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Abstract

The numerical solution of second-order elliptic partial differential equations (PDES),
via so-called mixed finite element methods, gives rise to large, sparse linear systems.
Such systems are usually ill-conditioned with respect to the discretisation parameter
and the PDE coefficients, a feature that severely degrades the convergence of standard
iterative solvers. However, improvements to convergence can often be achieved with
preconditioners.

The main focus of this thesis is the design of fast and robust solution schemes for
a symmetric and indefinite system arising in the mathematical modelling of flow in
porous media. This is a standard variable diffusion problem, described by Darcy’s
law. The challenge is to treat problems with a wide range of coefficients in the same
preconditioning framework.

In the modelling of groundwater flow, permeability coefficients commonly exhibit
discontinuities and/or are anisotropic. Several previously suggested preconditioning
schemes are not robust in such cases. Very few authors tackle the indefinite problem and
previous work has not paid significant attention to the impact of the PDE coefficients.
This thesis addresses these important issues.

For the model problem, we construct two block-diagonal preconditioners, consider
practical parameter-free implementations of them, and evaluate their performance with
respect to anisotropic and discontinuous diffusion coefficients. Generalising some of
these ideas leads to a generic, black-box strategy for tackling mixed finite element

formulations of a wide range of other elliptic PDES.
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Chapter 1

Introduction

The numerical solution of partial differential equations (PDEs) is an extremely challeng-
ing task. From simple models of heat diffusion, to complex time-dependent non-linear
models of fluid flow, mathematicians describe the physical processes that dominate our
world using equations that express rates of change. Solving such equations allows us to
predict planetary motion, weather patterns, climate change and pollution effects, un-
derstand the currents in our oceans, track orbits of satellites, predict evolution of stock
prices, detect cancerous tumours in patients, deblurr satellite images and all manner
of important things.

Many such mathematical models do not admit analytical solutions and so we must
look to numerical methods to approximate them. This requires not only an under-
standing of the underlying physical laws governing the processes, but also knowledge
of functional analysis, discretisation schemes such as finite element methods, linear al-
gebra, and, crucially, consideration of physical limitations such as computing memory
and time.

In the first six chapters of this thesis, we unite all of these considerations to anal-
yse efficient preconditioning schemes for a particular finite element formulation of the

following model variable diffusion problem.



1.1 A model diffusion problem

Let © be a bounded domain in IR%,d = 2,3. We consider scalar, second-order elliptic
problems of the form,

find p satisfying,

~-V-AVp = f inQ,
p = g ondQp, (1.1)

AVp-i = 0 on 0Qp,

where 092 = 0Qp U 0N denotes the boundary of Q, A = A(Z) is a d x d coefficient
tensor and 7 denotes the unit outward normal vector. It is a classical result that
a unique solution p exists provided that the tensor A, the source term f, and the
boundary data g, satisfy certain regularity requirements. (The problem is formulated
rigorously in Chapter 2.)

The boundary-value problem (1.1) arises in mathematical models of fluid flow in
porous media (see [30], [58], [40], [85], [49], [89]). The macroscopic flow of groundwater
in a porous medium was first shown, by Henri Darcy in 1856, to satisfy the linear

relation,

i = —fyp (1.2)
W

Here, @ denotes fluid discharge or velocity, Pr is the ‘residual pressure’, k is the per-
meability coefficient of the medium and p is the fluid viscosity. The true pressure is
calculated via Pr — pzg where p, z and g are, respectively, fluid density, height and the

gravitational constant. Coupling (1.2) with the mass conservation law,
V-i =0, (1.3)

yields precisely the first equation of (1.1) with f =0, A = ﬁI and p := Pg. In the
context of oil reservoir simulation (see, for example, [85]), (1.1) is referred to as the
‘pressure equation’.

If the coefficient A has the same value at all points in the flow region considered,

we describe the medium as homogeneous. In practice, flow domains are comprised of

1.1. A model diffusion problem



different media with varying porosity volumes, leading to heterogenous problems with
discontinuous A. If A depends on the direction of flow, then we say that the medium
is anisotropic. This phenomenon occurs in stratified media e.g. soils with alternating
layers. Although many typical values of A have been experimentally determined (see
[58] and references therein), it is not realistic to obtain measurements for every point
in space. This has led to probabilistic studies (see [40]) of the numerical solution
of (1.1). In this thesis, we consider only the deterministic case. Further, if A is a
given variable coefficient tensor, we assume that it can be locally approximated by a
piecewise constant function. We do not consider variable diffusion tensors that are
highly oscillatory at microscopic scales.

In typical applications, 4 is the variable of primary interest and so we look for a
solution to the coupled first-order system,

find 4 and p satisfying,

A +Vp = 0
V-w = f inQQ,

p = on 0Qp, (1.4)

Q

- = 0 on 00y.

£

To fix ideas, we call p and @ = —AVp the pressure and velocity solutions respectively.
We solve (1.4) numerically, using a finite element method.

For an introduction to finite element methods see, for example, [17], [92] or [79].
These methods are derived from variational formulations. In standard or primal meth-
ods for discretising PDEs such as (1.1), the solution is regarded as a minimiser of an
associated functional and Sobolev spaces are the natural choice for solution spaces.
However, primal methods are unsuitable in fluid flow modelling. Instead, we shall ap-
ply one of a class of so-called mized finite element methods (see Brezzi and Fortin,
[26]) which facilitate the simultaneous approximation of p and %. In this setting, the
solution corresponds to a saddle-point of a functional. The use of mixed methods is
essential in flow modelling because they ensure local mass conservation. Mixed velocity

solutions are also known to be more robust with respect to variations in the coefficient

1.1. A model diffusion problem



term, (see [79, pp.240-241]). The simple-minded approach of post-processing primal
pressure solutions to recover i can lead to highly inaccurate and nonphysical velocity
solutions.

It will be shown in Chapter 2 that mixed finite element approximation of (1.4)

yields a linear system of the form,

A BT

IS
5]

— , (1.5)
B 0

(b}
|~

C

where A € IR™" is symmetric and positive definite and u and p are the discrete
velocity and pressure solutions. Many other applications give rise to systems with this
structure; the fields of low modelling, electromagnetics and constrained optimisation
are rich in examples. If the chosen discretisation is ‘stable’ in a sense to be defined
in Chapter 2, then B € IR™*™ (with m < n) has rank m and the system is uniquely
solvable. However, the question of how to solve (1.5) is not a trivial one.

