfy µjρj 6= νjηj, and µj/νj = ξj 6∈ Λ(A), (2.28)

and let tj ∈ Cj. Define the vector

wj+1 := (νjA− µjI)−1(ρjA− ηjI)Vjtj, (2.29)
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and note that (wT
j+1)∗ = (νjA− µjI)−1(ρjA− ηjI)Vj(t

T
j )∗. One can verify that

<(wj+1) =
1

2

[
wj+1 + (wT

j+1)∗
]
, and =(wj+1) =

1

2i

[
wj+1 − (wT

j+1)∗
]
, (2.30)

and hence span{wj+1, (w
T
j+1)∗} = span{<(wj+1),=(wj+1)}. Therefore, we can add the

real-valued vectors <(wj+1) and =(wj+1) to the basis Vj , instead of the complex-valued

wj+1 and (wT
j+1)

∗. Consequently, let <(wj+1) =: Vj+1cj, and =(wj+1) =: Vj+2cj+1,

with V ∗j+2Vj+2 = Ij+2. From (2.29) we arrive at

(νjA− µjI)Vj+2

(
cj + icj+1

)
= (ρjA− ηjI)Vjtj, (2.31)

where cj := [cj
T 0]T . Rearanging the terms with and without A we have

AVj+2

(
νjcj + iνjcj+1 − ρjtj

)
= Vj+2

(
µjcj + iµjcj+1 − ηjtj

)
, (2.32)

where tj := [tj
T 0 0]T . Finally, we add separately the real part and the imaginary

part of (2.32) as two real-valued columns to (2.27):

AVj+2

[
kj kj+1

]
= Vj+2

[
hj hj+1

]
, (2.33)

where, under the abbreviations x< ≡ <(x) and x= ≡ =(x),

[
kj kj+1

]
:=
[
cj cj+1

] [νj
νj

]
−
[
t<j t=j

] [ρj
ρj

]
, and (2.34)

[
hj hj+1

]
:=
[
cj cj+1

] [ µ<j µ=j
−µ=j µ<j

]
−
[
t<j t=j

] [ η<j η=j
−η=j η<j

]
. (2.35)

Here hj := [hj
T 0]T , and analogously for kj. It follows from (2.34)–(2.35) that

(
[
hj+1,j hj+1,j+1

hj+2,j hj+2,j+1
], [

kj+1,j kj+1,j+1

kj+2,j+1
]
)

equals

([
cj+1,j cj+1,j+1

cj+2,j+1

] [
µ<j µ=j
−µ=j µ<j

]
,

[
cj+1,j cj+1,j+1

cj+2,j+1

] [
νj

νj

])
, (2.36)

with [
cj+1,j cj+1,j+1

cj+2,j+1
] being nonsingular if c`+1,` 6= 0 for ` = j, j + 1, which is indeed the

case if no breakdown occurs during the rational Arnoldi algorithm. Consequently, the

eigenvalues of the 2-by-2 pencil
(
[
hj+1,j hj+1,j+1

hj+2,j hj+2,j+1
], [

kj+1,j kj+1,j+1

kj+2,j+1
]
)

are ξj and ξj.

The rational Arnoldi algorithm with possibly complex-valued poles for real-valued

matrices is presented in Algorithm 2.3.
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Algorithm 2.3 Real-valued rational Arnoldi algorithm. RKToolbox: rat krylov

Input: A ∈ RN,N , b ∈ RN , a set of poles {µj/νj}mj=1 ⊂ C\Λ(A) closed under complex-
conjugation, with complex-conjugate pairs of poles labelled with successive indices,
and such that {νj}mj=1 ⊂ R, and µj ∈ R if νj = 0, for j = 1, 2, . . . ,m < d(A, b).

Output: Decomposition AVm+1Km = Vm+1Hm, with V ∗m+1Vm+1 = Im+1.

1. Set v1 := b/‖b‖2, and let j = 1.
2. while j ≤ m do
3. if µj ∈ R then Choose admissible (ηj/ρj, tj) ∈ R× Rj, with ρj ∈ R.

4. else Choose admissible (ηj/ρj, tj) ∈ C× Cj, with ρj ∈ R. end if

5. Compute wj+1 := (νjA− µjI)−1(ρjA− ηjI)Vjtj.
6. if µj ∈ R then
7. Orthogonalize v̂j+1 := wj+1 − Vjcj, where cj := V ∗j wj+1.
8. Normalize vj+1 := v̂j+1/cj+1,j, where cj+1,j := ‖v̂j+1‖2.
9. Set kj := νjcj − ρjtj and hj := µjcj − ηjtj, where tj =

[
tj
0

]
, cj =

[
cj

cj+1,j

]
.

10. Update j := j + 1.
11. else
12. Orthogonalize v̂j+1 := <(wj+1)− Vjcj, where cj := V ∗j <(wj+1).
13. Normalize vj+1 := v̂j+1/cj+1,j, where cj+1,j := ‖v̂j+1‖2.
14. Orthogonalize v̂j+2 := =(wj+1)− Vj+1cj+1, where cj+1 := V ∗j+1=(wj+1).
15. Normalize vj+2 := v̂j+2/cj+2,j+1, where cj+2,j+1 := ‖v̂j+2‖2.
16. Define k`, and h`, for ` = j, j + 1, as in (2.34)–(2.35), where c` =

[
c`

c`+1,`

]
.

17. Update j := j + 2.
18. end if
19. end while

2.4.2. Quasi-RADs and the related implicit Q theorem. The real-valued

decomposition (2.6) Algorithm 2.3 produces has a specific structure; it is such that

the pencil (H−m, K−m) is in generalised real Schur form, that is, H−m ∈ Rm,m is upper

quasi-triangular, while K−m ∈ Rm,m is upper triangular. This is why we insist on

νj ∈ R, since if νj were complex-valued, K−m would be upper quasi-triangular as well.

Imposing this canonical form allows us to use well established algorithms from the

literature. Hence, if we denote

Hm =




H11 H12 . . . H1ˇ̀ H1`

H21 H22 . . . H2ˇ̀ H2`

H32 . . . H3ˇ̀ H3`

. . .
...

...
H`ˇ̀ H``

H ˆ̀̀



, Km =




K11 K12 . . . K1ˇ̀ K1`

K21 K22 . . . K2ˇ̀ K2`

K32 . . . K3ˇ̀ K3`

. . .
...

...
K`ˇ̀ K``

K ˆ̀̀



, (2.37)

with ˇ̀ := `− 1, and ˆ̀ := `+ 1, then the real-valued pencils (H̂j, K̂j), with ̂ := j + 1,

are either 1-by-1 or 2-by-2, while all the blocks H1j and K1j have one row only. We

call RKDs having this structure quasi-RADs.
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

××××××××××⊗⊗××⊗⊗××××××





,
××××××××××⊗⊗××⊗×××××










(a) Nonzero pattern of (Hm,Km).

{
Λ
(
×[ ], ×[ ]

)
,Λ
(
⊗⊗⊗⊗
[ ]

, ⊗⊗⊗
[ ])

,Λ
(
××××
[ ]

, ×××
[ ])}

(b) Poles of the quasi-RAD.

Figure 2.2: Nonzero pattern of (Hm,Km) from a quasi-RAD, with m = 5. The quasi-RAD
has one real-valued and four complex-valued poles (two complex-conjugate pairs). The
poles are the generalized eigenvalues of the 1-by-1 or 2-by-2 matrix pencils from the (block)
subdiagonal of (Hm,Km).

Definition 2.17. Let A ∈ RN,N , and let (2.6) hold. If Vm+1, Km and Hm are real-

valued, and (H−m, K−m) is a regular pencil in generalised real Schur form, then we call

(2.6) a quasi-RAD of order m.

Note that requiring for the pencil (H−m, K−m) to be regular is the natural generali-

sation of (Hm, Km) being unreduced in case of RADs. Indeed, if the pencil (H−m, K−m)

is regular and in generalised Schur form, then and only then is (Hm, Km) unreduced.

The notions of (orthonormal) basis, space and equivalent decompositions are analogous

to those for RADs. A possible structure of the reduced pencil (Hm, Km) is depicted

graphically for m = 5 in Figure 2.2. The following generalisation of Lemma 2.6 holds.

Corollary 2.18. Let (2.6) be a (quasi-)RAD, and let α, β ∈ C be such that |α|+|β| 6= 0.

The matrix αHm − βKm is of full column rank m.

Proof. Follows from Corollary 5.5 which we discuss later.

When referring to the block structure of a quasi-RAD (2.6), we mean the block

structure (2.37) of (Hm, Km), Hm, or H−m, depending on the context. Let us now

generalise the notion of essential uniqueness.

Definition 2.19. Let (2.6) and (2.8) be two orthonormal quasi-RADs with the same

block structure. The two quasi-RADs are called essentially equal if there exist an or-

thogonal block-diagonal matrix Dm+1 = blkdiag(d1, Dm) ∈ Rm+1,m+1, with Dm ∈ Rm,m

having the same block structure as (2.6), and an upper quasi-triangular nonsingular

matrix Tm ∈ Rm,m with the same block structure as (2.6), such that V̂m+1 = Vm+1Dm+1,

Ĥm = D∗m+1HmTm, and K̂m = D∗m+1KmTm. Essentially equal orthonormal quasi-RADs

form an equivalence class and we call any of its elements essentially unique.

Let us clarify the block ordering of the poles of a quasi-RAD (2.6) with block

structure (2.37). We refer to Λ(H̂j, K̂j) as the jth block pole of (2.6), for j = 1, 2, . . . , `.

We can now formulate the corresponding rational implicit Q theorem.
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Theorem 2.20. Let (2.6) be an orthonormal quasi-RAD. The orthonormal matrix

Vm+1 and the pencil (Hm, Km) are essentially uniquely determined by Vm+1e1 and the

block ordering of the poles of (2.6).

Proof. Let (2.8) be an orthonormal quasi-RAD with equal block structure (2.37) and

equal block ordering of the poles as (2.6), and with starting vector colinear to that

of (2.6). Let unitary Q̂j, Z̂j, Q̂̂j, and Ẑ̂j be such that (Q∗̂jH̂jZ̂j, Q
∗
̂jK̂jZ̂j) and

(Q̂∗̂jĤ̂jẐ̂j, Q̂
∗
̂jK̂̂jẐ̂j) are in generalised Schur form, with generalised eigenvalues or-

dered in the same way, for j = 1, 2, . . . , `. Define Dm+1 := blkdiag(1, Q21, Q32, . . . , Q ˆ̀̀ ),

and Tm := blkdiag(Z21, Z32, . . . , Z ˆ̀̀ ). Let D̂m+1 and T̂m be defined analogously. By

Theorem 2.16 the complex-valued orthonormal RAD

A
(
Vm+1Dm+1

)(
D∗m+1KmTm

)
=
(
Vm+1Dm+1

)(
D∗m+1HmTm

)

is essentially equal to the complex-valued orthonormal RAD

A
(
V̂m+1D̂m+1

)(
D̂∗m+1K̂mT̂m

)
=
(
V̂m+1D̂m+1

)(
D̂∗m+1ĤmT̂m

)
.

Therefore, there exist unitary D ∈ Cm+1,m+1 and nonsingular upper triangular T ∈
Cm,m such that V̂m+1D̂m+1 = Vm+1Dm+1D, D̂∗m+1ĤmT̂m = D∗D∗m+1HmTmT , and anal-

ogously for K̂m. Consequently, V̂m+1 = Vm+1Dm+1DD̂
∗
m+1,

Ĥm = D̂m+1D
∗D∗m+1HmTmT T̂

−1
m , and K̂m = D̂m+1D

∗D∗m+1KmTmT T̂
−1
m .

In particular, Dm+1DD̂
∗
m+1 = V ∗m+1V̂m+1 ∈ Rm+1,m+1 has the required block structure.

Furthermore, since K̂m and Km are both real-valued, we have that TmT T̂
−1
m ∈ Rm,m,

and it is upper quasi-triangular with the desired block structure.

2.5 Matrix pencils and nonstandard inner products

So far we have been working with a single matrix A, however, rational Krylov spaces

were initially proposed for the purpose of solving large sparse generalised eigenvalue

problems Ax = λBx , with A,B ∈ CN,N ; see [86, 89, 87, 90]. We now comment on

the possibility of using a pencil (A,B), instead of A only. In applications, a pencil

(A,B) may arise, for instance, after the discretisation of certain partial differential

equations, in which case it may also be convenient to use a nonstandard inner product;
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see [40, Section 6.3] for an example. Our goal is to provide a simple way to reinterpret

the related RADs with (A,B) as RADs of the form (2.6), which in turn allows to

use the theory developed so far. This viewpoint, presented in Section 2.5.1, as well

as the neat definition, cf. (2.40) below, of the corresponding rational Krylov space

Qm+1(A,B, b, qm) is new. In Section 2.5.2 we focus on nonstandard inner products.

2.5.1. Matrix pencils. The rational Arnoldi algorithm can easily be adapted to

handle N -by-N matrix pencils (A,B) instead of a single matrix A. It is enough to

replace (νjA−µjI)−1(ρjA−ηjI) at line 4 of Algorithm 2.2, or at line 5 of Algorithm 2.3,

with (νjA− µjB)−1(ρjA− ηjB), where the poles µj/νj satisfy µj/νj 6∈ Λ(A,B). The

(quasi-)RAD (2.6) takes the form

AVm+1Km = BVm+1Hm, (2.38)

and we say that is is a (quasi-)RAD of order m, provided that the requirements

analogous to those for (2.6) are fulfilled. Furthermore, the notion of (orthonormal)

basis, space, equivalent and essentially unique decomposition is the same as for RADs

and quasi-RADs of the form (2.6). Let

µ, ν, η, ρ ∈ C satisfy µρ 6= ην, and µ/ν 6∈ Λ(A,B). (2.39)

Introduce formallyM(α, β) = (να− µβ)−1(ρα− ηβ). Thus, for matrices A,B ∈ CN,N

we have M(A,B) = (νA− µB)−1(ρA− ηB). We can now define the rational Krylov

space R(Vm+1) spanned by (2.38) as

Qm+1(A,B, b, qm) := Qm+1

(
M(A,B), b, {M(µj, νj)}mj=1

)
, (2.40)

where {µj/νj}mj=1 are the formal roots of qm. To show that Qm+1(A,B, b, qm) is well

defined, we need to show that the right-hand side of (2.40) is well defined, and that it

is independent of the choice for M. To this end, from (2.38) we obtain

(ρA− ηB)Vm+1(νHm − µKm) = (νA− µB)Vm+1(ρHm − ηKm), (2.41)

and since νA− µB is nonsingular, as µ/ν 6∈ Λ(A,B), we have

M(A,B)Vm+1(νHm − µKm) = Vm+1(ρHm − ηKm). (2.42)
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Note that (2.42) is an RAD for Qm+1(M(A,B), b, {M(µj, νj)}mj=1), if (2.38) is an

RAD, and not a quasi-RAD (we return to quasi-RADs later).

Indeed, Vm+1 is of full column rank, and (ρHm−ηKm, νHm−µKm) is an unreduced

upper Hessenberg pencil, since (Hm, Km) is, and µρ 6= ην. To show the latter, assume,

to the contrary, that |ρhj+1,j − ηkj+1,j|+ |νhj+1,j − µkj+1,j| = 0 for at least one index

j ∈ {1, 2, . . . ,m}. Then ρhj+1,j − ηkj+1,j = νhj+1,j − µkj+1,j = 0, and in particular

νhj+1,j = µkj+1,j. Using the latter in, firstly, ρhj+1,j − ηkj+1,j = 0 multiplied by ν,

and, secondly, ρhj+1,j − ηkj+1,j = 0 multiplied by µ, gives kj+1,j(ρµ − νη) = 0, and

hj+1,j(ρµ − νη) = 0, respectively. Since µρ 6= ην we have kj+1,j = 0 and hj+1,j = 0,

which is in contradiction with (Hm, Km) being unreduced.

Lastly, since µj/νj ∈ Λ(A,B) if and only if M(µj, νj) ∈ Λ(M(A,B)), the poles of

(2.42) are allowed. Further, (2.42) spans the same space as (2.38) independently of M.

The terminology of is an RAD for transfers analogously from RADs of the form (2.6)

to those of the form (2.38). Lastly, we can define d(A,B, b) := d(M(A,B), b). Let us

summarise these observations.

Proposition 2.21. Let A,B ∈ CN,N be complex-valued matrices, and µ, ν, η, ρ ∈ C

scalars such that µρ 6= ην, and µ/ν 6∈ Λ(A,B). Let M(α, β) ≡ (ρα− ηβ)/(να− µβ).

The decomposition (2.38) is an RAD for Qm+1

(
A,B, b, {µj/νj}mj=1

)
if and only if

(2.42) is an RAD for Qm+1

(
M(A,B), b, {M(µj, νj)}mj=1

)
.

Let us now return to quasi-RADs (2.38). The corresponding (2.42) may fail to

be a quasi-RAD if the decomposition is not real-valued, or if νHm − µKm has 2-by-2

blocks on the subdiagonal. The first problem is easily solved by considering only

µ, ν, η, ρ ∈ R. Regarding the structure, it can be recovered by bringing (H−m, K−m)

into the generalised real Schur form. Thus (2.42) can be transformed into the equivalent

quasi-RAD

M(A,B)V̆m+1K̆m = V̆m+1H̆m, (2.43)

where

V̆m+1 := Vm+1Qm+1, Qm+1 := blkdiag(1, Qm),

K̆m := Q∗m+1(νHm − µKm)Zm, and H̆m := Q∗m+1(ρHm − ηKm)Zm,
(2.44)

with orthogonal matrices Qm, Zm ∈ Rm,m being such that (H̆−m, K̆−m) is in generalised

real Schur form. The analogue to Proposition 2.21 can now be easily established.
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Proposition 2.22. Let A,B ∈ RN,N be real-valued matrices, and µ, ν, η, ρ ∈ R scalars

such that µρ 6= ην, and µ/ν 6∈ Λ(A,B). Let M(α, β) ≡ (ρα − ηβ)/(να − µβ). The

decomposition (2.38) is a quasi-RAD for Qm+1

(
A,B, b, {µj/νj}mj=1

)
if and only if

(2.43) is a quasi-RAD for Qm+1

(
M(A,B), b, {M(µj, νj)}mj=1

)
such that (2.44) holds.

2.5.2. Nonstandard inner products. A nonstandard inner product 〈·|·〉 : CN ×
CN → C may easily be employed for the Gram–Schmidt process. For convenience, we

introduce the notation 〈·, ·〉 : CN,k × CN,n → Cn,k, for varying k, n ∈ N, by defining

e∗i 〈Xk, Yn〉ej := 〈Xkej|Ynei〉, for i = 1, 2, . . . , n, and j = 1, 2, . . . , k. Simply replacing

v1 := b/‖b‖2 by v1 := b/
√
〈b, b〉 in line 1 of Algorithm 2.2, cj := V ∗j wj+1 by

cj := 〈wj+1, Vj〉 in line 5, and cj+1,j := ‖vj+1‖2 by cj+1,j :=
√
〈wj+1,wj+1〉 in line 6,

incorporates the desired inner product within the rational Arnoldi algorithm. We

shall call 〈·, ·〉 an inner product, even though strictly speaking only 〈·|·〉 is an inner

product. We may refer to the RAD (2.38) with Vm+1 satisfying 〈Vm+1, Vm+1〉 = Im+1

as an 〈·, ·〉-orthonormal, while Vm+1 is said to be 〈·, ·〉-orthonormal.

The rational implicit Q theorem holds for (quasi-)RADs in this more general

form, and the proof is analogous to that of Theorem 2.16. Apart from working with

the pencil (A,B) instead of just A, we additionally have to account for the inner

product 〈·, ·〉. Specifically, we have to take the inner product 〈·, v1〉 in (2.21) to obtain

h11 = 〈`(ξ1)
11 A(ξ1)v1, v1〉 instead of (2.22), and analogously with (2.23)–(2.24).

Theorem 2.23. Let (2.38) be an 〈·, ·〉-orthonormal (quasi-)RAD. The 〈·, ·〉-orthonormal

matrix Vm+1 and the pencil (Hm, Km) are essentially uniquely determined by Vm+1e1

and the (block) ordering of the poles of (2.38).

For simplicity, we shall mainly work with a single matrix A instead of a pencil

(A,B). Propositions 2.21–2.22 and Theorem 2.23 can be used to transfer results from

(quasi-)RADs with B = I to those with B 6= I.

2.6 RKToolbox corner

We conclude the chapter with a few short MATLAB code examples showing how to

use the RKToolbox for the algorithms discussed so far.

The rational Arnoldi algorithm (Algorithms 2.2 and 2.3) is implemented as rat krylov,
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1 [V, K, H] = rat_krylov(A, b, xi);

2

3 C.multiply= @(eta , rho , x) rho*A*x - eta*x;

4 C.solve = @(mu, nu, x) (nu*A - mu*speye(size(A)))\x;

5 [V, K, H] = rat_krylov(C, b, xi);

6

7 [V, K, H] = rat_krylov(A, B, b, xi, ’real’);

8

9 param.orth = ’CGS’;

10 param.reorth = 1;

11 param.inner_product = @(x, y) y’*(B*x);

12 [V, K, H] = rat_krylov(A, b, xi, param);

RKToolbox Example 2.1: Constructing RADs.

[V, K, H] = rat_krylov(A, b, xi1);

[V, K, H] = rat_krylov(A, V, K, H, xi2);

RKToolbox Example 2.2: Generating and extending an RAD.

and RKToolbox Example 2.1 shows four possible calls to rat krylov in order to gen-

erate a (quasi-)RAD. Currently, there are 18 different ways to call rat krylov, and

typing help rat krylov in MATLAB command line provides all the details. Here we

provide a brief overview of some of them to give a flavour of the supported features

and show the flexibility the function provides. Perhaps the most basic way of calling

the function is the one given at line 1, where it is assumed that A is an N -by-N

matrix, b an N -by-1 vector, and xi a 1-by-m row-vector of poles. The matrix (or

pencil) can also be passed implicitly by providing a structure with fields multiply

and solve, which are handles to functions implementing (η, ρ,x ) 7→ (ρA− ηI)x and

(µ, ν,x ) 7→ (νA − µI)−1x , respectively. Thus, the call on line 5 is equivalent to the

one on line 1. That on line 7 shows how to construct a quasi-RAD for the real-valued

pencil (A,B) and real-valued starting vector b. In this case the poles have to be either

real-valued or appear in complex-conjugate pairs. Finally, on line 12 we show the usage

of the param structure, which provides several options. We specify a non-standard

inner product (in this case param.inner product would be an inner product, if B is a

symmetric positive definite matrix), and run the rational Arnoldi algorithm using the

classical Gram–Schmidt algorithm with reorthogonalization.

RKToolbox Example 2.2 shows another feature of rat krylov, namely, that an

RAD can be extended. The two calls are equivalent to just calling [V, K, H] =
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1 A = gallery(’wathen ’, 10, 12); b = ones(length(A), 1);

2 [V, K, H] = rat_krylov(A, b, inf(1, 4));

3 H2 = H/K(1:end -1, :);

4

5 disp(norm(A*V(:, 1:end -1)-V*H2))

5 2.9684e-14

RKToolbox Example 2.3: Polynomial Arnoldi algorithm.

rat krylov(A, b, [xi1 xi2]) if the second set of poles xi2 is known right from the

start, which is not necessarily the case.

We now consider RKToolbox Example 2.3, which consists of two blocks; the first

contains a fragment of MATLAB code, while the second contains the corresponding

output. Through the thesis the computations were performed using the double-precision

data type according to the IEEE standard. The lines in the output are labelled according

to the related input line that produces the result. By setting all the m poles xi to

infinity, as is done in RKToolbox Example 2.3, line 2, we compute an orthonormal basis

V of a polynomial Krylov space using rat krylov. In this case K is upper trapezoidal

(because of the poles) and its upper m-by-m submatrix K(1:end-1, :) is nonsingular,

by Lemma 2.6. Therefore, H2=H/K(1:end-1, :) is an unreduced upper Hessenberg

matrix, and we obtain a decomposition as with the polynomial Arnoldi algorithm,

cf. line 5. For this reason, the RKToolbox does not contain a dedicated function for

Algorithm 1.1.



3 Rational Krylov
subspace extraction

In this chapter we focus on extracting information out of a given (m+ 1)-dimensional

rational Krylov space Qm+1(A, b, qm), related to a corresponding (quasi-)RAD

AVm+1Km = Vm+1Hm (3.1)

of order m. We start by considering the approximation of a few of the eigenvalues of A

in Section 3.1. Applications include, e.g., structural engineering [48], the computation

of specific eigenvalues, also referred to as dominant poles (of the transfer function),

of the state space matrix of a dynamical system [84, 85], and the stability analysis

of dynamical systems, where computing the eigenvalues with largest real part is of

interest [78]. The general strategy [6, 24, 42, 73, 90, 102] is to obtain a surrogate

matrix A` ∈ C`,` with `� N , say ` = m or ` = m+ 1, such that Λ(A`), at least partly,

provides a good approximation to some of the eigenvalues of A.

These developments form the basis for tackling the problem of approximating f(A)b;

the action of a function of a matrix f(A) onto a vector b, which we cover in Section 3.2.

Computing or approximating f(A)b for large and sparse or structured matrices A

arises, e.g., with f(z) = exp(z) and related functions within exponential integrators

for solving differential equations [17, 40, 61, 62], while the function f(z) =
√
z is of

interest for stochastic differential equations [2]. The difficulty is that computing f(A)

for large A may be computationally too expensive or even unfeasible, due to memory

requirements, since f(A) typically does not preserve the (sparsity) structure of A.

Approximating f(A)b directly is, however, possible [31, 55, 56, 58, 93].

The main goal of the chapter is to show how the rational Arnoldi algorithm can be

used for the aforementioned tasks. We review some known strategies and propose new

61
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ones, highlighting their potential benefit and deriving some of their basic properties.

Our theoretical developments are complemented by small scale examples for which we

can compute the exact solution for testing purposes. More advanced techniques, like

implicit filtering for eigenvalue approximations, are discussed in Chapter 5. Further

numerical examples, including large-scale problems from applications, are included in

Chapters 4–6.

3.1 Approximate eigenpairs

We now review some of the most common approaches for approximating eigenpairs from

a Krylov space available in the literature (see, e.g., [23, 24, 59, 73, 89, 90, 108, 109]), and

provide new insights. These references consider RADs only (typically just a particular

subset of RADs), but the results hold for, or can be extended to, general RADs as well

as quasi-RADs, and we consider only the most general case. Four different extraction

strategies are discussed: explicit projection, the standard Ritz approach, the harmonic

Ritz approach and its generalisations, and finally, an extraction procedure based on

roots of orthogonal rational functions. The section is concluded with a few (numerical)

examples.

3.1.1. Explicit projection. We first address the situation when we can obtain exact

eigenpairs of A from (3.1). The following result asserts that if there is one eigenvector

of A in R(Vm+1), then the whole space R(Vm+1) is A-invariant. This is a consequence

of the special structure of the space. The reverse, clearly, holds as well.

Proposition 3.1. Let (3.1) be an orthonormal (quasi-)RAD. The space R(Vm+1) is

A-invariant if and only if there exists an eigenpair of A of the form (ϑ, Vm+1y).

Proof. Let us assume that AVm+1y = ϑVm+1y , with y 6= 0. We can extend (3.1) into

AVm+1

[
Km y

]
= Vm+1

[
Hm ϑy

]
. (3.2)

Under the assumption that [Km y ] is nonsingular, equation (3.2) implies AVm+1 =

Vm+1[Hm ϑy ][Km y ]−1, which shows that R(Vm+1) is A-invariant.

It follows from Corollary 2.18 that Km is of full column rank m. Therefore, it

suffices to show that y 6∈ R(Km). Let us assume, to the contrary, that y = Kmz , for
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some nonzero vector z ∈ Cm. As (ϑ, Vm+1y) is an eigenpair of A, using (3.1) we obtain

AVm+1Kmz = ϑVm+1Kmz = Vm+1Hmz ,

and hence ϑKmz = Hmz . This implies that Hm − ϑKm is not of full column rank,

which is in contradiction with Corollary 2.18.

Note that R(Vm+1) is A-invariant if and only if m = d(A, b)− 1, and d(A, b) may

be as large as N . It may thus be impractical to construct RADs of order d(A, b)− 1,

and, indeed, that is typically not done in practice. However, we might obtain good

approximations to some of the eigenpairs of A from (3.1), even if R(Vm+1) is not

A-invariant. A standard approach is to project A onto R(Vm+1), that is, to form

Am+1 := V †m+1AVm+1 ∈ Cm+1,m+1, (3.3)

and then consider the approximate eigenpairs

(ϑ,x = Vm+1y), where Am+1y = ϑy . (3.4)

In this regard the problem is reduced to the (typically) lower dimensional problem of

finding the eigenpairs of Am+1, which can be done with a direct method. We remark

that V †m+1 = V ∗m+1 if (3.1) is orthonormal. The relative residual norm

‖Ax − ϑx‖2

‖A‖2‖x‖2 + |ϑ|‖x‖2

(3.5)

can be used to assess the quality of the (approximate) eigenpair (ϑ,x ). We report,

for the interested reader, that the convergence of Λ(Am+1) towards eigenvalues of A is

studied for Hermitian matrices A in [6], within a potential-theoretic setup. We do not

dwell upon these considerations here.

An undesirable property of the approach just described is that both computing

the reduced matrix Am+1, and forming the residuals (3.5), involve computations with

vectors of size N . This problem can be overcome by considering approximate eigenpairs

from an m-dimensional subspace of R(Vm+1). The remaining dimension can be used

to efficiently estimate the quality of the approximation.

3.1.2. Standard Ritz pairs. We say that a pair (ϑ,x 6= 0) ∈ C × V, where V is

a subspace of CN , is a (standard) Ritz pair for A with respect to V if the condition
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Ax −ϑx ⊥ V is satisfied; see, e.g., [42, 102]. If, for instance, (ϑ,x ) is an eigenpair of A,

then it clearly is a Ritz pair, since Ax − ϑx = 0 ⊥ V . We can consider Ritz pairs with

respect to any space V . For instance, the approximate eigenpairs related to (3.3)–(3.4)

are standard Ritz pairs for A with respect to R(Vm+1). We now specialise this general

definition to (quasi-)RADs.

Definition 3.2. Let (3.1) be a (quasi-)RAD. An approximate eigenpair (ϑ,x =

Vm+1Kmy 6= 0) for A is called a (standard) Ritz pair for A with respect to R(Vm+1Km)

if the condition Ax − ϑx ⊥ R(Vm+1Km) is satisfied. We call ϑ a Ritz value, and x a

corresponding Ritz vector.

The choice R(Vm+1Km) is natural when working with (3.1), as it allows to construct

efficiently (without need of additional explicit projection) a reduced eigenproblem of

order m, as we show in Proposition 3.4 below. It is interesting that R(Vm+1Km)

equals the space Km(A, qm(A)−1b). Indeed, by Corollary 2.18, Km is of full column

rank m, and, thus, so is Vm+1Km. Consequently, R(Vm+1Km) is an m-dimensional

subspace of Qm+1(A, b, qm), as is AR(Vm+1Km), by (3.1) and again Corollary 2.18.

It follows, by (3.1), that R(Vm+1Km) is the space of all vectors rm−1,m(A)b, where

rm−1,m = pm−1/qm ∈ Pm−1/qm is a rational function of type at most (m− 1,m), with

fixed denominator qm. A more general statement follows.

Proposition 3.3. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm), and let α, β ∈ C be

such that |α|+ |β| 6= 0. Then

R
(
αVm+1Hm − βVm+1Km

)
=

{
r(A)b

∣∣∣r(z) =
(αz − β)pm−1(z)

qm(z)
, pm−1 ∈ Pm−1

}
,

is the m-dimensional subspace of Qm+1(A, b, qm) containing all vectors r(A)b with

rational functions r of type at most (m,m), having a fixed denominator qm, and a fixed

(formal) root β/α.

