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EMBEDDING AND TIME SERIES ANALYSIS

J.P. HUKE, M.R. MULDOON

Introduction

The 1970’s and 80’s saw a tremendous wave of interest—across the sciences and
beyond—in the subject of nonlinear dynamics. Under the heading of ‘chaos theory’
the subject even gripped the public imagination, leading to popular books and tele-
vision programmes and even a mention in the film Jurassic Park. One of the central
ideas driving this interest was the realization that the complex, unpredictable be-
haviour known as chaos might be widespread in physical systems, and possibly even
in biological, economic and social systems as well. This kind of behaviour, with its
characteristic sensitive dependence on initial conditions, had been shown to occur
in a range of simple mathematical systems, many of which were conceived as mod-
els of physical or biological phenomena. As well as triggering much work on the
mathematical theory of nonlinear dynamical systems, this also raised the intriguing
question of whether chaotic behaviour could actually be observed in the broad range
of experimental situations that the simple models hinted at. But while physicists
and engineers were very familiar with experiments designed to investigate the various
periodicities within a system, how should they treat the experimental data (or de-
vise the experiments themselves) so as to reveal the characteristic features of chaos,
such as the aforementioned sensitive dependence on initial conditions, or the strange
attractors, with their fractal structures, that live in the state spaces of some chaotic
systems? A new sort of data analysis seemed to be called for.

For some simple laboratory systems (such as the forced, damped pendulum) com-
puter simulations based on model equations might provide fairly compelling evidence
for chaotic behaviour in the physical system itself; but even here one would want
to compare measured data with the simulations: is the chaotic behaviour actually
manifested at the parameter values suggested by the simulations? When one varies
a parameter, does the transition from regular, periodic behaviour to chaos happen
in the same way in the experiment as in the simulation? In other cases, simulations
might be much less persuasive; for example, one of the simple models that sparked the
widespread interest in chaos was the logistic map, a simple iterative scheme producing
a sequence of numbers in which each number is calculated from the previous one with
the formula: xn+1 = axn(1 − xn), where a is a parameter of the system. For values
of a slightly less than 4 the sequence of xn’s varies chaotically. The logistic map had
long been used as a model for the time evolution of the population of certain sorts of
insect—but clearly such a simple model was not likely to reproduce experimental ob-
servations with quantitative accuracy. So while chaotic behaviour undeniably occurs
in the logistic map, the same could hardly be inferred for any given insect popula-
tion. What was needed was some way of interrogating population data directly, to
look directly for evidence of chaos.
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Dynamical systems. The mathematical theory of dynamical systems—which Steve
Smale has described as “The Mathematics of Time”—recognizes two kinds of system;
the first kind, so-called discrete time systems, consist of a set of allowed states, and
a mapping from the set to itself that determines how the states change over time.
Thus, if F is the mapping and x0 is the starting state, the next state is x1 = F (x0),
the state after that is x2 = F (x1) = F (F (x0)) and so on: the states are produced
sequentially from xn = F (xn−1). The logistic map just mentioned is an example: the
state space there is the interval [0, 1]. The other kind of system is continuous time:
here the evolution of the state is governed by differential equations—so the state space
must have sufficient structure for differential equations to be meaningful: often it is
Rn or some subset of it. Here the paradigmatic example is classical mechanics, where
the state consists of a list of particle positions and velocities, and the differential
equations are, of course, Newton’s equations of motion. Of course, continuous time
systems give rise to discrete time systems in a natural way: instead of recording the
state x(t) at all real-valued times t we record it at integer multiples of some fixed time
interval τ , producing a sequence xn = (nτ). By integrating the differential equations
for a time τ we find a function F that maps x(nτ) to x((n+1)τ); F is the time-τ map
of the system. Systems such as fluid flows, governed by partial differential equations,
can also be regarded as continuous time systems. Do these mathematical systems
provide any hints as to useful ways of treating experimental data?

States, measurement and injectivity. To begin to answer this let us first consider
how the process of experimental measurement fits into the mathematical picture.
Performing an experiment commonly involves fixing the value of some properties
of the system: a voltage at some point in an electrical circuit, for example, or the
population level of some species in an ecosystem. In the classical mechanics example,
where the state consists of particle positions and velocities, a measurement might
record one of the positions, or it might produce some more global property such as
the total angular momentum or, for a system undergoing small amplitude vibrations,
the phase of one of the normal modes. In any case the result of the measurement is
the value of some function of the current state. So more generally we say that, to
each kind of measurement we can make on a dynamical system, there corresponds a
function on the state space: the result of the measurement is the value of the function
at the current state. To be precise, let us say the state space is S and the function
corresponding to our measurement—the measurement function—is f . We take it that
the result of each measurement is a real number so f : S → R.