We begin with a brief review of iterative methods applicable to systems of the form
(1.5) and some concepts associated with preconditioning. Readers who are already

familiar with these topics can skip to the end of this Chapter.

1.2 TIterative solution schemes

First, we require some notation and definitions. Let A be an arbitrary, symmetric
matrix in JR"*" with eigenvalues {\1,..., A} and let z, z be arbitrary vectors in IR".

The Euclidean inner-product and induced vector norm are defined by,

(z,2) = z'2
lzl3 = (z,z) =)

respectively. It will be our convention to underline discrete vectors z in IR" to distin-
guish from vector functions 7 : Q — IRY.
Recall that if A is symmetric and positive definite, the values {A1,..., A, } are real

and positive. In that case, we may also define the vector A-norm,

lz 32 = 2"Asz,

1.2. TIterative solution schemes



based on the inner-product,

(Qa g)A = (AEa g) :QTAZ

We say that two vectors z, z in IR" are orthogonal with respect to a given inner-product

-,+)if (z, 2) = 0. Thus, z and z are A-orthogonal if
() if (z, , gonal if
(z,2)4 =z' Az = 0.

Two important measures of a general A € IR™*" are the spectral radius,

A) = ;
p(4) max [ Ai
and the condition number,
max; | A; |
= k(A) = ———.
r= k() min; | A; |

More notation will be added later, as required.

Now, system (1.5) is sparse and in practical applications, will typically consist of
millions of equations. Traditional direct solvers based on Gaussian elimination are
too costly because they do not exploit the sparsity of C. Today, sparse direct solution
methods are also available (see Duff [44]) and for problems in IR? they can match the
efficiency of iterative methods. For problems in IR3, however, their efficiency deterio-
rates (see, for example, [76].) To obtain practical schemes, iterative solution methods
that exploit sparsity are essential. Our philosophy is that we should choose a method

that:

1. Converges to a fixed tolerance in a number of iterations that is bounded from

above independently of the discretisation parameter and the PDE coefficients.

2. Converges to a fixed tolerance in only O(N) floating point operations (flops),

where N = n + m is the number of equations.

Possible choices of iterative methods for (1.5) are described in the next section.
For symmetric matrices, the convergence of all iterative solvers depends on the
eigenvalue spectrum of the system matrix. By considering the congruence transforma-

tion,
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A BT A0 A~ 0 A BT
- )
B 0 B I 0 —-BA'BT 0 I
and applying Sylvester’s law (see [56] p.416) of preservation of inertia, it is a standard
result that if B is full rank then C in (1.5) has n positive and m negative eigenvalues.
Hence, the problem is indefinite.
If an iterative method converges poorly for (1.5), we can look for matrices P that

have the property that the eigenvalue spectrum of P~1C is more favourable to conver-

gence and apply the iteration, instead, to the preconditioned system,

T
Pl A B U _ e
B 0

IS
I

(1.7)

(S}
[~

Crucially, computing the action of the inverse of the preconditioner P should require no
more than O(N) flops. If a preconditioner is implemented as in (1.7), we describe the
process as left preconditioning. Alternatively, if P is symmetric and positive definite,

we can perform symmetric preconditioning by writing P = M M7T and solving,

T
M! 4 B M
B 0

g Yy
=M1 7|, with [ = | = M7

I
=

I
"3

In this thesis, an kh-optimal preconditioner is a matrix operator that accelerates the
convergence rate of the chosen iterative solver so that convergence to a fixed tolerance
is independent of the discretisation parameter, h. For our model problem, we will also
refer to the property of A-optimality, which is analogously defined. Preconditioners
should be parameter-free where possible and not require eigenvalue estimates or tuning

with respect to PDE coeflicients. We use the term black-boz to describe such schemes.

1.2.1 Stationary iterative methods
So-called stationary iterative methods for solving general linear systems,
Mz =b, (1.8)

with M € IR™ "™ an arbitrary, nonsingular matrix, were popularised in the 1950s.

They are all based on a ‘splitting’ of the coefficient matrix into M = P — N with

1.2. TIterative solution schemes



P~'M approximating, in some sense, the identity I. Starting from an initial guess

z(9), iterates are constructed via,

Pt = Nzg® 4 p, (1.9)

or, equivalently,

2D = Gz ¢, (1.10)

where G = P7'N and ¢ = P~'b. Typical choices for the preconditioner P are the
diagonal or a triangular part of M, or a linear combination of these. Popular examples
include Jacobi and Gauss-Seidel iteration.

For any iterate g(i), we define the residual g(i) =b-— M@(i), and the error g(i) =
M~1p— . Clearly, Me() = r(0) and the error satisfies el = Gie(®). Tt is not hard to
show that the iteration converges if and only if p(G) < 1 (see [55, p.27]). The choice of
the preconditioner is therefore crucial. For fast convergence, p(P!N) must be small.
However, convergence can be greatly improved with the use of dynamic parameters.
Today, stationary iterative methods have been superceded as solvers although they still

play an important role as smoothers in multigrid schemes (see Chapters 4 and 5.)

1.2.2 Uzawa methods

An iteration scheme that specifically tackles saddle-point systems of the form (1.5) is

Uzawa’s method. In its standard form, it is the algorithm shown in Fig. 1.1.

Given initial guess ]_9(0),

for n=1,2,..., until convergence:

Solve: Aylrtl) = g- BTQ(”)

Update: B(nﬂ) — E(n) + o (Bg(nﬂ) — i)
end

Figure 1.1: Standard Uzawa algorithm

1.2. TIterative solution schemes



The method requires the action of the inverse of the matrix A to be computed at each
step. Since this is infeasible in most applications, modern variants use an approxima-
tion, leading to a nested iteration. The choice of the relaxation parameter « is crucial
for convergence. Optimal values are known (see [52]) but require the solution of an
eigenvalue problem. Another deficiency is the need to tune the parameter o and stop-
ping tolerances for the inner-iteration. For a discussion of variants of this method and
nested iteration schemes see [52], [11], [45], [86] and [10].

The augmented Lagrangian method, presented by Fortin and Glowinski in [52,
Ch.1], refers to the application of Uzawa’s algorithm to a modified saddle-point prob-

lem. Observe that for any r, the solution to (1.5) is also the solution to (1.11),

A+rBTB BT g—i—rBTi

= . (1.11)
f

1S3

B 0

I3

Applying Uzawa’s method to this system yields the algorithm shown in Fig. 1.2.