Proof. Follows from Corollary 2.18 and (2.7) with α̂ = α, and β̂ = β.

For the case α = 0 in Proposition 3.3 we get R(Vm+1Km), and the rational function

r of type at most (m,m) is said to have a formal root fixed at infinity, i.e., it is

of type at most (m − 1,m). For the space R(Vm+1Hm), for example, the fixed root

is at zero. Part (i) of the following result can be found in [23, Lemma 2.4], or [73,

Theorem 2.1]. Analogous results to (ii)–(iv) are derived for the explicit projection (3.3)

in [55, Lemma 4.5]. (The choice of the notation χ∞m that we employ becomes clear in

the following subsection.)
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Proposition 3.4. Let (3.1) be an orthonormal (quasi-)RAD, and let χ∞m be the char-

acteristic polynomial of K†mHm. Then the following holds.

(i) The pair (ϑ, Vm+1Kmy) is a Ritz pair of A with respect to R(Vm+1Km) if and

only if (ϑ,y) is an eigenpair of the m-by-m matrix K†mHm.

(ii) The matrix K†mHm is nonderogatory.

(iii) χ∞m (A)qm(A)−1b ⊥ Km(A, qm(A)−1b) = R(Vm+1Km).

(iv) The characteristic polynomial χ∞m minimizes ‖pm(A)qm(A)−1b‖2 over all polyno-

mials pm ∈ Pm of the form pm(z) = zm + pm−1(z), with pm−1 ∈ Pm−1.

Proof. Let us consider (i). The pair (ϑ, Vm+1Kmy) is a Ritz pair for A with respect to

R(Vm+1Km) if

K∗mV
∗
m+1AVm+1Kmy − ϑK∗mV ∗m+1Vm+1Kmy = 0.

Using (3.1) and V ∗m+1Vm+1 = Im+1, we arrive at K∗mHmy − ϑK∗mKmy = 0. Finally, as

Km is of full rank by Corollary 2.18, the matrix K∗mKm is nonsingular. This gives
(
K∗mKm

)−1
K∗mHmy = ϑy , or, equivalently, K†mHmy = ϑy .

To show statement (ii), introduce q := qm(A)−1b, andWm :=
[
q Aq . . . Am−1q

]
.

Note that the companion matrix (see, e.g., [42, Section 7.4.6])

W †
mAWm =




α0

1 α1

1 α2

. . .
...

1 αm−2

1 αm−1



, (3.6)

for some {αj−1}mj=1 ⊂ C, is an unreduced upper Hessenberg matrix, and, therefore,

nonderogatory (see, e.g., [60, Problem 13.3]). It follows from Proposition 3.3 that the

matrix K†mHm is similar to W †
mAWm, since R(Vm+1Km) = R(Wm), which concludes

the proof.

We now consider the statement (iii). It follows from (3.6) that χ∞m (z) = zm −
∑m−1

j=0 αjz
j. Therefore,

WmW
†
mχ
∞
m (A)q = WmW

†
mA

mq −
m−1∑

j=0

WmW
†
mαjA

jq

= WmW
†
mA

mq −
m−1∑

j=0

αjA
jq = 0.
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Finally, let us consider (iv). Let χ̂∞m−1(z) := χ∞m (z) − zm ∈ Pm−1, and pm(z) =

zm + pm−1(z). Note that

‖pm(A)qm(A)−1b‖2
2 = ‖χ∞m (A)q − χ∞m (A)q + pm(A)q‖2

2

= ‖χ∞m (A)q − χ̂∞m−1(A)q + pm−1(A)q‖2
2

= ‖χ∞m (A)q‖2
2 + ‖pm−1(A)q − χ̂∞m−1(A)q‖2

2,

where the last equality follows from (iii). Clearly, ‖pm(A)qm(A)−1b‖2
2 is minimised by

taking pm−1 = χ̂∞m−1.

We note that K†mHm can be constructed without explicitly forming K†m, by con-

sidering m least squares problems Kmxj = Hmej for xj, j = 1, 2, . . . ,m. The rational

implicit Q theorems (cf. Theorem 2.16 and Theorem 2.20) state that orthonormal

RADs and quasi-RADs are essentially uniquely determined by the starting vector and

the ordering of the poles. The following remark shows that this implies they have the

same standard Ritz pairs.

Remark 3.5. Essentially equal (quasi-)RADs have the same set of Ritz pairs. Indeed,

let AV̂m+1K̂m = V̂m+1Ĥm, with V̂m+1 = Vm+1D, K̂m = D−1KmT , and Ĥm = D−1HmT ,

be essentially equal to (3.1). Then, K̂†mĤm = T−1K†mHmT is similar to K†mHm, and if

(ϑ,x ) is an eigenpair of K†mHm, then (ϑ, T−1x ) is an eigenpair of K̂†mĤm. The corre-

sponding Ritz pairs (ϑ, V̂m+1K̂mT
−1x ) = (ϑ, Vm+1DD

−1KmTT
−1x ) = (ϑ, Vm+1Kmx )

coincide.

Rational implicit Q theorems thus guarantee that, for instance, independent on

how we choose the admissible continuation pairs in Algorithm 2.2, we obtain the same

eigenvalue approximations. Also, we can transform the (quasi-)RAD obtained by Algo-

rithm 2.2 into an essentially equal (quasi-)RAD which might have some advantageous

properties; see, e.g., Remark 3.6 below, which appears to be new.

Remark 3.6 (orthonormal Km). If A is Hermitian (symmetric), it is desired for K†mHm

to be Hermitian (symmetric) as well. Let Km =: QmRm be a thin QR factorisation of

Km. Then (3.1) can be replaced with AVm+1QmRm = Vm+1Hm, or, equivalently,

AVm+1Qm = Vm+1HmR
−1
m . (3.7)

In this case K†mHm is replaced by Q∗mHmR
−1
m , which is Hermitian (symmetric) if A

is. Indeed, multiplying (3.7) with (Vm+1Qm)∗ from the left we have Q∗mHmR
−1
m =
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Q∗mV
∗
m+1AVm+1Qm, and the observation follows. Hence, if needed, we may assume,

without loss of generality, that Km in the orthonormal (quasi-)RAD (3.1) is orthonormal,

as otherwise (3.1) may be replaced by the equivalent (3.7).

Let (ϑ, Vm+1Kmy) be a Ritz pair for A. From (3.1) we have AVm+1Kmy −
ϑVm+1Kmy = Vm+1

(
Hm − ϑKm

)
y . Therefore, the norm

‖Hmy − ϑKmy‖2 (3.8)

provides a cheap estimate of the accuracy for the Ritz pair. If this norm is small

compared to ‖A‖2, the Ritz pair (ϑ, Vm+1Kmy) is an eigenpair of a nearby matrix [102].

3.1.3. Harmonic Ritz pairs. Let us now discuss an alternative extraction process,

considered also in [23, 90] for the rational Arnoldi algorithm.

Definition 3.7. Let (3.1) be a (quasi-)RAD. An approximate eigenpair (ϑ,x =

Vm+1Kmy 6= 0) for A is called a harmonic Ritz pair for A with respect to R(Vm+1Km)

if the condition Ax − ϑx ⊥ R(AVm+1Km) = R(Vm+1Hm) is satisfied. We call ϑ a

harmonic Ritz value, and x a corresponding harmonic Ritz vector.

Same as with standard Ritz pairs, an eigenpair is a harmonic Ritz pair. Part (i) of

the following result can be found in [23, Lemma 2.4].

Proposition 3.8. Let (3.1) be an orthonormal (quasi-)RAD, with A and H†mKm being

nonsingular, and let χ0
m be the characteristic polynomial of H†mKm. Then the following

holds.

(i) The pair (ϑ−1, Vm+1Kmy) is a harmonic Ritz pairs for A with respect toR(Vm+1Km)

if and only if (ϑ,y) is an eigenpair of the matrix H†mKm.

(ii) The matrix H†mKm is nonderogatory.

(iii) χ0
m(A)qm(A)−1b ⊥ Km(A,Aqm(A)−1b) = R(Vm+1Hm).

(iv) The rescaled characteristic polynomial γχ0
m, where γ ∈ C is such that for some

χ̂0
m−1 ∈ Pm−1 we have γχ0

m(z) = zχ̂0
m−1(z)− 1, minimizes ‖pm(A)qm(A)−1b‖2 over all

polynomials pm ∈ Pm of the form pm(z) = zpm−1(z)− 1, with pm−1 ∈ Pm−1.

Proof. The derivation for H†mKm is analogous to that in Proposition 3.4. To show that

H†mKm is nonderogatory, we can consider the RKD A−1Vm+1Hm = Vm+1Km, as we

considered (3.1) in Proposition 3.4; see also the discussion after Proposition 2.21. The

remaining two properties can be established analogously to those in Proposition 3.4.
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We only remark that χ0
m can be rescaled to obtain the form γχ0

m(z) = zχ̂0
m−1(z)− 1,

as H†mKm is nonsingular and hence zero is not a root of χ0
m.

Analogous remarks to those for K†mHm hold for H†mKm; the matrix H†mKm can be

constructed without explicitly forming H†m. Essentially equal (quasi-)RADs have the

same set of harmonic Ritz pairs, and it might be beneficial to consider orthonormal

Hm, in which case Km cannot, in general, be orthonormal as well.

Remark 3.9 (orthonormal Hm). If needed, we may assume, without loss of generality,

that Hm in the orthonormal (quasi-)RAD (3.1), is orthonormal, as otherwise (3.1) may

be replaced by the equivalent AVm+1KmR
−1
m = Vm+1Qm, where Hm =: QmRm is a

thin QR factorisation of Hm. If Hm is orthonormal and A is Hermitian then H†mKm is

Hermitian as well.

We state for reference that the residual analogous to (3.8) for the harmonic Ritz

pair (ϑ−1, Vm+1Kmy) is

‖Hmy − ϑ−1Kmy‖2. (3.9)

Harmonic Ritz pairs are sometimes referred to as harmonic Ritz pairs with target

τ = 0, and any other finite τ ∈ C \ Λ(A) may be considered; see [102]. We shall use

the notion τ -harmonic instead.

Definition 3.10. Let (3.1) be a (quasi-)RAD, and let τ ∈ C \ Λ(A) be a scalar. An

approximate eigenpair (ϑ+τ,x = Vm+1Kmy 6= 0) for A is called a τ -harmonic Ritz pair

for A with respect to R(Vm+1Km) if the condition Ax−(ϑ+τ)x ⊥ R([A−τI]Vm+1Km)

is satisfied. We call ϑ a τ -harmonic Ritz value, and x a corresponding τ -harmonic

Ritz vector.

Equivalently, τ -harmonic Ritz pairs for A can be defined through harmonic Ritz

pairs for A− τI, as the following lemma shows.

Lemma 3.11. Let A ∈ CN,N , τ ∈ C \ Λ(A), and let V be a subspace of CN . The pair

(ϑ + τ,x ) ∈ C × V is a τ -harmonic Ritz pair for A with respect to V if and only if

(ϑ,x ) is a harmonic Ritz pair for A− τI with respect to V.

Proof. The statement follows from the definition of τ -harmonic Ritz pairs.

If (3.1) is an RAD for Qm+1(A, b, {ξj}mj=1), by Proposition 2.21,

(A− τI)Vm+1Km = Vm+1(Hm − τKm) (3.10)
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is an RAD for Qm+1(A− τI, b, {ξj − τ}mj=1). If τ ∈ R, by Proposition 2.22, this also

holds for quasi-RADs. In these cases, Proposition 3.8 is applicable to (3.10), and by

Lemma 3.11 it indicates how to obtain τ -harmonic Ritz pairs for A. We adopt the

notation χτm for the characteristic polynomial of (Hm− τKm)†Km, whose roots {ϑj}mj=1

provide τ -harmonic Ritz values {ϑ−1
j + τ}mj=1, provided that all ϑj 6= 0.

We can also use the representation τ = β/α, in which case Hm − τKm is replaced

by αHm − βKm. From here we see, by continuity, that standard Ritz values may be

considered as ∞-harmonic Ritz values.

3.1.4. Roots of orthogonal rational functions. Instead of standard or harmonic

Ritz pairs, in, e.g., [24, 59, 89, 108, 109], approximate eigenpairs related to roots of

orthogonal rational functions are used (and are nonetheless often referred to as Ritz

pairs). Let us clarify what is meant by roots of orthogonal rational functions. By

Theorem 2.12 we know that the basis vectors vj+1 can be expressed as vj+1 = rj(A)v1,

where rj = pj/qj is a rational function. We refer to the (formal) roots of pj ∈ Pj as

roots of orthogonal rational functions; orthogonal because typically the corresponding

RAD (3.1) is orthonormal. Since pj is of degree at most j it has at most j roots. If

deg(pj) < j, then we say that pj has j − deg(pj) formal roots at infinity. Therefore,

we can say that pj has (formally) j roots. We may refer to these roots as the roots

of vj+1, for j = 1, 2, . . . ,m. Hence, by Theorem 2.12, the generalized eigenpairs of the

m-by-m pencil (Hm, Km) are used to construct approximate eigenpairs

(ϑ, Vm+1Kmy), where Hmy = ϑKmy . (3.11)

The corresponding residual for an orthonormal (quasi-)RAD is derived from

AVm+1Kmy − ϑKmy = Vm+1(Hmy − ϑKmy)

= [hm+1,m−1(eTm−1y) + (hm+1,m − ϑkm+1,m)(eTmy)]vm+1,

with the right-hand side of the last equation being nonzero unless Vm+1 is A-invariant;

cf. Proposition 3.1. Therefore, for RADs, where hm+1,m−1 = 0, the quantity

|(hm+1,m − ϑkm+1,m)(eTmy)|, (3.12)

provides a cheap estimate of the quality of the eigenpair. For quasi-RADs (3.12) can

be replaced by

|hm+1,m−1(eTm−1y) + (hm+1,m − ϑkm+1,m)(eTmy)|. (3.13)
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The choice (3.11) appears to be motivated by the polynomial Arnoldi algorithm,

where Km = Im, and standard Ritz values with respect to R(Vm+1Km) = R(Vm) are

computed from Hm, the leading m-by-m submatrix of Hm. Thus, for the polynomial

Arnoldi algorithm, standard Ritz values coincide with roots of orthogonal polynomials,

but in the rational case this is not necessarily true. Standard Ritz values of order m

coincide with the m roots of the (m+ 1)st orthogonal basis function if the mth pole

ξm =∞ is at infinity (which is always true in the polynomial case) and, hence, produces

Km with last row being 0T . In the rational case in general, however, standard and

harmonic Ritz values, roots of orthogonal rational functions, and explicit projection all

provide different sets of approximants.

Harmonic Ritz values appear to be better suited for approximating interior eigenval-

ues than standard Ritz pairs, although this is still not yet fully understood. Interesting

discussions can be found in [90] for rational Krylov spaces, and in [45, 82] for polynomial

Krylov spaces. An insightful discussion is contained in [102, pp. 292–294] for general

spaces, and further extensions to rational harmonic Ritz values are investigated in [63].

Standard and harmonic Ritz values provide, in a precise sense, optimal bounds on the

eigenvalues of a Hermitian positive definite matrix; see, e.g., [5]. In the polynomial case

this transfers over to roots of orthogonal polynomials, as they coincide with standard

Ritz values, but in the general rational case this is not guaranteed, as the following

examples show.

3.1.5. Numerical example. We consider A = diag(5, 6, . . . , 55,−5,−6, . . . ,−55),

which is clearly symmetric. For b we use the vector with all components equal to 1.

The two distinct poles ξ1 = ξ2 = . . . = ξ50 = 30.5 and ξ51 = ξ52 = . . . = ξ81 = −15.5

are employed multiple times. The purpose of this example is to highlight some of the

differences of various extraction procedures. In Figure 3.1 we plot the approximate

eigenvalues per iteration with the four distinct extraction strategies discussed in

Section 3.1. It follows from the interlacing property (see, e.g., [42, Theorem 8.1.7]) that

standard Ritz values are guaranteed to be contained in the spectral interval of A. On

the other hand, harmonic Ritz values approximate the eigenvalues from the outside

(and some are outside the plotted range), but any interval containing zero and free of

eigenvalues of A is guaranteed not to contain harmonic Ritz values [82]. Interestingly,
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(a) Standard Ritz values.
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(b) Harmonic Ritz values.

1 11 21 31 41 51 61 71 81
iteration j

−60

−40

−20

0

20

40

60

ap
p

ro
xi

m
at

e
ei

ge
nv

al
u

es

(c) Standard Ritz values by explicit projection.
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(d) Roots of orthogonal rational functions.

Figure 3.1: We visualise approximate eigenvalues for the example from Section 3.1.5, extracted
from an RAD as the iteration progresses, according to the extraction strategies discussed
in Section 3.1. At iteration j there are j approximate eigenvalues and they are represented
with a small × symbol. Different colours are used to indicate the quality of the corresponding
eigenpair. Green is used for eigenpairs with relative residual (3.5) above 10−3; yellow if
(3.5) is between 10−6 and 10−3; blue for the range between 10−9 and 10−6; black for the
range between 10−12 and 10−9; and red for eigenpairs with relative residual below 10−12. As
expected, the eigenvalues closest to the two poles, 30.5 and −15.5, used repeatedly, converged
first.

unlike the polynomial case, in the rational case some of the roots of orthogonal rational

functions are also outside the spectral interval of A. For instance, for j = 1, the vector

v2 is collinear with

v̂2 := (A−ξ1I)−1v1−γv1, where v1 = b/10, and γ := v ∗1 (A−ξ1I)−1v1. (3.14)

If γ 6= 0, then v̂2 = −γ(A− ξ1I)−1[(A− ξ1I)v1− γ−1v1], and the corresponding root of

v2 is ξ1 + γ−1. If γ = 0, then v̂2 = (A− ξ1I)−1v1 and the corresponding formal root is

infinite. In our case γ =
∑55

n=6
0.01
n−ξ1

+ 0.01
−n−ξ1

, yielding the root ξ1 + γ−1 ≈ −84.3, which

is not included in Figure 3.1 as it does not fit in the range. In the next example we

show that one can indeed obtain γ = 0. We consider a symmetric positive definite
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matrix A, and a pole within the spectral interval of A which, is a reasonable choice

when approximating eigenvalues.

Example 3.12. Let A = diag(1, 2, 4, 5), ξ1 = 3, and b =
[
1 1 1 1

]T
. Then (A −

ξ1I)−1 = diag(−2−1,−1, 1, 2−1) and, therefore, the scalar γ from (3.14) equals zero.

This means that the vector v̂2 = (A − ξ1I)−1v1 is already orthogonal to b and the

(formal) root of v2 is infinity. Clearly,

c2 :=

[
γ

‖v̂2‖2

]
=

[
0√
5

2
√

2

]
.

Using νj = 1, µj = ξ1, ρj = 0, ηj = −1 and tj = e1 ∈ R2 with j = 1 in (2.5) we obtain

K1 =

[
0√
5

2
√

2

]
, and H1 =

[
1

3
√

5
2
√

2

]
,

and indeed Λ(H1, K1) = {∞}. Interestingly, since K†1 =
[
0 2

√
2√
5

]
, we have K†1H1 = 3,

thus, the standard Ritz value equals the pole ξ1 that is used! For completeness, the

harmonic Ritz value is approximately 3.533.

Example 3.12 is of theoretical interest and one should not be discouraged by it, but,

rather, aware of it. In practice all extraction strategies can provide good approximations,

in particular for larger m.

3.2 Functions of matrices times a vector

We now consider the problem of approximating f(A)b. The approach related to the

explicit projection of A onto the rational Krylov space R(Vm+1) is briefly discussed in

Section 3.2.1; more details can be found, e.g., in [7, 31, 55, 56, 58, 93]. As we explain,

the efficient evaluation of such an approximation relies on the fact that the mth pole is

infinity. This restriction may be disadvantageous when m is not know a priori, and the

quality of the approximation needs to be assessed as the iteration progresses. For this

purpose, we introduce new approximants, related to standard and harmonic Ritz values,

in Section 3.2.2 and Section 3.2.3, respectively. We establish some basic properties of

these new approximants analogously to what has been done for polynomial and other

rational Arnoldi approaches in, e.g., [7, 31, 55, 56, 58, 93]. To conclude the section we

report the results of a few numerical experiments, comparing the various approximation
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strategies and showing the potential benefit of using general rational Krylov spaces

over polynomial Krylov spaces.

3.2.1. Rational Arnoldi approximation to f(A)b by explicit projection. Let

us consider an orthonormal (quasi-)RAD, say AV̂mK̂m−1 = V̂mĤm−1, for the moment

of order m − 1 instead of m. The corresponding rational Arnoldi approximation to

f(A)b is defined as

fm := V̂mf(V̂ ∗mAV̂m)V̂ ∗mb, (3.15)

provided that f(V̂ ∗mAV̂m) is defined [7, 55, 56, 58]. In order to avoid the explicit

projection V̂ ∗mAV̂m, we can extend the (quasi-)RAD of order m− 1 to order m with a

single infinite pole ξm = ∞, thus obtaining AV̂m+1K̂m = AV̂mK̂m = V̂m+1Ĥm, which

provides V̂ ∗mAV̂m = ĤmK̂
−1
m . The authors in [58] develop a version of the rational

Arnoldi algorithm for the approximation of f(A)b as indicated by (3.15) and at every

iteration the pole at infinity is added temporarily to obtain the approximate fm. A

more efficient, but also more complicated, strategy which uses an additional vector that

is being temporarily added and removed from the RAD is proposed in [55, Section 6.1].

We propose a simple solution for avoiding the explicit projection: the use of the

matrices K̂†mĤm, whose eigenvalues are the standard Ritz values, or
(
Ĥ†mK̂m

)−1
, whose

eigenvalues are the harmonic Ritz values. These are the strategies that we now formally

introduce.

3.2.2. Standard rational Arnoldi approximation to f(A)b. We start by con-

sidering rational Arnoldi approximations to f(A)b related to standard Ritz values.

Definition 3.13. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm), and f a function

such that f(A) is defined. If f(K†mHm) is defined, we call

f ∞m := (Vm+1Km)f(K†mHm)(Vm+1Km)†b, (3.16)

the (standard) rational Arnoldi approximation to f(A)b with respect to (3.1).

If (3.1) is orthonormal, then (Vm+1Km)† = K†mV
∗
m+1 since Vm+1 is orthonormal

and, therefore, (Vm+1Km)†b = βK†me1, where the scalar β = v ∗1b satisfies |β| = ‖b‖2.

Hence, (3.16) reads

f ∞m = (Vm+1Km)f(K†mHm)K†m(βe1), β = v ∗1b. (3.17)
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In the following we identify functions f for which the rational Arnoldi approximation is

exact in general. The results and, partly, the proofs are analogous to those in [55, 93]

for approximations of the form (3.15). We start with a technical lemma.

Lemma 3.14. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm). If qm(K†mHm) is

nonsingular, then qm(A)−1b = (Vm+1Km)qm(K†mHm)−1(Vm+1Km)†b.

Proof. To simplify the notation, let us label Wm := Vm+1Km, and q := qm(A)−1b. From

(3.1) we have K†mHm = W †
mAWm, and by Proposition 3.3 we have R(Wm) = Km(A, q).

We first show (by induction) that

WmW
†
mA

jq = Wm(K†mHm)jW †
mq , j = 0, 1, . . . ,m. (3.18)

If j = 0, eq. (3.18) holds true. Assume that (3.18) holds for j = 0, 1, . . . , k < m. Then

WmW
†
mA

j+1q = WmW
†
mAWmW

†
mA

jq

= WmW
†
mAWm(K†mHm)jW †

mq

= Wm(K†mHm)j+1W †
mq .

By linearity we have, for qm ∈ Pm, that

WmW
†
mb = WmW

†
mqm(A)q = Wmqm(K†mHm)W †

mq .

Multiplying with Wmqm(K†mHm)−1W †
m from the left we obtain

Wmqm(K†mHm)−1W †
mb = WmW

†
mq .

Finally, as WmW
†
mq = q = qm(A)−1b we obtain the result.

Theorem 3.15. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm) such that qm(K†mHm)

is nonsingular. If rm−1,m ∈ Pm−1/qm, and rm,m ∈ Pm/qm, then

(i) rm−1,m(A)b = (Vm+1Km)rm−1,m(K†mHm)(Vm+1Km)†b, and

(ii) (Vm+1Km)(Vm+1Km)†rm,m(A)b = (Vm+1Km)rm,m(K†mHm)(Vm+1Km)†b.

Proof. We consider the exactness (i) of the representation for rm−1,m(A)b first, and

then that of the projection (ii) of rm,m(A)b onto R(Vm+1Km). Let thus Wm and q be

as in the proof of Lemma 3.14. It is enough to show that

Ajqm(A)−1b = Wm(K†mHm)jqm(K†mHm)−1W †
mb, (3.19)
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for j = 0, 1, . . . ,m− 1. If j = 0, eq. (3.19) reduces to Lemma 3.14. Let us now assume

that (3.19) holds for j = 0, 1, . . . , k < m− 1. For j + 1 we have

Aj+1qm(A)−1b = WmW
†
mA

j+1qm(A)−1b

= WmW
†
mAWm(K†mHm)jqm(K†mHm)−1W †

mb

= Wm(K†mHm)j+1qm(K†mHm)−1W †
mb,

where the first equality follows from Aj+1qm(A)−1b ∈ R(Wm) = Km(A, qm(A)−1b),

and in the second we use the inductive hypothesis. To prove (ii), it only remains to

show that

WmW
†
mA

mq = Wm(K†mHm)mqm(K†mHm)−1W †
mb,

which follows by rewriting Am = AAm−1, and using Am−1q = WmW
†
mA

m−1q .

Therefore, the standard rational Arnoldi approximation to f(A)b with respect to

(3.1) is exact for all rational functions rm−1,m such that rm−1,m(A)b ∈ R(Vm+1Km)

resides in the space the approximation is extracted from. The same holds for the

approximation (3.15); see, e.g., [55, 56]. In fact, as both approximants are independent

from the choice of the basis, but depend solely on the space, the two approximants

coincide if R(Vm+1Km) = R(V̂m). By Proposition 3.3, these two spaces are equal if

R(V̂m) = Qm(A, b, q̂m−1) and R(Vm+1) = Qm+1(A, b, q̂m−1), that is, if they have the

same poles, with Qm+1(A, b, q̂m−1) having an additional pole at infinity. The position of

the infinite pole in the pole sequence is, however, irrelevant; it may well be included as

the first pole and left once and for all! The following result provides a characterisation

for general functions through standard Ritz values.

Theorem 3.16. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm) such that qm(K†mHm)

is nonsingular, and f(K†mHm) is defined. Then

(Vm+1Km)f(K†mHm)(Vm+1Km)†b = rm−1,m(A)b,

where rm−1,m = pm−1/qm ∈ Pm−1/qm is the unique rational function of type at most

(m − 1,m), with fixed denominator qm, such that rm−1,m interpolates f in rational

Hermite sense, i.e., pm−1 interpolates fqm in Hermite sense, on Λ(K†mHm).

Proof. By Proposition 3.4, the matrix K†mHm is nonderogatory. Consequently, its

minimal polynomial is its characteristic polynomial and has degree m, which im-

plies the existence and uniqueness of pm−1 such that (fqm)(K†mHm) = pm−1(K†mHm).
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Multiplying the last relation with qm(K†mHm)−1 on the right, gives

(fqm)(K†mHm)qm(K†mHm)−1 = f(K†mHm) = rm−1,m(K†mHm),

where the first equality follows from [60, Theorem 1.15]. Therefore,

(Vm+1Km)f(K†mHm)(Vm+1Km)†b = (Vm+1Km)rm−1,m(K†mHm)(Vm+1Km)†b

= rm−1,m(A)b,

where the last equality follows from Theorem 3.15.

Let us return to Example 3.12, and let us assume that f(K†1H1) is defined. Then,

since b ⊥ R(V2K1), we have f ∞1 = 0. In this case it is advantageous to replace the

search space R(Vm+1Km) with another space of the form R
(
αVm+1Hm − βVm+1Km

)
,

with |α|+ |β| 6= 0. It is clear from Proposition 3.3 that any two distinct such subspaces

of R(Vm+1) = Qm+1(A, b, qm) provide Qm+1(A, b, qm) in their union, which implies

that b 6= 0 can be orthogonal to one of them only. Furthermore, it follows from

Proposition 3.3 that safe options in this regard are α, β ∈ C such that β/α = ξj for

some j = 1, 2, . . . ,m. Indeed if β/α is a pole of Qm+1(A, b, qm), then R
(
αVm+1Hm −

βVm+1Km

)
= Qm(A, b, q̂m−1), where q̂m−1 ∈ Pm−1 is such that, formally, q̂m−1(z) =

qm(z)/(αz − β), and, clearly, b ∈ Qm(A, b, q̂m−1). In particular, if infinity is a pole,

then the standard rational Arnoldi approximation does not exhibit this problem. These

considerations bring us back to τ -harmonic Ritz values.

3.2.3. Harmonic rational Arnoldi approximation to f(A)b. We now introduce

the harmonic approximants similarly to the way we introduced the standard ones.

Definition 3.17. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm), and f a function

such that f(A) is defined. If f([H†mKm]−1) is defined, we call

f 0
m := (Vm+1Hm)f([H†mKm]−1)(Vm+1Hm)†b, (3.20)

the harmonic rational Arnoldi approximation to f(A)b with respect to (3.1).

If (3.1) is orthonormal, then (Vm+1Hm)†b = βH†me1, where the scalar β = v ∗1b

satisfies |β| = ‖b‖2, and hence (3.20) reads

f 0
m = (Vm+1Hm)f([H†mKm]−1)H†m(βe1), β = v ∗1b. (3.21)
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If A is nonsingular, then the harmonic Arnoldi approximation to f(A)b equals the

standard Arnoldi approximation to [f ◦ (z 7→ 1
z
)](A−1)b. This fact is key to transferring

results from the standard to the harmonic case.

Theorem 3.18. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm) such that A, H†mKm

and qm([H†mKm]−1) are nonsingular. If r̂m−1,m(z) = zrm−1,m(z), with rm−1,m ∈
Pm−1/qm, and rm,m ∈ Pm/qm, then

(i) r̂m−1,m(A)b = (Vm+1Hm)r̂m−1,m([H†mKm]−1)(Vm+1Hm)†b, and

(ii) (Vm+1Hm)(Vm+1Hm)†rm,m(A)b = (Vm+1Hm)rm,m([H†mKm]−1)(Vm+1Hm)†b.

Proof. Since r̂m−1,m(z)
∣∣
z=A

= r̂m−1,m(z−1)
∣∣
z=A

−1 , it is useful to introduce r̆m−1,m(z) :=

r̂m−1,m(z−1), so that r̂m−1,m(A)b = r̆m−1,m(A−1)b. It can be shown, for instance by

considering the partial fraction form of r̂m−1,m, that r̆m−1,m ∈ Pm−1/q̆m, where the

formal roots of q̆m are {ξ−1
j }mj=1, that is, the inverses of the formal roots {ξj}mj=1 of qm.

Multiplying (3.1) from the left with A−1 we arrive at A−1Vm+1Hm = Vm+1Km, which

is an RAD for Qm+1(A−1, b, q̆m); see also the discussion following (2.42). The standard

Ritz approximation with this RAD is exact for r̆m−1,m by Theorem 3.15, hence

r̂m−1,m(A)b = r̆m−1,m(A−1)b

= (Vm+1Hm)r̆m−1,m(H†mKm)(Vm+1Hm)†b

= (Vm+1Hm)r̂m−1,m([H†mKm]−1)(Vm+1Hm)†b,

and (i) follows. Statement (ii) follows analogously.