It’s possible that measuring simultaneously several different properties—evaluating
several different measurement functions—may provide enough information to deter-
mine the state uniquely. That is, there may be only one state consistent with the
measured values. Gathering the values of m measurement functions into a vector
produces a function from the state space to Rm; if we want the states to be uniquely
identified by the measurements we need this function to be injective (that is, one-
to-one). If the m measurement functions are f1, f2, . . . , fm, assembling them into a
vector (f1, f2, . . . , fm) produces a mapping Φ: S → Rm and it is this mapping whose
injectivity we are seeking.

State space reconstruction. We will return shortly to the question of whether Φ
is injective or not, but for the moment let us see what we can do when it is. If x is the
current state then the m-vector Φ(x) is the list of measurements that we record—we
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can see Φ(x). But if we have injectivity then we can use Φ(x) as a proxy for x. And
the correspondence extends beyond individual states: as the state in S moves along
its trajectory, the image Φ(x) will move along a corresponding trajectory in ΦS ⊂ Rm.
If x moves round a periodic orbit then Φ(x) does likewise (and has the same period).
And if there is a set A in S that attracts all the orbits, then ΦA will attract all orbits
in ΦS; the difference is that the periodic orbits and attracting sets in ΦS are now
things that we can see. Thus by the simple device of plotting our measurements as
m-vectors we can create a picture of what is happening in state space, and so reveal
the dynamics of the system.

This procedure is sometimes referred to as reconstructing the state space. We
can even use the picture to make predictions: for example, if the original system
is discrete time with dynamics given by xn+1 = F (xn), then in the reconstruction
the point Φ(x) is followed by G(Φ(x)) where G is given by Φ ◦ F ◦ Φ−1. And as G
acts in the reconstructed state space, mapping m-vectors to m-vectors, we can hope
to estimate it from data. While G does not tell us the next state in S (directly)
it does predict the next set of measurements, and this has various uses. Of course,
the picture we make by reconstruction is in a sense distorted because S is passed
through the mapping Φ; thus states which are far apart in S may be brought close
together in the reconstruction, and vice versa. On the other hand, if Φ has further
properties in addition to just being injective, more properties may be carried over
from the original system to the reconstruction. For example, if Φ is differentiable—
and the system is continuous time—then corresponding to the differential equation
that governs the behaviour on S is a different, differential equation that governs the
behaviour on the reconstructed state space. And if Φ is continuously differentiable,
the fractal dimensions of compact sets such as strange attractors in S are preserved
in the reconstruction.

A general mapping f : A → B for which the image fA retains some important
properties of the setA is often referred to as an embedding—we are thus here interested
in the circumstances in which Φ is an embedding of the dynamical system.

Note that to do the sort of reconstruction we have been describing we did not
need to say much about the function Φ or its components f1, f2 etc. All we needed
was the assumption of injectivity, and—for the preservation of properties such as
dimension—some kind of regularity (e.g. differentiability) for Φ. For example, we
might not actually know the topology of the state space S, but so long as the mea-
surement functions are continuous we may expect the topology to be preserved in
the reconstruction (technically this requires that S be compact, or some equivalent
assumption). To take a simple case, the state space for a system of k nonlinearly
coupled phase oscillators is a k-torus, so reconstruction produces data that lies on a
k-torus in Rm. We could in principle use data to confirm the presence of this torus
and so determine the number of oscillators.

We see then that this approach to analyzing experimental data, suggested by the
dynamical systems picture, has a highly geometrical flavour, in which the data are
used to produce a point cloud in Rm, and properties of the measured system are
investigated by examining the geometry, subsets, and dynamics of the point cloud.

The method of delays. We must now, however, return to some of the underlying
assumptions on which we built the story above. One of these is that we have so
far imagined that whenever we conduct an experiment we measure simultaneously
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several different properties of the system. In practice, this may not be at all easy: the
system may be difficult to prepare and manipulate and the measurements delicate
or costly to perform; it may be as much as we can manage to measure just a single
quantity. Have we then any hope of making the kind of analysis described above?

