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Abstract

One trend in modern high performance computing (HPC) is to decompose a large
linear algebra problem into thousands of small problems which can be solved indepen-
dently. There is a clear need for a batched BLAS standard, allowing users to perform
thousands of small BLAS operations in parallel and making efficient use of their hard-
ware. There are many possible ways in which the BLAS standard can be extended
for batch operations. We discuss many of these possible designs, giving benefits and
criticisms of each, along with a number of experiments designed to determine how the
API may affect performance on modern HPC systems. Related issues that influence
API design, such as the effect of memory layout on performance, are also discussed.

1 Introduction

The past few decades have seen a tremendous amount of effort expended in the design and
implementation of efficient linear algebra software, primarily aiming to solve larger problems
in less time. Numerous libraries have been written to take advantage of advances in computer
architecture and exploit the parallelism both within a single node (using hardware acceler-
ators), and between nodes (communicating using MPI, for example). Such libraries include
Intel MKL, ATLAS [21], NVIDIA cuBLAS, the NAG Library, Chameleon, PLASMA [7],
and MAGMA [2] etc.

One current trend in high performance computing is that, as opposed to solving one large
linear algebra problem, one solves thousands of smaller subproblems, which are combined
to form the solution of the larger problem. One example of this is given by multifrontal
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solvers for sparse linear systems [11]. The libraries mentioned above do not target this situ-
ation specifically (though some initial support is available) and therefore these applications
generally perform suboptimally.

The solution to this inefficiency is to develop a new standard set of routines for carrying
out linear algebra operations on batches of small matrices, building on the well-known Basic
Linear Algebra Subproblems (BLAS) standard [9], [8], [14]. The idea behind the Batched
BLAS (BBLAS) is to perform multiple BLAS operations in parallel on many small matrices,
making more efficient use of hardware than a simple for loop would allow. For example, if
we consider a GEMM operation over a batch of N matrices then we would like to compute,
in parallel,

Ci ← αiAiBi + βiCi, i = 1 : N. (1.1)

We can keep the matrix sizes and the values of αi and βi constant throughout the entire
batch or allow them to vary, depending upon the application that we have in mind.

One particular application which can benefit dramatically from performing many small
matrix multiplications in parallel is deep learning: this functionality is already utilized in
popular machine learning libraries such as Theano [4] and TensorFlow [1]. Other exam-
ples of such applications where the solution of many small problems are required include
metabolic networks [13], astrophysics [16], the rendering of 3D graphics on the internet [12],
and computational fluid dynamics [22].

A BBLAS standard could have a number of possible interfaces. A draft specification
for BBLAS operations has already been implemented, but remains open to suggestions for
change from the scientific community [10]. The primary goal of this work is to discuss
three different approaches to design an API for BBLAS operations, giving some benefits and
criticisms of each. The three approaches are discussed in section 2. For each approach we
show the resulting calling sequence for three different BLAS routines, DGEMM, DGEMV,
and DDOT to cover each level of BLAS operation. We perform a number of experiments
designed to determine how the choice of API can affect the performance of the computation
on modern hardware. As a secondary goal we also discuss some related issues which need to
be considered during the API design, primarily the impact of the memory layout on hardware
accelerators (e.g. GPUs) and the self-booting Xeon Phi models.

The remainder of this work is organized as follows. In section 2 we outline three different
interfaces to BBLAS and give some example of their use. Then, in section 3, we discuss
the relative benefits and criticisms of each approach in terms of, amongst other things, their
ease of use in application areas. This section also contains some experiments to compare the
overheads that the different APIs introduce to the computation. Section 4 contains some
discussion and experiments on the effect that the memory layout has on the performance of
BBLAS operations, which need to be considered when designing an efficient API. Finally,
we give some concluding remarks in section 5.

Furthermore a repository containing sample code for each API that we discuss is available
at https://github.com/sdrelton/bblas_api_test.
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2 BBLAS APIs

In this section we outline three possible API designs for BBLAS operations. For each API
we give some examples of the resulting calling sequence and some brief comments on their
respective benefits. A detailed analysis of each approach is presented in section 3. The APIs
are presented here in C code which, by default, stores matrices in row major order. It is a
trivial modification to add support for column major order and to develop the corresponding
Fortran APIs (see section 2.5).

