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Abstract. Motion camouflage is a strategy whereby an aggressor
moves towards a target whilst appearing stationary to the target
except for the inevitable perceived change in size of the aggres-
sor as it approaches. The strategy has been observed in insects,
and mathematical models using discrete time or neural network
control have been used to simulate the behaviour. Here the dif-
ferential equations for motion camouflage are derived and some
simple cases are analysed. These equations are easy to simulate
numerically, and simulations indicate that motion camouflage is
more efficient than the classical pursuit strategy (‘move directly
towards the target’).
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1. Introduction

Motivated by observations of mating hoverflies, Srinivasen & Davey
(1995) describe a new form of stealth strategy which can be used by
one creature – the shadower, or aggressor – to approach another – the
shadowee, or target. In motion camouflage the aggressor moves so that
it is always on the line segment from the target to a given fixed point. If
the effect of size with distance is ignored then this means that the tar-
get is unable to tell that the aggressor is moving; the aggressor appears
to be at its initial position, or is camouflaged by a stationary object in
the background. There is now strong evidence that dragonflies use this
strategy in territorial disputes (Mizutani et al., 2003) and that humans
can be tricked in the same way (Anderson & McOwan, 2003b). An-
derson & McOwan (2003a) show that an aggressor can achieve a good
approximation to motion camouflage using a neural net control system,
and use this to reproduce motion camouflage trajectories. Srinivasen
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& Davey (1995) describe several algorithms by which approximate mo-
tion camouflage might be achieved, and present numerical simulations
of these algorithms.

These approaches to simulating motion camouflage paths are approx-
imate; they rely either on control methods or on a set of discrete time
observations. It is clearly important to be able to determine the accu-
racy and efficiency of these simulations, and in section two a differential
equation is derived which gives the ideal motion camouflage paths for
an aggressor moving with constant speed. This differential equation
makes it possible to compute accurate motion camouflage paths, and
to compare these with other strategies or with other algorithms for
motion camouflage. As a first step towards a better understanding
of motion camouflage the standard test case of a target moving with
constant velocity is treated mathematically at the end of section two.
In section three this test case is investigated numerically and the solu-
tions are compared with those of the classic pursuit strategy, ‘travel at
constant speed directly towards the target’, which goes back (possibly)
to da Vinci (Davis, 1962). In section four the strategy is applied to
the pursuit of a chaotic target in three dimensions, and in section five
variants of the ideal motion camouflage equations are discussed.

The simulations of sections three and four suggest that motion cam-
ouflage is more efficient than the classical pursuit strategy in the follow-
ing sense. If the aggressor is quicker than the target then the motion
camouflage strategy captures the target faster than the classical pursuit
strategy. Whist if the aggressor is slower than the target then motion
camouflage is more likely to capture the target than the classical pur-
suit strategy.

2. The ideal motion camouflage equations

Suppose that the position of the target is z(t) and that of the aggressor is r(t), where
z(t) is given and r(t) is to be found and both lie either in a plane or three dimensional Eu-
clidean space. If the aggressor uses motion camouflage then r(t) lies on the line connecting
the target and some fixed reference point r0. This means that

r(t) = r(0) + u(z(t)− r0) (1)

where u(t) is a real function with u(0) = 0. An initial consistency condition must also
hold:

r(0)× (z(0)− r0) = r0 × z(0)

which ensures that the aggressor starts on the connecting line. This condition is automati-
caly satisfied if r(0) = r0, i.e. if the fixed reference point is the beginning of the aggressors
attack. To simplify some manipulations this assumption will be made throughout the
remainder of this paper. In particular, this assumption implies that the aggressor and
target are at the same place if u = 1.

If u can be found then equation (1) determines r, and any continuous function u(t)
which takes values less than one represents a motion camouflage path. If both the aggressor
and the target move with constant speed (a standard assumption) then a unique aggres-
sive path is determined, although there is also a defensive solution. The constant speed
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constraint is |ż| = v and |ṙ| = c with v, c > 0. Differentiating (1) gives ṙ = u̇(z(t)−r0)+uż
so squaring gives

c2 = u̇2|z(t)− r0|2 + 2uu̇[(z(t)− r0).ż] + v2u2 (2)

This is a quadratic equation for u̇ and the standard quadratic formula with the plus sign
on the discriminant gives the differential equation for u:

u̇ =
−[(z(t)− r0).ż]u +

p
[(z(t)− r0).ż]2u2 − (v2u2 − c2)|z(t)− r0|2

|z(t)− r0|2 (3)

with the initial condition u(0) = 0. Since we have assumed that the fixed point r0 is the
initial position of the aggressor when the attack begins, r0 = r(0), the aggressor captures
the target in the sense that their positions coincide if there exists a time T > 0 with
u(T ) = 1.