Given initial guess B(O),

for n=1,2,..., until convergence:
Solve: (A + T'BTB) u(ntl) = g+ ’I‘BTi — BT]_)(”)
Update: E(n-i—l) _ B(n) +a (Bg(n—i—l) — D

end

Figure 1.2: Augmented Lagrangian algorithm

The advantage is that choosing the relaxation parameter o = r, where r is large, yields
arbitrarily fast convergence. However, the method has a serious flaw. x (A + rBTB)
increases with r (see Proposition 2.3 in [52]), crippling the inner-iteration. Precondi-
tioners for tackling the inner-solve have been suggested (see for example Hiptmair, [60])

but optimal values of o and r have not been discussed. Parameter tuning is required.
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1.2.3 Krylov subspace methods

Today, Krylov subspace methods are among the most powerful tools available for solv-
ing large, sparse linear systems. Starting from an initial guess z(®, they generate a

sequence of iterates z(1), z(?), ... for (1.8) such that,
2D ¢ 20 1 span{r®, Mr®,. . MO} = O 1 K, (M,Kw)),
via an iteration of the form,

D) 2@ +a0p® =12, (1.12)

Here, a(¥ is a dynamic constant and B(i) is a search direction. K; (M , z(o)) is the
Krylov space. The attraction of such schemes is that they require only one matrix-
vector multiplication and a few inner-products per iteration, which, for sparse matrices,
can be performed in O(N) flops. Two well known examples are the conjugate gradient
method (c@G) for symmetric positive definite systems and the minimum residual method
(MINRES) for symmetric indefinite systems.

Both schemes can be motivated by simple linear algebra arguments. ¢G chooses,

and updates search directions via,

(@) (@)
O — ) 4 gD iy (9.r?)
p r + Y Vp with S L

so that the error e(t1) = z — z(it1) is M-orthogonal to ]_)(i) and ]_)(ifl). By exploiting
a certain three-term recurrence relation, it can be shown (see [55]) that the search
directions are all M-orthogonal and form a basis for the Krylov space. Consequently,
el“1) is M-orthogonal to all previous search directions and ¢G minimises the M-norm
of the error at each iteration over the space K; (M , E(O)). Templates can be found in
[51] and [55].

When M is indefinite, as in (1.5), CG is unstable. Although M does not define a
norm, we can minimise the Euclidean norm of the residuals by choosing, instead,

(r), Mp®)

o0 = 0 Mp0)
(MB(’)’ M]_)(Z))
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and then updating search directions via,

M]_)(i_l)’Mz_)(i_l)) )

MINRES is a scheme that has this minimisation property. However, it must be im-
plemented with care. The iteration breaks down if any of the computed coefficients
are zero. For this reason, CG and MINRES are best viewed as variants of the Lanzcos
method. This link was first established in the important work of Paige and Saunders in
[74]. When M is symmetric, the Lanczos algorithm reduces to a three-term recurrence

which can be expressed in matrix form as,

MQi = Qit1Tit1,

where @; € IR™ ' is an orthonormal matrix whose columns are basis vectors for
K; (M , z(o)) and Tj1,; € R is a symmetric, tridiagonal matrix of recursion co-
efficients. The coefficients o(?), () produced by cG correspond to an LU factorisation
of this matrix. This is where break-down can occur for indefinite problems. The iterates
produced are of the form,

Choosing g(i) to be the vector of coefficients that minimises the Euclidean norm of the
residual leads to a least squares problem that requires a QR decomposition of Tj1 ;.
By exploiting recurrence formulae this decomposition can be performed cheaply using
Givens rotations. Commercial MINRES codes such as the one in MATLAB (see [69]) use

a stable implementation based on an algorithm outlined by Fischer in [51].

1.2.4 Preconditioned MINRES

Our approach to solving (1.5), like those of [6], [86], and [98], is to apply MINRES.
Recall that MINRES minimises | 7( |5 over the space (0 + K; (C, E(O)). It follows that

there exists an optimal matrix polynomial p}(C), such that r() = p;-*(C)g(O) and,
120 3 = min | pi(C)r® [z

where p; denotes any polynomial of degree i or less satisfying p;(0) = 1. Since C

is symmetric and normal, we have the decomposition C = QAcQT where Q is an
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orthogonal matrix and A¢ denotes the diagonal matrix of eigenvalues of C. It then

follows that,
I 2 < min | pi(Ac) [l2 r@ s .

Thus, an upper bound for the relative residual error is given by,

) ]Iz

< i (s .
o, S oA, )] (1.13)
where {)A1,..., A\ptm} denotes the set of eigenvalues of C. The relative residual error

is reduced quickly only if it is possible to construct a polynomial of low degree, taking
value one at the origin, that is close to zero at all of those values. Apart from the
choice of initial vector, the convergence rate of MINRES is completely determined by
the spread of the eigenvalues. For our model problem, however, C is ill-conditioned
with respect to the discretisation parameter h and the coefficient tensor A (see Chapter
2.) For an optimal method, we require preconditioners P such that inclusion intervals
for the eigenvalues of P~1C are independent of the problem parameters. This is the

focus of this thesis.

1.3 Overview

The remainder of the thesis is organised as follows. Chapter 2 serves as an introduction
to mixed finite element formulations and outlines technical preliminary results that are
needed to understand the discussion in the sequel. We study the well-posedness, in a
natural choice of norms, of the variational problem associated with conforming mixed
finite element approximations of (1.4). We describe properties of the Raviart-Thomas
finite element spaces and review some existing preconditioning schemes.

Chapters 3-5 constitute the main theoretical contributions of the thesis and contain
further details and analysis of the preconditioners discussed by Powell and Silvester in
[77] and [78]. In Chapter 3, a preconditioner is motivated using the standard stability
theory. New eigenvalue analysis is supplied. In Chapter 4, a practical scheme based
on the multigrid theory of Arnold et al., [6], is considered. Important new eigenvalue

bounds are established.
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In Chapter 5, we use an alternative stability theory to motivate a second class
of preconditioners. A new practical method is proposed, the key building blocks for
which are diagonal scaling for a weighted mass matrix and a fast solver for a generalised
diffusion operator based on black-box algebraic multigrid (AMG).

In Chapter 6, we consider a commonly advocated positive definite reformulation
of the model problem and make a numerical comparison to the black-box approach of
Chapter 5. Finally, the discussion is extended to mixed finite element formulations of

Stokes equations and Maxwell’s equations in Chapter 7.
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Chapter 2

Mixed finite element formulation

In this chapter, we give a rigorous statement of the model problem, and describe
an appropriate mixed finite element formulation. Readers who are mainly interested
in linear algebra must be patient until section 2.4. Readers who are already familiar
with standard stability theory can skip section 2.3. It is necessary to review, first, some
fundamental results and technical definitions from the field of functional analysis. For
notation and style of presentation, we follow the conventions of Brezzi and Fortin [26,

Ch.3] and Hackbush [57, Ch.6].