Finally, we establish the connection of the harmonic rational Arnoldi approximation

with rational interpolation.

Theorem 3.19. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm) such that A, H†mKm

and qm([H†mKm]−1) are nonsingular, and f([H†mKm]−1) is defined. Then

(Vm+1Hm)f([H†mKm]−1)(Vm+1Hm)†b = r̂m−1,m(A)b,

where r̂m−1,m(z) = zpm−1(z)/qm(z), with pm−1 ∈ Pm−1, is the unique rational function

of type at most (m,m), with fixed denominator qm, and a fixed root at zero, such that

pm−1 interpolates z 7→ f(z)qm(z)/z, in Hermite sense, on Λ([H†mKm]−1).

Proof. By Proposition 3.8, the matrix H†mKm is nonderogatory. Since for every Jordan

block J(λ) in H†mKm there is a Jordan block J(λ−1) of the same size in (H†mKm)−1,
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cf. [60, Theorem 1.36 with f(z) = z−1]), the matrix (H†mKm)−1 is nonderogatory as

well. The uniqueness of pm−1 ∈ Pm−1 such that (z 7→ f(z)qm(z)/z)([H†mKm]−1) =

pm−1([H†mKm]−1) follows. The later equality provides the relation

f([H†mKm]−1) = r̂m−1,m([H†mKm]−1),

which finalizes the proof with the use of Theorem 3.18.

Theorem 3.19 is stated as is in order to highlight the fixed target τ = 0. It, however,

does imply that z 7→ zpm−1(z) interpolates z 7→ f(z)qm(z), and, therefore, that r̂m−1,m

interpolates f . The standard and harmonic rational Arnoldi approximations are

generalisations, of polynomial Arnoldi approximations with f(z) = z−1 to rational

Arnoldi for “any” function f , of FOM and GMRES, respectively.

Remark 3.20. Let AVm = Vm+1Hm be a polynomial RAD with A nonsingular, and let

b = Vm+1e1. Then, the standard rational Arnoldi approximation to A−1b is VmH
−1
m e1,

which is the FOM approximation. Similarly, the harmonic rational Arnoldi approxi-

mation to A−1b equals the GMRES approximation. An interesting discussion on the

convergence of FOM and GMRES based on standard and harmonic Ritz values can be

found in [45].

From (3.10) we see how to define the more general τ -harmonic approximants, for

which generalisations of Theorems 3.18–3.19 may be established; see also Lemma 3.11.

Definition 3.21. Let (3.1) be a (quasi-)RAD for Qm+1(A, b, qm), and f a function such

that f(A) is defined, and let τ ∈ C\Λ(A). If f([L†mKm]−1+τIm), with Lm := Hm−τKm,

is defined, we call

f τm := (Vm+1Lm)f([L†mKm]−1 + τIm)(Vm+1Lm)†b, (3.22)

the τ -harmonic rational Arnoldi approximation to f(A)b with respect to (3.1).

As discussed at the end of Section 3.2.2, attractive choices for τ include the poles

of the rational Krylov space in question. We conclude this section with an example

similar to [56, Example 3.5].

3.2.4. Rational Arnoldi approximation of f(A)b for Markov functions f . We

now briefly summarise the automated pole selection strategy designed in [57, 58] for

the rational Arnoldi approximation of f(A)b for Markov functions f , i.e., functions of
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Algorithm 3.4 Rational Arnoldi with automated pole selection for f(A)b. [57, 58]

Input: A ∈ CN,N , b ∈ CN , a set Ξ ⊂ C for selecting the poles to approximate f(A)b,
and the maximal number of iterations m < d(A, b).

Output: Orthonormal RAD AV`+1K` = V`+1H` of order ` ≤ m.

1. Set v1 := b/‖b‖2, and ξ1 =∞.
2. for j = 1, 2, . . . ,m do
3. Choose scalars µj, νj ∈ C such that µj/νj = ξj.

4. Choose an admissible continuation pair (ηj/ρj, tj) ∈ C× Cj.

5. Compute wj+1 := (νjA− µjI)−1(ρjA− ηjI)Vjtj.
6. Orthogonalize v̂j+1 := wj+1 − Vjcj, where cj := V ∗j wj+1.
7. Normalize vj+1 := v̂j+1/cj+1,j, where cj+1,j := ‖v̂j+1‖2.
8. Set kj := νjcj − ρjtj and hj := µjcj − ηjtj, where tj =

[
tj
0

]
, and cj =

[
cj

cj+1,j

]
.

9. Compute f ∞j ≈ f(A)b, and stop if a good approximation is obtained.
10. Let ξj+1 = argminξ∈Ξ |sj(ξ)|, where sj = χ∞j /qj.
11. end for

the form f(z) =
∫

Γ
dγ(x)
z−x , with a (complex) measure γ supported on a prescribed closed

set Γ ⊂ C. For examples and applications we refer to [57, 58].

To obtain a rational Arnoldi approximation to f(A)b, we need to construct a

rational Krylov space and then extract the approximation, perhaps using an extraction

procedure just discussed. For the latter part let us focus on standard rational Arnoldi

approximants with one pole at infinity. In this way we obtain the same extraction

procedure as in [57, 58], although implemented differently. In [57, 58] the authors use

explicit projection by adding and removing a pole at infinity at every iteration of the

rational Arnoldi algorithm, as we already discussed in Section 3.2.1. Regarding the

construction of the rational Krylov space, the main question is how to determine the

(other) poles. For the first pole we use ξ1 = ∞. Let us now assume that we have

computed an RAD AVm+1Km = Vm+1Hm of order m for Qm+1(A, b, qm), and we wish

to extend it to an RAD of order m + 1. To this end, let χ∞m be the characteristic

polynomial of K†mHm, same as in Proposition 3.4, and recall that Theorem 3.16 asserts

that the standard rational Arnoldi approximation f ∞m = r(A)b for f(A)b is such

that r interpolates f in rational Hermite sense on Λ(K†mHm). Finally, it is suggested

in [57, 58] to use ξm+1 such that

|sm(ξm+1)| = min
z∈Γ
|sm(z)|,

where

sm(z) =
χ∞m (z)

qm(z)
, (3.23)
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Figure 3.2: Relative approximation error ‖f τ`,j −A
1
2
` b‖2/‖A

1
2
` b‖2 of the standard (blue solid

lines) and τ -harmonic (red dashed lines) polynomial Arnoldi approximations f τ`,j to A
1
2
` b,

with τ = −1 and the three matrices A` for ` = 1, 2, 3 specified in Section 3.2.5.

as the next pole. For more details see [58, Section 3]. The pseudoce of the algorithm is

given in Algorithm 3.4. A discussion of possible stopping criteria is contained in [58,

Section 4]. In RKToolbox Example 7.3 we provide a simple RKToolbox implemenation

of Algorithm 3.4.

3.2.5. Numerical example. We compare the various approximation strategies with

three different symmetric positive definite matrices A` ∈ RN,N , with N = 729, a unit

2-norm random starting vector b, and with the principal square root function f(z) = z
1
2 .

Let

Tn =




2 −1

−1
. . . . . .
. . . . . . −1
−1 2


 ∈ Rn,n,

and, further, Â1 = TN , Â2 = T29⊕T29. The matrices A1 and A2 are obtained by shifting

and scaling Â1 and Â2, respectively, so that their spectral interval becomes [0.01, 100].

For A3 we take a diagonal matrix with eigenvalues equispaced in the same interval. We

consider the approximation from a polynomial Krylov space (i.e., a rational Krylov

space with all poles at infinity), a rational Krylov space with the pole ξ = −1 used

repeatedly, and the adaptive approach from Section 3.2.4. In Figures 3.2–3.4 we

report the relative error
‖f τ`,j−
√
A`b‖2

‖
√
A`b‖2

of the τ -harmonic rational Arnoldi approximations
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Figure 3.3: Relative approximation error ‖f τ`,j −A
1
2
` b‖2/‖A

1
2
` b‖2 of the standard (blue solid

lines) and τ -harmonic (red dashed lines) rational Arnoldi approximations f τ`,j to A
1
2
` b, with

τ = −1 and the matrices A` for ` = 1, 2, 3 specified in Section 3.2.5

to
√
A`b as the iteration j progresses. We consider τ = ∞, yielding the standard

rational Arnoldi approximations, and τ = ξ. While both extraction procedures struggle

with the polynomial Arnoldi space, cf. Figure 3.2, the rational Krylov space approach

converges sooner; see Figure 3.3. Interestingly, the harmonic approximants substantially

outperform the standard ones in the rational case for this example. Furthermore, we

can observe that the Algorithm 3.4 converges (much) faster than when poles as in

Figures 3.2–3.3 are used. Furthermore, harmonic rational Arnoldi approximants

outperform the standard rational Arnoldi approximants for all three matrices A`.
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Figure 3.4: Relative approximation error ‖f`,j −A
1
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` b‖2/‖A

1
2
` b‖2 of the standard (blue solid

lines) and harmonic (red dashed lines) adaptive rational Arnoldi approximations f`,j to A
1
2
` b,

with the matrices A` for ` = 1, 2, 3 specified in Section 3.2.5.



4 Continuation pairs
and parallelisation

An interesting feature of the rational Arnoldi algorithm is that, under certain condi-

tions, basis vectors can be computed in parallel. Take, for example, m distinct poles

ξ1, ξ2, . . . , ξm ∈ C \ Λ(A). Then

span{b, (A− ξ1I)−1b, (A− ξ2I)−1b, . . . , (A− ξmI)−1b}

is the rational Krylov space Qm+1(A, b, qm) with qm(z) =
∏m

j=1(z − ξj), and clearly

all the basis vectors can be computed simultaneously from b. This is particularly

attractive in the typical case when solving the linear systems (A− ξjI)xj = b is the

dominant computational cost in the rational Arnoldi algorithm.

Unfortunately, this naive parallelisation approach may quickly lead to numerical

instabilities. An instructive example is that of a diagonal matrix A = diag(λi)
N
i=1, for

which the basis vectors xj = (A− ξjI)−1b are the columns of a Cauchy-like matrix

X =
[
x1 x2 . . . xm

]
∈ CN,m with xij := eTi Xej =

eTj b

λi − ξj
.

Hence, X satisfies the Sylvester equation AX −XB = C with rank-1 right-hand side

C = b
[
1 1 . . . 1

]
and B = diag(ξj)

m
j=1. If the eigenvalues of A and B are well

separated, e.g., by a straight line, the singular values of X decay exponentially as m

increases (see [46]). Thus the matrix X will be exponentially ill-conditioned, which may

cause problems during the Gram–Schmidt orthogonalization process. Available round-

ing error analyses of the modified Gram–Schmidt procedure (with reorthogonalization)

typically assume that the basis X to be orthogonalized is numerically nonsingular, i.e.,

g(m)κ(X)ε < 1, where κ(X) is a condition number of X, ε is the machine precision,

and g is a slowly growing function in m (see, e.g., [38, 47]). Without this condition

83
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being satisfied, as in our case, there is no guarantee that the Gram–Schmidt procedure

is backward stable, i.e., that it computes the exact QR factorization of a nearby matrix

X + E, with E being of small norm relative to X.

The potential for exponential growth in the condition number of a rational Krylov

basis seems to discourage any attempt to parallelise the rational Arnoldi algorithm,

and indeed only very few authors have considered this problem up to date. Most

notably, Skoogh [98, 99] presents and compares, mostly from an algorithmic point of

view, two (distributed memory) parallel variants. He notes that “generally the parallel

rational Krylov programs get fewer converged eigenvalues than the corresponding

sequential program” and that potential numerical instabilities may arise during the

orthogonalization phases. Further remarks are contained in [49, Section 7] and [55,

Section 6.5]. However, practical recommendations on how to best parallelise the rational

Arnoldi algorithm seem to be lacking. The main goal of this chapter is to fill this gap.

To this end, in Section 4.1 we formally introduce the notion of continuation pairs,

which represent the free parameters to be chosen during the rational Arnoldi algorithm,

and link them to the condition number of the nonorthogonal rational Krylov basis.

In Section 4.2 we propose and analyze a framework for constructing near-optimal

continuation pairs; near-optimal in the sense of minimising the growth of the condition

number of this nonorthogonal basis. These considerations are related to the sequential

variant of the rational Arnoldi algorithm presented in Algorithm 2.2, and easily extend to

the variant presented in Algorithm 2.3; see Remark 4.9. Although these considerations

are interesting in their own right, in Sections 4.3–4.4 we finally exploit them to obtain

several parallel variants of Algorithm 2.2. Specifically, in Section 4.3 we discuss a

generic parallel variant of the rational Arnoldi algorithm, list some canonical choices

for continuation pairs, and adapt the previously developed near-optimal strategy to the

parallel case. In Section 4.4 we provide a range of numerical experiments, comparing

different continuation strategies and high-performance (parallel) implementations.

4.1 Continuation pairs

We assume to have the matrix A, the starting vector b, the poles {µj/νj}mj=1, and now

discuss the roles of the “internal” parameters ρj, ηj, and tj, a problem that can be
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illustrated graphically as follows:

AVmKm−1 = VmHm−1

(ηm/ρm,tm)7−−−−−−−→
µm/νm

AVm+1Km = Vm+1Hm. (4.1)

To be precise, we study the influence of (ηm/ρm, tm) ∈ C× Cm for the extension of an

order m− 1 RAD for Qm(A, b, qm−1), namely,

AVmKm−1 = VmHm−1, (4.2)

with the pole µm/νm ∈ C \ Λ(A), into an RAD (2.6) for Qm+1(A, b, qm) of order m.

Let us now find an admissible continuation pair for (4.1). For any η/ρ 6= µ/ν, the

RAD (4.2) can be transformed into (see, e.g., Section 2.5.1)

(νA− µI)−1(ρA− ηI)Vm
(
νHm−1 − µKm−1

)
= Vm

(
ρHm−1 − ηKm−1

)
. (4.3)

Set µ/ν ≡ µm/νm. If tm ∈ R(νmHm−1 − µmKm−1) then there exists a vector zm−1 ∈
Cm−1 such that tm = νmHm−1zm−1 − µmKm−1zm−1. Specifically,

wm+1 = (νmA− µmI)−1(ρA− ηI)Vmtm = Vm
(
ρHm−1 − ηKm−1

)
zm−1 ∈ R(Vm),

showing that a continuation pair, independently of the continuation root, is not

admissible if tm ∈ R(νmHm−1 − µmKm−1). This was first observed in [90] and led the

author to suggest a nonzero left null vector qm of νmHm−1−µmKm−1 as a continuation

vector.

Currently, the choices tm = em and tm = qm appear to be dominant in the literature;

see, e.g., [90, 109]. Note that tm = em may (with probability zero) be not admissible,

i.e., we would not be able to expand the space with the obtained wm+1 even though the

space is not yet A-invariant. Such a situation is called unlucky breakdown. Nevertheless,

these two choices do appear to work well in practice, but, as we shall see, this is not

always the case for the parallel variant. Moreover, continuation roots are frequently

ignored. Typical choices, adopted without justification, are zero and infinity. An

exception to this is [73], where a choice for (ϑ, tm) is recommended in a way such that

(ϑ, Vmtm) is a rough approximation to an eigenpair of A.

We will now show that for the sequential rational Arnoldi algorithm, Algorithm 2.2,

there exist continuation pairs which yield wm+1 such that wm+1 ⊥ R(Vm). We refer

to such continuation pairs as optimal, as we are mainly concerned with the condition

number of the basis being orthogonalised.
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Definition 4.1. An admissible continuation pair (ηm/ρm, tm) is called optimal for

(4.1) if the condition (νmA− µmI)−1(ρmA− ηmI)Vmtm ⊥ R(Vm) is satisfied.

Thus, the optimality is related to the angle ∠(wm+1, Vm) between the vector wm+1 =

(νmA− µmI)−1(ρmA− ηmI)Vmtm and the space R(Vm). For our purposes, the closer

the angle is to π
2
, the better. Equivalently, if the two RADs appearing in (4.1)

are orthonormal, the continuation pair (ηm/ρm, tm) is optimal for (4.1) if (νmA −
µmI)−1(ρmA − ηmI)Vmtm is a scalar multiple of vm+1. The key observation is thus

triggered by Theorem 2.16, which asserts that the new direction vm+1 we are interested

in is predetermined by the parameters (A, b, qm) defining Qm+1(A, b, qm).

Recall that by Theorem 2.12 we have vm+1 = pm(A)qm(A)−1v1. Denote by ηm/ρm

any root of pm, and label with µm/νm ≡ hm+1,m/km+1,m the last pole of (2.6). Let

pm(z) =: (ρmz − ηm)p̆m−1(z) and qm(z) = (νmz − µm)qm−1(z) hold. We clearly have

vm+1 = (νmA− µmI)−1(ρmA− ηmI)p̆m−1(A)qm−1(A)−1v1

= (νmA− µmI)−1(ρmA− ηmI)Vmtm =:M(A)Vmtm,
(4.4)

where tm satisfies Vmtm = p̆m−1(A)qm−1(A)−1v1 ∈ Qm−1(A, b, qm−1) = R(Vm). Now

if (2.6) is an orthonormal RAD, and hence vm+1 ⊥ R(Vm), we have just verified that

(ηm/ρm, tm) is an optimal continuation pair.

It proves useful to derive a closed formula for the optimal continuation vector tm.

To this end, let xm be a right generalized eigenvector of (Hm, Km) corresponding to

the eigenvalue ηm/ρm; i.e., (ρmHm − ηmKm)xm = 0. Right-multiplying the RAD of

the form (4.3), with µ/ν ≡ µm/νm and η/ρ ≡ ηm/ρm, but of order m, by xm yields

M(A)Vm
(
νmHm − µmKm

)
xm = (ρmhm+1,m − ηmkm+1,m)(eTmxm)vm+1. (4.5)

This gives the optimal continuation vector provided that γm = (eTmxm)(ρmhm+1,m −
ηmkm+1,m) 6= 0, which holds true under the assumption that (2.6) is an RAD. Indeed,

if γm = 0, then Vm(νmHm − µmKm)xm is an eigenvector of A with eigenvalue ηm/ρm,

which implies the non-existence of an RAD of order m with starting vector v1, as

Proposition 3.1 shows. Let us now summarise our findings.

Proposition 4.2. Let (2.6) be an orthonormal RAD, and let (η/ρ,x ) be an eigenpair

of (Hm, Km). The continuation pair

(ηm/ρm, tm) ≡
(
η/ρ, γ−1[νmHm − µmKm]x

)
, (4.6)
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with γ = xm(ρmhm+1,m − ηmkm+1,m), is optimal for (4.1). Alternatively, any optimal

continuation pair for (4.1) is, up to nonzero scaling of tm, of this form.

4.2 Near-optimal continuation pairs

While Proposition 4.2 characterizes optimal continuation pairs precisely, it requires the

last column of (Hm, Km), which is not available without computing vm+1 in the first

place. Our idea is to employ a rough approximation (Ĥm, K̂m) ≈ (Hm, Km) to obtain

a near-optimal continuation pair. We then quantify the approximation accuracy that

is required in order to generate a well-conditioned rational Krylov basis.

4.2.1. The framework. Assume we are given an RAD of order j − 1, namely,

AVjKj−1 = VjHj−1. (4.7)

We seek a near-optimal continuation pair (ηj/ρj, tj) for expanding (4.7) into

AVj+1Kj = Vj+1Hj, (4.8)

using the pole ξj = µj/νj. To this end we make use of an auxiliary continuation pair

(η̂j/ρ̂j, t̂j), whose only requirement is being admissible. For example, it could be the

one proposed by Ruhe [90]. Let us consider the associated linear system

(νjA− µjI)w = (ρ̂jA− η̂jI)Vj t̂j. (4.9)

The solution w could be used to expand the rational Krylov space we are constructing.

However, to obtain a near-optimal continuation pair we instead suggest to approximate

the solution w ≈ ŵj+1. (The solution to (4.9) is labeled w , and not wj+1, since

wj+1 is reserved for (νjA− µjI)wj+1 = (ρjA− ηjI)Vjtj.) To make the whole process

computationally feasible, obtaining this approximation should be inexpensive; see

Remark 4.7. The pencil (Ĥj, K̂j) is then constructed as usual in the rational Arnoldi

algorithm, as if ŵj+1 was the true solution. As a result, we obtain the Hessenberg

matrices

K̂j =

[
Kj−1 k̂j

0T k̂j+1,j

]
and Ĥj =

[
Hj−1 ĥj

0T ĥj+1,j

]
, (4.10)

where

k̂j = νj ĉj − ρ̂j t̂j, ĥj = µj ĉj − η̂j t̂j, ĉj = V ∗j ŵj+1, and ĉj+1 = ‖ŵj+1−Vj ĉj‖2. (4.11)
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Assume that (η̂/ρ̂, x̂ ) is an eigenpair of (Ĥj, K̂j) such that

ρ̂Ĥjx̂ − η̂K̂jx̂ = 0 and γ̂j := x̂j(ρ̂ĥj+1,j − η̂k̂j+1,j) 6= 0. (4.12)

Then a near-optimal continuation pair is given by

ηj/ρj ≡ η̂/ρ̂ and tj = γ̂−1
j

(
νjĤj − µjK̂j

)
x̂ . (4.13)

Our goal in the next section is to evaluate the quality of these near-optimal

continuation pairs within the rational Arnoldi algorithm. In particular, we provide an

upper bound on the condition number of the basis being orthonormalized, based on

the error ‖vj+1 − v̂j+1‖2.

4.2.2. Inexact RADs. We proceed by introducing the residual

ŝj+1 = (νjA− µjI)ŵj+1 − (ρ̂jA− η̂jI)Vj t̂j. (4.14)

By (4.7), (4.10), and (4.14) we have an inexact rational Arnoldi decomposition (IRAD)

AV̂j+1K̂j = V̂j+1Ĥj + ŝj+1e
T
j , (4.15)

where V̂j+1 = [Vj v̂j+1] is orthonormal and

ŵj+1 = Vj ĉj + ĉj+1v̂j+1 with ĉj+1 6= 0. (4.16)

Multiplying (4.15) by νj and then subtracting µjV̂j+1K̂j from both sides provides

(νjA− µjI)V̆j+1K̂j = V̆j+1

(
νjĤj − µjK̂j

)
, (4.17)

where

V̆j+1 =
[
Vj v̂j+1 + f̂j+1

]
, and

f̂j+1 = −k̂−1
j+1,jνj(νjA− µjI)−1ŝj+1 = −ĉ−1

j+1(νjA− µjI)−1ŝj+1.
(4.18)

Eq. (4.17) holds since the last row of νjĤj − µjK̂j is zero. We can also “add back”

µjV̆j+1K̂j to both sides of (4.17), and rescale by ν−1
j to get

AV̆j+1K̂j = V̆j+1Ĥj. (4.19)

Finally, under the assumption that V̆j+1 is of full rank, (4.19) is a non-orthonormal

RAD, equivalent to the IRAD (4.15). Theorem 2.12 applied to (4.19) asserts that the

eigenvalues of
(
Ĥj, K̂j

)
are the roots of the rational function corresponding to the

vector v̂j+1 + f̂j+1. This discussion is summarised in the following theorem.
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Theorem 4.3. Let the orthonormal RAD (4.7) and the auxiliary continuation pair

(η̂j/ρ̂j, t̂j) be given. Denote by ŵj+1 6∈ R(Vj) an approximate solution to (4.9). If (4.10)–

(4.12), (4.16) and (4.18) hold, and (4.19) is an RAD, then choosing the continuation

pair (4.13) in line 3 of Algorithm 2.2 provides

wj+1 = v̂j+1 + f̂j+1 (4.20)

in line 4 of Algorithm 2.2.

The vector wj+1 is not necessarily orthogonal to R(Vj), but if ‖f̂j+1‖2 is “small

enough” it almost is, since the vector v̂j+1 is orthogonal to R(Vj). We make this more

precise in the following corollary.

Corollary 4.4. Let the assumptions of Theorem 4.3 hold. If ‖f̂j+1‖2 = 0, then

∠(wj+1, Vj) = π
2
. If 0 < ‖f̂j+1‖2 < 1, then

∠(wj+1, Vj) ≥ arctan
1− ‖f̂j+1‖2

‖f̂j+1‖2

. (4.21)

Proof. By Theorem 4.3 we have wj+1 = v̂j+1 + f̂j+1, with VjV
∗
j v̂j+1 = 0. If ‖f̂j+1‖2 = 0,

then wj+1 = v̂j+1 is orthogonal to R(Vj). If 0 < ‖f̂j+1‖2 < 1, then

∠(wj+1, Vj) = arctan
‖wj+1 − VjV ∗j wj+1‖2

‖VjV ∗j wj+1‖2

= arctan
‖v̂j+1 + f̂j+1 − VjV ∗j f̂j+1‖2

‖VjV ∗j f̂j+1‖2

.

Eq. (4.21) now follows from the reverse triangle inequality and the monotonicity of

arctan, using the relation ‖f̂j+1 − VjV ∗j f̂j+1‖2 = ‖(I − VjV ∗j )f̂j+1‖2 ≤ ‖f̂j+1‖2.

Note that Corollary 4.4 can be formulated even if ‖f̂j+1‖2 ≥ 1, but in this case would

provide no useful information. Before continuing with the analysis of our near-optimal

continuation strategy, let us remark on the choice of (η̂j/ρ̂j, t̂j).

Remark 4.5 (auxiliary continuation pairs). The authors in [73] consider the rational

Arnoldi algorithm with inexact solves, and suggest to use continuation pairs (ηj/ρj, tj)

such that (ηj/ρj, Vjtj) is an approximate eigenpair of A close to convergence. As

inexact solves are used within our framework to get a near-optimal continuation pair,

this observation also applies to the auxiliary continuation pair (η̂j/ρ̂j, t̂j).

4.2.3. Condition number of the Arnoldi basis. As V̆j+1 = V̂j+1 + f̂j+1e
T
j+1, with

V̂ ∗j+1V̂j+1 = Ij+1, from [42, Corollary 2.4.4] we obtain the following bounds

σmax(V̆j+1) ≤ 1 + ‖f̂j+1‖2 and σmin(V̆j+1) ≥ 1− ‖f̂j+1‖2, (4.22)
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for the largest singular value σmax(V̆j+1) and for the smallest singular value σmin(V̆j+1)

of V̆j+1. Composing these bounds for all indices j we are able to provide an upper

bound on the condition number κ(Wm+1) of the basis

Wj+1 :=
[
w1 w2 . . . wj+1

]
with w1 = b, j = 1, 2, . . . ,m,

which is constructed iteratively by Algorithm 2.2. The Gram–Schmidt orthogonalization

process is mathematically equivalent to computing the thin QR factorisation

Wj+1 = Vj+1

[
‖b‖2e1 Kj diag(η`)

j
`=1 −Hj diag(ρ`)

j
`=1

]
=: Vj+1Rj+1, (4.23)

where the first equality follows from (2.3). As already discussed in the introduction of

the chapter, numerical instability may occur if κ(Wj+1) is too large.

Theorem 4.6. Let the assumptions of Theorem 4.3 hold for j = 1, 2, . . . ,m, and

let the orthonormal RAD (2.6) be constructed with Algorithm 2.2 using near-optimal

continuation pairs (ηj/ρj, tj) given by (4.12)–(4.13). Let R1 = I1, and Rj+1 be as

in (4.23). Assume that the scaled error f̂j+1 at iteration j satisfies ‖f̂j+1‖2 < 1. Then

for all j = 1, 2, . . . ,m we have

σmax

(
Wj+1

)
≤

j∏

i=1

(
1 + ‖f̂i+1‖2

)
=: σuj+1, and

σmin

(
Wj+1

)
≥

j∏

i=1

(
1− ‖f̂i+1‖2

)
=: σlj+1.

(4.24)

In particular, κ(Wm+1) ≤ σum+1/σ
l
m+1.

Proof. For any j = 1, 2, . . . ,m we have

Wj+1 = Vj+1Rj+1 =
[
VjRj v̂j+1 + f̂j+1

]
=
[
Vj v̂j+1 + f̂j+1

] [
Rj ej+1

]
, (4.25)

with V ∗j v̂j+1 = 0, and ‖v̂j+1‖2 = 1. The proof goes by induction on j. For j = 1 the

statement follows from (4.25), (4.22), and the fact that [R1 e2] = I2.

Let us assume that (4.24) holds for j = 1, 2, . . . , ` < m. For the induction step we

consider the case j = `+ 1, and use the fact that, for any two conformable matrices

X and Y of full rank, there holds σmax(XY ) ≤ σmax(X)σmax(Y ) and σmin(XY ) ≥
σmin(X)σmin(Y ). Hence, (4.24) for j = `+ 1 follows from (4.25), from the bound (4.22)

for [V`+1 v̂`+2 + f̂`+2], from the fact that the singular values of R`+1 coincide with

those of W`+1, and from the observation

σmax

([
R`+1 e`+2

])
≤ σu`+1, and σmin

([
R`+1 e`+2

])
≥ σl`+1.
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Figure 4.1: Evaluating the quality of the near-optimal continuation strategy. Left: The

function j 7→
(

1+‖f̂ ‖2
1−‖f̂ ‖2

)j
for three different values of ‖f̂ ‖2. Theorem 4.6 asserts that these are

upper bounds on κ(Wm+1), provided that for all js there holds ‖f̂j+1‖2 ≤ ‖f̂ ‖2. Right: The

function ‖f̂j+1‖2 7→ arctan
1−‖f̂j+1‖2
‖f̂j+1‖2

, which provides a lower bound on ∠(wj+1, Vj).

This last relation holds since the singular values of [R`+1 e`+2] are those of R`+1 with

the addition of the singular value 1 ∈ [σl`+1, σ
u
`+1].

We now briefly comment on the results established in Theorem 4.6, the assumptions

of which we assume to hold. If, for instance, ‖f̂j+1‖2 = 0.5, then σuj+1/σ
l
j+1 ≤ 3σuj /σ

l
j.

That is, the bound σuj+1/σ
l
j+1 on the condition number κ(Wj+1) grows by at most a

factor of 3 compared to σuj /σ
l
j, which does not necessarily imply κ(Wj+1) ≤ 3κ(Wj).

It would imply that, if σmin(Wj) ≤ 1 ≤ σmax(Wj) holds true (this observation is clear

from the proof of Theorem 4.6). In Figure 4.1(a) we illustrate the upper bounds given

by Theorem 4.6 for some particular values of ‖f̂j+1‖2. Figure 4.1(b) visualizes the lower

bound, provided by Corollary 4.4, on the angle ∠(wj+1, Vj). For example, for a rough

approximation ŵj+1 that gives ‖f̂j+1‖2 = 0.5, we have ∠(wj+1, Vj) ≥ π
4
.

Remark 4.7. If the poles of the rational Krylov space are fairly well separated from

the spectral region of A, a good approximate solution to (4.9) may be obtained with a

few iterations of a cheap polynomial Krylov method, like unpreconditioned FOM or

GMRES, or with a cycle of multigrid [94]. Computational examples of this situation

are given in Section 4.2.4 and Section 4.4.1. When direct solvers are used within the

rational Arnoldi algorithm, it may even be worth solving (4.9) to full accuracy, as the

most costly computation is the analysis and factorization of each shifted linear system,
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Figure 4.2: Near-optimal continuation strategy on a nonnormal matrix A; see Section 4.2.4.

which needs to be done at most once per pole. An example of this situation is given

in Section 4.4.2.