Taking the negative sign of the discriminant when solving (2) for u̇ gives a defensive
solution; an equation for a stealthy retreat.

Equation (3) is the general equation which determines the ideal motion camouflage
path of the aggressor, and it is equally valid for motion in two or in three dimensions. The
equation is simple to integrate numerically for arbitrary z (see below), but in the special
case of the target moving with constant velocity in the plane it is possible to get a little
further mathematically.

In this special case with c = v = 1 we may take z = (0, t), so setting r0 = (x0, y0)
equation (3) becomes

u̇ =
−(t− y0)u +

p
x2

0 + (t− y0)2 − x2
0u

2

x2
0 + (t− y0)2

(4)

with initial condition u(0) = 0. Unfortunately this equation does not have a known
solution. To see this set s = t− y0 and define a new variable U by

u =
(s2 + x0)

1
2 U

x0(1 + U2)
1
2

(5)

Then (4) implies that U satisfies the differential equation

U ′ = (1 + U2)
�

x0
(s2+x2

0)
− 2s

(s2+x2
0)

U
�

(6)

where the prime denotes differentiation with respect to s and with U(−y0) = 0. This is an
Abel equation of the first kind (Murphy, 1962) for which no analytic solution is available
in the literature A survey of what is known about solutions to Abel’s equation can be
found in Cheb-Terrab & Roche (2000). The best we can do is to write

u(t) =
(x2

0 + (t− y0)
2)

1
2 U(t− y0)

x0(1 + [U(t− y0)]2)
1
2

(7)

where U(s) is the solution of (6) with U(−y0) = 0. Of course, the lack of an analytic

solution is no barrier to numerical simulations. Some solutions together with the corre-

sponding motion camouflage paths are shown in Figure 1.

3. Motion camouflage and classical pursuit curves

In classical pursuit strategies predators move directly towards their
prey at each instant, and the differential equations modelling this move-
ment are well established. Davis (1962) ascribes the first mathematical
treatment to Bouguer in 1732. If the prey has position z(t) then the
predator moves on the curve r(t) so that at each instant its velocity
is in the direction of the line from r(t) to z(t). If the predator has
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Figure 1. (a) Motion camouflage paths in the
(x, y)−plane. The target is moving along the y−axis
with v = 1 and position z = (0, t) and the aggressor has
speed c = 1.2. The curves represent the paths of twenty
aggressors with initial positions regularly spaced on the
circle of radius 5 units centred initial position of the tar-
get. (b) The corresponding functions u(t), which are the
solutions of (4). These curves can be matched to those
of Figure 1(a) by noting that at the point of capture, if
y = Y when x = 0 in (a) then u(Y ) = 1 in (b).

(constant) speed, c > 0, then the differential equation for the motion
is

ṙ = c
z− r

|z− r| (8)

If the prey is assumed to move in a straight line in the plane with unit
speed and c = 1 (Bouguer’s problem) then the equation can be solved
explicitly, although the paths are given in terms of special functions
(e.g. Davis, 1962).

Figure 2(a) shows a solution of the classical pursuit problem (P )
together with the corresponding motion camouflage curve (M) with c =
1.2 and v = 1, so the aggressor moves faster than the target. Although
the classical pursuit path looks more direct, this is an illusion. Figure
2(b) shows that it is only in the final phase of the motion that there
is a significant difference between the distance to the target in the two
strategies, and that it is the motion camouflage path which captures
the target first. (In the simulation shown, capture is interpreted as
being within 0.001 units of the target, but the qualitative statement
that motion camouflage captures first appears to be robust). Indeed,
further numerical simulations suggest that this is true more generally:
the distance between the aggressor and target decreases initially with
the same linear behaviour in both the classical pursuit strategy and the
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Figure 2. (a) A motion camouflage path M and a pur-
suit path P in the (x, y)−plane. The target is moving
along the y−axis with v = 1 and position z = (0, t) and
the aggressor has speed c = 1.2. The initial condition is
(5 cos πθ