Before discussing the APIs directly, we briefly explain a number of parameters that are
common to the different APIs, but are not a part of the standard BLAS specification.

• int batch count - This input parameter specifies the number of matrices in the batch
that we are operating on. It is used by the first two APIs whilst the third takes a
different approach.

• int *info - This output parameter allows the user to check whether the computation
completed successfully once the routine exits. Whilst there is no info parameter in the
standard BLAS it appears in the LAPACK routines.

Finally, in order to understand the thought process underpinning the design of each API,
it is important that we discuss the two main categories of batch computation: fixed and
variable sized batches.

2.1 Fixed and variable batches

When performing a BBLAS operation, the batch can be classified into two main types:

• a “fixed batch”, where the matrix sizes and leading dimensions are constant throughout
the entire batch, or,

• a “variable batch”, where the matrix sizes and leading dimensions can vary for each
matrix in the batch.

For example, if we wanted to compute a batch of three DGEMM operations in parallel where
all the matrices Ai and Bi are of size 100× 100 then we require a fixed batch computation.
However, if A1, A2, and A3 have different sizes then we would need to use a variable batch
computation.

The reason for differentiating batch operations in this way is clear: using only one matrix
size and leading dimension for the entire batch results in less overhead when performing
error checks on the input parameters. In a variable batch operation we must check all of the
(potentially thousands of) input values, as opposed to merely a few parameters for the fixed
batch case.

Note that, in the types of batch computation above, the terms “fixed” and “variable”
refer only to the size and leading dimension of the matrices. The other parameters of each
BBLAS function can be treated separately in a similar manner: for instance in a batched
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GEMM (Ci ← αAiBi + βCi) there are some applications where we may wish to vary α and
β too. At the time of writing there is no consensus among the community on this matter,
but the current draft standard for BBLAS computation proposes that:

• fixed batch computations will have all parameters fixed for the entire batch.

• variable batch computations will allow all parameters to vary over the entire batch.

This means that, if one wanted to compute a batch DGEMM with matrices of the same size
but varying α and β parameters, then this would be classified as a variable batch operation.

To further complicate matters, we might also consider the situation where α is variable
but β is fixed etc. Clearly it is difficult to support all possible combinations of parameters
being fixed and variable: the API would become overly complicated and there would be a
combinatorial explosion of highly optimized, low-level routines needed to deal with each case
optimally.

The API designs that we investigate in more detail are:

• separate functions for fixed and variable batch computations.

• a flag-based API where the same function deals with both fixed and variable compu-
tation.

• a “group” API which performs multiple fixed batch computations within the same
function call.

Note that, in the remainder of this section, all APIs use double pointers for the variables
arrayA, arrayB, and arrayC. That is, we pass an array containing the address of each matrix
in the batch. We call this the pointer-to-pointer (P2P) approach to batched BLAS. Other
possible memory layouts are discussed in section 4.

2.2 Separate fixed and variable batch API

This API has two functions for each BLAS routine, one for fixed batch operations and
another for variable batch operations. The functions are named by prefixing either batchf
or batchv —for fixed and variable batches, respectively—to the name of the standard BLAS
function.

For the fixed batch functions all of the parameters, except for the arrays of matrices, are
constant for the entire batch; meanwhile all parameters (except for batch count) are arrays
in the variable batch version. An example for fixed and variable batch DGEMM is given in
Table 2.1.

Another main difference between these two versions is in the info parameter, which
affects the way that errors are handled. For the fixed batch version we propose to have just
one info for the entire batch and, if some incorrect parameters are detected, the entire batch
computation is halted. On the other hand, in the variable batch case, if the parameters for
one subproblem are wrong the other subproblems can still continue and hence we propose
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Table 2.1: Fixed (left) and variable (right) DGEMM function prototypes using the separate
fixed and variable batch API.

batchf_dgemm(

const enum CBLAS_TRANSPOSE transA,

const enum CBLAS_TRANSPOSE transB,

const int m, const int n,

const int k,

const double alpha,

double const *const *arrayA,

const int lda,

double const *const *arrayB,

const int ldb,

const double beta,

double **arrayC,

const int ldc,

const int batch_count, int *info

);

batchv_dgemm(

const enum CBLAS_TRANSPOSE *transA,

const enum CBLAS_TRANSPOSE *transB,

const int *m, const int *n,

const int *k,

const double *alpha,

double const *const *arrayA,

const int *lda,

double const *const *arrayB,

const int *ldb,

const double *beta,

double **arrayC,

const int *ldc,

const int batch_count, int *info

);

that info is an array of length batch count. The community is still undecided on the info

parameter and error handling behaviour; one solution for the latter issue may be to have a
xerbla batch function, similar to xerbla for the standard BLAS, which can be modified by
users and vendors as they see fit.