4.2.4. Numerical illustration. In Figure 4.2 we illustrate the effectiveness of our

near-optimal continuation framework. The matrix A is of size N = 1000, and it

is generated in MATLAB with A=-5*gallery(’grcar’,N,3). This is a nonnormal

matrix and its eigenvalues are shown in Figure 4.2(a), together with the m = 16 poles

used in this example. The poles are obtained using the RKFIT algorithm which we

discuss in Chapter 6, and they are optimized for approximating exp(A)b, where the

starting vector b has all its entries equal to 1. (A similar example is considered in

Section 6.2.3.) Two experiments are performed with this data, and they differ in the

way the approximants ŵj+1, used to obtain the near-optimal continuation pairs, are
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computed. Since the poles are far away from Λ(A), we expect a few iterations of FOM

to provide good approximants ŵj+1. To obtain each ŵj+1 we hence use a fixed number

k of FOM iterations; this is referred to as FOM(k). In Figure 4.2(b) we plot the angles

∠(wj+1, Vj) and the lower bound (4.21) at each iteration j = 1, 2, . . . ,m. Both FOM(2)

and FOM(3) are giving satisfactory results, with FOM(3) performing slightly better.

Figures 4.2(c)–4.2(d) show the condition numbers κ(Wm+1) of the bases as well as

the upper bounds from Theorem 4.6. Additionally, we provide a refined upper-bound

on κ(Wm+1). The refined bound can be derived in the same manner as the one in

Theorem 4.6, but using (4.26) below instead of (4.22). We remark that (4.26) imposes

a slightly more stringent condition on f̂j+1. We start by introducing the projection

êj+1 := V̂ ∗j+1f̂j+1 and noting that

V̆ ∗j+1V̆j+1 = Ij+1 + ‖f̂j+1‖2
2ej+1e

T
j+1 + ej+1ê

∗
j+1 + êj+1e

T
j+1 =: Ij+1 + Ej+1.

Directly from the definition of Ej+1 we have ‖Ej+1‖2 ≤ 2‖êj+1‖2 + ‖f̂j+1‖2
2. Finally,

under the assumption that ‖f̂j+1‖2 <
√

2− 1, we deduce

σmax(V̆j+1) ≤
√

1 + 2‖êj+1‖2 + ‖f̂j+1‖2
2 =: σ̃uj+1/σ̃

u
j , and

σmin(V̆j+1) ≥
√

1− 2‖êj+1‖2 =: σ̃lj+1/σ̃
l
j,

(4.26)

with σ̃uj+1 and σ̃lj+1 being defined recursively, with initial values σ̃u0 = σ̃l0 = 1.

In both Figures 4.2(c)–4.2(d) we include the norms ‖f̂j+1‖2 and ‖êj+1‖2 for reference.

With FOM(2), we have ‖f̂j+1‖2 ≈ 0.30 on average (geometric mean), and the overall

upper bound on κ(Wm+1) ≈ 1.51 is σum+1/σ
l
m+1 ≈ 2.30× 104. The refined upper bound

that makes use of the projections êj+1 gives σ̃um+1/σ̃
l
m+1 ≈ 461, which is about two

orders of magnitude sharper. Using FOM(3) produces on average ‖f̂j+1‖2 ≈ 0.15. The

condition number of the basis being orthogonalised is κ(Wm+1) ≈ 1.20, while the upper

bound provided by Theorem 4.6 is σum+1/σ
l
m+1 ≈ 130. The refined upper bound based

on (4.26) yields σ̃um+1/σ̃
l
m+1 ≈ 12. We observe that the bounds get sharper as the

error ‖f̂j+1‖2 gets smaller, and also that the two bases Wm+1, computed using both the

FOM(2) and FOM(3) near-optimal continuation strategy, becomes better conditioned

as the approximations ŵj+1 get more accurate. In both examples, the nonorthogonal

bases are in fact remarkably well-conditioned.

Note that computing or estimating ‖f̂j+1‖2 may be too costly in practice. However,

the main message of Theorem 4.6 and this numerical illustration is that rather poor
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approximations ŵj+1 are sufficient to limit the growth of κ(Wm+1) considerably. See

also Figures 4.1–4.2.

Before passing on to the parallel rational Arnoldi algorithm we briefly discuss a

possible alternative for obtaining near-optimal continuation pairs.

4.2.5. A different viewpoint for Hermitian matrices. The following observation

suggests an alternative approach for Hermitian problems with real-valued poles.

Proposition 4.8. Let (2.6) and (4.2) be orthonormal RADs with Hermitian A, and

let real-valued scalars η, ρ, µ, ν ∈ R satisfy νη 6= µρ. Assume that η/ρ is a (formal)

root of pm(z) = det (Hm − zKm). The continuation pair (η/ρ, t) is optimal for (4.1) if

and only if the vector t 6= 0 is orthogonal to R(ρHm−1 − ηKm−1).

Proof. Let (η/ρ,x 6= 0) be such that (ρHm − ηKm)x = 0. Then and only then we

have that (η/ρ, νHmx − µKmx ) is an optimal continuation pair; cf. Proposition 4.2. It

follows from Lemma 2.6 that ρHm−1− ηKm−1 is of full column rank, and therefore, the

orthogonal complement ofR(ρHm−1−ηKm−1) is a one-dimensional space. Consequently,

to prove the statement it is enough to show that (νHm−µKm)x ⊥ R(ρHm−1−ηKm−1).

Multiplying (2.6) by K∗mV
∗
m+1 from the left we obtain K∗mV

∗
m+1AVm+1Km = K∗mHm,

which is Hermitian, and hence K∗mHm = H∗mKm. In particular,

K∗mHm−1 = H∗mKm−1. (4.27)

Further, conjugate-transposing (ρHm − ηKm)x = 0, and then multiplying by Hm−1

from the right gives (4.28) below. In an analogous manner we obtain (4.29):

ρx ∗H∗mHm−1 = ηx ∗K∗mHm−1; (4.28)

ηx ∗K∗mKm−1 = ρx ∗H∗mKm−1. (4.29)

Exploiting (4.28) and (4.29), we obtain the relation

x ∗(νH∗m − µK∗m)(ρHm−1 − ηKm−1) = (νη − µρ)x ∗(K∗mHm−1 −H∗mKm−1) = 0∗,

where the last equality follows from (4.27).

A near-optimal continuation strategy inspired by Proposition 4.8 would require

us to approximate one root of pm(z), and then use it to compute the corresponding

continuation vector. If η̂/ρ̂ is such continuation root, then as a continuation vector one
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could use any vector spanning R(ρ̂Hm−1 − η̂Km−1)⊥. We shall not elaborate on this

further. Instead, we briefly relate it to Ruhe’s considerations in [90, Sec. 3.2].

Throughout [90], infinity is consistently used as continuation root, but the choice

of continuation vector gained more attention. Specifically, the choice t 6= 0 such

that t ⊥ R(ρHm−1 − ηKm−1) is suggested. For the parameter η/ρ the possibilities

ξm−1,∞ and ξm are discussed. Further, it is argued that if η/ρ is a generalised

eigenvalue of (Hm−1, Km−1), i.e., a (formal) root of pm−1, then eTmt = 0. As discussed

in Section 4.1, the choice ξm is interesting in that it provides an admissible continuation

vector. However, in light of Proposition 4.8 and the (easy to show) fact that t ⊥
R(ρHm−1 − ηKm−1) and t ⊥ R(νHm−1 − µKm−1) for νη 6= µρ implies t = 0, we know

that it will not provide an optimal one, at least for Hermitian A and the poles being

real-valued, since pm cannot have as root the mth pole ξm; cf. Theorem 2.12.

Remark 4.9. Optimal continuation pairs for quasi-RADs may be obtained similarly as

for RADs; the vector wj+1 in (2.29) may be computed using complex arithmetic and

orthogonalized against the real-valued basis Vj to provide an optimal continuation pair

which may be complex-valued. With this continuation pair one obtains the complex-

valued vector vj+1 orthogonal to R(Vj). In particular, both <(vj+1) and =(vj+1) are

orthogonal to R(Vj). It remains to note that instead of adding
[
<(vj+1) =(vj+1)

]

to the quasi-RAD (2.27) one can add any orthonormal basis of the corresponding

two-dimensional space in order to expand (2.27).

4.3 Parallel rational Arnoldi algorithm

In this section we introduce a new parallel variant of the rational Arnoldi algorithm

based on near-optimal continuation pairs. The parallelism we consider comes from

generating more than one of the basis vectors concurrently. Another possibility is

to parallelise the involved linear algebra operations, thought that might scale less

favorably as the number of parallel processes increases. Combining both parallelisation

approaches is also viable, and our implementation supports this. Further comments

about the implementation and numerical examples are given in Section 4.4.
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4.3.1. High-level description of a parallel rational Arnoldi algorithm. The

aim of the parallel rational Arnoldi algorithm, outlined in Algorithm 4.5 and in the

discussion below, is to construct an RAD for Qm+1(A, b, qm) using p > 1 parallel

processes. The basis is constructed iteratively, but unlike the sequential version, at

each iteration p > 1 vectors are computed simultaneously, one per parallel process

(with a possible exception of the last iteration if m is not a multiple of p). The poles

assigned to distinct parallel processes have to be mutually distinct, as otherwise we

would not obtain p linearly independent vectors to expand the rational Krylov space.

We assume a copy of the matrix A, the starting vector b, and the poles {ξj}mj=1

to be available to each parallel process. After the orthogonal basis vectors have been

constructed, they are broadcasted to the other parallel processes for use in the following

parallel iterations. This means that a copy of the basis Vj+1 is available to every parallel

process. We now go through Algorithm 4.5 line by line.

In line 2 of Algorithm 4.5 the starting vector b is normalised (on every parallel

process), providing the first basis vector v1 ≡ v
[`]
1 . We use the superscript notation

(·)[`] to denote that the quantity (·) belongs to the parallel process `. If a quantity is

sent to another parallel process ˆ̀ 6= `, a copy (·)[ˆ̀] = (·)[`] becomes available to ˆ̀. The

main part of the algorithm is the j-loop spanning lines 3–27, where the remaining m

vectors of the orthonormal basis are generated by p parallel processes, which requires

dm
p
e iterations. The variable s represents the order of the RAD AVs+1Ks = Vs+1Hs

constructed so far, and every parallel process has its own copy of it. The variable p ≤ p

equals p for all iterations j, except perhaps the last one where p = m− s represents

the number of remaining basis vectors to be constructed. Parallel processes with labels

greater than p do not perform the remaining part of the last iteration of the j-loop.

The selection of continuation pairs in line 9 is discussed in subsection 4.3.2. We

shall only stress that the continuation pairs are of order s+ 1 for all `, and that we

assume the choice to be such that unlucky breakdown is avoided. Once the continuation

pairs have been computed, a new direction w
[`]
s+`+1 is computed the same way as in the

sequential rational Arnoldi algorithm; cf. line 10. The orthogonalization part, however,

is more involved and consists of two parts.

The first part of the orthogonalization process corresponds to lines 11–12, where the

newly computed vector w
[`]
s+`+1 is orthogonalized against R(V

[`]
s+1). The second part of
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Algorithm 4.5 Parallel rational Arnoldi for distributed memory architectures.

Input: A ∈ CN,N , b ∈ CN , poles {µj/νj}mj=1 ⊂ C \ Λ(A), with m < M , and such that
the partitions {µkp+`/νkp+`}p`=1, for k = 0, 1, . . . , bm

p
c − 1, and {µj/νj}mj=pbm

p
c+1,

where p is the number of parallel processes, consist of pairwise distinct poles.
Output: The RAD AV

[1]
m+1K

[1]
m = V

[1]
m+1H

[1]
m .

1. Let the p parallel processes be labelled by ` = 1, 2, . . . , p.
2. Set v

[`]
1 := b/‖b‖2.

3. for j = 1, . . . , dm
p
e do

4. Set s := (j − 1)p. B The RAD AV
[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s holds.

5. Let p := min{p,m− s}.
6. if ` > p then
7. Mark processor ` as inactive. B Applies to the case j = dm

p
e if p - m.

8. end if
9. Choose continuation pair (η

[`]
s+`/ρ

[`]
s+`, t

[`]
s+`) ∈ C× Cs+1.

10. Compute w
[`]
s+`+1 := (νs+`A− µs+`I)−1(ρ

[`]
s+`A− η

[`]
s+`I)V

[`]
s+1t

[`]
s+`.

11. Project c
[`]
s+1 := (V

[`]
s+1)∗w

[`]
s+`+1.

12. Update w
[`]
s+`+1 := w

[`]
s+`+1 − V

[`]
s+1c

[`]
s+1.

13. for k = 1, . . . , p do
14. if ` = k then
15. Compute c

[`]
s+`+1 := ‖w [`]

s+`+1‖2, and set v
[`]
s+`+1 := w

[`]
s+`+1/c

[`]
s+`+1.

16. end if
17. Broadcast v

[`]
s+k+1 from parallel process k.

18. if ` = k then
19. Let c

[`]
s+`+1 := [ (c

[`]
s+1)

T
c
[`]
s+2 ... c

[`]
s+`+1 ]T , and t

[`]
s+` := [ (t

[`]
s+`)

T
0
T ]T ∈ Cs+`+1.

20. Form k
[`]
s+` := νs+`c

[`]
s+`+1 − ρ

[`]
s+`t

[`]
s+`, and h

[`]
s+` := µs+`c

[`]
s+`+1 − η

[`]
s+`t

[`]
s+`.

21. else if ` > k then
22. Project c

[`]
s+k+1 := (v

[`]
s+k+1)∗w

[`]
s+`+1.

23. Update w
[`]
s+`+1 := w

[`]
s+`+1 − c

[`]
s+k+1v

[`]
s+k+1.

24. end if
25. Broadcast k

[`]
s+k and h

[`]
s+k from parallel process k.

26. end for (orthogonalization loop)
27. end for (main loop)

the orthogonalization corresponds to the loop in lines 13–26, and involves communication

between the parallel processes. In this part the (partially) orthogonalized vectors w
[`]
s+`+1

are gradually being orthonormalised against each other. As soon as w
[k]
s+k+1 is normalised

to v
[k]
s+k+1 in line 15, it is broadcasted to the remaining active parallel processes in

line 17. At this stage the parallel process k updates the RAD from order s+ k − 1 to

order s+k (lines 19–20), while the active parallel processes ` > k orthonormalize w
[`]
s+`+1

against the just received v
[`]
s+k+1; lines 22–23. See also Figure 4.3 for an example. The

final part, line 25, is to broadcast the update for the reduced upper-Hessenberg pencil
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(a) Constructing the basis Vm+1.
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(b) Gram–Schmidt coefficients.

Figure 4.3: Executing Algorithm 4.5 with m = 8 and p = 4, which requires 2 iterations of
the main loop. In 4.3(a) we show which parallel process is responsible for constructing a
particular column of Vm+1. The columns of Rm+1 shown in 4.3(b) are partitioned in three
sets. The first consists of the first column alone and represents line 2 (of Algorithm 4.5). The
second consists of columns 2–5, and the third of columns 6–9. The partitioning of elements
within these last two block-columns represents the two parts of the orthogonalization. The
elements marked with ⊗ are computed in line 11, while those marked × are computed either
in line 15 or 22, depending on whether they are on the diagonal of Rm+1 or not, respectively.
Elements contained in the same rectangle can be computed simultaneously, after (all) the
elements within rectangles to the left and above it have been computed.

from parallel process k to the remaining active ones. The communication between the

p parallel processes involves O(p2) messages, which is not prohibitive in our case as p

is typically moderate (not exceeding p = 8 in our experiments in section 4.4).

Alternative implementation options. Depending on possible memory constraints,

one may consider distributing the basis, instead of having copies on every parallel

process. In this case the p vectors V
[`]
s+1t

[`]
s+` could be formed jointly by all the parallel

processes, and once all have been formed and distributed, the vectors w
[`]
s+`+1 may be

constructed independently. The Gram–Schmidt process can be adapted accordingly.

A shared memory implementation may follow the same guidelines of Algorithm 4.5,

excluding the broadcast statements. Also, the second part of the orthogonalization may

be performed jointly by assigning an (almost) equal amount of work to each thread.

(The index notation adopted in Algorithm 4.5 guarantees that different threads do not

overwrite “each others” data.)

Lastly, the version of the parallel rational Arnoldi algorithm presented, tacitly

assumes that solving the various shifted linear system takes roughly the same time,
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which is the case if one uses direct solvers, for example. If the time to solution of

the shifted linear system varies substantially depending on the poles, then it may be

advantageous not to construct p vectors at a time, but to consider an asynchronous

approach.

4.3.2. Locally near-optimal continuation pairs. We now discuss the choice of

continuation pairs for Algorithm 4.5. To this end we use the continuation matrix

Tm := [t1 t2 . . . tm] ∈ Cm,m, which collects the continuation vectors (padded with

zeros) of order j = 1, 2, . . . ,m as they are being used in the sequential rational Arnoldi

algorithm. Consequently, Tm is an upper triangular matrix. For the parallel rational

Arnoldi algorithm, we order the continuation vectors t
[`]
s+` increasingly by their indices

s+`, obtaining again an upper triangular matrix. In the parallel case there are, however,

further restrictions on the nonzero pattern of Tm, as can be observed in Figure 4.4.

There we display three canonical choices for t
[`]
s+`.

Perhaps the two most canonical choices for continuation vectors are

t
[`]
s+` = emax{1,s+1−p+`}, and (4.30)

t
[`]
s+` = es+1. (4.31)

With continuation vectors given by (4.30), each parallel process ` applies the transfor-

mation (νs+`A− µs+`I)−1(ρ
[`]
s+`A− η

[`]
s+`I) to either the rescaled starting vector v

[`]
1 (for

s = 0) or to the vector v
[`]
s+1−p+` (for s > 0). On the other hand, with continuation vec-

tors as in (4.31) the same vector v
[`]
s+1 is used for all `. These two choices are illustrated

with the aid of the corresponding continuation matrices in Figures 4.4(b)–4.4(c) for

the case m = 12 and two distinct choices for p. The choice (4.30) was used in [99] with

infinity as the corresponding continuation root, while (4.31) has been introduced in

[55, section 6.5]. Another possibility for continuation vectors is to use Ruhe’s strategy

[90] locally on each parallel process;

t
[`]
s+` = Q

[`]
s+1es+1, where νs+`H

[`]
s − µs+`K [`]

s =: Q
[`]
s+1R

[`]
s (4.32)

is a full QR factorization of νs+`H
[`]
s − µs+`K [`]

s , i.e., Q
[`]
s+1 ∈ Cs+1,s+1 is unitary and

R[`]
s ∈ Cs+1,s is upper triangular with last row being 0T . The corresponding continuation

matrix Tm is shown in Figure 4.4(d) for the case when the poles on each parallel process
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1(b) Parallel with p = 3.
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1(c) Parallel with p = 4.
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1(d) Parallel with p = 5.

Figure 4.4: Canonical continuation matrices T12 for the sequential, 4.4(a), and parallel,
4.4(b)–4.4(d), rational Arnoldi algorithm. The shaded area in the upper triangles of the
continuation matrices represents the allowed nonzero pattern, while the elements marked with
× represent a particular choice of nonzeros. For instance, the sequential continuation strategy
in 4.4(a) corresponds to tj = γjej 6= 0. Each of the three parallel variants corresponds to a
canonical choice described in section 4.3.2, with a varying number of parallel processes p > 1.

are being used repeatedly, which generates this curious nonzero pattern. If the poles

were not repeated cyclically, Tm would generally be populated with nonzero elements

in the allowed (shaded) region. These canonical choices for the continuation vectors

may be supplemented with continuation roots being either zero or infinity, for example.

Let us now move to the admissibility and optimality conditions on continuation

pairs in the parallel case. By assumption, the p active parallel processes at a given

iteration j have mutually distinct poles {µs+`/νs+`}
p

`=1, where s = (j−1)p. It is easy to

show that if for every ` = 1, 2, . . . , p the continuation pair (η
[`]
s+`/ρ

[`]
s+`, t

[`]
s+`) is admissible

for AV
[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s , that is, if it is locally admissible for each parallel process,

then no unlucky breakdown occurs during iteration j overall, assuming exact arithmetic

and s+ p < M . Hence, an example of admissible continuation pairs for Algorithm 4.5

is (η
[`]
s+`/ρ

[`]
s+` 6≡ µs+`/νs+`, t

[`]
s+`), with t

[`]
s+` provided by (4.32). Unfortunately, obtaining

p > 1 optimal continuation pairs concurrently is almost always impossible.

Proposition 4.10. Let AV
[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s be mutually equal RADs for all ` =

1, . . . , p, and {µs+`/νs+`}
p

`=1 be mutually distinct poles, with p > 1 and s + p < M .

In general, there are no continuation pairs (η
[`]
s+`/ρ

[`]
s+`, t

[`]
s+`) of order s + 1 such that

[V
[`]
s+1 w

[1]
s+2 . . . w

[p]

s+p+1], with the vectors w
[`]
s+`+1 given by line 10 of Algorithm 4.5,

is orthonormal.

Proof. The rational implicit Q theorem implies that the RADs AV
[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s

can be expanded essentially uniquely to AV
[`]
m+1K

[`]
m = V

[`]
m+1H

[`]
m , with m = s + p.

Theorem 2.12 provides the representation

v
[`]
s+`+1 = ps+`(A)qs+`(A)−1b, with ps+`(z) = det(zK

[`]
s+` −H

[`]
s+`).
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Hence, the essentially unique basis vectors v
[`]
s+`+1 which are mutually orthogonal to

each other and to R(V
[`]
s+1) are represented by rational functions ps+`q

−1
s+` of type at

most (s+ `, s+ `). (The type of a rational function is the ordered pair of its numerator

and denominator polynomial degrees.) For any (η
[`]
s+`/ρ

[`]
s+`, t

[`]
s+`), the vectors w

[`]
s+`+1 are

rational functions in A times the starting vector b of type at most (s+ 1, s+ 1) for all `,

which does not match the type (s+ `, s+ `) when ` > 1. The only possibility to obtain,

e.g., w
[`]
s+`+1 = v

[`]
s+`+1 for ` > 1 would be if, by chance, `− 1 of the (formal) roots of

ps+` canceled with `− 1 poles of qs+`. By remarking that this may never happen, for

instance, for Hermitian A with real-valued poles outside the spectral interval of Λ(A)

and the last pole being infinite, as the roots of the last vector are contained in the

aforementioned spectral interval (which is easy to show), we conclude the proof.

For the sequential version we have just enough degrees of freedom to be able to

find an optimal continuation pair. For p > 1 there is a lack of degrees of freedom,

which gets more pronounced as p increases. This can also be interpreted visually in

Figure 4.4, where the shaded area decreases with increasing p.

Our proposal is thus to apply the near-optimal framework from section 4.2 locally

on each parallel process `, i.e.,

η
[`]
s+`/ρ

[`]
s+` ≡ η̂[`]/ρ̂[`], t

[`]
s+` = γ̂−1

s+`

(
νs+`Ĥ

[`]
s+1 − µs+`K̂ [`]

s+1

)
x̂ [`], (4.33)

where (Ĥ
[`]
s+1, K̂

[`]
s+1) approximates the pencil (H

[`]
s+1, K

[`]
s+1), that is, the extension

of (H [`]
s , K

[`]
s ) with the pole µs+`/νs+`, and where (η̂[`]/ρ̂[`], x̂ [`]) is an eigenpair of

(Ĥ
[`]
s+1, K̂

[`]
s+1) such that γ̂s+` = x̂

[`]
s+1(ρ̂

[`]ĥ
[`]
s+2,s+1 − η̂[`]k̂

[`]
s+2,s+1) 6= 0. This should yield

vectors w
[`]
s+`+1 close to orthogonal to R(V

[`]
s+1), thought nothing can be said a priori

about their mutual angles.

With such an approach we expect the condition number of the basis Wm+1 un-

dergoing the Gram–Schmidt orthogonalization process to increase compared to the

sequential case. However, as the growth of κ(Wm+1) gets substantially suppressed with

our near-optimal strategy (if the ‖f̂j+1‖2 are small enough), we hope that the growth

due to the parallelisation is not prohibitive. Our numerical experiments in section 4.4

confirm that our approach based on near-optimal continuation pairs is more robust

than the canonical continuation strategies. We end this section with a few practical

considerations.
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Real-valued near-optimal continuation pairs. Recall that a near-optimal con-

tinuation pair is formed from an eigenpair of (Hj, Kj); cf. (4.6). Even if A, b and

the poles are real-valued, a near-optimal continuation pair may hence be complex,

which may be undesirable. This problem can be resolved easily: in particular, if j

is odd, there is at least one real-valued eigenpair of (Hj, Kj), and it can be used to

construct a real-valued continuation pair (ηj/ρj, tj). Thus, for the parallel algorithm

with p being even, we have that s+ 1 = (j − 1)p+ 1 is odd and hence a real-valued

near-optimal continuation pair exists. In our implementation for real-valued data we

hence construct near-optimal continuation pairs as in (4.6), but with (η/ρ,x ) replaced

by (<(η/ρ),<(x )), where (η/ρ,x ) is an eigenpair of (Hj, Kj) such that =(η/ρ) = 0

or otherwise =(η/ρ)/<(η/ρ) → min. Therefore, for odd j or odd s + 1, we obtain

(<(η/ρ),<(x )) = (η/ρ,x ). One could also consider the constrained problem of finding

a best real-valued (ηj/ρj, tj), but we have not done this as the problem with complex

continuation pairs disappears with common (even) values of p.

Reordering poles. The ordering of the poles {µj/νj}mj=1 is likely to influence the

condition number κ(Wm+1) of the basis Wm+1 being orthogonalized in the Gram–

Schmidt process. By (approximately) maximizing the distance between any two distinct

poles from {µs+`/νs+`}
p

`=1 used simultaneously, one may obtain a better conditioned

basis Wm+1. We have not yet analyzed the numerical influence of the pole ordering

and leave this for future work.

4.4 Numerical experiments

In this section we report on two numerical experiments from different application

areas, each illustrating another aspect of our parallel algorithms. The algorithms are

implemented1 in C++, using Intel MKL LAPACK and BLAS for dense linear algebra

operations, SparseBLAS for sparse matrix-vector multiplications, and PARDISO for

the linear system solves (Intel MKL version 10.0.1). Sparse matrices are stored in

the CSR format. All tests are run on an Intel Xeon CPU E56-2640, with 6 cores

(12 threads), running at 2.5 GHz. We have 64 GB of RAM at our disposal. The

1The implementation is available for download from http://www.maths.manchester.ac.uk/

~berljafa/RAIN.zip.

http://www.maths.manchester.ac.uk/~berljafa/RAIN.zip
http://www.maths.manchester.ac.uk/~berljafa/RAIN.zip
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code is compiled with the Intel icpc compiler (version 12.0.5) using the -O3 flag. The

implementation of the MPI standard is Open MPI (version 1.6). Both the sequential

and the parallel rational Arnoldi algorithm are linked with either the sequential or

multi-threaded version of Intel MKL, giving raise to the following four configurations:

variant algorithm Intel MKL
1× 1 Algorithm 2.2 sequential
1× p Algorithm 2.2 multi-threaded
p× 1 Algorithm 4.5 sequential
p× p̂ Algorithm 4.5 multi-threaded

Given a computed rational Arnoldi decomposition AVm+1Km = BVm+1Hm, where

B may but does not have to be the identity matrix, we assess various continuation

strategies using the following quantities:

orth Departure from orthonormality ‖Im+1 − 〈Vm+1, Vm+1〉‖2. Here, the notation

〈 · , · 〉 : CN,k × CN,n → Cn,k denotes the employed inner product and is applica-

tion dependent.

cond The condition number κ(Wm+1D) =
√
κ2(〈Wm+1D,Wm+1D〉) of the rescaled

basis Wm+1D, with respect to the inner product used. We have used MAT-

LAB fminsearch to determine a diagonal matrix D such that κ(Wm+1D) is

(approximately) minimized. This is because the stability of the Gram–Schmidt

procedure applied to Wm+1 is unaffected by column scaling of Wm+1.

space The space R(Vm+1) is a (rational) Krylov space for B−1A, where we assume B

to be nonsingular, if and only if S = B−1AVm+1 − Vm+1〈B−1AVm+1, Vm+1〉 has

rank at most one; see [104, Cor. 3.3]. We therefore look at the ratio σ2/σ1 of

the second largest and the largest singular values of S. The smaller the ratio is,

the least R(Vm+1) deviates from a (rational) Krylov space.

In all our experiments the relative backward error

‖AVm+1Km −BVm+1Hm‖2/(‖A‖2‖Vm+1‖2‖Km‖2 + ‖B‖2‖Vm+1‖2‖Hm‖2)

of the computed RAD was close to machine precision, and is hence not reported. When

reporting the total CPU time, we provide a breakdown made up of four components. The

component mv+orth measures the elapsed time for lines 2, 11–26, and the computation of
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(ρ
[`]
s+`A−η

[`]
s+`I)V

[`]
s+1t

[`]
s+` in line 10 of Algorithm 4.5. The component solve measures the

solution phases consisting of backward and forward substitutions for the linear systems

in line 10, while factorise measures the initial symbolic and numerical factorisations.

Finally, continuation measures the time spent in line 9 of Algorithm 4.5. An analogous

breakdown is given for Algorithm 2.2.

4.4.1. Exponential integration. Our first example relates to the modeling of

a transient electromagnetic field in a geophysical application [17]. We are given a

symmetric positive semidefinite matrix A ∈ RN,N and a symmetric positive definite

matrix B ∈ RN,N , and the task is to solve Be ′(t) + Ae(t) = 0, e(0) = b, for the

electric field e(t). The time parameters of interest are t ∈ T = [10−6, 10−3].

The approach suggested in [17] is to build a B-orthonormal (that is, the inner

product defined by 〈x ,y〉 = y∗Bx is used) rational Krylov basis Vm+1 ∈ RN,m+1 of

Qm+1(A,B, b, qm), and to extract Arnoldi approximants

fm(t) = ‖b‖BVm+1 exp(−tAm+1)e1, Am+1 = V T
m+1AVm+1

for all desired time parameters t ∈ T . Here ‖b‖B = (bTBb)1/2. The two test problems

in [17, Section 5.1] are of sizes N = 27623 and N = 152078, and they correspond

to discretizations of a layered half space using Nédélec elements of orders 1 and 2,

respectively. Following [17, Table 1] we set p = 4, with mutually distinct poles

{−2.76× 104,−4.08× 104,−2.45× 106,−6.51× 106},

each repeated cyclically 9 times, resulting in a rational Krylov space of orderm = 36, and

guaranteeing Arnoldi approximants with (absolute) errors ‖e(t)−fm(t)‖B ≤ 6.74×10−8

for all t ∈ T , independent of the spectral interval of (A,B).

We test various parallel continuation strategies for computing the basis Vm+1,

namely, our near-optimal FOM(5) continuation strategy and the two canonical variants

specified by (4.30) and (4.31). We also compare to the sequential approach using again

the FOM(5) strategy for predicting the next basis vector. The numerical results are

shown in Table 4.1 and Figure 4.5. We highlight that all these tests have been run using

classical Gram–Schmidt without reorthogonalization. The reasoning behind this choice

is that our FOM(5) continuation strategy tries to choose continuation pairs which lead

to very well-conditioned basis vectors and hence the Gram–Schmidt procedure works
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Table 4.1: Numerical quantities associated with the transient electromagnetics problems
from Section 4.4.1 solved by various (parallel) rational Arnoldi variants.

GEOPHYS27623 GEOPHYS152078strategy cond orth space cond orth space

p = 1, (4.13) 7.5×100 2.2×10−14 1.7×10−15 3.6×101 3.1×10−13 5.7×10−15

p = 4, (4.13) 9.1×102 4.2×10−5 3.5×10−14 7.5×103 3.2×10−1 6.3×10−13

p = 4, (4.30) 9.6×109 1.9×101 2.1×10−7 6.7×109 1.8×101 8.5×10−7

p = 4, (4.31) 1.9×103 9.4×10−1 2.8×10−14 1.8×103 1.1×100 1.2×10−13

fine without reorthogonalization. This is justified by the condition number cond and

the orthogonality measure orth in Table 4.1, which are both much better with the

parallel FOM(5) strategy than they are with the canonical variants (4.30) and (4.31).
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10−10

10−8

10−6

10−4

FOM(5) seq.