4
, 5 sin πθ

4
) with θ = 0.5. (b) The distance from

the target (d) as a function of time (t) on the two paths
shown in (a). (c) The time (t) to capture as a function
of angle if the target moves as in (a). The angular vari-
able θ is in units of π

4
as in (a). The aggressor has speed

c = 1.2 and capture is interpreted as being within 0.001
units of the target. The times for the motion camouflage
strategy are labelled M and the times for the pursuit
strategy are labelled P .

motion camouflage strategy, but as shown in Figure 2(c), the simulated
motion camouflage paths are shorter (and hence more efficient) for all
initial conditions equidistant from the starting point of the target.

If the speed of the aggressor is less than the speed of the target
then motion camouflage appears to be more efficient than the pursuit
strategy in the sense that capture is possible from a greater range of
initial conditions which are equidistant from the initial position of the
target but at different angles angles to the line of motion of the target.
This observation is illustrated further in the next section.

4. Chaotic pursuit

The examples above model motion in the plane, and the motion of
the target is linear. In this section the same models, motion camouglage
given by (3) and classical pursuit by (8), are used to investigate more
complicated three dimensional motion of the target.

We will assume that the target moves with constant speed v along
the Rössler chaotic attractor (Rössler, 1976). In other words, z =
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Figure 3. (a) The Rössler attractor: projection onto
the (z1, z2)−plane of solutions to (9) with initial condi-
tions (2, 5, 7). The results of 100 time units with v = 20
are shown. (b) The motion camouflage solution with
v = 20, c = 18. The initial conditions of the aggressor
are (3,−1,−500). (c) The corresponding classical pur-
suit path.

(z1, z2, z3), with

ż1 = (−z2 − z3)/∆
ż2 = (z1 + 0.15z2)/∆
ż3 = (0.2− 10z3 + z1z3)/∆

(9)

where v2∆2 = (z2+z3)
2+(z1+0.15z2)

2+(0.2−10z3+z1z3)
2 and ∆ ≥ 0.

∆ has been chosen so that the target moves with speed v, and ∆ = 0
at the stationary points of the differential equation, so (9) is only valid
on the attractor provided it does not contain any stationary points. No
direct biological relevance is claimed for this choice of chaotic target
path, which is shown in Figure 3(a), but it is natural to test pursuit
strategies against more complicated target paths.

Figures 3(b) shows the path obtained by integrating the coupled set
of four differential equations for motion camouflage, (3) and (9), with
initial target position (2, 5, 7) and initial aggressor position (3,−1,−500)
and with v = 20 and c = 18. Despite the fact that the target moves
faster than the aggressor, the aggressor captures the target after ap-
proximately 26.4 time units. The classic pursuit problem, equations (8)
and (9), results in a six dimensional set of differential equations and,
given the same initial positions and speeds the pursuit path is shown
in Figure 3(c). In this case the aggressor moves close to the attrac-
tor containing the target’s path, but does not get within 0.1 units of
the target in the 200 units of time shown here. Again, this illustrates
that motion camouflage is a more efficient interception strategy than
classical pursuit.
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5. Related Models

The techniques described here can be used to construct other motion
camouflage models incorporating different effects. For example, there
is nothing in the derivation of (3) that requires the target to move with
constant speed, and the equation could easily be modified to allow the
target to change speed. The modification to (3) on the assumption
that there is a time delay τ between the aggressor’s observation of the
position of the target and its motion can also be derived by replacing
z(t) by z(t− τ) in section two.

Whilst it is easy to relax the assumption of constant speed for the
target, it is harder to do the same thing for the aggressor, since it must
be replaced by another constraint in order to give a unique aggressive
solution. One possible alternative would be to impose a maximum
relative speed of approach. This is natural, since if the aggressor grows
too rapidly as perceived by the target then the motion camouflage is
more likely to be detected. It would be interesting to determine which
strategy within the space of all motion camouflage strategies is adopted
by dragonflies. The framework developed here should help to make this
possible.