In Tables 2.2 and 2.3 we show the corresponding batch versions of the DGEMV and
DDOT routines, respectively. These are largely as expected, though the level-1 BLAS routine
DDOT has the extra parameter res to store the result: the standard level-1 BLAS routine
returns the result directly but—in the batch case—we would need to return a pointer to an
array of results, which could be considered poor programming practice. Therefore we add
this output as a parameter to the function call, which is the same approach taken by the
complex and double complex precision versions (CDOTU and ZDOTU etc., respectively) in
CBLAS.

2.3 Flag-based API

The flag-based API uses only one function to handle both fixed and variable batches. The
functions are named by prefixing batch to the standard BLAS function name. The calling
sequence is almost identical to the separate fixed and variable API, except for the addition
of an extra parameter to specify the batch type. This can be defined in a header file as
follows.

enum BBLAS OPTS = {BBLAS FIXED=0, BBLAS VARIABLE=1};

In the fixed batch case, the variables m, n, k, etc. are passed by address, so that the
same interface can be used for the variable batch case. This could be a minor annoyance
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Table 2.2: Fixed (left) and variable (right) DGEMV function prototypes using the separate
fixed and variable batch API.

batchf_dgemv(

const enum CBLAS_TRANSPOSE trans,

const int m, const int n,

const double alpha,

double const *const *arrayA,

const int lda,

double const *const *arrayx,

const int incx,

const double beta,

double **arrayy, const int incy,

const int batch_count, int *info

);

batchv_dgemv(

const enum CBLAS_TRANSPOSE *trans,

const int *m, const int *n,

const double *alpha,

double const *const *arrayA,

const int *lda,

double const *const *arrayx,

const int *incx,

const double *beta,

double **arrayy, const int *incy,

const int batch_count, int *info

);

Table 2.3: Fixed (left) and variable (right) DDOT function prototypes using the separate
fixed and variable batch API.

batchf_ddot(

const int n,

double const *const *x,

const int incx,

double const *const *y,

const int incy,

double *res,

const int batch_count, int *info

);

batchv_ddot(

const int *n,

double const *const *x,

const int *incx,

double const *const *y,

const int *incy,

double *res,

const int batch_count, int *info

);

Table 2.4: DGEMM function prototype using the flag-based API.

batch_dgemm(

const enum CBLAS_TRANSPOSE *transA,

const enum CBLAS_TRANSPOSE *transB,

const int *m, const int *n, const int *k,

const double *alpha,

double const *const *arrayA, const int *lda,

double const *const *arrayB, const int *ldb,

const double *beta,

double **arrayC, const int *ldc,

const int batch_count, const enum BBLAS_OPTS batch_opts,

int *info

);
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Table 2.5: DGEMV function prototype using the flag-based API.

batch_dgemv(

const enum CBLAS_TRANSPOSE *trans,

const int *m, const int *n,

const double *alpha,

double const *const *arrayA,

const int *lda,

double const *const *arrayx,

const int *incx,

const double *beta,

double **arrayy, const int *incy,

const int batch_count,

const enum BBLAS_OPTS batch_opts,

int *info

);

Table 2.6: DDOT function prototype using the flag-based API.

batch_ddot(

const int *n,

double const *const *x,

const int *incx,

double const *const *y,

const int *incy,

double *res,

const int batch_count,

const enum BBLAS_OPTS batch_opts,

int *info

);
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Table 2.7: DGEMM function prototype using the group API.

batchg_dgemm(

const enum CBLAS_TRANSPOSE *transA,

const enum CBLAS_TRANSPOSE *transB,

const int *m, const int *n, const int *k,

const double *alpha,

double const *const *arrayA, const int *lda,

double const *const *arrayB, const int *ldb,

const double *beta,

double **arrayC, const int *ldc,

const int group_count, const int *group_size,

int *info

);

if only fixed case batches are required in a given application, since one would continually
need to pass pointers such as &m and &n instead of passing the values directly. However, for
the variable batch operations, the calling sequence is almost identical to the previous API.
Tables 2.4, 2.5, and 2.6 show the resulting calling sequences for batch versions of DGEMM,
DGEMV, and DDOT, respectively.