FOM(5)

(4.1)

(4.2)

(a) GEOPHYS27623: Error ‖e(t)− fm(t)‖B .
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(b) GEOPHYS152078: Error ‖e(t)− fm(t)‖B .
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(c) GEOPHYS27623: CPU timings.
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(d) GEOPHYS152078: CPU timings.

Figure 4.5: Numerical results for the transient electromagnetics examples from Section 4.4.1.

We observe that for variant (4.30) the space R(Vm+1) deviates significantly from

a rational Krylov space (column space). This instability in computing the rational

Krylov basis affects the accuracy of the extracted Arnoldi approximants, as can be seen
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in Figures 4.5(a)–4.5(b), where we plot the B-norm errors ‖e(t)− fm(t)‖B as a function

of the time parameter t. While our parallel FOM(5) strategy yields approximants of

approximately the same accuracy as the sequential FOM(5) variant, the errors of the

approximants computed with (4.31) and in particular (4.30) are larger.

In Figures 4.5(c)–4.5(d) we report the CPU timings (averaged over 50 runs) for

our C++ implementations. The first bar labeled [1× 1] corresponds to the sequential

algorithm run using the continuation strategy (4.31). We find that the computationally

most expensive parts are the four matrix factorisations (one factorisation for each of

the four distinct poles), and the solution phases consisting of the 4× 9 backward and

forward substitutions. Some speedup is achieved by using four threads to factorise and

solve with each system one after the other; note the reduction in computation time

when going from [1× 1] to [1× 4] in our notation. However, it is apparent that even

more speedup is obtained by using a single core to factor and solve, but to do this

with four matrices simultaneously (this corresponds to the 4× 1 case), even though

our near-optimal FOM(5) continuation strategy adds significant computational cost.

Further reduction in computation time is achieved by combining both levels of

parallelism, i.e., factorising and solving with all four matrices simultaneously using two

threads in each case (the 4× 2 case which we have only timed for the larger example).

Let us also point out that the mv+orth portion is slightly bigger for the 4 × 1 case

compared to the [1× 4] case. This is mainly due to the added communication between

the parallel MPI processes within the 4 × 1 variant. However, the difference is not

large and indicates that communication costs are negligible here.

4.4.2. A complex non-Hermitian eigenvalue problem. In this example we

consider a finite element discretisation matrix of a three-dimensional waveguide

(waveguide3D) from The University of Florida Sparse Matrix Collection [22]. This

non-Hermitian matrix A is of size N = 21036 and has complex entries. Our aim is to

compute a few of the propagating wave modes associated with eigenvalues of A close to

the interval [0, 6× 10−3]. To this end we place p = 8 equidistant poles on this interval

and repeat them cyclically for eight times, thus building a rational Krylov space of

order m = 64, using modified Gram–Schmidt with reorthogonalization. From the

computed rational Krylov decomposition AVm+1Km = Vm+1Hm we extract τ -harmonic
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(a) Spectrum Λ(A) and location of poles.
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Figure 4.6: Left: “Exact” eigenvalues of the waveguide problem and harmonic Ritz approxi-
mations with relative residual norms below 10−8 extracted from a rational Krylov space of
order m = 64 with eight cyclically repeated poles, computed using the near-optimal parallel
strategy with p = 8 processors. Right: Residual norms of all m = 64 harmonic Ritz pairs
computed using different (parallel) strategies to compute the rational Krylov basis.

Table 4.2: Numerical quantities for the 3D waveguide example from Section 4.4.2.

strategy cond orth space

p = 1, (4.32) 1.6×103 9.8×10−16 1.8×10−13

p = 1, (4.6) 1.1×100 1.2×10−15 5.3×10−15

p = 8, (4.30) 2.5×1015 8.9×10−16 9.1×10−2

p = 8, (4.31) 6.8×108 8.4×10−16 3.0×10−8

p = 8, (4.32) 5.0×108 9.9×10−16 1.1×10−8

p = 8, (4.33) 2.1×104 1.0×10−15 7.3×10−12

Ritz pairs with τ = 3× 10−3; see Section 3.1.3 for more details. Figure 4.6(a) visualises

the eigenvalues, poles, and harmonic Ritz values.

As is typical for eigenvalue problems, the poles of the rational Krylov space are close

to the eigenvalues of A, and hence a continuation prediction using FOM is likely to be

unsuccessful. We therefore use the direct solver itself to predict the continuation vectors,

which doubles the number of linear system solves but the factorisations are computed

only once (per distinct pole). Figure 4.6(b) shows the harmonic Ritz residuals with

various continuation strategies discussed in this paper for p = 8 processors, including

our near-optimal continuation pair (4.33), which becomes optimal for p = 1 (i.e., the

predicted basis vectors are already orthogonal to the previous vectors). The timings

are reported in Figure 4.7. We notice that due to the rather expensive construction of

near-optimal continuation pairs the [1× p] version is faster than the p× 1 for p = 2,

but already for p = 4 the situation is reversed as then p× 1 scales better.
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Figure 4.7: CPU timings for the 3D waveguide example from Section 4.4.2.

We note that better results with all variants may be obtained by explicitly projecting

the eigenvalue problem with respect to the computed rational Krylov basis, instead of

using the quantities from the RAD. Such an explicit projection is, however, undesirable

because of the increase in computational cost.



5 Generalised rational
Krylov decompositions

In this chapter we study more advanced properties of RADs and quasi-RADs. Let us

review some of the main points from Chapter 2. For ease of reference, we review RADs

only. For a fixed rational Krylov space Qm+1 = Qm+1(A, b, qm) the poles are uniquely

defined by the starting vector b and, up to nonzero scaling of b, the reverse is true;

see Lemma 2.8. Further, by Theorem 2.10, there exists an orthonormal RAD

AVm+1Km = Vm+1Hm (5.1)

for Qm+1. Upon fixing the order of the poles, Theorem 2.16 guarantees the RAD to be

essentially unique.

Interestingly, the rational Krylov space Qm+1(A, b, qm) can also be interpreted

as a polynomial Krylov space with a different starting vector; Qm+1(A, b, qm) =

Km+1(A, qm(A)−1b). This follows directly from the definition of a rational Krylov space

since qm(A)−1 commutes with A. An interesting characteristic of Km+1(A, qm(A)−1b) is

that the subspaces Kj+1(A, qm(A)−1b) contain all vectors rjm(A)b with rjm = pj/qm ∈
Pj/qm being rational functions of type at most (j,m) having the fixed denominator qm,

for j = 0, 1, . . . ,m. In fact, Qm+1 can be interpreted as a rational Krylov space with

starting vector being almost any vector from Qm+1. Indeed, let a nonzero polynomial

q̆m ∈ Pm have roots disjoint from Λ(A), then

Qm+1(A, b, qm) = Qm+1(A, q̆m(A)qm(A)−1b, q̆m). (5.2)

A natural task to consider is that of transforming a (quasi-)RAD for Qm+1(A, b, qm)

into one for Qm+1(A, q̆m(A)qm(A)−1b, q̆m). In Section 5.1 we develop two algorithms for

this task, and in Section 5.2 we devise another one specifically tailored to the important

109
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case of a polynomial Krylov space. These considerations are linked to implicit filtering

for eigenvalue approximations, and further applications are considered in Chapters 6–7.

5.1 Rational Krylov decompositions

We develop two algorithms for obtaining an RAD for Qm+1(A, q̆m(A)qm(A)−1b, q̆m)

from an RAD for Qm+1(A, b, qm). The first algorithm relocates the poles by changing

the starting vector to a new one, while the second algorithm relocates poles to explicitly

given new ones. The relocation is, in both cases, conducted by applying transformations

to an initial RAD. These transformations destroy the RAD structure, which then needs

to be appropriately restored. While the first algorithm is applicable to both RADs and

quasi-RADs, the second algorithm is applicable to RADs only.

5.1.1. Moving the poles implicitly. Let (2.6) be a (quasi-)RAD forQm+1(A, b, qm),

and let b̆ = Vm+1c ∈ Qm+1(A, b, qm) be a nonzero vector. Take any nonsingular matrix

P ∈ Cm+1,m+1 such that Pe1 = c. (Of course, for quasi-RADs we want P ∈ Rm+1,m+1,

which also means that we consider only real-valued vectors c.) Then

AV̆m+1K̆m = V̆m+1H̆m (5.3)

holds with V̆m+1 := Vm+1P , H̆m := P−1Hm and K̆m := P−1Km. This construction

guarantees the first column v̆1 of V̆m+1 to be equal to b̆, however, the pencil (H̆m, K̆m)

may loose the upper Hessenberg structure. In the following we aim at recovering this

structure in (5.3) without affecting v̆1. For that purpose we generalise the notion of

RADs by first giving a technical definition. For a matrix Xm ∈ Cm+1,m the notation

X−m :=
[
0 Im

]
Xm is used to denote its lower m-by-m submatrix.

Definition 5.1. Let K̆m, H̆m ∈ Cm+1,m. We say that the pencil (H̆m, K̆m) is regular

if the lower m-by-m subpencil (H̆−m, K̆−m) is regular, i.e., q̆m(z) = det
(
zK̆−m− H̆−m

)

is not identically equal to zero.

Note that an upper Hessenberg pencil of size (m+ 1)-by-m is unreduced if and only

if it is regular. We are now ready to introduce decompositions of the form (5.3).

Definition 5.2. Let A ∈ CN,N . A relation of the form (5.3) where V̆m+1 ∈ CN,m+1

is of full column rank and the (m + 1)-by-m pencil (H̆m, K̆m) is regular is called a

generalised rational Krylov decomposition of order m. The generalised eigenvalues of
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(H̆−m, K̆−m) are called poles of the decomposition. If no pole of (5.3) is in Λ(A), then

(5.3) is called a rational Krylov decomposition (RKD).

The notion of (orthonormal) basis, space and equivalent decompositions are the

same as for RADs. We call a generalised RKD with an upper Hessenberg pencil a

generalised RAD. The two definitions above let us speculate that the unique poles

associated with b̆ are the eigenvalues of (H̆−m, K̆−m). The justification follows from

Theorem 2.10 (or, alternatively, Theorem 2.16) and the following result.

Theorem 5.3. Any (generalised) RKD is equivalent to a (generalised) RAD.

Proof. Let (5.3) be a generalised RKD. We need to bring both H̆m and K̆m into upper

Hessenberg form. To achieve this it suffices to bring
(
H̆−m, K̆−m

)
into generalised Schur

form. The existence of unitary Qm, Zm ∈ Cm,m such that Q∗mH̆−mZm and Q∗mK̆−mZm

are both upper triangular follows from, e.g., [42, Theorem 7.7.1]. Multiplying (5.3) from

the right with Zm and “inserting” Im+1 = Qm+1Q
∗
m+1, where Qm+1 = blkdiag(1, Qm),

we obtain the generalised RAD

A
(
V̆m+1Qm+1

)
Q∗m+1K̆mZm =

(
V̆m+1Qm+1

)
Q∗m+1H̆mZm.

Label Vm+1 := V̆m+1Qm+1, Hm := Q∗m+1H̆mZm and Km := Q∗m+1K̆mZm. Remarking

that R(V̆m+1) = R(Vm+1), and that (Hm, Km) is an upper Hessenberg pencil with

poles being identical to those of (H̆m, K̆m), we conclude the proof.

The proof of Theorem 5.3 is constructive and provides an algorithm for transforming

a generalised RKD into a generalised RAD; see Algorithm 5.6. This discussion is

summarised in Algorithm 5.7, which replaces the starting vector b with b̆ = Vm+1c.

The matrix P having its first column (a multiple of) the vector c is the (possibly

complex-valued) Householder reflector Pm+1 (see, e.g., [42, Section 5.1.13]) generated

in line 1.

Note that there is no guarantee that by transforming an RAD the resulting decom-

position is also an RAD, i.e., some poles may be moved to eigenvalues of A. We prove

later (cf. Theorem 5.4) that if b̆ = Vm+1c = p̆m(A)qm(A)−1b for some p̆m ∈ Pm, then

the poles of the decomposition are always the roots of p̆m, even if they coincide with

eigenvalues of A.

5.1.2. Moving the poles explicitly. If the vector b̆ is not given as a linear

combination of the basis vectors Vm+1 but rather by specifying the new poles q̆m one
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Algorithm 5.6 RAD structure recovery. RKToolbox: util recover rad

Input: Generalised RKD (5.3) and a flag quasi.
Output: Generalised RAD (2.6) equivalent to (5.3).

1. if Flag quasi is set to true and (5.3) is real-valued. then
2. Find orthogonal matrices Qm, Zm ∈ Rm,m such that (Q∗mH̆−mZm, Q

∗
mK̆−mZm)

is in generalised real Schur form, and let Qm+1 := blkdiag(1, Qm).
3. else
4. Find unitary matrices Qm, Zm ∈ Cm,m such that (Q∗mH̆−mZm, Q

∗
mK̆−mZm)

is in generalised Schur form, and let Qm+1 := blkdiag(1, Qm).
5. end if
6. Define Vm+1 := V̆m+1Qm+1, Hm := Q∗m+1H̆mZm and Km := Q∗m+1K̆mZm.

Algorithm 5.7 Implicit pole placement. RKToolbox: move poles impl

Input: Generalised RAD (5.3) and unit 2-norm e1 6= c ∈ Cm+1.
Output: Generalised RAD (2.6) spanning R(V̆m+1) with v1 = V̆m+1c.

1. Define Pm+1 := Im+1 − 2uu∗, where u := (c − e1)/‖c − e1‖2.

2. Update V̆m+1 := Vm+1Pm+1, H̆m := P ∗m+1H̆m, and K̆m := P ∗m+1K̆m.
3. Apply Algorithm 5.6 to the updated (5.3) to produce (2.6).

can compute c = V ∗m+1b̆, where b̆ = q̆m(A)qm(A)−1b, and still use Algorithm 5.7 to

recover the new decomposition. In the following we present an approach that works

directly with the pencil (Hm, Km), changing the poles iteratively one after the other.

Moving the first pole. The poles are the ratios of the subdiagonal elements of

(Hm, Km); see the discussion following (2.5). Applying a Givens rotation G acting

on planes (1, 2) from the left of the pencil preserves the upper Hessenberg structure

and, as we show, can move the first pole anywhere. We now derive the formulas for

s = eiφ sinϑ and c = cosϑ satisfying c2 + |s|2 = 1 and such that the Givens rotation

G = blkdiag

([
c −s
s c

]
, Im−1

)
(5.4)

replaces the pole ξ1 =: µ1/ν1 with ξ̆1 =: µ̆1/ν̆1 when applied to the pencil from the left.

Define H̆m = GHm and K̆m = GKm. This gives

h̆11 = ch11 − sh21, k̆11 = ck11 − sk21,

h̆21 = sh11 + ch21, k̆21 = sk11 + ck21.
(5.5)

Additionally, G is chosen so that µ̆1/ν̆1 = h̆21/k̆21. Using t := s/c, we derive

t =
ν̆`h21 − µ̆`k21

µ̆`k11 − ν̆`h11

, (5.6)
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where ` = 1. With the help of standard trigonometric relations we then arrive at

c = (1 + |t|2)−1/2, s = tc, if t 6=∞, and otherwise,

c = 0, s = 1.
(5.7)

Formula (5.2) asserts (with the roots of q̆m being ξ̆1, ξ2, ξ3, . . . , ξm) that this process

replaces the starting vector v1 with a multiple of (ν̆1A− µ̆1I)(ν1A− µ1I)−1v1. Let us

verify that. Define V̆n+1 = Vn+1G
∗. In particular,

v̆1 = cv1 − sv2. (5.8)

Recall that (2.12) reads (h21I − k21A)v2 = (k11A− h11I)v1. Hence, using the relation

(2.12) within (5.8) together with (5.5) provides

(
h21I − k21A

)
v̆1 =

[
c
(
h21I − k21A

)
− s
(
k11A− h11I

)]
v1 =

(
h̆21I − k̆21A

)
v1. (5.9)

Note that (2.12) holds even if h21/k21 = ξ1 ∈ Λ(A) as long as the generalised RAD

(2.6) exists. As we impose no constraints on ξ̆1, we conclude that (5.9) holds even if

ξ̆1 ∈ Λ(A) and/or ξ1 ∈ Λ(A). If however ξ1 /∈ Λ(A) we can further write

v̆1 =
(
h̆21I − k̆21A

)(
h21I − k21A

)−1
v1.

Moving all poles. Changing the other ratios with Givens rotations results in the

loss of the upper Hessenberg structure. However, the poles are the eigenvalues of the

pencil (H−m, K−m) which is (already) in generalised Schur form. After changing the

first pole, using the Givens rotation approach just described, the poles can be reordered

(see for instance [68, 70]) with the aim of bringing an unchanged pole to the front of

the decomposition so that it can be changed using a Givens rotation. Theoretically,

reordering the poles of an RAD is equivalent to using the poles within the rational

Arnoldi algorithm in a different order. This process is formalized in Algorithms 5.8–5.9

and an illustration is presented in Figure 5.1.

Let us now consider Algorithm 5.9 when k = m. As we have shown in (5.9),

after applying the first Givens rotation the starting vector v1 gets replaced with v
[1]
1

satisfying
(
ν1A− µ1I

)
v

[1]
1 = γ1

(
ν̆mA− µ̆mI

)
v1, (5.10)

where 0 6= γ1 ∈ C is a scaling factor. By reordering the poles we do not affect the “new

starting vector” v
[1]
1 and bring ξ2 to the leading positions, i.e., second row, first column,
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Algorithm 5.8 RAD poles reordering. RKToolbox: util reorder poles

Input: Generalised RAD (2.6) and permutation π ∈ S`, with ` ∈ {2, 3, . . . ,m}.
Output: Equivalent generalised RAD (2.6) with reordered poles.

1. Find unitary matrices Q`, Z` ∈ C`,` such that (Q∗`H−`Z`, Q
∗
`K−`Z`) is in generalised

Schur form with the jth generalised eigenvalue being hπ(j)+1,π(j)/kπ(j)+1,π(j), for
j = 1, 2, . . . , `, and let Qm+1 := blkdiag(1, Q`, Im−`) and Zm := blkdiag(Z`, Im−`).

2. Update Vm+1 := Vm+1Qm+1, Hm := Q∗m+1HmZm, and Km := Q∗m+1KmZm.

Algorithm 5.9 Explicit pole placement. RKToolbox: move poles expl

Input: Generalised RAD (2.6) and {ξ̆j}kj=1 ⊂ C, with k ∈ {1, 2, . . . ,m}.
Output: Updated generalised RAD (2.6) with the first k poles replaced by {ξ̆j}kj=1.

1. for j = 1, 2, . . . , k do
2. Let ` = k + 1− j, and introduce any µ̆`, ν̆` ∈ C such that µ̆`/ν̆` = ξ̆`.
3. Define G as in (5.4), with c and s given by (5.7), and t by (5.6).
4. Update Vm+1 := Vm+1G

∗, Hm := GHm, and Km := GKm.
5. Update (2.6) with Algorithm 5.8 using π = (2, 3, . . . , `, 1) ∈ S`, if ` > 1.
6. end for
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(a) Applying the first Givens rotation to replace ξ1 = ¬/À with ξ̂2 = ·/Ë.
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(b) Reordering the generalised Schur form of the lower 5× 5 part.
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(c) Applying the second Givens rotation to replace ξ2 = ­/Á with ξ̂1 = ¶/Ê.
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(d) Reordering the generalised Schur form of size 4.

Figure 5.1: Looking at the 6-by-5 upper-Hessenberg pencil while Algorithm 5.9 is applied on
the corresponding RAD with k = 2. The original poles are the ratios ¬/À,­/Á,. . . , °/Ä.
The first two poles are replaced with ·/Ë and ¶/Ê. The transition from × to ⊗ symbolizes
that the element potentially changes.
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where the next Givens rotation acts. Thus, for j = 2 the Givens rotation replaces v
[1]
1

with v
[2]
1 satisfying

(
ν2A− µ2I

)
v

[2]
1 = γ2

(
ν̆m−1A− µ̆m−1I

)
v

[1]
1 , where 0 6= γ2 ∈ C is a

scaling factor. Using (5.10) we obtain

(
ν1A− µ1I

)(
ν2A− µ2I

)
v

[2]
1 = γ1γ2

(
ν̆m−1A− µ̆m−1I

)(
ν̆mA− µ̆mI

)
v1.

Reasoning inductively we deduce

qm(A)v̆1 = γq̆m(A)v1, (5.11)

where 0 6= γ ∈ C is a scaling factor, v̆1 = v
[m]
1 , qm is given by (2.9), and q̆m is defined

in an analogous manner. The above discussion is the gist of the following result.

Theorem 5.4. Let Qm+1 = Qm+1(A, b, qm) be A-variant. If the generalised RKD

(5.3) with poles q̆m spans Qm+1 then v̆1 = γq̆m(A)qm(A)−1b with a scalar 0 6= γ ∈ C.

Alternatively, if v̆1 = q̆m(A)qm(A)−1b then there exists a generalised RKD with poles q̆m

spanning Qm+1.

Proof. If (5.3) spans Qm+1 we can transform it into an equivalent generalised RAD

(cf. Theorem 5.3) and then, using Algorithm 5.9, into (2.6), having poles qm and still

spanning Qm+1. According to Lemma 2.8, v1 is collinear with b. Therefore, it follows

from (5.11) that v̆1 = γq̆m(A)qm(A)−1b for some scalar 0 6= γ ∈ C. The other direction

follows from Theorem 2.10 and (5.11) after using Algorithm 5.9.

Corollary 5.5. Let (5.3) be a generalised RKD, and let α, β ∈ C be such that |α|+|β| 6=
0. The matrix αH̆m − βK̆m is of full column rank m.

Proof. The poles of (5.3) can be moved anywhere outside Λ(A), and the corresponding

RKD can be transformed, cf. Theorem 5.3, into an an RAD (2.6) so that overall

Hm = Q∗m+1H̆mZm, and Km = Q∗m+1K̆mZm, where Qm+1 ∈ Cm+1,m+1 and Zm ∈
Cm,m are unitary. By Lemma 2.6, αHm − βKm is of full column rank m, and hence

Qm+1(αHm − βKm)Z∗m is as well.

Theorem 5.4 shows that Algorithm 5.7 and Algorithm 5.9 are equivalent, provided

that equivalent input data are given. It also shows, together with Theorem 2.10 and

Theorem 5.3, that an (m+ 1)-dimensional space Vm+1 is a rational Krylov space if and

only if there exist a generalised RKD spanning Vm+1.

Implicitly restarted rational Arnoldi algorithm. Implicit filtering, or restarting,

aims at compressing the space Qm+1(A, b, qm) into Qm+1−k(A, pk(A)qk(A)−1b, q̆m−k),
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where k ∈ {1, 2, . . . ,m}, qm = qk · q̆m−k, and pk ∈ Pk is a polynomial with (formal)

roots (infinity allowed) in the region we want to filter out. In applications this technique

is usually used to deal with large memory requirements or orthogonalization costs for

Vm+1, or to purge unwanted or spurious eigenvalues (see, e.g., [19, 23, 24] and the

references given therein). Implicit filtering for RADs was first introduced in [24] and

further studied in [23]. Algorithm 5.9 can easily be used for implicit filtering. In fact,

applying Algorithm 5.9 with the k poles ξ̆j being the roots of pk implicitly applies the

filter pk(A)qk(A)−1 to the RAD. The k “new” poles correspond to the rightmost k

columns in V̆m+1, K̆m and H̆m, cf. Figure 5.1. Hence, truncating the decomposition to

the leading m+ 1− k columns completes the process. The derivation and algorithms

in [23, 24] are different, and it would perhaps be interesting to compare them. This

is, however, not done here. Pertinent ideas for polynomial Krylov methods have

recently appeared in [19] where the authors relate implicit filtering in the Krylov–Schur

algorithm [101, 103] with partial eigenvalue assignment.

5.2 Connection with polynomial Krylov spaces

For the particular case q̆m(z) = 1 we have Qm+1(A, v , qm) = Km+1(A, qm(A)−1v), and

we can recover a polynomial Arnoldi decomposition for Km+1(A, qm(A)−1v) from an

RAD for Qm+1(A, v , qm) using Algorithm 5.9 with all poles ξ̆j set to infinity. In this

case, a simpler method is to bring the pencil
(
Hm, Km

)
from upper-(quasi-)Hessenberg–

upper-Hessenberg to upper-Hessenberg–upper-triangular form. We shall refer to the

so obtained RAD as a polynomial RAD. The algorithm for RADs is outlined in [92,

p. 495], and we now review it. Afterwards, we generalise the algorithm to handle

quasi-RADs as well. The algorithm uses Givens rotation in a QZ-like fashion and to

facilitate the discussion, we use a graphical representation of the pencil before and

after a particular transformation, like, for instance,

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which depicts the starting structure of (Hm, Km) on the left-hand side, and the sought

after structure on the right-hand side. The goal is thus to annihilate the subdiagonal of

Km. We achieve this by applying a sequence of Givens rotations to the pencil (Hm, Km)
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from both sides. To this end we denote with Q`,`−1 ∈ Cm+1,m+1 a Givens rotation

acting in planes (`− 1, `), i.e.,

Q̂∗`,mQ`,`−1Q̂`,m = Im−1, and
[
e`−1 e`

]∗
Q`,`−1

[
e`−1 e`

]
=

[
c −s
s c

]
, (5.12)

where Q̂`,`−1 =
[
e1 e2 . . . e`−2 e`+1 e`+2 . . . em+1

]
, and c and s satisfy

c2 + |s|2 = 1, and

[
c −s
s c

] [
k`−1,`−1

k`,`−1

]
=

[
×
0

]
. (5.13)

With Zk,`−1 ∈ Cm,m we denote a Givens rotation acting in planes (`− 1, `), i.e.,

Ẑ∗`,mZk,`−1Ẑ`,m = Im−2, and
[
e`−1 e`

]∗
Zk,`−1

[
e`−1 e`

]
=

[
c −s
s c

]
, (5.14)

where Ẑ`,m =
[
e1 e2 . . . e`−2 e`+1 e`+2 . . . em

]
, and c and s satisfy

c2 + |s|2 = 1, and
[
hk,`−1 hk,`

] [c −s
s c

]
=
[
0 ×

]
. (5.15)

For the graphical illustrations we denote by ⊕ the element we are about to annihilate,

and by ⊗ the ellement we annihilate with. The first step is thus





× × × ×
× × × ×
× × ×
× ×
×


 ,



⊗ × × ×
⊕ × × ×
× × ×
× ×
×





 Q21−→






× × × ×
× × × ×
× × ×
× ×
×


 ,



× × × ×
× × ×
× × ×
× ×
×





 ,

and the RAD (3.1) is updated as

Vm+1 := Vm+1Q
∗
`,`−1, Hm := Q`,`−1Hm, and Km := Q`,`−1Km, (5.16)

with ` = 2. We can continue with





× × × ×
× × × ×
× × ×
× ×
×


 ,



× × × ×
⊗ × ×
⊕ × ×
× ×
×





 Q32−→






× × × ×
× × × ×
× × × ×

× ×
×


 ,



× × × ×
× × ×
× ×
× ×
×







and perform the update (5.16) with ` = 3. This may destroy the upper Hessenberg

structure of Hm, as h32 may be nonzero. The structure can be recovered by applying

Z31 from the right:





× × × ×
× × × ×
⊕ ⊗ × ×

× ×
×


 ,



× × × ×
× × ×
× ×
× ×
×





 Z31−→






× × × ×
× × × ×
× × ×
× ×
×


 ,



× × × ×
× × × ×

× ×
× ×
×





 ,

and hence, the updates

Hm := HmZk,`−1, and Km := KmZk,`−1, (5.17)
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Algorithm 5.10 (Quasi-)RAD to polynomial RAD. RKToolbox: util hh2th

Input: (Quasi-)RAD (3.1) for Qm+1(A, b, qm).
Output: Polynomial RAD (3.1) for Km+1(A, qm(A)−1b).

1. Initialize j := 1.
2. while j ≤ m do
3. if j + 1 ≤ m & hj+2,j 6= 0 then B Annihilating a 2× 2 block.

4. Perform (5.16), where Q`,`−1 satisfies (5.12)–(5.13); ` = j + 1.
5. Perform (5.16), where Q`,`−1 satisfies (5.12)–(5.13); ` = j + 2.
6. for i = j + 2, j + 1, . . . , 4 do B Bulge chasing.

7. Perform (5.17), where Zk,`−1 satisfies (5.14)–(5.15); k = i, and ` = i− 2.
8. Perform (5.17), where Zk,`−1 satisfies (5.14)–(5.15); k = i, and ` = i− 1.
9. Perform (5.16), where Q`,`−1 satisfies (5.12)–(5.13); ` = i− 2.

10. Perform (5.16), where Q`,`−1 satisfies (5.12)–(5.13); ` = i− 1.
11. end for
12. Perform (5.17), where Zk,`−1 satisfies (5.14)–(5.15); k = 3, and ` = 2.
13. Perform (5.16), where Q`,`−1 satisfies (5.12)–(5.13); ` = 2.
14. Increase j := j + 1.
15. else B Annihilating a single element.

16. Perform (5.16), where Q`,`−1 satisfies (5.12)–(5.13); ` = j + 1.
17. for i = j + 1, j, . . . , 3 do B Bulge chasing.

18. Perform (5.17), where Zk,`−1 satisfies (5.14)–(5.15); k = i, and ` = i− 1.
19. Perform (5.16), where Q`,`−1 satisfies (5.12)–(5.13); ` = i− 1.
20. end for
21. end if
22. Increase j := j + 1.
23. end while

with k = 3 and ` = 2 are in order. The element k21 may now be nonzero, and the

structure in Km is recovered by another Givens rotation of the form Q21:






× × × ×
× × × ×
× × ×
× ×
×


 ,



⊗ × × ×
⊕ × × ×

× ×
× ×
×





 Q21−→






× × × ×
× × × ×
× × ×
× ×
×


 ,



× × × ×
× × ×
× ×
× ×
×





 .

The process analogously continues until Km becomes upper triangular, as formalised

in Algorithm 5.10. The algorithm is stated for RADs and quasi-RADs together. The

difference for quasi-RADs is that for a 2-by-2 block on the subdiagonal we need to

use successively two Givens rotations of the form Q`,`−1, and two of the form Zk,`−1,

each acting on different planes. Furthermore, as a quasi-RAD is real-valued, we can

chose both Q`,`−1 and Zk,`−1 to be real-valued as well. The process of transforming a

quasi-RAD into a polynomial RAD is illustrated in Figure 5.2.