2.1 Notation and preliminary results

Let Q be a bounded and connected subset of IR?> or IR3, with Lipschitz continuous
boundary 92 = 90Q2p U 0Qy. The symbols 02p and 02y indicate portions of the
boundary where Dirichlet and Neumann conditions are prescribed, respectively. C*(Q)
is the set of functions that are defined and have continuous derivatives of order k, or
less, on €. As usual, L?(Q2) denotes the space of scalar functions that are defined and

square integrable over 2 in the sense of Lebesque,

L}(Q) = {w|/ﬂw2d§2<oo}.

L?(9) is a Hilbert space equipped with the inner-product,
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(w,s) = /ws dQ,
Q

and the induced norm || w ||3 = (w,w). Analogously, for vector functions 7 = (vy, ..., v4)

we define the Hilbert space,
LX) = {7 |veL?Q),i=1:d},

equipped with the inner-product,

d
(T, @) = /6’-ﬁdQ,: Z/'Uiui dq,
Q =1 Q

and the induced norm, || ¥ ||3= (#,¥). The overlap in notation should not cause
confusion. The inner-product (-,-) and norm || - ||¢ are understood to be defined
componentwise for vectors.

A multi-index, & = (a1,---,aq) is a set of non-negative integers with

and is used to define the partial differential operator,

—

|&|
DY = 2=
81?1---613‘1

Now, given an integer m > 0, we define the Sobolev spaces,

H™(Q) = {v]|v e L*Q) and D% € L3(Q), | & |< m}.

For a fixed m > 0, associated semi-norms and norms are given by,

[vlm= > D%, lvlm= 3 lvl

|&|=m k<m

respectively. We shall mainly be concerned with the Hilbert space,

ow ow
1 _ 2 2
H (Q) = {w|wEL (2) and oz, B €L (Q)},

and the subspace,
Hy(Q) = {w|we H(Q) and w =0 on 00} .

Recall that functions belonging to H} () satisfy the following fundamental inequality.
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Lemma 1 ‘Poincaré-Friedrich’s inequality’. For all w € H}(S),
[wllo< C(Q)[w i,
where C(Q) is a constant that depends on Q.

Proof See Braess [17, p.30] for the case where 2 is contained in a d-dimensional cube.

For completeness, we also define the Sobolev dual space,

H(Q) = {w| /Qw5<oo vseHg(Q)}.

In our mixed finite element approximation of the model diffusion problem, we will

constantly refer to the space,
H(div; Q) = {17| TeL?(Q)%and V-7 € LQ(Q)},

which clearly satisfies the inclusion (H I(Q))d C H(div; Q) C L*(Q)%. Tt possesses the

natural inner-product,

and the induced norm,

19 &=l 715 + 11 V-7 15 -

To perform analysis with functions in H(div; ), the following version of Green’s for-

mula is often useful.

Lemma 2 Let 7 € H (div; Q) then,
/v-ﬁwdQ:—/ﬁ-vwdQ +/ 7 -iwds Yw € H (Q).
Q Q 0

Proof See Brezzi and Fortin [26, p.91].

Notice that if the coefficient tensor A in (1.4) is symmetric and if there exist positive

constants v and I' with 0 < v < T' such that,
1(,7) < (A7'5,%) < T(3,9), (2.1)
for every 7 : Q — IR%, then,

(@, 0) gipa = (A'0,9) + (V-4 V- 7),
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also defines an inner-product on H(div;€2) and induces a norm || - |4y, 4 that is equiv-
alent to || - ||giv- We shall make these assumptions in the sequel.
Next, since we have assumed that 99 is smooth, we can define the trace, w|sq, of

any w € H'(Q2). The set of all traces of such functions gives rise to the Hilbert space,
H7(09) = {g | g = wloq for some w € H(Q) N COQ)}.

Similarly, for vector functions, ¥ € H(div; ), the set of normal traces, (7 - i7) |sq, where

77 denotes the outward-pointing normal vector to 0f2, gives rise to the dual space,
H2(0Q) = {q | ¢ = (7-7)|an for some 7 € H(div; Q) N (00(5))d}.
Now, for any g € H> (09) and g € H> (09), (-,-) represents the duality pairing,

(g,9) =/ qg ds,
oN

and we can define the subspace,

where,

Hop(Q) = {w e H'(Q) | wlog, =0} (2.3)

We shall see that Hy n(div;€2) is an appropriate space in which to seek an approxima-

tion to the velocity solution of (1.4). The properties of this space, relative to a given

partitioning of the domain, will play an important role in the finite element method.
Suppose, then, that €2 can be subdivided into a set T}, of subdomains, K, where hx

denotes the diameter of the escribed circle of K. We denote,

h = max hx, hpi, = min hg.
KETh KeTh

The subdomains are called finite elements. T} is the finite element mesh and the
discretisation parameter, h, describes the size of the elements in it. We shall make the

following assumptions on T}, :
e 0 =U KETh?
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e There exists a constant, £, independent of h, such that

h
K <¢ VK €T,
PK

where pi denotes the diameter of the largest inscribed circle of K.

The last condition is known as shape-regularity. We will also refer to the property of

quasi-uniformity:
e There exists a constant, 7, satisfying,

iST VK €Ty,
PK

which will be a requirement in some parts of our analysis.
For any given element K we can now define the space H(div; K). The following
lemma gives conditions on the type of functions, defined piecewise on the elements of

T}, that can be used to approximate ' € Hy y(div;2).
Lemma 3 Let 7 € L%(Q)%. ¢ € Hyn(div; Q) if and only if,
|lk € H(div;K) VK € Tp, (2.4)

and,

Y (F-i weg =0 VYw € Hyp(Q). (2.5)
KeTy

Proof We give an outline of the proof, as suggested in Proposition 1.1 of [26, Ch.3].
First, let ¥ € Ho n(div; ). Clearly condition (2.4) holds. Using the definition (2.2)

and the integration by parts rule in Lemma 2, we have, for any w € H& p(9),

0 = (17-71',111)2/ 17-ﬁwdsz/V-17wdQ+/17-deQ.
onN Q Q

Breaking the integral into pieces and using (2.4) yields,

0= > (/KV-q')’deJr/Kﬁ-deK) = > (71, w)o-

KeTp KeTp

Hence condition (2.5) holds.
Conversely, let 7 € L?(2)¢ and suppose that conditions (2.4) and (2.5) hold. Since
|k € H(div;K) on each K, we can apply Lemma 2 on each subdomain. Thus,