Packard , Crutchfield, Farmer and Shaw [5] suggested that, instead of m simultane-
ous measurements of different quantities we use measurements of the same quantity
taken at m different times (and hence, usually, in m different states). There is then
just a single measurement function f : S → R, and to each trajectory x0, x1, . . . , xn, . . .
there corresponds a sequence (or times series) of measured values

f(x0), f(x1), . . . , f(xn), . . . .

The m-vectors are then assembled from short subsequences, the n-th such being

(f(xn), f(xn+1), . . . , f(xn+m−1)).

For a discrete time system we can write this as

(f(xn), f ◦ F (xn), . . . , f ◦ Fm−1(xn))

which we can again think of as a mapping Φd : S → Rm, with the k-th component of
Φd being f ◦F k−1. An entirely analogous setup holds for continuous time systems as
well. The m-vectors are called delay vectors (the subscript d on Φd connotes ‘delay’)
and the approach is sometimes called the method of delays. Assuming that delays
work as well as simultaneous measurements, the method of delays turns reconstruction
into a much more practical proposition, and the vast majority of applications have
employed it.

The Embedding Theorems of Whitney and Takens

The other main matter that we have not yet fully addressed is the question of the
injectivity of Φ and Φd. We can see immediately that there is no possibility that
these mappings will be injective for entirely arbitrary measurement functions: if the
fi’s are constant functions, or if they all happen to be the same function then clearly
Φ could only be injective on very restricted state spaces! Less trivially, if the state
space is Rn then we must surely make m ≥ n to stand much chance of injectivity.
We will therefore have to be content with some statement to the effect that Φ and Φd

are injective for a ‘large’ (in some sense) set of measurement functions belonging to
some suitable regularity class—and that in addition we must use ‘enough’ functions
(or delays).

A suitable setting for such statements is differential topology which concerns itself
with differentiable mappings between manifolds. Manifolds are higher dimensional
generalizations of smooth surfaces such as the sphere, torus or Klein bottle; they
are sets in which every point has a neighbourhood that looks like a subset of Rn in
the sense that one can find good local coordinates. The state spaces of dynamical
systems are very often manifolds—especially for continuous time systems because
the manifold structure is needed for differential equations on the state space to be
properly defined. A map between manifolds can be regarded (locally) as a map from
Rn to Rn′

, so all the usual tools of calculus can be used.
We can also compare two functions on the same manifold: we regard the functions

as ‘close together’ if, at every point of the manifold, the values of the functions, and
their derivatives (and perhaps higher derivatives as well) are close—where we use
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the coordinate systems to quantify how close the values (and derivatives) are. It
turns out that this idea of ‘close’ functions can be used to give a precise sense to
the somewhat vague statement about ‘large’ sets of functions mentioned above. We
do this as follows: consider all the functions from some manifold M to R (or Rm)
which belong to some particular regularity class (for example, they have continuous
first derivatives at all points). A subset of this collection of functions is said to be
‘open and dense’ if two conditions are satisfied: (i) if f is a function in the subset
then all functions sufficiently close to f are also in the subset, and (ii) if g is any
function (which may or may not be in the subset) then arbitrarily close to g we can
find functions which are in the subset. It is this notion of an open and dense subset
that we use when we come to consider the injectivity of the functions Φ and Φd.

A fundamental result from differential topology, due to Whitney, addresses our
concerns quite directly: it states that if M is a compact manifold of dimension n,
m > 2n, and C1(M,Rm) is the set of continuously differentiable functions from M
to Rm, then the subset of functions that are embeddings of M is open and dense
in C1(M,Rm). (‘Embedding’ here means not only that the function is injective but
that it is a diffeomorphism: both the function and its inverse are differentiable.) The
mappings in C1(M,Rm) are just the sorts of functions we have called Φ above; Whit-
ney’s theorem thus provides some justification for hoping that the m simultaneous
measurement functions approach will produce an embedding.

Is there a similar result underpinning the method of delays? In 1981 Floris Takens
showed that there is [7]. Recall that Φd is formed from a measurement function f
and the mapping F : S → S that specifies the dynamics. Takens’ theorem states
that if M is a compact manifold of dimension n, m > 2n, C2(M,R) is the set of
twice continuously differentiable real-valued functions, and χ2(M) is the set of twice
continuously differentiable diffeomorphisms from M to itself, then the set of pairs
(f, F ) in C2(M,R)×χ2(M) for which the corresponding Φd is an embedding, is open
and dense.