2.4 Group API

The final API design that we consider is the group API. This lies somewhere between the
two other APIs, by which we mean that it is primarily designed to compute multiple fixed
batch operations simultaneously as opposed to a single fixed or variable batch. However, it
is still possible to compute a purely fixed or variable batch when required.

Each fixed batch that we want to operate on is called a group and each group can have
completely different parameters, from the size of the matrices to the number of subproblems
in the group. Therefore a variable batch computation is equivalent to having multiple groups
of size one.

The functions are named by prefixing batchg to the standard BLAS routines. The call-
ing sequence of the functions is slightly different to the other APIs, in that batch count and
batch opts are replaced by group count and group size, respectively. The group count

parameters gives the number of groups whilst the elements of the array group size store
the size of each group.

In our implementation the info parameter is an array of length group count, with one
return value for each group. However, the community has not yet reached a consensus on
this matter and it may be preferable to set the length of the info array equal to the total
number of subproblems.

Tables 2.7, 2.8, and 2.9 show the resulting function prototypes for batch versions of
DGEMM, DGEMV, and DDOT, respectively.

8



Table 2.8: DGEMV function prototype using the group API.

batchg_dgemv(

const enum CBLAS_TRANSPOSE *trans,

const int *m, const int *n,

const double *alpha,

double const *const *arrayA,

const int *lda,

double const *const *arrayx,

const int *incx,

const double *beta,

double **arrayy, const int *incy,

const int group_count,

const int *group_size,

int *info

);

Table 2.9: DDOT function prototype using the group API.

batchg_ddot(

const int *n,

double const *const *x,

const int *incx,

double const *const *y,

const int *incy,

double *res,

const int group_count,

const int *group_size,

int *info

);
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Table 2.10: Fortran interface for a fixed batch DGEMM utilizing the separate fixed and
variable batch API.

SUBROUTINE

batchf_dgemm(

transA, transB,

m, n, k,

alpha,

arrayA, lda,

arrayB, ldb,

beta,

arrayC, ldc,

batch_count, info)

character, intent(in) :: transA

character, intent(in) :: transB

integer, intent(in) :: m

integer, intent(in) :: n

integer, intent(in) :: k

double precision, intent(in) :: alpha

integer(kind=c_intptr_t), intent(in) :: arrayA(*)

integer, intent(in) :: lda

integer(kind=c_intptr_t), intent(in) :: arrayB(*)

integer, intent(in) :: ldb

double precision, intent(in) :: beta

integer(kind=c_intptr_t), intent(inout) :: arrayC(*)

integer, intent(in) :: ldc

integer, intent(in) :: batch_count

integer, intent(out) :: info

END SUBROUTINE

2.5 Fortran APIs

Each of the APIs discussed within this section can be readily converted into Fortran. In
Table 2.10 we show an example of how one might call a fixed batch DGEMM using the
separate fixed and variable API discussed in section 2.2. It is clear that all the other APIs
can be readily converted into Fortran without any difficulties.

3 Critical analysis of the APIs

Each API described in the previous section has its own strengths and weaknesses. At the time
of writing Intel MKL supports the group API for batched GEMM computation. Meanwhile
NVIDIA cuBLAS provides functionality for fixed batch versions of GEMM and TRSM,
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along with batched LAPACK functionality for solving linear systems using LU and QR
factorizations, plus a batched least squares solver [5].

One of the major differences between the proposed APIs is their complexity. It appears
that the separate fixed and variable API is the simplest from the user’s perspective: there
is a clear distinction between the two types of batch computation. This API also avoids the
need to remember that, when using the flag-based or group APIs, only the first element of
the arrays m, n, etc. are required. It may be rather frustrating, from the user’s perspective,
to pass all the parameters by address when a fixed batch operation is requested using the
other APIs. It is also worth noting that most of the applications of BBLAS identified so far
rely primarily on fixed batch computations and this API makes those calls simpler for the
user.

On the other hand, the flag-based and group APIs add batch functionality to the standard
BLAS using just one function per BLAS routine, as opposed to two. The price paid for this
compactness is the additional complexity in the calling sequences. The flag-based API uses
an extra parameter to determine the batch type whilst the group API uses the group count

and group size parameters. Requiring the user to set these extra parameters correctly
increases the chance of errors occurring.