Yw € H&D (©2) we have,
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/V%mmedK+/ﬁmFVwde _ / (5 7) | i w|x dK.
K K 0K
Summing over K and imposing condition (2.5) yields,
/V-'D'wdQ:—/'D'-deQ VwEH&,D(Q). (2.6)
Q Q
It follows that,

/V- ﬁwdﬂ‘ =
Q

Since 7 € L2(Q)%, and w € H'(Q), the right-hand side is bounded and we must have

/mvwm‘gnammhasze%pmy
Q

V-4 € L?(Q). In that case, ¥ € H(div;Q) and so we can now apply Lemma 2 to the

whole domain. This yields,
/V-ﬁwdQ:—/ﬁ-deQ+(17-ffi,w) VwEH&D(Q). (2.7)
Q Q

Equating (2.7) with (2.6) gives, (7 -7, w) = 0 for all w € H&,D (Q). Hence v €

Hy n(div; Q) as required. O

Remark 1 Any ¥ that satisfies (T - 7) |an, = 0 and that has continuous normal com-

ponents at the interior interelement boundaries of Ty, satisfies (2.5).

We are now ready to formally state the model problem.

2.2 Mixed problem definition

Let Q be a bounded domain in R%, d = 2,3. Given f € L?(Q) and g € H%(ﬁQD), we

look for a solution (@, p) to the first-order PDE system,
Al —Vp = 0,
V-iu = —f inQ, (2.8)
p = g ondQp,
w-7 = 0 on BQN,

where 0Qp # 0 and A = A(Z) is a d x d bounded, symmetric and positive definite

coefficient tensor with smallest eigenvalue bounded away from zero uniformly with
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respect to Z € Q so that (2.1) holds. It can be shown (see [26, p.134]), that a unique

solution exists and corresponds to the solution of the saddle-point problem,

1
inf sup —/.A_ITJ'-'F)'dQ+/ (V-17+f)wdQ+/ gv-nds. (2.9)
#eHo,n (div;?) yer2() 2 Ja Q oD

Note that imposing non-homogeneous Neumann boundary conditions in (2.8) is straight-
forward. We restrict attention to the homogeneous case because it corresponds to a

‘no-flow’ condition which is common in the context of low models.

2.2.1 Continuous variational problem

Now, we designate test spaces V = Ho n(div;Q2) and W = L?(Q2). Multiplying by
arbitrary test functions in (2.8), integrating over 2 and imposing boundary conditions
yields the continuous, mixed variational problem,

find (4,p) € V x W satisfying,

a(@,¥) +b(v,p) = (9,7-7)gq, VVEV, (2.10)

b(ﬁaw) = _(faw) Vw € VV,

where a (-,-) : VxV — R,and b(-,-) : V x W — IR are the continuous bilinear forms,

Note that a(-,-) and b(-,-) are also bounded. Applying the Cauchy-Schwarz inequality,

we obtain,
| 6@, w) [ <[V -7 loll wllo <l 7 llaivll w llo,

and since the coefficients in A~! are assumed to be bounded, there exists a positive

constant C, < 0o, depending on A, such that,

| a(@,0) | < Call@lloll 7llo< Call @ llaivll 7 llaiv - (2.11)

2.2.2 Discrete variational problem

Given a partition 7, of Q into finite elements {K}, a standard, conforming finite
element approximation consists of choosing finite dimensional subspaces V;, C V and

Wy, C W and solving,
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find (up,pp) € Vi x Wy, satisfying,

a(u_;wv_;l) +b(v7l,ph) = <g,IU_;L 'ﬁ>8QD VU_;L € Vha

b(un,wn) = —(f,wn) Vwy € Wh.

(2.12)

Clearly, functions in V}, must satisfy the criteria of Lemma 3. Remark 1 says that we
can achieve this by choosing functions which, in particular, have continuous normal
components at interelement boundaries. Discontinuous pressure functions are admis-
sible. However, the compatibility of V}, and W}, is critical. The variational problems
(2.10) and (2.12) are examples of the generic saddle-point problem studied by Brezzi
and Fortin in [26, Ch.2] and as such can be analysed for stability in the framework

described there.

2.3 Stability analysis

In this section we recall the abstract theory of Brezzi, leading to conditions on the
finite element spaces V;, and W}, that guarantee existence and uniqueness of a solution
to (2.12). We begin with the continuous problem (2.10).

2.3.1 Continuous problem

Theorem 1 Given continuous, bounded bilinear forms, a(-,-) and b(-,-), the following
two conditions are sufficient for the existence and uniqueness of the solution (u,p) €

V xW to (2.10),

1. Z-ellipticity: there exists a constant o > 0 such that,

a(3,9) 2 e || 7}, Ve Z (2.13)

where Z ={0 eV | b(¥,w) =0 Yw € W}.

2. Compatibility condition: there exists a constant 8 > 0 such that,

~—

b(v, w
sup

gev || 7 llv

>Bllwllw Vo e W. (2.14)

Proof See Brezzi [23] for the original exposition or Roberts and Thomas [82, pp.568—

569]. O
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Condition (2.14) is referred to as the inf-sup inequality since we may restate it as,

b(5
inf sup — LBV 4 (2.15)
weW gey || w llw || 7 [lv

The natural choice of norms is || - [[y=|| - ||¢giv and || - [[w=]| - ||o- However, a different

choice will be considered in Chapter 5.
A crucial first observation is that since V-V C W, the constraint space Z contains
only divergence-free vectors. Thus, for any ¥ € Z, || ¥ ||4giv=|| ¥ ||o - Now, by condition

(2.1),

a(@9) >y | Fl5= 71715 VYieZ (2.16)

and so (2.13) holds with @ = v > 0. To establish inf-sup stability, we require the

following result.

Lemma 4 For any f € L%(Q), there exists a h € Hy n(div; Q) and a positive constant
C satisfying,
|2 llaiw<C |l fllo- (2.17)

Proof Given any f € L?({), it is a standard result that there exists a unique solution

s € H(Q) to the homogeneous mixed boundary value problem,

-V-(Vs) = f inQ
s = 0 ondQp

Vs = 0 on 0Qy.