Remark 5.6. Algorithm 5.10 can be used to move all the poles of a (quasi-)RAD also
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([× × ×× × ×× ×× ×

]
,

[⊗ × ×⊕ × ×× ××

])
Q21−→

([× × ×× × ×× ×× ×

]
,

[× × ×⊗ ×⊕ ××

])
Q32−→

([× × ×× × ×× × ×× ×

]
,

[× × ×× ×⊗⊕

])
Q43−→

([× × ×× × ×× × ×⊕ ⊗ ×

]
,

[× × ×× ××

])
Z41−→

([× × ×× × ×× × ×⊕ ⊗

]
,

[× × ×× × ××

])
Z42−→

([× × ×× × ×× × ××

]
,

[⊗ × ×⊕ × ×× ×

])
Q21−→

([× × ×× × ×× × ××

]
,

[× × ×⊗ ×⊕ ×

])
Q32−→

([× × ×× × ×⊕ ⊗ ××

]
,

[× × ×× ××

])
Z31−→

([× × ×× × ×× ××

]
,

[⊗ × ×⊕ × ××

])
Q21−→

Figure 5.2: Transforming a quasi-RAD of order 3, with one real-valued and a pair of complex-
conjugate poles, into a polynomial RAD. The element marked with ⊕ on the left-hand side of
G−→ is annihilated with the element marked ⊗ using the Givens rotation G, and the resulting

nonzero structure is shown on the right-hand side of
G−→. In the end we obtain the desired

structure
([×××

×××
××

×

]
,
[×××

××
×

])
.

to any another finite pole µ/ν 6∈ Λ(A). Eq. (2.41) with B = I reads

(ρA− ηI)Vm+1(νHm − µKm) = (νA− µI)Vm+1(ρHm − ηKm). (5.18)

If we apply Algorithm 5.10 to the RAD (5.18), transforming (ρHm−ηKm, νHm−µKm)

into (Ĥm, K̂m), and Vm+1 into V̂m+1, we obtain (ρA−ηI)V̂m+1K̂m = (νA−µI)V̂m+1Ĥm,

where K̂m is upper triangular. Rearranging the terms with and without A we have

AV̂m+1(ρK̂m − νĤm) = V̂m+1(ηK̂m − µĤm), (5.19)

with (ηk̂j+1,j − µĥj+1,j)/(ρk̂j+1,j − νĥj+1,j) = µ/ν, for j = 1, 2, . . . ,m, as desired. For

quasi-RADs (3.1), the scalars µ and ν should be real-valued in order to preserve the

structure. Furthermore, (5.18) may still fail to be a quasi-RAD, as νHm − µKm may

have 2-by-2 blocks on the subdiagonal. The quasi-RAD structure can, however, be

recovered by Algorithm 5.6. Afterwards, Algorithm 5.10 can be used as explained.

5.3 RKToolbox corner

RKToolbox Example 5.1 is devoted to Algorithm 5.7, Theorem 2.12, and Theorem 5.4.

An RAD (2.6) is constructed in line 2. The poles of the RAD are the ratios of the

subdiagonal elements of the pencil (Hm, Km), and this is verified in line 3. Next,

in line 5, we change the starting vector b with v3 = V5e3. Theorem 2.12 asserts

v3 = p2(A)q2(A)−1b, where the roots of p2 are the generalised eigenvalues of (H2, K2).
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1 A = gallery(’tridiag ’, 100); b = ones (100, 1); xi = -(1:4);

2 [V, K, H] = rat_krylov (A, b, xi);

3 poles = diag(H, -1)./diag(K, -1); disp(poles.’)

4

5 [Khat , Hhat] = move_poles_impl(K, H, [0 0 1 0 0]’);

6 disp(eig(H(1:2, 1:2), K(1:2, 1:2)).’)

7 disp(util_pencil_poles(Khat , Hhat))

3 -1 -2 -3 -4

6 0.0058 1.0217

7 0.0058 1.0217 -3.0000 -4.0000

RKToolbox Example 5.1: Moving poles implicitely and roots of orthogonal rational functions.

1 A = gallery(’tridiag ’, 27) ; b = eye(27, 1); xi = -(1:3);

2 [V, K, H] = rat_krylov(A, b, xi);

3

4 [K, H, Q] = move_poles_expl(K, H, [8, 10, 1989]); V = V*Q’;

5 xi_hat = util_pencil_poles(K, H); disp(xi_hat)

6

7 V_hat = rat_krylov(A, V(:, 1), xi_hat);

8 disp(V_hat ’*V) % Should be unitary and diagonal.

5 8.0000e+00 1.0000e+01 1.9890e+03

8 1.0000e+00 1.8175e-17 1.0630e-16 4.7399e-17

8 1.0479e-16 -1.0000e+00 2.7472e-16 -1.2991e-16

8 -5.8781e-17 3.0426e-17 -1.0000e+00 3.9259e-16

8 2.7751e-17 -1.6025e-16 4.4440e-16 1.0000e+00

RKToolbox Example 5.2: Moving poles explicitly (to my birth date).

According to Theorem 5.4, by replacing the starting vector b with v3, the first two

poles are replaces with the roots of p2 (while the last two remain unchanged). This is

verified by lines 6–7. On line 7 we use the function util pencil poles provided by

the RKToolbox to check the new poles. Alternatively, we could look at the ratios of

the subdiagonal elements of (Ĥm, K̂m). The advantage of util pencil poles is that

it works for quasi-RADs as well (see Figure 2.2).

In line 5 of RKToolbox Example 5.2 we show the usage of move poles expl. One

can notice that, contrary to Algorithm 5.9, the basis Vm+1 is not transformed by

the routine to V̂m+1, but one can do it afterwards if required as the unitary matrix

Q ∈ Cm+1,m+1 is returned, as is Z ∈ Cm,m. The same applies to move poles impl.

According to the rational implicit Q theorem, the obtained RAD is essentially equal to

the RAD obtained by running the rational Arnoldi algorithm with the new starting
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1 A = diag (1:100); b = ones (100, 1);

2 [V, K, H] = rat_krylov(A, b, [19+9i 19-9i 2016] , ’real’);

3 disp(H)

4

5 [K, H] = util_hh2th(K, H);

6 disp(H)

3 14.0515 20.9495 46.2427

3 14.7806 4.2148 17.2506

3 -5.3519 11.2984 -33.0145

3 0 0 28.5537

6 17.0348 -6.2405 -0.1937

6 6.4442 -21.4397 -22.0285

6 0 -14.7299 -55.3649

6 0 0 27.7892

RKToolbox Example 5.3: Moving poles implicitly to infinity.

vector, and the new poles. This is in part verified by lines 7–8.

Finally, in RKToolbox Example 5.3, line 5, we demonstrate the usage of util hh2th

on a small example. The upper quasi-Hessenberg structure of H before the call to

util hh2th, and its transformed, upper Hessenberg, structure afterwards, are displayed.
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6 Rational Krylov fitting

Rational approximation problems arise in many areas of engineering and scientific

computing. A prominent example is that of system identification and model order

reduction, where calculated or measured frequency responses of dynamical systems are

approximated by (low-order) rational functions [3, 34, 37, 50, 54]. Some other areas

where rational approximants play an important role are analogue filter design [15], time-

stepping methods [112], transparent boundary conditions [65], and iterative methods

in numerical linear algebra; see, e.g., [33, 56, 79, 80, 106]. Here we focus on discrete

rational approximation in the least squares (LS) sense.

In its simplest form the weighted rational LS problem is the following: given data

pairs {(λi, fi)}Ni=1, with pairwise distinct λi, and positive weights {wi}Ni=1, find a rational

function r of type (m,m), that is, numerator and denominator of degree at most m,

such that

N∑

i=1

wi|fi − r(λi)|2 → min. (6.1)

The weights can be used to assign varying relevance to the data points. For example,

when the function values fi are known to be perturbed by white Gaussian noise, then

the wi can be chosen inversely proportional to the variance.

Even in their simplest form (6.1), rational LS problems are challenging. Finding a

rational function r = pm/qm in (6.1) corresponds to a nonlinear minimization problem

as the denominator qm is generally unknown, and solutions may depend discontinuously

on the data, be non-unique, or even not exist. An illustrating example inspired by

123
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Braess [18, p. 109] is to fix m ≥ 1 and N > 2m, and let

λi =
i− 1

N
, and fi =





1 if i = 1,

0 if 2 ≤ i ≤ N.

(6.2)

Then the sequence of rational functions rj(z) = 1/(1 + jz) makes the misfit for (6.1)

arbitrarily small as j →∞, but the fi’s do not correspond to values of a type (m,m)

rational function (there are too many roots). Hence a rational LS solution does not

exist. If, however, the data fi are slightly perturbed to f̂i = rj(λi) for an arbitrarily

large j, then of course rj itself is an LS solution to (6.1).

A very common approach for solving (6.1) approximately is linearisation. Consider

again the data (6.2) and the problem of finding polynomials pm and qm of degree at

most m such that
N∑

i=1

wi|fiqm(λi)− pm(λi)|2 → min. (6.3)

This problem has a trivial solution with qm ≡ 0, which we exclude by imposing, for

instance, the “point-wise” normalisation condition qm(0) = 1. Under this assumption,

the linear problem (6.3) is guaranteed to have a nontrivial solution (pm, qm), but the

solution is clearly not unique; since fi = 0 for i ≥ 2, any admissible denominator

polynomial qm with qm(0) = 1 corresponds to a minimal solution with pm 6≡ 0. On

the other hand, for the normalisation condition qm(1) = 1, the polynomials qm(z) = z

and pm ≡ 0 solve (6.3) with zero misfit. This example shows that linearised rational

LS problems can have non-unique solutions, and these may depend on normalisation

conditions. With both normalisation conditions, the rational function r = pm/qm with

(pm, qm) obtained from solving the linearised problem (6.3) may yield an arbitrarily

large (or even infinite) misfit for the nonlinear problem (6.1).

The pitfalls of nonlinear and linearised rational approximation problems have not

prevented the development of algorithms for their solution. An interesting overview

of algorithms for the nonlinear problem based on repeated linearisation, such as

Wittmeyer’s algorithm, is given in [4]. Robust solution methods for the linearised

problem using regularised SVD are discussed in [43, 44].

The aim of this chapter is to present and analyse Rational Krylov Fitting (RKFIT),

an iterative algorithm for solving rational LS problems more general than (6.1). For

given matrices A,F ∈ CN,N , a vector b ∈ CN , and k ∈ Z such that k ≥ −m, RKFIT
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attempts to find a rational function r of type (m+ k,m), such that the relative misfit

misfit =
‖Fb − r(A)b‖2

‖Fb‖2

→ min, (6.4)

is minimal. Note that this problem contains (6.1) as a special case if A = diag(λi),

F = diag(fi), b =
[√
w1
√
w2 . . .

√
wN
]
, and k = 0. For RKFIT, however, the

matrices A and F are not required to be diagonal. The matrix F may, for instance,

be a function of the matrix A, i.e., F = f(A). The benefit in obtaining the rational

approximation r, for instance, is that it can thereafter be evaluated for different

arguments A; see Section 6.2 and Section 6.6.

In Section 6.1 we show how rational Krylov techniques can be used to tackle

problems of the form (6.4) by introducing the RKFIT algorithm. In Section 6.2 we

report and discuss a few numerical experiments. Section 6.3 relates RKFIT to other

rational approximation algorithms, in particular to the popular vector fitting algorithm

[54, 52]. For simplicity, this discussion is concentrated to scalar rational approximations

problems like (6.1). We continue with Section 6.4 where we propose an automated

procedure for decreasing the degree parameters m and k, thereby reducing possible

deficiencies in the rational approximants.

In Section 6.5 we extend RKFIT in order to incorporate multiple matrices F [j], as

well as additional weighting. Specifically, for a given matrix A ∈ CN,N , two families

of matrices {F [j]}`j=1 ⊂ CN,N and {D[j]}`j=1 ⊂ CN,N , a vector b ∈ CN , and k ∈ Z such

that k ≥ −m, we now want to find a family of rational functions {r[j]}`j=1 ⊂ Pm+k/qm,

all sharing a common denominator qm ∈ Pm, such that the relative misfit

misfit =

√√√√
∑`

j=1 ‖D[j][F [j]b − r[j](A)b]‖2
F∑`

j=1 ‖D[j]F [j]b‖2
F

→ min, (6.5)

is minimal. This problem contains (6.4) as a special case if ` = 1 and D[1] = I.

The section is concluded with the pseudocode of the complete algorithm. Numerical

examples for the case ` > 1 are given in Section 6.6. In the first example we consider the

fitting of a multiple-input and multiple-output (MIMO) dynamical system and in the

second we propose a new pole optimization approach for exponential integration. Finally,

Section 6.7 details the usage of the rkfit implementation within the RKToolbox.
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Algorithm 6.11 High-level description of RKFIT.

1. Take initial guess for qm.
2. repeat
3. Set search space S := Qm+1(A, b, qm).
4. Set target space T := Km+k+1(A, qm(A)−1b). B See Section 6.1.1.

5. Find v = argmin v̆∈S
‖v̆‖2=1

‖ (I − PT )F v̆‖2. B See Section 6.1.2.

6. Let q̆m ∈ Pm be such that v = q̆m(A)qm(A)−1b. B See Section 6.1.2.

7. Set qm := q̆m. B See Corollary 6.2.

8. until stopping criteria is satisfied. B See Sections 6.1.2–6.1.3.

9. Construct wanted approximant r. B See Section 6.1.3.

6.1 The RKFIT algorithm

The RKFIT algorithm aims at finding a rational function r = pm+k/qm of type

(m+ k,m), solving (6.4). Since the denominator qm is not known and hence (6.4) is

nonlinear, RKFIT tries to iteratively improve a starting guess for qm by solving a

linearised problem at each iteration.

RKFIT is succinctly described in Algorithm 6.11. In the description we use two

linear spaces in CN , a search space S and a target space T , both of which are

(rational) Krylov spaces. Simply put, in the search space we look for poles that would

provide a better LS approximation to Fb from the target space. By PT we denote

the orthogonal projection onto T . The essence of Algorithm 6.11 is the relocation

of poles in lines 5–7. Since to any polynomial q̆m ∈ Pm we can associate a vector

v = q̆m(A)qm(A)−1b ∈ S, and vice versa, we may identify q̆m, the improvement of qm,

by looking for the corresponding vector v ∈ S. This is indeed done in line 5 and further

explained in Section 6.1.2. Corollary 6.2, a consequence of the following Theorem 6.1,

provides insight into the RKFIT pole relocation, i.e., lines 5–7 in Algorithm 6.11.

Theorem 6.1. Let qm, q
?
m ∈ Pm be nonzero polynomials with roots disjoint from the

spectrum of A ∈ CN,N . Fix −m ≤ k ∈ Z, and let b ∈ CN be such that 2m+k < d(A, b).

Assume that F = p?m+k(A)q?m(A)−1 for some p?m+k ∈ Pm+k. Define S and T as in

lines 3 and 4 of Algorithm 6.11, respectively, and let Vm+1 be an orthonormal basis of

S. Then, the matrix (I − PT )FVm+1 has a nullspace of dimension ∆m+ 1 if and only

if ∆m is the largest integer such that p?m+k/q
?
m is of type (m+ k −∆m,m−∆m).
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Proof. Let v̆ = p̆m(A)qm(A)−1b ∈ S, with p̆m ∈ Pm being arbitrary. Then

F v̆ = p?m+k(A)q?m(A)−1p̆m(A)qm(A)−1b =: p2m+k(A)q?m(A)−1qm(A)−1b

has a unique representation in terms of p2m+k/(q
?
mqm) since 2m+ k < d(A, b). Assume

that F v̆ ∈ T . In this case we also have the representation F v̆ = p̂m+k(A)qm(A)−1b,

with a uniquely determined p̂m+k ∈ Pm+k. By the uniqueness of the rational rep-

resentations we conclude that p2m+k/(q
?
mqm) = p̂m+k/qm, or equivalently, q?m divides

p2m+k = p̂m+kp̆m. Hence, the poles of pm+k−∆m/q
?
m−∆m = p̂m+k/q

?
m must be roots of

p̆m. The other ∆m roots of p̆m can be chosen arbitrarily, giving rise to the (∆m+ 1)-

dimensional subspace

N :=
{
p∆m(A)q?m−∆m(A)qm(A)−1b

∣∣ p∆m ∈ P∆m

}
⊆ S, (6.6)

whose elements v̆ are such that F v̆ ∈ T . Hence, ∆m + 1 is the dimension of the

nullspace of (I − PT )FVm+1.

Corollary 6.2. Let qm, q
?
m, F, A, b,m, k,S, and T be as in Theorem 6.1. Then p?m+k

and q?m are coprime and either deg(p?m+k) = m + k or deg(q?m) = m if and only if

there is a unique, up to unimodular scaling, solution to ‖ (I − PT )F v̆‖2
2 → min, over

all v̆ ∈ S of unit 2-norm. This solution is given by v = γq?m(A)qm(A)−1b with some

scaling factor γ ∈ C.

The corollary asserts that if Fb = pm+k(A)q?m(A)−1b and ∆m = 0, then the roots

of v = γq?m(A)qm(A)−1b match the unknown poles q?m and the next approximate

poles become qm := q?m. Hence RKFIT identifies the exact poles within one iteration

independently of the starting guess qm. If ∆m > 0 the exact m−∆m poles are also

found, but additional ∆m superfluous poles at arbitrary locations are present as well.

Based on Theorem 6.1 we develop in Section 6.4 an automatic procedure to reduce

the denominator degree m by ∆m, and adapt k. When dealing with noisy data (and

roundoff), or when Fb cannot be exactly represented as r(A)b for a rational function

r of type (m+ k,m), the convergence of RKFIT is not yet clear. In the remaining part

of this section, we show how the various parts of Algorithm 6.11 can be realized using

rational Krylov techniques.

6.1.1. Constructing the target space. We assume that an orthonormal RAD

AVm+1Km = Vm+1Hm (6.7)
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for Qm+1(A, b, qm) has been constructed, for instance, by means of Algorithm 2.2.

Hence for the search space we have S = R(Vm+1). If k = 0, then S = T and

PT = Vm+1V
∗
m+1. Otherwise S either has to be expanded (if k > 0) or compressed (if

k < 0) to get T .

Let us first consider superdiagonal approximants, i.e., the case k > 0. In this case

T = Qm+k+1(A, b, qm), the rational Krylov space of dimension m+ k + 1 with m poles

being the roots of qm and additional k poles at infinity. In order to get an orthonormal

basis for Qm+k+1(A, b, qm), we expand (6.7) to

AV̂m+k+1K̂m+k = V̂m+k+1Ĥm+k (6.8)

by performing k additional polynomial steps with the rational Arnoldi algorithm. Thus,

we have PT = V̂m+k+1V̂
∗
m+k+1. We shall use this notation even if k = 0, i.e., if k = 0,

then (6.8) coincides with (6.7), so that V̂m+1 is defined.

We now consider the subdiagonal case k < 0. The target space T is given by

T = Km+k+1(A, qm(A)−1b). Recall that Qm+1(A, b, qm) = Km+1(A, qm(A)−1b), and

(6.7) can be transformed into a polynomial RAD

AV̂m+1K̂m = V̂m+1Ĥm, (6.9)

for Km+1(A, qm(A)−1b) by Algorithm 5.10. An orthonormal basis for T is then given

by truncating V̂m+1 to V̂m+k+1, the first m+ k + 1 columns of V̂m+1.

6.1.2. Solving the linear problem and relocating poles. We consider the

problem in line 5 of Algorithm 6.11, i.e., the problem of finding a unit 2-norm vector

v ∈ S such that ‖ (I − PT )Fv‖2
2 is minimal. We have S = R(Vm+1) and T =

R(V̂m+k+1), with both Vm+1 and V̂m+k+1 being orthonormal. Defining the matrix

S = FVm+1 − V̂m+k+1

(
V̂ ∗m+k+1FVm+1

)
∈ CN,m+1, (6.10)

a solution is given by v = Vm+1ĉ, where ĉ is a right singular vector of S corresponding

to a smallest singular value σmin.

We now discuss how to determine the polynomial q̆m ∈ Pm, from line 6 of Al-

gorithm 6.11, such that v = Vm+1ĉ = q̆m(A)qm(A)−1b. Let Qm+1 ∈ Cm+1,m+1 be

unitary with first column Qm+1e1 = ĉ. Using (6.7) as an RAD for S, it follows from
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Theorem 5.4 that the roots of q̆m are the eigenvalues of the m-by-m pencil

([
0 Im

]
Q∗m+1Hm,

[
0 Im

]
Q∗m+1Km

)
. (6.11)

Note that if ĉ = e1, the first canonical unit vector, then v is collinear with b. In this

case q̆m and qm share the same roots and the algorithm stagnates.

6.1.3. Constructing the approximants. The approximant r of type (m + k,m)

is computed by LS approximation of Fb from the target rational Krylov space T .

More precisely, if (6.8) is an RAD for T , then the approximant r is represented by a

coefficient vector c ∈ Cm+k+1 such that r(A)b = ‖b‖2V̂m+k+1c. The coefficient vector

is given by

c = V̂ ∗m+k+1

(
Fb
)
/‖b‖2. (6.12)

Computing the coefficient vector c at each iteration does not significantly increase

the computational complexity because the vector Fb needs to be computed only once.

The vector c enables the cheap evaluation of the relative misfit (6.4), which allows to

stop the RKFIT iteration when a desired tolerance εtol is achieved.

6.1.4. Avoiding complex arithmetic. If F,A, and b are real-valued and the set of

starting poles {ξj}mj=1 is closed under complex conjugation, we can use Algorithm 2.3

instead of Algorithm 2.2 and work with quasi-RADs instead of RADs. The matrix

S in (6.10) is guaranteed to be real-valued and the generalized eigenproblem (6.11)

is real-valued as well. This guarantees that the relocated poles appear in complex-

conjugate pairs as well. If F,A, and b are not real-valued, but can be simultaneously

transformed into real-valued form, complex arithmetic can be avoided too. We show

how to achieve this for scalar data.

Let the data set {(λi, fi)}Ni=1 be closed under complex conjugation, i.e., if (λ, f) is

in the set, so is (λ, f). Without loss of generality, we assume that the pairs are ordered

so that {(λi, fi)}NR
i=1 ⊂ R2 and {(λi, fi)}Ni=NR+1 ⊂ C2 \R2, where the complex-conjugate

pairs in the latter subset appear next to each other, and 0 ≤ NR ≤ N is a natural number.

Define A = diag(λ1, λ2, . . . , λN), F = diag(f1, f2, . . . , fN), b = [1 1 . . . 1]T ∈ RN ,
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and let Q ∈ CN,N be unitary. Then

‖Fv − r(A)b‖2 = ‖ (QFQ∗) (Qb)−Qr(A)Q∗ (Qb) ‖2

= ‖ (QFQ∗) (Qb)− r(QAQ∗) (Qb) ‖2.

The first equality follows from the unitary invariance of the 2-norm, and the second

from [60, Theorem 1.13]. With the particular choice

Q = blkdiag

(
INR

,

√
2

2

[
1 1
−i i

]
, . . . ,

√
2

2

[
1 1
−i i

])
∈ CN,N ,

we have FR = QFQ∗ ∈ RN,N , AR = QAQ∗ ∈ RN,N and bR = Qb ∈ RN . Precisely,

FR = blkdiag

(
f1, . . . , fNR

,

[
<(fi1) −=(fi1)
=(fi1) <(fi1)

]
, . . . ,

[
<(fiNC

) −=(fiNC
)

=(fiNC
) <(fiNC

)

])
,

where NC = N−NR
2

and ij = NR + 2j − 1. For AR we obtain an analogous expression,

while bR = [1 . . . 1
√

2 0 . . .
√

2 0]T , with NR entries equal to 1, and NC

consecutive [
√

2 0]T copies.

6.2 Numerical experiments (with ` = 1)

Before studying and extending RKFIT further, we provide a some comments relating

the RKFIT approximation to those considered in Chapter 3, and then examine a few

examples.

In general, RKFIT approximations differ from those considered in Chapter 3. To

see this, let us considered the simplest case of F = A−1 with m = k = 1. Then,

by Corollary 6.2, RKFIT finds the minimizer after one reallocation independently

from the used starting pole. On the other hand, rational Arnoldi approximations are

based on the interpolation on Ritz values and thus the rational Arnoldi approximant

may be incorrect even if the solution A−1b is contained in the corresponding rational

Krylov space. The main reason for this difference is that RKFIT uses instead the LS

approximation from the rational Krylov space. This, however, makes the extrapolation

step more costly. We now consider three numerical examples.

6.2.1. Experiment 1: Fitting an artificial frequency response. We first con-

sider a diagonal matrix A ∈ CN,N with N = 200 linearly spaced eigenvalues in the
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Figure 6.1: Least-squares approximation of a rational function f of type (19, 18) using RKFIT
and the vector fitting code VFIT. Left: Relative error ‖f(A)b − r(A)b‖2/‖f(A)b‖2 after
each iteration of RKFIT (solid red) and VFIT (dashed blue). The two convergence curves
for each method correspond to different choices for the initial poles Ξ1 (circles), Ξ2 (squares),
and Ξ3 (triangles), respectively. Right: Plot of |f | over an interval on the imaginary axis
overlaid with the approximants |r| obtained after 10 iterations of RKFIT and VFIT with
initial poles Ξ1 (the curves are visually indistinguishable).

interval [10−5i, 105i]. The matrix F = f(A) is a rational matrix function of type (19, 18)

given in partial fraction form in [54, Section 4.1], and b = [1 1 . . . 1]T ∈ RN . We

compare RKFIT to the vector fitting algorithm (VFIT) [54, 52] which is available

online.1 We review VFIT and relate it to RKFIT in the following Section 6.3. In this

example we use k = −1, and we consider three different sets of starting poles, namely

• Ξ1: 9 log-spaced poles in [103i, 105i] and their complex conjugates;

• Ξ2: 12 log-spaced poles in [106i, 109i] and their complex conjugates;

• Ξ3: 18 infinite poles (applicable to RKFIT only);

and run 10 iterations of RKFIT and VFIT, respectively.

The numerical results are shown in Figure 6.1. Figure 6.1(a) shows the relative error

‖f(A)b − r(A)b‖2/‖f(A)b‖2 after each iteration. We observe that RKFIT converges

within the first 2 iterations for all three sets of initial poles Ξ1, Ξ2, and Ξ3. VFIT

requires 3 iterations starting with Ξ1 and it fails to converge within 10 iterations when

being initialised with the poles Ξ2. In the later case, the warnings that MATLAB raises

about solves of close-to-singular linear systems seem to indicate that VFIT relies on

ill-conditioned linear algebra. The choice of infinite initial poles Ξ3 is interesting in that

1
http://www.sintef.no/Projectweb/VECTFIT/Downloads/VFUT3/ as of November 2014.

http://www.sintef.no/Projectweb/VECTFIT/Downloads/VFUT3/
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it requires no a priori knowledge of the pole location (choosing all poles to be infinite is

not possible in the available VFIT code). Figure 6.1(b) shows the plot of |f(z)| over an

interval on the imaginary axis, together with the RKFIT and VFIT approximants |r(z)|.
The evaluation of the scalar function r may be based on Theorem 2.14. Indeed, the

vector c from (6.12) collects the coefficients of the approximant r(A)b in the rational

Krylov basis V̂m+k+1, i.e., r(A)b = ‖b‖2V̂m+k+1c. Using Theorem 2.14 we find that

r(z) can be evaluated for any point z ∈ C, excluding the poles, by computing a full

QR factorisation of zKm −Hm and forming an inner product of ‖b‖2c with the last

column q
(z)
m+1 of the Q factor scaled by its first entry, i.e., r(z) = ‖b‖2

(q
(z)
m+1)

∗c
(q

(z)
m+1)

∗
e1
. (In

Chapter 7 we introduce a more efficient evaluation algorithm.) Figure 6.1(b) essentially

coincides with [54, Figure 1] (it does not exactly coincide as apparently the figure in

that paper has been produced with a smaller number of sampling points, causing some

“spikes” to be missed or reduced).

6.2.2. Experiment 2: Square root of a symmetric matrix. We consider the

approximation of Fb with the matrix square root F = A1/2, A = tridiag(−1, 2,−1) ∈
R100,100, b = e1, and k = 0. Again, we test different sets of initial poles, namely

• Ξ1: 16 log-spaced poles in [−108,−10−8];

• Ξ2: 16 linearly spaced poles in [0, 4];

• Ξ3: 16 infinite poles (applicable to RKFIT only).

Note that the initial poles Ξ1 are placed on the branch cut of z1/2, which is a

reasonable initial guess for the poles of r. Some of the poles Ξ2 are located very close

to the eigenvalues of A whose spectral interval is approximately [0, 4]. The convergence,

i.e, the relative error per iteration of RKFIT and VFIT is shown on Figure 6.2(a). In

order to use VFIT for this problem, we have diagonalized A and provided the code

with weights corresponding to the components of b in the eigenvector basis of A. All

tests converge within at most 9 iterations, with the fastest convergence achieved by

RKFIT with initial guess Ξ1. In Figure 6.2(b) we show the error |z1/2 − r(z)| over an

interval containing the spectrum of A.

6.2.3. Experiment 3: Exponential of a nonnormal matrix. We consider the

approximation of Fb with the matrix exponential F = exp(A) of a Grcar-like matrix
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Figure 6.2: Least-squares approximation of the function f(z) = z1/2 using RKFIT and the
vector fitting code VFIT. Left: This plot shows the relative approximation error ‖f(A)b −
r(A)b‖2/‖f(A)b‖2 after each iteration of RKFIT (solid red) and VFIT (dashed blue). The
convergence curves for each method correspond to different choices for the initial poles Ξ1

(circles), Ξ2 (squares), and Ξ3 (triangles), respectively. Right: This is the plot of |f − r| over
an interval on the positive real axis obtained after 10 iterations of RKFIT and VFIT with
initial poles Ξ1. The vertical lines indicate the spectral interval of A.

A of size N = 100 generated in MATLAB via A = -5*gallery(’grcar’,N,3). The

eigenvalues and the boundary of the 10−6-pseudospectrum of A are shown on the right

of Figure 6.3. The vector is b = [1 1 . . . 1]T ∈ R100 and we use m = 16 with k = 0.

The different sets of initial poles for RKFIT we compare are:

• Ξ1: 16 poles equal to 0;

• Ξ2: 16 poles equal to −10;

• Ξ3: 16 infinite poles.

Note that A is not diagonalizable and therefore VFIT cannot be applied as in the

previous two experiments. In Figure 6.3(a) we observe excellent convergence of RKFIT

within 2 iterations starting with the initial poles Ξ1 and Ξ3.

With the initial poles Ξ2 the error stagnates on a higher level, possibly trapped

nearby a non-global minimum. As is the case with any nonlinear iteration, RKFIT is

not guaranteed to converge to a global minimum (even when it exists). We currently do

not have a good explanation of why the initial guess Ξ2 is bad, but we have verified that

ξ = −10 lies in the 10−6-pseudospectrum of A, and hence the initial rational Krylov

space may have too large components in just a few eigendirections of A. In Figure 6.3(b)

we have included a contour plot for the scalar error |f − r| over a region in the complex
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Figure 6.3: Least-squares approximation of the function f(z) = exp(z) using RKFIT. Left:
This plot shows the relative approximation error ‖f(A)b − r(A)b‖2/‖f(A)b‖2 after each
iteration of RKFIT (solid red) for different choices of initial poles Ξ1, Ξ2, and Ξ3, respectively.
Right: A plot of |f − r| over a region in the complex plane together with the poles of r (green
crosses), where r is the rational least squares approximant obtained after 10 iterations of
RKFIT with initial poles Ξ1. The eigenvalues of the Grcar matrix and the boundary of the
10−6-pseudospectrum are also shown.

plane together with the poles of r, and the aforementioned pseudospectrum.

6.3 Other rational approximation algorithms

Here we consider scalar rational approximation problems, like the one encountered in

the introduction of the chapter. In our discussion we refrain from using weights, and

fix the type of the rational approximant to be (m− 1,m), for the sake of simplicity

only. Hence, we consider the following problem: given data {(λi, fi)}Ni=1, with pairwise

distinct λi, find a rational function r of type (m− 1,m) such that

N∑

i=1

|fi − r(λi)|2 → min. (6.13)

A popular approach, introduced in [54], for solving problems of this form and designed

to fit frequency response measurements of dynamical systems is vector fitting (VFIT).

As already observed in Section 6.2, numerical experiments indicate that RKFIT

performs more robustly than VFIT. The main goal of this section is to clarify the

differences and similarities between the two methods. In Section 6.3.1, we briefly
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review the predecessors of VFIT, followed by a derivation of VFIT in Section 6.3.2.