The main reason that one might prefer the group API is that, compared with running
multiple fixed batches, we might expect to obtain a smaller runtime by avoiding overhead
costs. The next subsection contains experiments designed to show the size of these overheads.

However, one major criticism of the group API is the additional user effort and mem-
ory requirements involved for a variable batch computation. To perform a variable batch
computation one must set group count equal to the number of subproblems and create the
array group size with all elements equal to one. The time to allocate this array and loop
through it, setting all the elements equal to one, can be significant. For an extremely large
batch this can also utilize a large amount of memory unnecessarily.

Furthermore, it is unclear if there are any applications where the group API appears
naturally. Consider a multifrontal solver [11] where, at some stage of the computation, we
have many small matrices (of size 2× 2 and 3× 3, for example,) which form two groups. In
order to actually use these two groups we would need to loop over each matrix, inspect their
size, and collate them into the two groups before calling the relevant BBLAS (or batched
LAPACK) routine. Looping over the individual matrices in this way and inspecting their size
can cause a significant overhead in comparison to treating the set of matrices as a variable
type batch and starting the computation immediately using one of the alternative APIs.

3.1 Experiments using the Group API

In this subsection we perform a number of experiments in order to clarify what benefit
might be gained from adopting the Group API as opposed to making multiple calls to the
fixed batch API, assuming that the matrices have already been allocated into groups (see the
discussion in the previous paragraph). The experiments are based upon those shown by Sarah
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Figure 3.1: Performance of the MKL batched DGEMM on batches of 10000 matrices using
either one group of 10000 (1× 10000) or 10000 groups of one (10000× 1). All the matrices
are square with the size denoted on the x-axis.

Knepper (Intel) at the recent workshop on BBLAS, held at the University of Tennessee1.
All experiments in this section are run on a NUMA node with 2 sockets, using Intel Xeon

CPU E5-2650 v3 chips (2.3GHz, Haswell architecture), for a total of 20 cores. Hyperthread-
ing is enabled and the memory is interleaved between the two processors2 and we create
one OpenMP thread per core. All the matrices are chosen to have elements taken from a
random uniform distribution on the interval [0, 1]. Note that we ensure the cache of each
processor is flushed between every computation to avoid obtaining misleading performance
results; by neglecting this step we can obtain performance results up to 4 times faster than
those reported here in some cases when the data fits into cache memory. This is consistent
with observations by Whaley and Castaldo [20].

Our first experiment in Figure 3.1 compares the difference in performance between run-
ning a batch DGEMM using one group of 10000 matrices versus using 10000 groups with
one matrix each, for a variety of matrix sizes. The Intel MKL function dgemm batch is used
to perform both of these operations.

We see that the performance increases with the matrix size and that, generally, running
the computation using just one group is slightly faster due to the reduced number of param-
eter checks. In most cases the difference in performance between the two routines is not very
dramatic: the mean difference between the performance of the two approaches is 7.7%. We
note that running 10000 groups containing one matrix each is essentially the worst possible
case for the group API so that, with a less dramatic difference between the two groupings,

1PDF slides available at http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/

Batched-BLAS-2016/. Accessed on 19th July 2016.
2Run with “numactl --interleave=all”.
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Figure 3.2: Performance of MKL batched DGEMM on groups of various sizes computed
either as using multiple groups in a single call or using separate calls for each group. Group
p contains ceil(4096/p3) matrices of size 8p× 8p.

we would expect the performance difference to be negligible.
Our second experiment in Figure 3.2 uses groups with varying matrix and group sizes to

compare the performance using a single call to the DGEMM group interface as opposed to
making a separate call for each group. We use up to 16 groups where the pth group contains
ceil(4096/p3) matrices of size 8p× 8p so that, approximately, each group requires the same
number of flops to compute.

On the x-axis we show the number of groups used: we begin by using only group one
and successively add more groups to the computation until all 16 are included. We see that,
for small numbers of groups, there is little difference between the two approaches whilst for
larger number of groups it is beneficial to use a single call to the group API.

4 Data layout in memory

One major concern, affecting all the APIs, is the layout of the data in memory. As we will
show later, the memory layout is critical to obtaining good performance on modern hardware
and should therefore influence the design of the API.