Choosing i = —Vs gives V -k = f. Since Vs € L%Q) and f € L2(Q), we have
h € H(div;Q). Using h - ii|aq,y = 0 yields h € Ho y(div; Q). The bound (2.17) then
follows by Remark 1.1 in Brezzi and Fortin [26, p.136] O

It follows that for any w € L2(2) we can choose k in Hy n(div; Q) as the uniquely
determined vector i = —Vs, satisfying (2.17) with f = w. Then,

wup 2B o bw) (V- Rw)  Jwlf o Ljwld L
oev [0 = Wil (% law NBlw  Clwlo ~ C

Hence, by Theorem 1, a unique solution (@, p) € Ho n(div; Q) x L?(£) to the con-
tinuous variational problem (2.10) exists. Establishing existence and uniqueness of a

solution to the discrete problem (2.12) is, however, somewhat more complicated.
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2.3.2 Discrete problem
Theorem 2 If the following conditions hold,

1. Zy-ellipticity: there exists a constant ap > o, > 0, with a, independent of h,
satisfying,

a(vh, 01) > an [| 9 |3, Yk € Zn, (2.19)

where Zy = {v, € Vi, | b(vp,wp) =0 Ywy € Wy},

2. Discrete inf-sup inequality: there exists a constant By, > By > 0, with B, indepen-
dent of h, satisfying,

b U_;L;wh
sup 2B 0) 5 5y llwy Yun € Wi, (2.20)
aievi I v,

then there is a unique (Up,pp) € Vi X W}, satisfying (2.12) for each h. Further, there

exists a constant C, depending on o, By, and C, in (2.11) such that

@b i+ 2= llwy S CCint 1@ =i lly, + inf | p—wn lw,). (2:21)
h h

inf
wpEWH
Proof See [26, Ch.2] or [82]. O
We look for spaces V}, and W}, that satisfy the conditions of Theorem 2 with norms
I llvi =1 - llv=Il - llaiw and [| - lw;, = | - [lw=[ - llo- However, this is not a trivial task.

Theorem 3, below, offers a constructive way to establish the discrete inf-sup inequality

for chosen spaces V;, and W,

Theorem 3 Let M C V such that M is dense in V. Suppose the continuous inf-sup

inequality holds in M and Wp,. That is, there exists a constant By, satisfying,

b(7, wp)

s Wh
vy

sup

> By | wn lwy,  Ywn € Wi (2.22)
gem ||

Suppose further that there exists a family of uniformly continuous operators Il : M —

Vi, satisfying, for every ¥ € M and wy € W,

b(Hh’l_)'— 17, wh) = 0, (2.23)

[T v < C|7]v, (2.24)

where C is a constant independent of h. Then, the inf-sup inequality (2.20) is satisfied.
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Proof For any wy, € Wy, conditions (2.23)—(2.24) imply,

b(ﬁha wh) b(Hhﬁa U)h) b(Hhﬁ - 17, wh) + b(’U7 wh)
Sup ———=—F7— 2 SUpPp /7= 5;; = Sup =
anevi |l Un llv gem || @ v gem | TIp @ ||v
b(ﬁa wh) 1 b(’l_J‘, wh)

= sup - — .
gem | e ||y~ gem C || 7 |lv
Note that we used the fact that M is dense in V in the first step. The result follows

from (2.22) with g, = ’BTM O

2.4 Raviart-Thomas approximation

A family of local spaces that can be used to construct a suitable subspace V;, C
Hy n(div; Q) are proposed by Raviart and Thomas in [80] for IR? and by Nedelec
in [72] for IR®. We denote, for any element K, the set of polynomials of degree < k by
Py(K). In IR?, Qi ;(K) is the set of polynomials of degree < % in the z-component and
< j in the y-component. Using this notation, the Raviart-Thomas-Nedelec element

spaces of degree k > 0 are,
RT(K) = (Pu(K))'+&P(K), d=2,3, (2:25)
if K is a triangle or a tetrahedron, and

RTp(K) = Qr+14(K) X Qppt1(K), (2.26)

if K is a rectangle in IR?. For brick elements in IR?, we have,

RTi(K) = Qr+1,6k(K) X Qrk+1,k(K) X Qk ko ,k+1(K). (2.27)

We shall only consider the lowest-order elements (k = 0), since for discontinuous
coefficient tensors, A, we do not obtain high solution regularity. Our numerical exper-
iments will be performed in IR?. In that case, functions ¥ € RTp(K) have the special

forms,
. a+cx . a+cx
CINES , Uo= , (2.28)
b+cy b+dy
for triangles and rectangles, respectively. These functions are uniquely defined by the

values of their normal components at the element boundaries. A proof of this is given
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in [80] for IR? and in [72] for IR3. Tt is also easy to see that RTy(K) C H(div; K).
Hence, in view of Lemma 3 and Remark 1, the element spaces RTy(K) are a natural
choice for constructing the space V;, C Hy n(div; Q) in (2.12).

We now describe the construction process of spaces V;, and W}, and operators IIj,
that satisfy the criteria of Theorem 3, for triangular and tetrahedral elements. The
arguments are technical but necessary to establish existence and uniqueness results.

To begin, we define the space,
M(K) = {# € (L*(K)* | V-7 € L*(K)}, s>2,
and a local interpolation operator 7x : M(K) — RTy(K), via,

/17-ﬁp0d5 = / TRV - TPy ds V po € Ry(0K), (2.29)
oK oK

where Ro(0K) = {po € L*(0K), pole € Po(e)Ve € K}. For technical reasons, we
cannot choose M(K) = H(div; K). We require s > 2 so that the integrals in (2.29)
are well defined. A crucial property of mx is that it commutes with pg, the local
L?-projection operator acting on the space V - RTy(K). To be specific, we have the

following result.

Lemma 5 For all 7€ M(K), V- (rg¥) = pgV - 0.