In Section 6.3.3 we reformulate VFIT in the spirit of RKFIT in order to compare the

two methods. Other aspects of VFIT, applicable to RKFIT as well, are discussed

in Section 6.3.4.

6.3.1. Iteratively reweighted linearisation. The first attempt to solve the non-

linear problem (6.13) was through linearisation [74]. Let us write r = pm−1/qm with

pm−1 ∈ Pm−1 and qm ∈ Pm. Then the relation

N∑

i=1

|fi − r(λi)|2 =
N∑

i=1

|fiqm(λi)− pm−1(λi)|2
|qm(λi)|2

,

inspired Levy [74] to replace (6.13) with the problem of finding pm−1(z) =
∑m−1

j=0 αjz
j

and qm(z) = 1+
∑m

j=1 βjz
j such that

∑N
i=1 |fiqm(λi)−pm−1(λi)|2 is minimal. The latter

problem is linear in the unknowns {αj−1, βj}mj=1 and hence straightforward to solve.

However, as qm may vary substantially in magnitude over the data λi, the solution

r = pm−1/qm may be a poor approximation to a solution of (6.13).

As a remedy, Sanathanan and Koerner [96] suggest to replace the nonlinear problem

(6.13) with a sequence of linear problems. Once the linearised problem
∑N

i=1 |fiqm(λi)−
pm−1(λi)|2 → min has been solved, one can set q̆m := qm and solve a reweighted linear

problem
∑N

i=1
|fiqm(λi)−pm−1(λi)|

2

|q̆m(λi)|
2 → min. This process can be iterated until a satisfactory

approximation has been obtained or a maximal number of iterations has been performed.

Vector fitting is a reformulation of the Sanathanan–Koerner algorithm, where the

polynomials pm−1 and qm are not expanded in the monomial basis, but in a Lagrange

basis written in barycentric form; see below.

6.3.2. Vector fitting. Similarly to RKFIT, in VFIT one starts with an initial

guess qm of degree m for the denominator, but here with pairwise distinct finite

roots {ξj}mj=1 ∩ {λi}Ni=1 = ∅, and iteratively tries to improve it as follows. Write

again r = pm−1/qm with pm−1 and qm being unknown. Then r can be represented in

barycentric form with interpolation nodes {ξj}mj=1, that is,

r(z) =
pm−1(z)

qm(z)
=

pm−1/q̆m(z)

qm(z)/q̆m(z)
=

∑m
j=1

ϕj
z−ξj

1 +
∑m

j=1

ψj
z−ξj

. (6.14)



136 CHAPTER 6. RATIONAL KRYLOV FITTING

Algorithm 6.12 Vector fitting [54].

Input: Interpolation nodes {λi}Ni=1 and data {fi}Ni=1, and m ≤ N .
Output: Rational function r of type (m−1,m) such that r(λi) ≈ fi, for i = 1, 2, . . . , N .

1. Select pairwise distinct finite {ξj}mj=1 ∩ {λi}Ni=1 = ∅.
2. repeat

3. Solve (6.16) for
[
ϕT ψT

]T
.

4. Update {ξj}mj=1 := Λ(diag(ξj)−ψeT ).
5. until ψ 6≈ 0 B See Section 6.3.4.
6. Solve (6.16) for ϕ only, i.e., remove last m columns of the system matrix.
7. Set r(z) =

∑m
j=1

ϕj
z−ξj

.

The coefficients ϕj and ψj are the unknowns to be determined. Once found, we use

them to detect better interpolation nodes for the barycentric representation, and it

is hoped that, by iterating the process, those ultimately converge to the poles of an

(approximate) minimizer r.

The linearised version of (6.14) reads

r(z)

(
1 +

m∑

j=1

ψj
z − ξj

)
=

m∑

j=1

ϕj
z − ξj

. (6.15)

Inserting z = λi and replacing r(λi) with fi in (6.15) for i = 1, 2, . . . , N gives a linear

system of equations




1
λ1−ξ1

. . . 1
λ1−ξm

−f1
λ1−ξ1

. . . −f1
λ1−ξm

...
...

...
...

1
λN−ξ1

. . . 1
λN−ξm

−fN
λN−ξ1

. . . −fN
λN−ξm



[
ϕ
ψ

]
= f , (6.16)

which is solved in the LS sense. Afterwards, the poles {ξj}mj=1 are replaced by the roots

of the denominator 1 +
∑m

j=1

ψj
z−ξj

, i.e., by the eigenvalues of diag(ξj) − ψeT , where

e =
[
1 1 . . . 1

]T ∈ Cm; see [20, 41]. It is assumed that those will again be pairwise

distinct and disjoint from {λi}Ni=1. Iterating this process gives the VFIT algorithm;

see Algorithm 6.12. The reweighting as in the Sanathanan–Koerner algorithm is

implicitly achieved in VFIT through the change of interpolation nodes for the barycentric

representation.

6.3.3. The normalization condition. Although different approaches are used, both

mathematically and numerically, RKFIT and VFIT are similar. However, there is a
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considerable difference in the way the poles are relocated. Let us introduce

Cm+1 =




1 1
λ1−ξ1

. . . 1
λ1−ξm

...
...

...
1 1

λN−ξ1
. . . 1

λN−ξm


 , F =



f1

. . .

fN


 ,

and C̆m = Cm+1

[
0 Im

]T
. We now rewrite (6.16) in the equivalent form

[
C̆m −FCm+1

]


ϕ
ψ0

ψ


 = 0, (6.17)

with ψ0 = 1. For any fixed ψ ∈ Cm, solving (6.17) for ϕ ∈ Cm in the LS sense, subject

to ψ0 = 1, is equivalent to solving C̆mϕ = FCm+1[1 ψT ]T in the LS sense. Under

the (reasonable) assumption that C̆m ∈ CN,m is of full column rank with m ≤ N , the

unique solution is given by ϕ = C̆†mFCm+1[1 ψT ]T .

Therefore, when solving (6.16) in VFIT one gets r =
p̆m/qm

q̆m/qm
, where q̆m(z)/qm(z) =

1 +
∑m

j=1

ψj
z−ξj

and p̆m(z)/qm(z) =
∑m

j=1

ϕj
z−ξj

is the projection of f q̆m/qm, with f being

defined on the discrete set of interpolation nodes as f(λi) = fi, onto the target space,

here represented by C̆m.

Both VFIT and RKFIT solve an LS problem at each iteration, with the projec-

tion space represented in the partial fraction basis (VFIT) or via discrete-orthogonal

rational functions (RKFIT). Apart from the potential ill-conditioning of the partial

fraction basis, the main difference between VFIT and RKFIT is the constraints un-

der which the LS problems are solved. The constraint in VFIT is for q̆/q to have a

unit absolute term, ψ0 = 1. This asymptotic requirement degrades the convergence

properties of VFIT, especially when the approximate poles ξj are far from those of

a true minimizer and the interpolation nodes λi vary over a large scale of magni-

tudes. This was observed in [52], and as a fix it was proposed to use instead the

condition <
{∑N

i=1

(∑m
j=1

ψj
λi−ξj

+ ψ0

)}
= <

{
Nψ0 +

∑m
j=1

(∑N
i=1

1
λi−ξj

)
ψj

}
= N ,

incorporated as an additional equation in (6.16). This modification to a global nor-

malization condition avoids the problems with point-wise normalization conditions

exemplified in the introduction of the chapter. VFIT with this additional constrain

is known as relaxed VFIT. The normalization condition in RKFIT is also of global

nature, ‖v‖2 = ‖q̆(A)q(A)−1b‖2 = 1, cf. line 5 in Algorithm 6.11.
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6.3.4. On the choice of basis. In VFIT the approximant is expanded in the basis

of partial fractions which may lead to ill-conditioned linear algebra problems, as can

be anticipated by the appearance of Cauchy-like matrices, c.f. (6.16). Orthonormal

vector fitting was proposed as a remedy in [25], where the basis of partial fractions was

replaced by an orthonormal basis. Soon after it was claimed [53] that a numerically

more careful implementation of VFIT is as good as the orthonormal VFIT variant

proposed in [25], and hence the orthonormal VFIT never became a reality.

The issue with the orthonormal VFIT [25] is that the orthonormal basis is computed

by a Gram–Schmidt procedure applied to partial fractions, i.e., an ill-conditioned basis

is transformed into an orthonormal one, hence ill-conditioned linear algebra is not

avoided. The orthonormal basis in RKFIT is obtained from successively applying a

single partial fraction to the last basis vector, which amounts to the orthogonalisation

of a basis with typically lower condition number.

Numerical issues arising in VFIT have been recently discussed and mitigated in

[28, 29, 30]. Our approach avoids these problems altogether, and RKFIT is more

general.

So far we have assumed the interpolation nodes λi to be given. If they can be chosen

freely, one can choose them based on quadrature rules tailored to the application. This

may improve the numerical properties as well as the approximation. This is suggested

in [29, 30] for the discretized H2 approximation of transfer function measurements and

carries over straightforwardly to RKFIT.

To date, there are no comprehensive convergence analyses for VFIT and RKFIT.

In [72, Section IV] an example of degree m = 2 was constructed where the VFIT

fixed-point is repellent and hence the iteration diverges, independently of the starting

guess for the poles. Despite this one example, VFIT has been and is being successfully

used by the engineering community for various (large scale) problems. Both VFIT and

RKFIT have the property that if a rational function r is of sufficiently low degree and

there are sufficiently many interpolation nodes, then in the absence of roundoff r is

recovered exactly; see [72, Corollary III.1] and our Corollary 6.2.
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6.4 Tuning degree parameters m and k

In some applications, one may want to construct a rational function of sufficiently

small misfit without knowing the required degree parameters m and k in advance. In

such situations, one can try to fit the data with high enough (for instance maximal one

is willing to use) degree parameters and then, after RKFIT has found a sufficiently

good approximant, reduce m and k without deteriorating much the approximation

accuracy. In this section we present a strategy for performing this reduction.

We assume to have an (m + k,m) approximant r such that ‖Fb − r(A)b‖2 ≤
‖Fb‖2εtol, and then propose the following three-step procedure.

1. Reduce m to m−∆m ≥ 0, with ∆m such that m−∆m+ k ≥ 0.

2. Find approximant of type (m−∆m+ k,m−∆m).

3. Reduce k if required.

These steps are discussed in the following three subsections for the case when F is a

rational matrix function. An illustration is given in Figure 6.4. In Section 6.4.4 we

discuss the case when F is not a rational matrix function.

6.4.1. Reducing the denominator degree m. Assume that F is a rational matrix

function. Our reduction procedure for m is based on Theorem 6.1, which asserts that

a defect ∆m + 1 of the matrix S = (I − PT )FVm+1 corresponds to F being of type

(m−∆m+ k,m−∆m). Due to numerical roundoff, the numerical rank of S related

to a given tolerance ‖Fb‖2εtol (with, e.g., εtol = 10−15) is computed. More precisely,

we reduce m by the largest integer ∆m ≤ min{m,m+ k} such that

σm+1−∆m ≤ ‖Fb‖2εtol, (6.18)

where σ1 ≥ σ2 ≥ . . . ≥ σm+1 are the singular values of S.

6.4.2. Finding a lower-degree approximant. If ∆m ≥ 1, then m needs to be

reduced, and a new approximant of lower numerator and denominator degree is required.

As seen in the proof of Theorem 6.1, the ∆m+ 1 linearly independent vectors spanning

N all share as the greatest common divisor (GCD) the polynomial q?m−∆m, and its roots

should be used as poles of the reduced-degree rational approximant. The following

theorem shows how these roots can be obtained from the pencil (Hm, Km) in (6.7).
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Theorem 6.3. Let (2.6) be an RAD for Qm+1(A, b, qm), with m+ 1 < d(A, b), and

let the r̂j ≡ Vm+1ĉj for j = 1, 2, . . . ,∆m+ 1 be linearly independent. Assume that the

numerators of r̂j share as GCD a polynomial of degree m−∆m with no repeated roots.

Let X ∈ Cm+1,m+1 be a nonsingular matrix with Xej = ĉj for j = 1, 2, . . . ,∆m + 1.

Introduce

K? =
[
O Im−∆m

]
X−1Km

[
O

Im−∆m

]
, H? =

[
O Im−∆m

]
X−1Hm

[
O

Im−∆m

]
.

Then the roots of the GCD are the eigenvalues of the (m−∆m)-by-(m−∆m) generalized

eigenproblem (H?, K?).

Proof. We transform the RAD (6.7) into (6.9) where V̂m+1 = qm(A)Vm+1X, K̂m =

X−1Km, and Ĥm = X−1Hm. Hence, in scalar form (see Theorem 2.13) we have

zp(z)K̂m = p(z)Ĥm ⇐⇒ p(z)
(
zK̂m − Ĥm

)
= 0T ,

where p(z) = [p1(z) p2(z) . . . pm+1(z)] with, formally, pj = qmr̂j ∈ Pm. Introduce

K̂? and Ĥ? as the lower-right (m −∆m)-by-(m −∆m) submatrices of K̂m and Ĥm,

respectively. Since (H?, K?) = (Ĥ?, K̂?), we need to show that the roots of the GCD

are Λ(Ĥ?, K̂?).

Let λ be a common root of {pj}∆m+1
j=1 . Note that this is then also a common

root of {rj}∆m+1
j=1 . Then the last m − ∆m columns of p(λ)(λK̂m − Ĥm) = 0T as-

sert that λ is a generalized eigenvalue of (Ĥ?, K̂?) with left eigenvector p?(λ)∗ =

[p∆m+2(λ) . . . pm+1(λ)]∗ 6= 0.

Remark 6.4. We conjecture that Theorem 6.3 holds also if the GCD has repeated

roots. This is proved in [11, Theorem 4.1] under the additional assumption that K? is

nonsingular (which is conjectured to be superfluous [11, Remark 4.2]).

6.4.3. Numerator degree revealing basis. We now assume that the denominator

degree m := m − ∆m has already been reduced and a new approximant r of type

(m + k,m) such that ‖Fb − r(A)b‖2 ≤ ‖Fb‖2εtol has been found. Reducing the

numerator degree is a linear problem and we can guarantee the misfit to stay below

εtol after the reduction.

Let T = Km+k+1(A, qm(A)−1b) be the final target space such that r(A)b ∈ T ,

and let V̂j be an orthonormal basis for Kj(A, qm(A)−1b) for j = 1, 2, . . . ,m + k + 1.
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1Figure 6.4: Degree reduction when fitting Fb, where F = A(A + I)−1(A + 3I)−2, A =
tridiag(−1, 2,−1) ∈ RN,N , and b = e1 ∈ RN , with N = 150. Note that F is of type (1, 3).
The initial poles of the search space are all at infinity. The table on the left shows the number
∆m + 1 of singular values of (I − PT )FVm+1 below the tolerance ‖Fb‖2εtol = 10−15, for
different choices of m and k. For the choice (m + k,m) = (3, 9) we obtain ∆m = 2, and
hence the reduced type is (1, 7). In this case m is not fully reduced because k was chosen
too small. For the choice (m + k,m) = (8, 6) we obtain ∆m = 3, giving the reduced type
(5, 3). The roots of the GCD are −1 and −3 ± i2.32 × 10−7. With these three poles, and
other two at infinity, the type (5, 3) approximant r produces a relative misfit 7.02× 10−17.
The expansion coefficients cQ of r in the orthonormal rational basis are given to the right
of the table. They indicate that the last two poles at infinity are actually superfluous, and
r is of type at most (3, 3). Only the expansion of r in the orthonormal polynomial basis,
as explained in subsection 6.4.3, reveals that r is of type (1, 3). The coefficients cK in this
polynomial basis are also given.

As the vectors in V̂j have ascending numerator degree, this basis reveals the degree

of r(A)b by looking at the trailing expansion coefficients c ∈ Cm+k+1 satisfying

r(A)b/‖b‖2 = V̂m+k+1c.

Introduce c−i = [O Ii]c ∈ Ci for i = 1, 2, . . . ,m+ k. By the triangle inequality,

∥∥∥Fb/‖b‖2 − V̂m+k+1c + V̂m+k+1

[
0
c−i

] ∥∥∥
2
≤
∥∥∥Fb/‖b‖2 − V̂m+k+1c

∥∥∥
2

+
∥∥∥
[
0
c−i

] ∥∥∥
2
.

The degree of the numerator of r can therefore be reduced to m+ k −∆k, where ∆k

is the maximal integer 1 ≤ i ≤ m+ k such that

‖c−i‖2 ≤ ‖Fb‖2εtol − ‖Fb − r(A)b‖2, (6.19)

or ∆k = 0 if such an integer i does not exist. The last ∆k components of c may

hence be truncated, giving ĉ ∈ Cm+k−∆k+1 such that r̂ ≡ V̂m+k−∆k+1ĉ still satisfies

‖Fb − r̂(A)b‖2 ≤ ‖Fb‖2εtol.

6.4.4. General F . The following lemma extends Theorem 6.1 to the case when F is

not necessarily a rational matrix function.
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1Figure 6.5: Degree reduction when fitting Fb, where F = (A+A2)
1
2 , A = tridiag(−1, 2,−1) ∈

RN,N , and b = e1 ∈ RN , with N = 150. The poles of the search space are obtained after three
RKFIT iterations with initial poles all at infinity. The table on the left shows the number
∆m + 1 of singular values of (I − PT )FVm+1 below ‖Fb‖2εtolεsafe = 10−5 for different
choices of m and k. For the choice (m + k,m) = (9, 10) we obtain ∆m = 4, implying the
reduced type (5, 6). The choice (m+ k,m) = (11, 6) is reduced down to (9, 4) as ∆m = 2.
Representing this new approximant in the numerator degree-revealing basis allows for a
further reduction to type (5, 4). The table on the right visualizes how many RKFIT iterations
are required after reduction to reobtain an approximant of misfit below εtol = 10−4, using
the approximate GCD strategy for selecting the poles to restart RKFIT with.

Lemma 6.5. Let qm, A, b,m, k,S, T , and Vm+1 be as in Theorem 6.1. Assume that

for F ∈ CN,N we have a rational approximant r = pm+k/qm of type (m + k,m) such

that ‖Fb − r(A)b‖2 ≤ ‖Fb‖2εtol. If the matrix (I − PT )FVm+1 has ∆m+ 1 singular

values smaller than ‖Fb‖2εtol, then there exists a (∆m + 1)-dimensional subspace

Ng ⊆ S, containing b, such that

min
p∈Pm+k

∥∥Fv − p(A)qm(A)−1b
∥∥

2
≤ ‖Fb‖2εtol

for all v ∈ Ng, ‖v‖2 = 1.

Proof. Consider a thin SVD of the matrix (I − PT )FVm+1 = UΣW ∗, where Σ =

diag(σ1, σ2, . . . , σm+1) ∈ Rm+1,m+1 and σm+1 ≤ σm ≤ . . . ≤ σm−∆m ≤ ‖Fb‖2εtol by

assumption. Equivalently, (I −PT )FVm+1W = UΣ. Then the final ∆m+ 1 columns of

Vm+1W form a basis forNg. It follows from the assumption ‖Fb−r(A)b‖2 ≤ ‖Fb‖2εtol

that b ∈ Ng.
Recall that if F is a rational matrix function, then the spaceNg defined in Lemma 6.5

corresponds to the exact nullspace N = K∆m+1(A, q
?
m−∆m(A)qm(A)−1b) defined in

(6.6), where the (numerators of the) rational functions share as GCD the polynomial

q?m−∆m. In the general case Ng is only a subspace of the larger rational Krylov space
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S, and the rational functions present in Ng do not necessarily share a common denom-

inator. However, for every v = pm(A)qm(A)−1b ∈ Ng the vector Fpm(A)qm(A)−1b

is well approximated in the 2-norm by some vector p(A)qm(A)−1b, with p ∈ Pm+k.

This suggests that the polynomials pm corresponding to vectors v ∈ Ng share an

approximate GCD (see, e.g., [16]) whose roots approximate the poles of a “good” ra-

tional approximation r(A)b for Fb. We therefore propose to use the same reduction

procedure as suggested by Theorem 6.3.

As there is no guarantee that after reduction RKFIT will be able to find an approx-

imant of relative misfit below εtol, the use of a safety parameter εsafe is recommended.

More precisely, we reduce m by the largest integer ∆m ≤ min{m,m+ k} such that

σm+1−∆m ≤ ‖Fb‖2εtolεsafe, (6.20)

where σ1 ≥ σ2 ≥ . . . ≥ σm+1 are the singular values of S. By default we use εsafe = 0.1.

Figure 6.5 illustrates our reduction strategy for a non-rational function F . The table

on the left shows the number ∆m+ 1 of singular values of (I − PT )FVm+1 below the

threshold, for different choices of m and k. It can be observed that when F is not a

rational matrix function the table loses the regular structure like the one in Figure 6.4.

6.5 Extensions and complete algorithm

In order to tackle the more general problem given by (6.5) we only need to modify line 5

in Algorithm 6.11 into:

Find v = argmin
v̆∈S
‖v̆‖2=1

∑̀

j=1

‖D[j] (I − PT )F [j]v̆‖2.

Once again, a solution is v = Vm+1ĉ, where ĉ is a right singular vector corresponding

to a smallest singular value of the matrix

S = [ST1 ST2 . . . ST` ]T ∈ CN`,m+1, where (6.21)

Sj = D[j]
[
F [j]Vm+1 − V̆m+k+1

(
V̆ ∗m+k+1F

[j]Vm+1

)]
∈ CN,m+1. (6.22)

The ` rational approximants {r[j]}`j=1 may be represented by the coefficient vectors

c[j] =
(
D[j]V̂m+k+1

)†(
D[j]F [j]b

)
/‖b‖2, (6.23)
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Algorithm 6.13 Rational Krylov Fitting (RKFIT). RKToolbox: rkfit

Input: Matrix A ∈ CN,N , a family of matrices {F [j]}`j=1 ⊂ CN,N , a vector b ∈ CN ,
and a starting guess qm ∈ Pm for the denominator.

Optional input: A family of matrices {D[j]}`j=1 ⊂ CN,N , integer k ∈ Z such that
k ≥ −m, tolerances εtol, εsafe ∈ R+

0 , flags real and reduction, and maximal
number maxit of relocation iterations to perform.

Output: RAD (6.8) and vectors {c[j]}`j=1 representing the approximants {r[j]}`j=1.
1. Initialise missing optional input parameters as indicated by Table 6.1.
2. Set real to false if any of A, {F [j], D[j]}`j=1, b or qm is not real-valued.

3. Compute f [j] = D[j]F [j]b and f [j] = ‖f [j]‖2 for j = 1, 2, . . . , `.
4. for it = 1, 2, . . . , maxit do
5. Compute RAD (6.7) for S = Qm+1(A, b, qm) by Algorithm 2.2/2.3.
6. if k ≥ 0 then
7. Extend RAD (6.7) to (6.8) by adding k infinite poles using Algorithm 2.2/2.3.
8. else
9. Transform RAD (6.7) to (6.9) by Algorithm 5.10 and truncate it to (6.8).

10. end if
11. Form {c[j]}`j=1 as in (6.23).

12. Compute misfit as in (6.5) (exploiting the previously computed f [j] and f [j]).
13. if misfit ≤ εtol then
14. if reduction then
15. Form S, with singular values σ1 ≥ σ2 ≥ . . . ≥ σm+1, as in (6.21)–(6.22).
16. Let ∆m ≤ min{m,m+ k} be the largest integer for which (6.18) holds.
17. Compute m−∆m new poles following Theorem 6.3 with ĉj being the right

singular vectors corresponding to the smallest singular values of S.
18. Update m := m−∆m. Set reduction2 to true and reduction to false.
19. else
20. return
21. end if
22. end if
23. Compute S (if needed) and a right singular vector ĉ corresponding to σm+1.
24. Replace the poles qm with the generalised eigenvalues of (6.11), where Qm+1 is a

unitary/orthogonal matrix with Qm+1e1 = ĉ.
25. end for
26. if misfit ≤ εtol and reduction2 (defined) then
27. Update (6.8) using Algorithm 5.10 to obtain degree revealing basis (if needed).

28. Update accordingly {c[j]}`j=1 to get representation in the new basis.

29. Truncate close to zero components at the rear of c[j] following Section 6.4.3.
30. end if

Table 6.1: Default RKFIT parameters.

parameter value

Dj I

k 0

parameter value

εtol 10−15

εsafe 10−1

parameter value

real false

reduction false

parameter value

maxit 10
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which reduces to c[j] = V̂ ∗m+k+1

(
F [j]b

)
/‖b‖2 if D[j] = IN . The remaining parts of

RKFIT, with the exception of the degree reducing strategy, are unaffected. In order to

make sure that all of {r[j]}`j=1 have the same denominator the reduction of m should be

based on the singular values of S, and not the individual Sj . For the reduction of k, one

can either reduce k by the smallest acceptable reduction kj for r[j], or make potentially

different reductions for each r[j] locally. The complete algorithm is summarised in

Algorithm 6.13.

6.6 Numerical experiments (with ` > 1)

We now show the performance of RKFIT when ` > 1 for two different applications.

6.6.1. MIMO dynamical system. We consider a model for the transfer function

of the MIMO system ISS 1R [21]. There are 3 input and 3 output channels, giving

` = 9 functions to be fitted. We use N = 2 × 561 sampling points λj given in [21],

appearing in complex-conjugate pairs on the range ±i[10−2, 103]. The data are closed

under complex conjugation, and hence we can work with block-diagonal real-valued

matrices A and {F [j]}`j=1 as explained in Section 6.1.4. The magnitudes of the ` = 9

transfer functions to be fitted are plotted in Figure 6.6(a).

For the first experiment, we try to find rational functions of type (70, 70), and

then reducing their degrees. A tolerance of εtol = 10−3 is used. In Figure 6.6(b) two

convergence curves are shown, one for RKFIT as described in the previous sections

(solid line), and the other for an RKFIT variant that enforces the poles to be stable

(dashed line). A pole ξ ∈ C is stable if <(ξ) ≤ 0, and this is enforced in the pole

relocation step by simply flipping the real parts of the poles if necessary. At convergence

the poles happen to be stable in both cases. The initial poles were taken to be all

infinite, and the misfit at iteration 0 corresponds to these initial poles. Both RKFIT

variants achieve a misfit below εtol at iteration 4, after which the degree reduction

discussed in Section 6.4 takes place. The denominator degree m = 70 is reduced to

m − ∆m = 56 without stability enforcement, and to m − ∆ms = 54 with stability

enforcement. For the latter case, the 70 poles obtained after the fourth iteration and

the 54 poles corresponding to the approximate GCD are plotted in Figure 6.6(c). The
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Figure 6.6: Low-order model approximation to the MIMO system ISS from [21]. The frequency
responses are plotted in figure (a). In (b) the progress of RKFIT is given for m = 70 infinite
starting poles. At iteration 4 the degree reduction takes place. The 70 poles after convergence
and 54 selected ones (for the case when stability of poles in enforced) are illustrated in figure
(c). Figure (d) presents a comparison with VFIT, when searching for (55, 56) approximants,
and using two different starting guesses. More details are given in Section 6.6.1.

error corresponding to the new 56 (respectively 54) poles corresponds to iteration 5; as

it is still below εtol no further RKFIT iterations are required.

For the second experiment we compare RKFIT with the vector fitting code VFIT

[26, 52, 54] for two different choices of initial poles, and with different normalisation

conditions for VFIT. The results are reported in Figure 6.6(d). Here we search for type

(m− 1,m) approximants with m = 56, do not enforce the poles to be stable, and do

not perform any further degree reductions. The solid convergence curves are obtained

with initial poles of the form −ξ/100 ± iξ, with the ξ being logarithmically spaced

on [10−2, 103]. This is regarded as a good initial guess in the literature [52, 54]. The

dashed curves result when using as initial poles the eigenvalues of a real-valued random



6.6. NUMERICAL EXPERIMENTS (WITH ` > 1) 147

matrix. In both cases RKFIT outperforms VFIT, independently of the normalisation

condition used by VFIT. Depending on the 56 initial poles, RKFIT requires either 4 or

5 iterations. This has to be compared to Figure 6.6(b), where the 56 poles selected by

our reduction strategy immediately give a misfit below εtol so that no further iteration

is required. This provides further evidence that our approximate GCD strategy for

choosing the poles after reducing m works well in practice.

6.6.2. Pole optimization for exponential integration. Let us consider the prob-

lem of solving a linear constant-coefficient initial-value system of ODEs

Ku ′(t) + Lu(t) = 0, u(0) = u0,

at several time points t1, t2, . . . , t`. Problems like this arise, for example, after space-

discretization of parabolic PDEs via finite differences or finite elements, in which

case K and L are large sparse matrices. Assuming that K is nonsingular, the exact

solutions u(tj) are given by u(tj) = exp(−tjK−1L)u0, and a popular approach for

approximating u(tj) is to use rational functions r[j] of the form

r[j](z) =
σ

[j]
1

ξ1 − z
+

σ
[j]
2

ξ2 − z
+ · · ·+ σ[j]

m

ξm − z
,

constructed so that r[j](K−1L)u0 ≈ u(tj). Note that the poles of r[j] do not depend on

tj and we have

r[j](K−1L)u0 =
m∑

i=1

σ
[j]
i (ξiK − L)−1Ku0,

the evaluation of which amounts to the solution of m decoupled linear systems. Such

fixed-pole approximants have great computational advantage, in particular in combina-

tion with direct solvers (the LU factorisation of ξiK − L can be used for all tj) and on

parallel computers.

The correct design of the pole-residue pairs (ξi, σ
[j]
i ) is closely related to the scalar

rational approximation of e−tz, a problem which has received considerable attention

in the literature [17, 33, 79, 81, 106]. Let us assume that L is Hermitian positive

semi-definite, K is Hermitian positive definite, and introduce ‖v‖K :=
√
v ∗Kv . Then

‖ exp(−tjK−1L)b − r[j](K−1L)b‖K ≤ ‖b‖K max
λ∈Λ(L,K)

|e−tjλ − r[j](λ)|

≤ ‖b‖K max
λ≥0
|e−tjλ − r[j](λ)|. (6.24)
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In order to use RKFIT for finding poles ξ1, ξ2, . . . , ξm of the rational functions r[j]

such that the right-hand side (6.24) of the inequality is small for all j = 1, 2, . . . , `, we

propose a surrogate approach similar to that in [17]. Let A = diag(λ1, λ2, . . . , λN) be

a diagonal matrix with “sufficiently dense” eigenvalues on λ ≥ 0. In this example we

take N = 500 logspaced eigenvalues on the interval [10−6, 106]. Further, we define ` = 41

logspaced time points tj on the interval [10−1, 101], and the matrices F [j] = exp(−tjA).

We also define b = [1 1 . . . 1]T to assign equal weight to each eigenvalue of A and

then run RKFIT for finding a family of type (m − 1,m) rational functions r[j] with

m = 12 so that

absmisfit =
∑̀

j=1

‖F [j]b − r[j](A)b‖2
2

is minimised. Note that

absmisfit ≥
∑̀

j=1

‖F [j]b − r[j](A)b‖2
∞ =

∑̀

j=1

(
max
λ∈Λ(A)

|e−tjλ − r[j](λ)|
)2

,

and hence a small misfit implies that all r[j] are accurate uniform approximants for

e−tjλ on the eigenvalues Λ(A). If these eigenvalues are dense enough on λ ≥ 0 one can

expect the upper error bound (6.24) to be small.