In section 2 we outlined all the APIs using a pointer-to-pointer (P2P) data layout. This
involves passing to the BBLAS function an array of pointers (e.g. double **arrayC in
a batched DGEMM) where each element of the array is a pointer to a memory location
containing a matrix. The main benefit of this approach is its flexibility: it is very easy to
add more matrices into the batch by simply appending their respective memory locations
onto the arrayC variable, for example.

However, this approach also has a major drawback: allocating memory for each matrix
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Table 4.1: DGEMM function prototype using the separate fixed and variable memory API
with the strided memory layout.

batchf_dgemm_stride(

const enum CBLAS_TRANSPOSE *transA,

const enum CBLAS_TRANSPOSE *transB,

const int m, const int n, const int k,

const double alpha,

const double *arrayA, const int lda, const int strideA

const double *arrayB, const int ldb, const int strideB

const double *beta,

double *arrayC, const int ldc, const int strideC,

const int batch_count, int *info

);

separately means that the data will be scattered throughout the RAM. When performing
the computation this means that the CPU will need to load memory from many different
locations, which is much slower than loading contiguous memory. This difference in memory
access speed is much more apparent when we consider offloading computation to hardware
accelerators such as GPUs and the Xeon Phi. In this case, since the matrices are spread
throughout the RAM, they must be sent separately and each communication incurs a (com-
paratively large) latency cost.

One solution to this problem is to use a “strided” memory layout. For storing the matrices
Ai in a fixed batch DGEMM this involves having one large array containing all the Ai in
contiguous memory along with (in addition to the lda parameter) a strideA parameter
which gives the amount of storage space between the matrices. For example, if ptr was a
variable pointing to the first element of A1 then ptr + strideA would be a pointer to the
first element of A2 and, in general, ptr + (i-1)*strideA would be a pointer to the first
element of Ai. An example of the API for a fixed batch DGEMM using the separate fixed
and variable API and the strided memory layout is given in Table 4.1 (c.f. Table 2.1) and
could easily be extended to the other APIs.

An alternative solution is to use an “interleaved” memory layout. In this case we create
one large array and fill it as follows. Firstly, store the first element of each matrix in turn,
followed by the second element of each matrix etc. If we have a batch of three matrices

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
, C =

[
c11 c12
c21 c22

]
,

and work in column major order, then the strided and interleaved memory layouts will store
the elements as follows.

• Strided – [a11, a21, a12, a22, b11, b21, b12, b22, c11, c21, c12, c22]

• Interleaved – [a11, b11, c11, a21, b21, c21, a12, b12, c12, a22, b22, c22]

14



The interleaved format is particularly interesting for utilizing vectorization, a key com-
ponent in GPU computation. For example, suppose we wish to compute a batch TRSM
(triangular solve) with 5000 matrices of size 4 × 4. In the P2P and strided formats each
multiprocessor of the GPU has access to one (or perhaps several) matrices. As we progress
through the columns of the matrix we need to perform one division and multiple subtractions
per column. However, each streaming multiprocessor can only perform one type of operation
per cycle, meaning that one division uses an entire cycle and therefore does not take full
advantage of the vector instructions. By contrast, using the interleaved format, the GPU
will need to perform 5000 divisions in parallel, followed by 5000 subtractions etc. This is
enough to completely fill the streaming multiprocessors and therefore take full advantage of
the vector instructions.

Both the strided and interleaved memory layouts store the matrices in contiguous memory
and will therefore be more efficient to load into the CPU cache and offload to hardware
accelerators. However, we have lost the flexibility of the P2P approach. In order to add
extra matrices to our batch we need to allocate an additional large block of contiguous
memory and copy all the data across, which can be extremely expensive relative to the
actual computation time.

The choice of which memory layout to use may depend largely upon the specific appli-
cation within which BBLAS is being used. Using the, potentially more efficient, strided and
interleaved layouts requires prior knowledge about the number and size of the matrices in
the batch so that a sufficient amount of memory can be allocated; and this information is
not necessarily available in all applications. For example, when solving separable elliptic
equations using the algorithm by Swarztrauber [18] (parallelized in [19]) the matrices are
spread throughout the RAM, meaning that only the P2P memory layout can be used. The
P2P memory layout is also applicable to matrix-free finite element methods [15].