Proof For any w € V - RTy(K), we obtain, using Green’s formula on K,

/V-(WKﬁ—ﬁ)de = /(ﬁ—ﬂKﬁ)-deK+/ w(V — m V) - ds.
K K oK

By definition of RTy(K), w € Py(K). Hence, w|xg € Ry(0K) and Vw|x = 0. The
right-hand side vanishes by the definition of 7x in (2.29). Combining this with the

definition of the L?-projection operator, px, yields,
/wV-wK'z_)'dK = /wV-'E'dK:/wpKV-'E'dK, VYw e V- RTHK).
K K K

Since V - mg¥ € V - RTy(K), the result follows. O

This commutativity property is usually illustrated by the diagram shown in Fig. 2.1.
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div

M(K) L*(K)
TK Pk
RTy(K) V - RTy(K)

div

Figure 2.1: Local commutativity property

Next, we define the global spaces,

RT()(Q;Th) = {ﬁEH(d’i’U;Q) | 17|KERTO(K)VK ETh},
Win = {welL?Q) | w|lke V-RIH(K)VY K € Ty}, (2.30)

M = {¥ e Hyn(div;Q) | ¥ € (L)%}, s> 2, (2.31)
and construct a global interpolation operator, II, : M — RTy(2;1},), via
(Ip?) |k = 7K (V]k)-

If we choose P, to be the L?-projection operator on W},, then we can derive the global
commutativity property V - (IIy9) = P,V - .

Returning to the approximation problem (2.12), we now choose finite-dimensional
subspaces,

Vi = {’17 € RT()(Q;Th) and 7 - ﬁ‘aQN = 0}, (2.32)

and W}, as in (2.30) which is equivalent to,
Wp={wecIL*Q) | w|k€ P(K) VK €T} (2.33)

To establish a unique solution to (2.12), we require that the chosen Vj,, W) and II,
satisfy condition (2.19) in Theorem 2 and the criteria of Theorem 3 with M defined in
(2.31) and [| - lv= [ - v, =l - llaiv and [| - [lw;,=I - llo- Since V-Vj = W, Zy-ellipticity
certainly holds. It can be shown that the vector h used to establish inf-sup stability

for the continuous problem in Lemma 4 actually belongs to M for some fixed s > 2.
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Hence (2.18) holds with V replaced by M. Since W}, C W, the inf-sup inequality (2.22)
also holds. It remains only to verify the conditions (2.23)-(2.24) on II,. Using the
definition of P}, and the global commutativity property, for any wy, € Wy, and ¥ € M,

we have,
b(Hhﬁ—ﬁ,wh) = /V-Hhﬁwth—/V-ﬁwth
Q Q
= /PhV-ﬁwth—/V-ﬁwth = 0.
Q Q

By definition (2.29), the local operator mx in (2.29) is bounded. Hence, by construction,
I1;, is a also a bounded operator, from M to V},. Property (2.24) follows. The reader is
referred to [26, Ch.3] for full technical details.

Hence, for triangular and tetrahedral elements, with V}, and W}, defined in (2.32)
and (2.33), respectively, there exists a unique solution (@, p) € Vj, x W, to (2.12). The
same construction applies to rectangular elements, provided we choose V}, as in (2.32)

with RTy(K) defined in (2.26) and
Wy, = {welL?Q) | w|ke V-RIH(K) VK €T}

The degrees of freedom for the lowest order elements in IR? are illustrated in Fig.
2.2. Normal components of velocities are sampled at edge midsides. The piecewise

constant pressure approximation is sampled at element centroids.

| |

Figure 2.2: Degrees of freedom for RTy(K) in IR?.

2.4.1 Error estimates

Error estimates for the resulting solutions @, € Vj and p, € Wy to (2.12) can be

derived from the following best approximation property.
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Lemma 6 Let (i,p) and (dp,pn) be the solutions to (2.10) and (2.12) respectively,

with Vi, Wy, chosen as in (2.32) and (2.33). There exists a constant C independent of

h such that,
| @ —h leiw < C inf || 4~ 9% ||giw,
ULEVS
B < of wf Vil + inf B
lp=mlo < ©( int 170 law + inf 1| p=wnlo).

Proof See Brezzi and Fortin [26, Ch.4].
Bounds can be derived in terms of h = maxg hx by exploiting properties of the
interpolation operators II;, and P,. Observe that,

inf —w < — P, < —
winf | p—wnllo < [[p—Pupllo< (; | p —pxp ||o,K>,

and if 4 € M = Hy y(div; Q) N L3(Q)¢ with s > 2,

inf || @ =9 ||leiw < || €= OpT || iv
vpLEVR

1

2

= (Z I~ mx@ 1[5, + |l V-ﬁ—pKV-ﬁllg,K> :
K

Provided we use an affine, shape regular mesh T}, so that there exists an affine invertible

mapping from each K onto a reference element K*, we obtain,

IN

| @ — 7kt [Jo,i Chk | i |1,x,
|p—prplloox < Chi|p|iK .

Combining all of this information leads to the following standard result.

Lemma 7 Let (4,p) be the solution to (2.10) and (ip,pp) be the solution to (2.12)
with Vi, and W}, defined in (2.32) and (2.33). Then,
[@—dhllo < Ch(lTG[1+]|V i)

lp=prllo < Ch(ldli+[V-d|li+][pl),
where C is a generic constant independent of h. [

The above estimates assume, then, that @ € H'(Q)?, V-4 € HY(Q) and p € H*(Q).
However, the regularity of these variables depends on the convexity of Q2 and the con-

tinuity of the coefficient term (see [82, pp.582-583] for a discussion). If Q is convex,
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and A is continuous, we have the following refined estimate, established by Falk and

Osborn in [50].

Lemma 8 Let (4, p) and (i, pp) be the solutions to (2.10) and (2.12) with Vj, and W),

defined in (2.82) and (2.33). Then,

[ —dhflo< Chll@lly, lp—pnllo< Chllpll,

where C is a generic constant independent of h.

Hence, for the lowest order schemes we obtain O(h) estimates for both the velocity and

pressure approximations.

2.4.2 Algebraic system

To see that (2.12) yields a linear algebra problem of the form (1.5), it is convenient to

introduce linear operators A : V, = V}, and B : V};, — W}, defined via,

(ATp,qn) = alh,qh) VUh,qh € Vi,

(Bip, wp) = b(Oh,wn)  Vip € Vh, Vwp € Wh,
and the adjoint operator BT : W), — V},, satisfying,
(Oh, BTwp) = (Bip,wyp) VO, € Vi, Ywp € Wh.

Now (2.12) becomes,

A BT Uh gn
= y
B 0 Dh —fh
—_———
c

(2.34)

where fy, = P, f and gn = (9,9} - ) 5q,,- To realise (2.34) on a computer, we choose

basis sets,
Vi = span{@i}iey, Wi = span{¢;}],,

and construct the finite element matrices A € IR™*"™ and B € IR™*" via,
Ay = (A7'¢h¢), dji=1:n,

Bk:j = (V'(ﬁj,(ﬁk), kzl:m,jzl:n.