A related motion camouflage strategy which is also observed in drag-
onflies (Mizutani et al., 2003) involves remaining stationary with re-
spect to distant objects, i.e. remaining on the same bearing as seen by
the target. As Mitzutani et al. (2003) note, this is equivalent to taking
the fixed reference point at infinity, and is often cited in sailing man-
uals (and pilot training) as a criterion indicating a potential collision
course. Again, this is easy to detect in experiments as the lines con-
necting the aggressor and the target at different times will be parallel.
The differential equation for the motion of the aggressor can be derived
by fixing a constant unit vector e and noting that the condition that
the angle between the line from the target to the aggressor and the
direction determined by e as seen from the target at z is

(z + e).(z− r) = |z + e||z− r| cos θ (10)

which is the starting point for the derivation of another set of equations.
In this case, linear motion by the target is met by linear motion from
the aggressor if capture is possible.

6. Conclusion

Motion camouflage strategies are likely to be encountered in many
circumstances; humans seem equally susceptible (Anderson & McOwan,
2003b). This note provides a simple modelling technique which can be
used to assess the strategy numerically using widely available differ-
ential equation packages. This has also made it possible to provide
accurate pictures of the ideal motion in standard and non-standard
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cases. Moreover, the theoretical ideas presented are easily modified to
incorporate refinements of the constant speed solutions.

If the target moves in a straight line with constant speed, the mo-
tion camouflage equations do not have a closed solution in terms of
standard special functions, but simulations show that the motion cam-
ouflage strategy is more efficient than the classical pursuit strategy
(Figure 2(c)) although aggressors moving according to the two strate-
gies initially start to close the gap between themselves and the target
at the same linear rate. Furthermore, simulations indicate that even if
the aggressor moves slower than the target capture is possible in cases
where the classical pursuit path ends up following the trail of the tar-
get, and that this holds whether the target moves on a straight line or
on a chaotic attractor.

This paper provides a coherent mathematical framework within which
motion camouflage strategies can be analysed. It raises many ques-
tions, mathematical and biological: Which motion camouflage strategy
is adopted by dragonflies and hoverflies? How is the transition between
motion camouflage and other pursuit strategies determined in real sit-
uations (i.e. when does the illusion break down due to size, and how
should the target and aggressor react to this discovery)? What is the
relationship between the aggressors path and the strange attractor in
Figure 3(c)? These questions and others can at least be given a clear
mathematical formulation.

The theory presented here does not pretend to explain how an insect
might follow an ideal motion camouflage path, but it does make it pos-
sible to compute these paths and to gain intuition about the strategy
given different target movement. These ideal paths can also be com-
pared with experimental measurements and theoretical models which
do incorporate realistic biological control mechanisms, as well as other
ideal strategies such as the classical pursuit paths discussed here.

Acknowledgements: The results presented here were obtained while
researching a regular review column for Mathematics Today, the newslet-
ter of the Institute for Mathematics and its Applications (IMA) in the
United Kingdom. This review, which includes a simplified version of
(3), appeared in August 2003 (Glendinning, 2003).
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Figure Captions

Figure 1: (a) Motion camouflage paths in the (x, y)−plane. The
target is moving along the y−axis with v = 1 and position z = (0, t)
and the aggressor has speed c = 1.2. The curves represent the paths of
twenty aggressors with initial positions regularly spaced on the circle
of radius 5 units centred initial position of the target. (b) The corre-
sponding functions u(t), which are the solutions of (4). These curves
can be matched to those of Figure 1(a) by noting that at the point of
capture, if y = Y when x = 0 in (a) then u(Y ) = 1 in (b).

Figure 2: (a) A motion camouflage path M and a pursuit path P in
the (x, y)−plane. The target is moving along the y−axis with v = 1
and position z = (0, t) and the aggressor has speed c = 1.2. The initial
condition is (5 cos πθ

4
, 5 sin πθ

4
) with θ = 0.5. (b) The distance from the

target (d) as a function of time (t) on the two paths shown in (a). (c)
The time (t) to capture as a function of angle if the target moves as in
(a). The angular variable θ is in units of π

4
as in (a). The aggressor has

speed c = 1.2 and capture is interpreted as being within 0.001 units of
the target. The times for the motion camouflage strategy are labelled
M and the times for the pursuit strategy are labelled P .

Figure 3: (a) The Rössler attractor: projection onto the (z1, z2)−plane
of solutions to (9) with initial conditions (2, 5, 7). The results of 100
time units with v = 20 are shown. (b) The motion camouflage solu-
tion with v = 20, c = 18. The initial conditions of the aggressor are
(3,−1,−500). (c) The corresponding classical pursuit path.

Short Heading: MOTION CAMOUFLAGE