Figure 6.7(a) shows the convergence of RKFIT, starting from an initial guess of

m = 12 poles at infinity (iteration 0 corresponds to the absolute misfit of the linearised

rational approximation problem). We find that RKFIT attains its smallest absolute

misfit of ≈ 3.44× 10−3 after 6 iterations. From iteration 7 onwards the misfit slightly

oscillates about the stagnation level. To evaluate the quality of the common-pole rational

approximants for all ` = 41 time points tj , we perform an experiment similar to that in

[106, Figure 6.1] by approximating u(tj) = exp(−tjL)u0 and comparing the result with

MATLAB expm. Here, L ∈ R2401,2401 is a finite-difference discretization of the scaled 2D

Laplace operator −0.02∆ on the domain [−1, 1]2 with homogeneous Dirichlet boundary

condition, and u0 corresponds to the discretization of u0(x, y) = (1 − x2)(1 − y2)ex

on that domain. Figure 6.7(b) shows the error ‖u(tj) − r[j](L)u0‖2 for each time

point tj (solid curve with circles). We see that the error is approximately uniform

and smaller than 6.21× 10−5 over the whole time interval [10−1, 101]. An alternative

is to approximate u(tj) with an extraction procedure introduced in Section 3.2. For

instance, the standard rational Arnoldi approximation corresponding to a quasi-RAD

for Qm+1(L, v , {ξj}mj=1) yields rational approximations of type (m− 1,m), same as the
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Figure 6.7: Approximating exp(−tL)u0 for a range of parameters t with rational approximants
sharing common poles. The convergence behaviour of RKFIT with the surrogate problem,
for approximants of type (11, 12), is shown in (a). In (b) we show the approximation error for
` = 41 logspaced time points t ∈ [0.1, 10] for the contour-based approach (dotted curve with
diamonds), RKFIT (solid curve with circles) and the standard rational Arnoldi approximation
with poles obtained from RKFIT (dashed curve with circles). In (c) we show the poles of the
two families of rational approximants, while in (d) we show the maximal error for the two
RKFIT-based approximations, uniformly over all tj ∈ [10−1, 101], for various m.

type of the approximants r[j]. Such approximations clearly have the same poles as

the r[j], however, the numerators are based on L rather then the surrogate matrix A

and thus may be better. This is indeed observed in Figure 6.7(b), were we denote the

standard rational Arnoldi approximation as “RKFIT + Arnoldi” (dashed curve with

circles). The m = 12 poles of the rational functions r[j] are shown in Figure 6.7(c)

(circles).

Another approach for obtaining a family of rational approximants is to use contour

integration [106]. Applying an m-point quadrature rule to the Cauchy integral on a
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contour Γ enclosing the positive real axis, one obtains a family of rational functions

r̃[j] whose poles are the quadrature points ξi ∈ Γ and whose residuals σ
[j]
i depend on

tj. As it has already been pointed out in [106], such quadrature-based approximants

tend be good only for a small range of parameters tj. In Figure 6.7(b) we see that

the error ‖u(tj) − r̃[j](L)u0‖2 increases rapidly away from t = 1 (dashed curve with

diamonds). We have used the same degree parameter m = 12 as above and the poles of

the r̃[j], which all lie on a parabolic contour [106, eq. (3.1)], are shown in Figure 6.7(c)

(diamonds).

6.7 RKToolbox corner

In RKToolbox Example 6.1 we list the possible calls to our rkfit implementation

of Algorithm 6.13 contained in the RKToolbox. Let us first comment on the list of

input parameters. F may be a matrix of size N -by-N , a function handle representing

matrix-matrix multiplication (such as, for instance, F = @(X)A*X, where A is a matrix),

or a cell array of ell such objects F{1}, F{2}, . . . , F{ell}. The variables A, b and xi

are the same as for rat krylov; see Section 2.6. On input, the 1-by-m row vector xi

contains the initial m poles.

As can be noted in lines 3–5, for the maximal number of iterations rkfit can perform,

we can provide the variable maxit, while for the tolerance εtol (see Section 6.1.3) we

can optionally provide tol. If the initial poles xi are closed under complex conjugation

and the remaining data are real-valued, we can take advantage of the structure and use

only real arithmetic, as shown in line 5. If some of this optional parameters are not

provided, then the default ones, as listed in Table 6.1, are used. On the other hand,

if one wants to specify the remaining optional parameters, the call in line 7 needs to

be employed. Therein, param is a structure with fields, for instance, maxit, tol and

real, with the same meaning as the variables in lines 3–5. Other fields include the flag

reduction which indicates whether the degree reduction from Section 6.4 needs to be

applied upon convergence, and k for specifying the type (m+ k,m). A complete list of

param’s fields may be obtained by typing help rkfit in MATLAB command line.

Finally, let us comment on the output list [xi, r, misfit, out]. The vector

xi contains the poles of the rational function(s) obtained by rkfit, misfit is a
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1 [xi, r, misfit , out] = rkfit(F, A, b, xi);

2

3 [xi, r, misfit , out] = rkfit(F, A, b, xi, maxit);

4 [xi, r, misfit , out] = rkfit(F, A, b, xi, maxit , tol);

5 [xi, r, misfit , out] = rkfit(F, A, b, xi, maxit , tol , ’real’);

6

7 [xi, r, misfit , out] = rkfit(F, A, b, xi, param);

RKToolbox Example 6.1: Using RKFIT.

vector containing the misfit (6.5) after each rkfit iteration, including the starting

one corresponding to the provided initial poles, and out is a structure that collects

various intermediate data, such as, for instance, the poles before and after reduction.

The variable r is either an instance of the MATLAB class RKFUN, or a cell array of

RKFUN instances, depending on `. The class RKFUN is used to represent a rational

function numerically, and is the topic of the following chapter.
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7 Working with rational
functions in pencil format

In this chapter we develop a system for working numerically with rational functions.

The system is based on the (scalar) RADs introduced in Section 2.2. It follows from

Theorem 2.13 that the unreduced pencil (Hm, Km) from an RAD

AVm+1Km = Vm+1Hm (7.1)

for Qm+1(A, b, qm) encodes a basis {rj}mj=0 for the set of all rational functions of type

at most (m,m) with the fixed denominator qm. A particular rational function r is then

specified by a vector c ∈ Cm+1 containing the unique expansion coefficients cj ∈ C of

r in that basis, i.e., such that r =
∑m

j=0 cj+1rj.

In Section 7.1 we show how to use the triplet (Hm, Km, c) ≡ r for the numerical

evaluation of r, as well as for pole and root finding. The evaluation is considered both

for scalars z ∈ C and for matrices A ∈ CN,N times a vector b ∈ CN , i.e., we show how

to evaluate r(z) and r(A)b. In Section 7.2 we show how to perform basic arithmetic

operations (addition, subtraction, multiplication and division) with objects in the new

format, and in Section 7.3 we consider more advanced operations. Specifically, we

consider changing the basis r is represented in, into the partial fraction basis that

reveals the residues of each pole. Finally, in Section 7.4 we discuss our MATLAB

implementation within the RKToolbox and we showcase the algorithms. Rational

functions are represented as instances of a MATLAB object of the class RKFUN

(which stands for Rational Krylov FUNction). The use of MATLAB object-oriented

programming capabilities for these purposes is inspired by the Chebfun system [27].

153
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7.1 Evaluation, pole and root finding

Let (Hm, Km) be a regular upper Hessenberg pencil of (m+ 1)-by-m complex-valued

matrices. Define {rj = pj/qj}mj=0 as in Theorem 2.13. Then, (2.18) still holds for any

z ∈ C such that qm(z) 6= 0, even if (Hm, Km) does not correspond to an RAD. The

proof is the same as for Theorem 2.13. This is a simple consequence of the fact that

the rational functions rj are defined recursively through (Hm, Km); see also (2.17). For

instance, (2.18) holds even when Hm = Km, which is, by Lemma 2.6, not possible for

RADs. In this case (Hm, Km) does not encode a basis but a generating system, that is,

a superset of a basis, {rj = pj/qj}mj=0 of rational functions. Nevertheless, the RKFUN

representation

r ≡ (Hm, Km, c), (7.2)

discussed in the introduction of the chapter, can be used to represent a rational

function r. Furthermore, we can use the real-valued version with an upper quasi-

Hessenberg matrix Hm together with a real-valued coefficient vector c ∈ Rm+1, if we

want to avoid complex arithmetic, when possible. However, for simplicity, we shall not

discuss the details for avoiding complex arithmetic, but the implementations in the

RKToolbox support this option.

7.1.1. Evaluation of an RKFUN. Let r be as in (7.2). Based on Theorem 2.14 we

can evaluate r at a scalar z ∈ C by considering the QR factorisation of Hm − zKm, as

was also discussed in Section 6.2. There is, however, a more efficient approach which,

unlike the QR approach, is applicable to matrices as well. Furthermore, the evaluation

of r at a scalar z ∈ C such that qm(z) 6= 0 can be interpreted as the (matrix-valued)

evaluation r(A)b with A =
[
z
]
∈ C1,1, and b =

[
1
]
∈ C1. Therefore, we discuss

directly the evaluation r(A)b.

Let A ∈ CN,N be a matrix whose eigenvalues are not poles of r, and let b ∈ CN

be a nonzero vector. Note that in this chapter there are no restrictions on N . In

order to form r(A)b we proceed in two steps. First, we compute the generating system

{rj(A)b}mj=0, and, second, we form r(A)b =
[
b r1(A)b r2(A)b . . . rm(A)b

]
c.

The generating system is computed recursively, essentially by rerunning the rational

Arnoldi algorithm with the given pencil (Hm, Km). These two-step procedure is given
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Algorithm 7.14 Evaluating an RKFUN. RKToolbox: rkfun.feval

Input: A ∈ CN,N , b ∈ CN , and r ≡ (Hm, Km, c) with poles outside Λ(A) and an
unreduced upper-Hessenberg pencil (Hm, Km) of size (m+ 1)-by-m.

Output: Vector r = r(A)b.

1. Let w1 = b.
2. for j = 1, 2, . . . ,m do
3. Let µj = hj+1,j, νj = kj+1,j, and take any ρj, ηj,∈ C such that µjρj 6= νjηj.

4. Set tj := µjkj − νjhj ∈ Cj, and yj := ηjkj − ρjhj ∈ Cj+1. B See (2.4), (2.5).

5. Compute w := (νjA− µjI)−1(ρjA− ηjI)Wjtj.
6. Compute wj+1 := (w −Wjyj)/yj+1,j. B We now have AWj+1Kj = Wj+1Hj .

7. end for
8. Compute r = Wm+1c.

in Algorithm 7.14. In the first part, lines 1–7, we form an RAD-like decomposition

AWm+1Km = Wm+1Hm, (7.3)

where Wm+1 :=
[
b r1(A)b r2(A)b . . . rm(A)b

]
is not necessarily of full column

rank (hence, RAD-like). Finally, in line 8 we form r(A)b.

7.1.2. Pole and root finding. For completeness, let us remark that the roots of an

RKFUN (7.2) can be computed as in (6.11), where Qm+1 is defined via c instead of

the notation ĉ used in the paragraph containing (6.11). Of course, the poles of (7.2)

are the eigenvalues of the lower m-by-m subpencil of (Hm, Km).

7.2 Basic arithmetic operations

We now consider performing basic arithmetic operations with RKFUNs. Specifically,

we consider two RKFUNs, say, (7.2) and

r̂ ≡ (Ĥ`, K̂`, ĉ), (7.4)

and want to obtain an RKFUN representation for r ± r̂, rr̂, and r/r̂.

7.2.1. Sum of RKFUNs. Let the scalar RADs corresponding to r and r̂ be

z
[
r0(z) r1(z) . . . rm(z)

]
Km =

[
r0(z) r1(z) . . . rm(z)

]
Hm, and (7.5)

z
[
r̂0(z) r̂1(z) . . . r̂`(z)

]
K̂` =

[
r̂0(z) r̂1(z) . . . r̂`(z)

]
Ĥ`, (7.6)
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respectively. Recall that r0 = r̂0 ≡ 1. Hence, r =
∑m

j=0 cj+1rj, r̂ =
∑`

j=0 ĉj+1r̂j, and

r + r̂ = (c1 + ĉ1) +
m∑

j=1

cj+1rj +
∑̀

j=1

ĉj+1r̂j. (7.7)

This suggests using the pencil (H⊕m+`, K
⊕
m+`) defined by

H⊕m+` :=




h1,1 h1,2 . . . h1,m ĥ1,1 ĥ1,2 . . . ĥ1,`

h2,1 h2,2 . . . h2,m

. . . . . .
...

. . . hm,m
hm+1,m

ĥ2,1 ĥ2,2 . . . ĥ2,`

. . . . . .
...

. . . ĥ`,`
ĥ`+1,`




∈ Cm+`+1,m+`, (7.8)

and analogously for K⊕m+`. Note that, for instance,

p⊕m+1(z) := det(zK⊕m+1 −H⊕m+1) = det(zk̂1,1 − ĥ1,1)qm(z),

with qm as in (2.9). Furthermore,

q⊕m+1(z) := det(z[0 Im+1]K⊕m+1 − [0 Im+1]H⊕m+1) = det(zk̂2,1 − ĥ2,1)qm(z),

and thus p⊕m+1/q
⊕
m+1 = r̂1. Similarly we find p⊕m+j/q

⊕
m+j = r̂j for the remaining

j = 2, 3, . . . , `. Therefore,

r + r̂ ≡ (H⊕m+`, K
⊕
m+`, c

⊕), (7.9)

where H⊕m+` is given by (7.8), K⊕m+` analogously, and, based on (7.7),

c⊕ =
[
c1 + ĉ1 c2 c3 . . . cm+1 ĉ2 ĉ3 . . . ĉ`+1

]T ∈ Cm+`+1. (7.10)

7.2.2. Difference of RKFUNs. If r̂ ≡ (Ĥ`, K̂`, ĉ), then −r̂ ≡ (Ĥ`, K̂`,−ĉ), and

therefore r − r̂ = r + (−r̂) can be formed as explained in Section 7.2.1. The two

algorithms are implemented in the RKToolbox as rkfun.plus and rkfun.minus.

7.2.3. Product of RKFUNs. Here we assume that cm+1 6= 0. If cm+1 = 0, then it

can be removed and the last columns of Hm and Km can be truncated. The idea is to
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merge the two generating systems for r and r̂, but first (7.5) is transformed so that

the function rm is replaced by r. For instance, if Cm+1 =
[
Im c

]
, then

[
r0(z) r1(z) . . . rm(z)

]
Cm+1 =

[
r0(z) r1(z) . . . rm−1(z) r(z)

]
,

and the pencil (Hm, Km) can be transformed accordingly to

(H̃m, K̃m) = (C−1
m+1Hm, C

−1
m+1Km). (7.11)

It is now easy to show that

rr̂ ≡ (H⊗m+`, K
⊗
m+`, c

⊗), (7.12)

where

H⊗m+` :=




h̃1,1 h̃1,2 . . . h̃1,m

h̃2,1 h̃2,2 . . . h̃2,m

. . . . . .
...

. . . h̃m,m
h̃m+1,m ĥ1,1 ĥ1,2 . . . ĥ1,`

ĥ2,1 ĥ2,2 . . . ĥ2,`

. . . . . .
...

. . . ĥ`,`
ĥ`+1,`




∈ Cm+`+1,m+`, (7.13)

analogously K⊗m+`, and with

c⊗ =
[
0 0 . . . 0 ĉ1 ĉ2 . . . ĉ`+1

]T ∈ Cm+`+1. (7.14)

Indeed, using the Laplace expansion of the involved determinants we find that

p⊗m+j(z)

q⊗m+j(z)
≡ det(zK⊗m+j −H⊗m+j)

det(z[0 Im+j]K
⊗
m+j − [0 Im+j]H

⊗
m+j)

= r(z)r̂j(z),

for j = 0, 1, . . . , `, which justifies (7.12).

7.2.4. Quotient of RKFUNs. The division r/r̂ is performed as the multiplication

r(r̂)−1. Hence, we proceed with the inversion of an RKFUN r̂. We use Algorithm 5.7

to relocate the poles of r̂ to its roots (only transformations with the upper Hessenberg

pencil are performed). Label with (H
[−1]
` , K

[−1]
` ) = (Q∗m+1Ĥ`Zm, Q

∗
m+1K̂`Zm) the
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transformed pencil. The newly obtained pencil represents a generating system for r̂−1,

since its poles coincide with those of r̂−1. Therefore

r̂−1 ≡ (H
[−1]
` , K

[−1]
` , c[−1]), (7.15)

for some c[−1] ∈ C`+1. It follows from Theorem 5.4 that c[−1] = γQm+1e1, where γ ∈ C

is a scaling factor which can be obtained by enforcing r̂(λ)r̂−1(λ) = 1, for any λ ∈ C

such that r̂(λ) 6= 0 is defined.

The two algorithms, multiplication and division of RKFUNs, are implemented in

the RKToolbox as rkfun.times and rkfun.rdivide, respectively. Furthermore, with

rkfun.power one can compute rk, for k ∈ Z, by repeated multiplication.

7.3 Obtaining the partial fraction basis

We consider an RKFUN r as in (7.2) with pairwise distinct finite poles ξ1, ξ2, . . . , ξm.

We comment on extensions at the end of the section. Our goal is to find these poles

and the corresponding residues ĉj. In other words, we wish to obtain the parameters

of the partial fraction expansion

r(z) = ĉ0 +
m∑

j=1

ĉj
z − ξj

(7.16)

of r. We achieve this by transforming the scalar RAD (2.18) into

zr̂(z)T




0
1

1
. . .

1




= r̂(z)T




1 1 · · · 1
ξ1

ξ2

. . .

ξm



, (7.17)

where r̂(z)T =
[
r̂0(z) r̂1(z) . . . r̂m(z)

]
, with r̂0 = r0 ≡ 1. This transformation is

achieved via left- and right-multiplication of the pencil (Hm, Km) by nonsingular matri-

ces Lm+1 ∈ Cm+1,m+1 and Rm ∈ Cm,m built as explained in Algorithm 7.15 below, thus

producing (Lm+1HmRm, Lm+1KmRm). The basis r(z)T =
[
r0(z) r1(z) . . . rm(z)

]

of (2.18) is transformed accordingly to r̂(z)T := r(z)TL−1
m+1. The jth column of (7.17)

guarantees zr̂j(z) = 1+ξj r̂j(z), or equivalently, r̂j(z) = 1
z−ξj

, for j = 1, 2, . . . ,m. There-

fore, r̂(z)T is indeed the partial fraction basis. Finally, r = r(z)Tc = r̂(z)TLm+1c and,

thus, ĉ := Lm+1c contains the residues of the partial fraction expansion.
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Algorithm 7.15 Conversion to partial fraction form. RKToolbox: rkfun.residue

Input: RKFUN r ≡ (Hm, Km, c) with pairwise distinct finite poles.

Output: RKFUN r ≡ (Ĥm, K̂m, ĉ), with (Ĥm, K̂m) as in (7.17).

1. Set Rm = ([0 Im]Km)−1, Hm := HmRm, and Km := KmRm.

2. Set Lm+1 = blkdiag(1, Q−1
m ), where [0 Im]HmQm = Qm diag(ξ1, ξ2, . . . , ξm).

3. Update Rm := RmQm, Hm := Lm+1HmQm, and Km := Lm+1KmQm.
4. Introduce Dm+1 = [−e1 Km].
5. Update Lm+1 := Dm+1Lm+1, Hm := Dm+1Hm, and Km := Dm+1Km.
6. Update Rm := RmDm, Hm := HmDm, Km := KmDm, where Dm = diag(1/h1j).
7. Redefine Dm := diag(1/kj+1,j), and Dm+1 := blkdiag(1, Dm).

8. Update Lm+1 := Dm+1Lm+1, Ĥm := Dm+1Hm, and K̂m := Dm+1Km.
9. Define ĉ := Lm+1c.

The complete algorithm consists of four parts and gradually builds the matrices

Lm+1 and Rm. The first part corresponds to lines 1–3 in Algorithm 7.15, and it

transforms the pencil so that the lower m-by-m part matches that of (7.17). The

matrix [0 Im]Km is nonsingular since it is upper-triangular with no zero elements on

the diagonal (there are no infinite poles), and hence Rm is well defined in line 1. The

eigenvector matrix Qm is nonsingular since the eigenvalues ξ1, ξ2, . . . , ξm of [0 Im]Hm

are all distinct. The second part corresponds to lines 4–5, and it zeroes the first row in

Km. The third part, line 6, takes care of the first row in Hm, setting all its elements to

one. After this transformation, as the fourth part, we rescale [0 Im]Km in lines 7–8,

to recover Im, and form ĉ in line 9.

The transformation of rT to the partial fraction basis r̂T has condition number

cond(Lm+1), which can be arbitrarily bad in particular if some of the poles ξj are

close to one another. Our implementation rkfun.residue in the RKToolbox therefore

supports the use of MATLAB variable precision arithmetic as well as the use of the

Advanpix Multiprecision Toolbox [1].

The partial fraction conversion can be extended to the case of repeated poles, both

finite and infinite, which then amounts to bringing the lower m-by-m part of the pencil

to Jordan canonical form instead of diagonal form. Such transformation raises the

problem of deciding when nearby poles should be treated as a single Jordan block. As

a starting point one could consider [69].
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7.4 RKToolbox corner

Computing with RKFUNs. In RKToolbox Example 7.1 we show some basic usage

of the RKFUN class. In line 1 we generate the RKFUN triplet for the rational function

r1(z) = (z+1)(z−2)

(z−3)
2 using the rkfun.nodes2rkfun function. The function allows to

generate RKFUNs by specifying the numerator and denominator as monic nodal

polynomials, i.e., by providing the roots and poles. Additional scaling may be applied

afterwards, as we shall see in RKToolbox Example 7.2. In line 2 we display the triplet

(H2, K2, c3) ≡ r1 as a 3-by-7 matrix with two NaN columns, one separating H2 from K2,

and the other separating K2 from c3. Line 4 shows how to evaluate r1(7) = 40
16

= 2.5,

while in the following two lines we calculate the roots and poles of r1, respectively.

A new rational function r2 is initialised in line 8 using rkfun.nodes2rkfun again.

The rational function has three roots and two poles which means that an additional

pole at infinity is included in the RKFUN triplet. In line 10 we compute r = r1 + r2,

having the RKFUN triplet (H⊕5 , K
⊕
5 , c

⊕
6 ). Only H⊕5 and c⊕6 are displayed in line 11,

again separated by a column of NaNs. The structure (7.8) can be observed in H⊕5 . In

line 13 we have verified that r(7) = r1(7) + r2(7).

Finally, in line 15 we form r := r1r2 using the MATLAB notation .* for scalar

multiplication. The function rkfun.times which implements the algorithm discussed

in Section 7.2.3 is invoked, and in the following line we show the corresponding H⊗5

and c⊗6 . In this case r1 already correspond to the last basis function and, consequently,

H̃2 = H2, cf. (7.11), can be spotted in the top-left corner of H⊗5 .

Chapter heading. Further possibilities for computing with RKFUNs are considered

in RKToolbox Example 7.2. In line 1 we define x, representing the identity map x 7→ x,

while in line 2 we construct cheby, representing the Chebyshev polynomial T8 of

degree 8. By typing help rkfun.gallery, one can obtain a complete list of supported

RKFUN constructors. In line 3 we show that basic arithmetic operations can be

performed between RKFUNs and scalars. The result is an RKFUN representing the

“expected” rational function. The fragment cheby(1./x) produces an RKFUN for the

composition T8 ◦ r, where r(x) = 1
x
. Composition r1 ◦ r2 between two RKFUNs r1 and

r2 is currently supported for rational functions r2 of type (0, 0), (1, 0), (0, 1) and (1, 1).



7.4. RKTOOLBOX CORNER 161

1 r1 = rkfun.nodes2rkfun ([-1, 2], [3, 3]);

2 disp([r1.H NaN(3, 1) r1.K NaN(3, 1) r1.coeffs ])

3

4 disp(r1(7))

5 disp(roots(r1).’)

6 disp(poles(r1).’)

7

8 r2 = rkfun.nodes2rkfun ([1, -2, 0], [-4, 5]);

9

10 r = r1 + r2; % calls rkfun.plus

11 [r.H NaN(6, 1) r.coeffs]

12

13 disp(r1(7)+r2(7) - r(7))

14

15 r = r1 .* r2; % calls rkfun.times

16 [r.H NaN(6, 1) r.coeffs]

2 1 0 NaN -1 0 NaN 0

2 3 -2 NaN 1 -1 NaN 0

2 0 3 NaN 0 1 NaN 1

4 2.5000

5 -1 2

6 3 3

11 1 0 2 0 0 NaN 0

11 3 -2 0 0 0 NaN 0

11 0 3 0 0 0 NaN 1

11 0 0 -4 0 0 NaN 0

11 0 0 0 5 1 NaN 0

11 0 0 0 0 1 NaN 1

13 0

16 1 0 0 0 0 NaN 0

16 3 -2 0 0 0 NaN 0

16 0 3 2 0 0 NaN 0

16 0 0 -4 0 0 NaN 0

16 0 0 0 5 1 NaN 0

16 0 0 0 0 1 NaN 1

RKToolbox Example 7.1: Cumputing with RKFUNs.

1 x = rkfun ();

2 cheby = rkfun(’cheby ’, 8);

3 cheby2 = 1./(1 + 1./(0.1* cheby (1./x).^2));

RKToolbox Example 7.2: Chapter heading.

The final function cheby2 is the Chebyshev type 2 filter plotted in Figure 7.1. The

filter is used, for instance, in signal processing in order to suppress unwanted or enhance

wanted frequency components from a signal [15, 110], and we use it for the design of

the chapter headings of this thesis.
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Figure 7.1: Chebyshev type 2 filter.

Degree reduction. When performing basic arithmetic operations with RKFUNs,

we combine the triplets to form a new, bigger, one. For instance, if we subtract an

RKFUN of type (m,m) from itself we obtain a new RKFUN of type (2m, 2m), instead

one of type (0, 0). This is because the sum (or difference) of two rational functions of

type (m,m) is of type (2m, 2m) in the worst case, and we currently do not perform

any degree reduction on the resulting sum (or difference). Similar problems may be

encountered with multiplication and division. As a consequence, the resulting RKFUN

may have degrees higher than necessary, which may lead to an unnecessarily fast growth

of parameters, and might also cause problems when evaluating the RKFUN nearby

spurious poles.

It might be possible to design a degree reduction similar to the degree reduction

from Section 6.4 for RKFIT. In fact, the arithmetic operations may be performed

by sampling the resulting function on a large enough set of interpolation nodes, and

then fitting them with RKFIT, which produces an RKFUN with optionally reduced

degrees. However, the need for providing interpolation nodes is a disadvantage, and,

more importantly, the poles after reduction with the algorithm from Section 6.4 are

not necessarily a subset of the original poles.

Rational Arnoldi approximation of f(A)b for Markov functions f . We present

a simple implementation, RKToolbox Example 7.3, of Algorithm 3.4, built on top of

the RKToolbox, RKFUNs, and other results from the thesis. The algorithm itself is

explained in Section 3.2.4. The implemented function is called util markovfunmv and

it takes as arguments the matrix A, starting vector b, (maximal) number of iterations
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1 function [V, K, H, vf] = util_markovfunmv(A, b, m, fm, Gamma)

2 V = [b];

3 K = zeros(1, 0);

4 H = zeros(1, 0);

5

6 j = 1;

7 xi = inf;

8

9 while j <= m

10 [V, K, H] = rat_krylov(A, V, K, H, xi); % Extend space.

11

12 [Q, R] = qr(K); % Find next pole.

13 s = rkfun(K, H, Q(:, end));

14 [~, index] = min(abs(s(Gamma)));

15 xi = Gamma(index);

16

17 Am = K\H;

18 vf = V*(K*fm(Am)*(K\(V’*b))); % New approximant.

19

20 % If vf is good enough , then stop ...

21

22 j = j+1;

23 end

24 end

RKToolbox Example 7.3: MATLAB implementation of Algorithm 3.4.

m, a function handle fm for f , and a discretisation Gamma of the region Γ. In lines 2–7

we initialise the data for storing the RAD parameters, including the first, infinite, pole.

The main part is the while loop spanning lines 9–23. The RAD is extended in line 10,

and the next pole is found in lines 12–15, where an RKFUN s, representing sm defined

in (3.23), is constructed. Here we can note that an RKFUN can be constructed by

explicitly specifying the corresponding triplet. It is easy to show that the roots of s

defined in line 13 are indeed the roots of sm, assuming exact arithmetic. The scaling is

irrelevant for finding the poles. The standard rational Arnoldi approximation if formed

in line 18. This may be followed by a check for convergence, which we do not include.

The interested reader is referred to [58, Section 4] for such considerations.
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8 Conclusions

We introduced the notion of rational Krylov decompositions and identified necessary

and sufficient conditions under which these decompositions correspond to rational

Krylov spaces. Particular attention was given to rational Arnoldi decompositions

(RADs) since they have a more intimate relation with a given basis of a rational Krylov

spaces. An RAD specifies the starting vector (up to scaling) and poles defining the

corresponding rational Krylov space Qm+1(A, b, qm). We derived basic properties of

RADs, generalised the implicit Q theorem to the rational case, and reconsidered the

usage of rational Krylov methods within known applications from the literature as well

as within new ones.

A common assumption in the rational Krylov literature is that the last pole has to

be infinite in order to cheaply, that is, without the need of additional explicit projection,

extract information from an RAD. We derived extraction strategies that do not impose

such a requirement, by considering implicit projections on specific subspaces of the

rational Krylov space at hand. Some of our numerical results indicate that the harmonic

Ritz extraction for the f(A)b problem may be better then standard approaches.

By studying the internal parameters of the rational Arnoldi algorithm, called

continuation pairs, we developed a more robust parallel implementation compared

to previously available work. Eigenvalue applications, where the poles of a rational

Krylov space are close to eigenvalues of A, appear to be more sensitive to the choice of

continuation pairs in the parallel variant, compared to, for instance, applications in

model order reduction or the approximation of f(A)b.

Studying the relocation of poles within an RAD led to RKFIT, an iterative algorithm

for nonlinear rational least squares approximation. Different algorithms for scalar

165
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nonlinear rational least squares have been considered in the past. One of the most

popular methods in the engineering community is vector fitting. However, vector

fitting and similar approaches typically lead to ill-conditioned numerical linear algebra

problems. By using orthonormal RADs we employed a well-conditioned basis for

the underlying space, and, ultimately, obtained a more robust and faster convergent

algorithm. Furthermore, by restating the problem in matrix form, we obtained a more

general algorithm. As a consequence, we believe that RKFIT may become a valuable

tool for finding good pole parameters for rational Krylov methods. For instance, in

applications where a small surrogate matrix Â, sharing similar spectral properties as

A, e.g., stemming from a coarsened finite element discretisation of a PDE, is available.

As an example we considered a problem of exponential integration.

Finally, we developed a system for working numerically with rational functions

represented in the so called RKFUN format, which is based on scalar RADs. For

instance, we demonstrated how to evaluate an RKFUN and how to perform basic

arithmetic operations with RKFUNs.

An interesting topic for future work regarding the rational Arnoldi algorithm is

backward error analysis. Recently the shift-and-invert Arnoldi was considered in [97],

but a generalisation of the analysis to the rational Arnoldi algorithm appears to be

nontrivial as the poles in the rational Arnoldi algorithm may change from one iteration

to the other. An additional difficulty appears to be the appearance of the reduced pencil

(Hm, Km) instead of a single upper Hessenberg matrix Hm. From a computational

point of view, an asynchronous high performance and parallel implementation of the

rational Arnoldi algorithm may be of interest, as well as an implementation of the

compact rational Arnoldi algorithm [109] where the basis has a particular Kronecker

structure stemming from the structure of the pencil (A,B). Regarding RKFIT, the

convergence and the degree reduction process may be further studied, perhaps to obtain

a better understanding of the approximate GCD. From a practical point of view, it

may be interesting to compare RKFIT with other rational approximation algorithms

and within distinct applications. Furthermore, devising different reduction procedures

may be of interest, for instance, when working with RKFUNs, where one may desire a

subset selection type of reduction, i.e., a reduction where the new poles are a subset of

the original ones.
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