However in domain decomposition on a parallel distributed architecture, each node con-
tains many matrices contiguous in memory and therefore the strided memory layout is more
appropriate [3]. Another application in which matrices are stored in contiguous memory is
image processing [6], [17], for example.

4.1 Experiments on memory allocation and transfer time

This subsection contains a number of experiments designed to determine the relative cost
of the memory allocation and transfer time using the P2P, strided, and interleaved memory
layouts. Note that, in terms of memory allocation and transfer time, the strided and inter-
leaved layouts are identical: they are simply permutations of one another. Therefore we will
focus on the differences between the P2P and strided layouts.

As before, our intial experiments in this section are run on a NUMA node with 2 sockets,
using Intel Xeon CPU E5-2650 v3 chips (2.3GHz, Haswell architecture), for a total of 20
cores. The cache is flushed between each invocation of the functions [20] and the memory
on the NUMA node is interleaved between the processors. In addition, to measure the time
for allocating and transferring memory to a hardware accelerator, we use an NVIDIA K40c
GPU connected via PCIe 3.0. Note that, although a GPU is used in these experiments the
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Figure 4.1: Time (in microseconds) for the allocation of the memory on the host and GPU,
and for the memory transfer between the host and GPU, using both the P2P and strided
memory layouts, for a variety of small matrix sizes. In each case a fixed batch of 10000
matrices is used.

conclusions regarding memory transfers should also be applicable to models of the Xeon Phi
which are also connected via PCIe 3.0 in coprocessor mode.

In addition, we present the corresponding results for the self-hosted Xeon Phi (Knights
Landing). The results above do not apply to this architecture since it has a faster connection
to the main RAM along with upto 16GB of high-bandwidth MCDRAM. The Xeon Phi is the
first commercially available product to use MCDRAM, which offers high-bandwidth memory
access (400GB/s) due to its 3D memory design. In particular we use the Intel Xeon Phi
7250 processor with 68 cores running at 1.4GHz. It is booted in the default “hybrid” mode
where 8GB of the fast MCDRAM is allocated by the user and the remaining 8GB is used as
a cache by the system.

Our experiment consists of computing a batch of 10000 DGEMM operations using square
matrices of varying size. All the matrices are chosen to have elements taken from a random
uniform distribution on the interval [0, 1]. We run this experiment using the P2P and
strided memory layouts on both the CPU, GPU, and Xeon Phi whilst timing the memory
allocations, the memory transfer time (between the host and GPU), and the time to compute
the actual result using both MKL and cuBLAS versions of batched DGEMM. The reported
GPU transfer time includes both the time to send the parameters and receive the result back
on the host, including the latency.

In Figure 4.1 we show the time required to allocate the memory in RAM on the host
and GPU, along with the time required to transfer memory between the host and GPU,
using both the P2P and strided memory layouts. It is clear that using the strided memory
layout is much more efficient in terms of both memory allocation and transfer. In particular,
the difference in memory allocation time shows that allocating one large block of memory is
more efficient than allocating multiple small blocks scattered throughout the RAM and can
be more than three orders of magnitude faster for the larger matrix sizes on both the CPU
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Figure 4.2: Time (in microseconds) for the allocation of the memory on the system RAM and
the fast MCDRAM, using both the P2P and strided memory layouts, for a variety of small
matrix sizes. In each case a fixed batch of 10000 matrices is used. In the legend MCDRAM
allocations are denoted by HBW (high-bandwidth).

and GPU.
For the memory transfer to the GPU, it is clearly more efficient to transfer large blocks

of data using the stride layout as opposed to many small matrices individually in the P2P
layout: using the P2P layout we need to communicate with the GPU 10000 times (once for
each matrix in the batch) and each of these communications is subject to the same latency
cost, which dominates the transfer time. This explains why the transfer time for the P2P
layout is almost constant in Figure 4.1. For the smaller matrix sizes we see that performing
this memory transfer using the stride layout can be up to three orders of magnitude faster.

Unfortunately, it is also very expensive to convert from the P2P layout to the strided
memory layout. Our experiments showed that, even when using OpenMP with 20 cores, the
time to convert from the P2P to the stride layout was on average 2.4 times more expensive
than performing the computation using the P2P layout with Intel MKL.