The method of delays in practice

Though the statement of Takens’ Theorem sounds rather technical, it was widely
considered to provide a sound theoretical foundation for the method of delays and
its appearance triggered a flood of applications. But while the theorem provides
some justification for delay embedding, it is silent about a number of practical issues.
For example, in constructing the delay vector for state x we took measurements at
x, F (x), F 2(x), etc., but we could equally well have used x, F 2(x), F 4(x) . . . , or
any other k-th iterate of F . This issue is particularly relevant if F is the time-τ
map of a continuous time system; in principle we could use any non-zero value for
τ , but some values are likely to work better than others. For example, if τ is too
small then the successive states—and the corresponding measurements in the delay
vector—will be very similar; thus all the points in the reconstruction will lie very
close to the diagonal of Rm and most of the important information about the system
will be contained in the small deviations of the points away from this line: Figure 1
illustrates a mild version of this effect for delay embeddings of simulated data from
a damped, driven pendulum. On the other hand, if τ is too large then sensitive
dependence on initial conditions may mean that Φd(x) depends very sensitively on x,
causing the reconstructed state space ΦdS to be highly stretched or convoluted. The
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Figure 1. The method of delays applied to a mechanical system, the
damped, driven pendulum governed by θ̈ = −g sin(θ)−γθ̇+25 cos(2πt).
The panel at left is the phase portrait of a trajectory relaxing onto the
system’s attracting periodic solution while the panel at right shows
two delay embeddings of the same trajectory. The narrow ellipse
(orange dots) is the image of this periodic orbit under them delay
embedding map Φd(θ) = (f(θ), f(F (θ)) with measurement function
f(θ) = sin(θ) while the rounded square (purple dots) was produced by
Φd(θ) = (f(θ), f(F 25(θ)). In both cases F is the time-τ map with
τ = 0.009

success or otherwise of the data analysis may therefore be strongly influenced by the
choice of the time between elements of the delay vectors.

Another problem is the choice of the number of delays, m. Takens’ theorem tells
us that m must be larger than twice the intrinsic dimension of the dynamical system,
but we may not know in advance what this is (indeed it may be one of the things
we hope to find). Choosing m too small may thus fail to produce an embedding, but
choosing it too large leads to data scattered sparsely in a space of many dimensions.
Again, a good choice may make the difference between a useful and an unsuccessful
investigation.

As the widespread use of delay embedding got under way a considerable litera-
ture developed regarding these more practical issues. David Broomhead made many
important contributions, including work with Greg King that turned out to be one
of Dave’s best-cited papers, [4]. Eventually the experience accumulated by all these
workers culminated in the publication of several textbooks on the subject, including
those by Abarbanel [1] and Kantz & Schreiber [6].

Although, as described above, the initial motivation for the method of delays was to
look for chaotic behaviour in experimental systems—and more specifically to detect
attractors with non-integer dimension in the state spaces of such systems (see, for
example, Takens’ original paper [7]), the potential use of the method in a broader
range of signal processing activities was soon recognized. Suppose, for example, that
the measurements f(F k(x)) are contaminated with a small amount of additive noise.
The effect of this on the delay vectors will be to make small random shifts so that
they are no longer confined to the image set ΦdS. So long as the shifts are small,
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however, we can attempt to estimate the original, uncontaminated delay vectors.
Two ways of doing this suggest themselves: firstly, we estimate the location of the set
ΦdS from the noisy data. In practice we would do this locally: choosing one of the
delay vectors we identify the other close by data points and find the n dimensional
plane which most nearly contains them; then we project the data points to lie on
this plane. We repeat the procedure at points all over the reconstructed state space
to produce a cleaned data set. The second approach recognizes the above-mentioned
fact that the reconstruction can be used to make a (short term) predictor. Noise
will cause the measurements to deviate from predictions made using uncontaminated
data. Of course, uncontaminated data is not likely to be available, but we can estimate
the predictor using noisy data, adjust the data to be consistent with the resulting
predictions, and then re-estimate the predictor with the cleaned data, and repeat the
process, hoping it will converge towards the noise-free measurements. Both of these
approaches have been extensively investigated, and various elaborations described.

Standard approaches to core signal processing tasks (such as filtering, signal detec-
tion and separation, compensation of distortion, etc.) rely heavily on linear methods.
Dave Broomhead was particularly interested in the use of embedding techniques to
find new approaches to such tasks, able to cope with (and perhaps exploit) the non-
linear nature of signal generating mechanisms or of the media through which the
signals passed. His work in this area included novel techniques for nonlinear signal
separation [3] and for the identification of digital signals subjected to distortion and
intersymbol interference by propagation through strongly nonlinear channels [2].
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