In Figure 4.2 we show the corresponding results for allocating the memory using the
P2P and strided memory layouts on the Intel Xeon Phi. We analyze both cases: when the
matrices are allocated on the main RAM, or when the matrices are allocated directly on the
high-bandwidth MCDRAM. Similarly to the host and GPU memory allocation in Figure 4.1,
we see that the strided memory layout is much more efficient in both cases. We also see that
using the high-bandwidth MCDRAM is significantly cheaper than allocating in the main
RAM. Note also that the drivers used to interface with the MCDRAM are less mature than
those used in DDR4 (which constitutes the main RAM), so we can expect this allocation
time to decrease in the coming years.

Our next set of results gives the performance obtained using the CPU, GPU, and Xeon
Phi for batched GEMM both including and excluding the memory transfer time.

In Figure 4.3 we show the performance obtained when executing the batched DGEMM
on the CPU cores using Intel MKL and on the GPU using NVIDIA cuBLAS. For the GPU
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Figure 4.3: Performance for computing a fixed batch DGEMM with 10000 matrices, of
various sizes, on 20 CPU cores using Intel MKL and an NVIDIA K40c GPU using NVIDIA
cuBLAS. For the GPU we report the performance when both including and excluding the
memory transfer time between the host and device, using the strided memory layout.

we provide the performance when both including and excluding time required to transfer
the data between the host and device. This experiment was performed using the strided
memory layout, which we have shown provides better memory allocation and transfer times.

From this plot it is clear that there is a stark difference between the GPU performance
when we include and exclude the memory transfer time. When this transfer is included the
performance drops dramatically and it is preferable to perform all computation on the CPU
cores, avoiding the memory transfers to and from the device.

If the data is already loaded onto the GPU, or if the memory transfer can be done
concurrently with some unrelated CPU computation, then there is a clear benefit to using
the GPU; otherwise it may be preferable to simply use the CPU cores for the computation.
Whether or not the memory transfer time can be hidden by CPU computation depends
entirely upon the specific application that the user is working on, which highlights the tight
connection that exists between the BBLAS and its use in specific applications. One might
also consider a hybrid approach to computing a BBLAS routine in which the CPU cores and
devices (such as GPUs) split the batch between themselves, allowing the CPU to work on
part of the batch whilst the remainder is being transferred to the devices.

In Figure 4.4 we show the corresponding performance results for the Intel Xeon Phi.
We show the performance when the matrices are initially stored on the main RAM and
in the MCDRAM. It is clear that, in most cases, it is beneficial to use the MCDRAM
instead of the main RAM, as there is a higher bandwidth connection between the memory
and computational cores. The reason for the loss in performance using the MCDRAM for
matrices of size 28 is currently under investigation.
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Figure 4.4: Performance for computing a fixed batch DGEMM with 10000 matrices, of
various sizes, using the Intel Xeon Phi. We consider the cases where the matrices are
allocated in the main RAM or directly in the MCDRAM.

5 Conclusions

In this work we have analyzed three different approaches to creating a standard API for
batched BLAS operations. We have also analyzed the performance effects of each API and
shown how the memory layout can impact the allocation and transfer times.

In terms of the approach taken for the API design, it seems that the simplest choice
for users is to use separate functions for the fixed and variable batch computations. Most
applications require fixed batch operations and this API makes this as simple as possible.
The group API allows the possibility of multiple fixed batch operations in parallel but, from
our experiments, seems to offer little performance benefit to compensate for its additional
complexity. Meanwhile, the flag-based API simply wraps the fixed and variable interfaces
into a single function, but creates a more complicated API for the user. Therefore we
recommend that separate routines are created for fixed and variable batch computation and
that the API shown in section 2.2 is adopted by the community.

It seems clear that the choice of which memory layout to use will depend largely upon the
user’s application. Our experiments show that the strided memory layout (and therefore also
the interleaved layout) is much more efficient in terms of memory allocation and transfer and
consequently they should be preferred whenever possible. However, these memory layouts
can only be used when the number of matrices in the batch and their sizes are known a
priori. In many applications this is not possible and therefore it is important to also support
the pointer-to-pointer memory layout.

Whilst there are clear memory allocation and transfer benefits to the strided and inter-
leaved memory layouts, further work is required to determine any performance benefits that
they may have: an efficient and optimized implementation of each approach is required to
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accurately compare their performance.
Sample API code is available at https://github.com/sdrelton/bblas_api_test.
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