(2.35)

(2.36)
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Expanding the discrete solution variables in the chosen basis sets now yields,

n m
(dh,pn) = | > uidi, »_pidj |
im1 =1

where u = [uq, ... ,un]T and p = [p1,..., pm]T are the vectors of coefficients satisfying,
A BT U g
= = 1. (2.37)
B 0 P f
c

The right-hand side vectors f € IR™ and g € IR" are constructed via,

9i = (9:9i M)sq, i=1:in,

fe = —(fide) k=1:m.

We call A the weighted velocity mass matrix and B is a discrete representation of the
divergence operator. A is positive definite since (2.1) holds and the inf-sup inequality
ensures that rank(B) = m so that null(BT) = {0}. Combining these properties, it is

easy to show that the coefficient matrix C in (2.37) is non-singular.

2.4.3 System assembly

We now give a brief description of the assembly procedure for the mixed finite element

system (2.37). For any w;, € W}, defined in (2.33),
m
wh,(a:a y) = Z wi¢i’
=1

where w; = wp(z¢;,Ye;) is the value of wy, at the centroid of the ith element. The scalar

global basis function ¢; is the characteristic function satisfying,

1 in element K;, ¢ =1:m = #elements
¢i = (2.38)
0 elsewhere.

We fix a set of oriented normal vectors 7' to each edge (in IR?, or face in IR?) e; of Tj,.
For uniform triangular meshes in IR?> we shall use the orientation shown in Fig. 2.3.
For any given domain, the orientation can be chosen arbitrarily. We denote by ﬁZK the

set of unit outward normal vectors at the edges, or faces, of element K and set

oo i
. +1 if 7% = vy,

SK—
P
-1 if 7% = —Uk.
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Figure 2.3: Possible configuration of global normal vectors.

In each K, i), € V} has the local expansion,
i, y)|x =Y @ f,
J
where a; = up| Kk - 17}'(, and the index j runs over the edges (faces) of K. Globally,
n
ﬁh(way) = Z Us (;5;'7
i=1

where the index n runs over all the edges or faces of T;,\0Qy. We choose the basis

functions to satisfy,

\ 1ifi=k,
G- i = ik=1:n, (2.39)
0ifi#k

so that the degrees of freedom are u; = j, - .

Remark 2 Some authors write degrees of freedom for wy, in integral form. That is,

the basis functions are chosen to satisfy,

1 ifk=i,
/ gi - tds = (2.40)
0 ifk#i,

so that u; = fei uj,- ' ds, where e; denotes the ith edge or face of Ty,. All of the algebraic

properties of the matrices A and B in (2.37) that we will derive correspond to the choice

(2.89).

Now, using (2.36) we have,

B, = / V-@‘deT:/ @ - fix dK =Z/¢'j-ﬁﬁ<ds,
K, BKT e €
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where, in IR?, 7i% is the unit outward normal to edge e of K. Thus,

0 ife; ¢ K,,
B, = , i ¢ Kr (2.41)
sk, | €| ifej € K.
For the righthand side,
0 if e; ¢ 9Qp,
fr=- fdK., ¢; =
Ky fei gds if e; € 0Qp.

The matrix A is constructed from the element contributions,
Af = /KA—1|K@K - @i dK, (2.42)

where the indices 4, j run over the edges or faces of K. If the entries of the coefficient
tensor A are variable, then we do not perform the integration exactly. Rather, we

approximate the coefficients by piecewise constant functions. Thus, in IR?, we write,

ailr a2
Al = , (2.43)
a2 a2

to denote A evaluated at the centroid of K. Making this assumption, the integrand in

(2.42) involves only quadratic or lower order terms and can be performed exactly.

2.4.4 Structure of the weighted mass matrix

Next, we derive some algebraic properties of the element matrices AX in IR?, relative
to the structure of the averaged coefficient tensor A in (2.43). Consider, first, the

reference triangle K* in Fig. 2.4, aligned with the co-ordinate axis (r, s).

0,1) s
3 x——=
2
1
—————————-
(0,0) (1,0)

Figure 2.4: Reference triangle
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If we fix oriented, unit, normal vectors,

0 L 1
~1 ~2 2 ~3
Vg, = » VK, = \i— y Vg, = )
-1 7 0
at the edges, then the reference element basis functions are,
T 2r 1—r
=1 =2 =3
Pr* = ) Pr* = ’ Pr* = ’
—1+s 2s -8
based on the orientation signs s}(* = +1,s%(* = —I—l,s?}(* = —1. On this element,

integration yields,

age +3a11 + 3a12 V2 (@22 — a11 + a12) az2 + a1 + 3a12

* 1
K
~ 12det(A) V2(az — a1 +a12)  2(az2+an —a12)  V2(azn — a1 —a)

az2 + a1 + 3a12 V2 (@22 — a11 — a12) 3az2 + a1 + 3a12

where det(A) = ajjaze — a2, > 0. For diagonal coefficient tensors, this simplifies to,
1 4 1 V2 (1 1 1o, 1
12a11 4as9 12 \ a1 a2 12a11 12a22

AKX — ﬁ(l_i) 1oy 1 ﬁ(l_i)

12 \an; a2 6a22 12 \ a1 a22

LI v2 (1 _ 1 1o, 1
12a11 12a22 12 \ a1 a2 4da11 12a22

and if A is a constant or a scalar function, with a11 = age = k, we obtain,

1 1
3k 0 6k
AK" = 1
0 = 0
1 1
6k 0 3k

For general right-angled triangular elements of edge length hx we obtain AKX = h% AK".
Stencils for AX on equilateral triangles with A = 1 are given in [76]. The important
observation is that for triangles of all types, all of the coefficients influence all of the
rows of AX. This also occurs in IR3.

Now consider the reference square K* in Fig. 2.5. Fixing normal vectors,

1 0
_‘}{* — 17%{* — ) 17?{* — 17;1{* — 3

0 1

integration yields element basis functions,

rl 3+3r 0 0
y PR* = =

N
N[

=1 _
P+ =
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based on the orientation signs, 3}(* = 33}’(* = -1, s%(* = s‘}(* = +1.

(-1.1) T (L.1)

(-1-1) -1

Figure 2.5: Reference square

The key point here is that we obtain two sets of mutually orthogonal basis functions
{BLn, P2} and { %+, %~ }. This will always be true for rectangles with edges aligned
with the co-ordinate axes.

On the reference square, we find that,

4 2
3022 3022 —012 —012
2 4
s 1 3022 3022 —0G12 —0a12
det(A) 4 2

—a12 —ai2 3a11 3011

2 4
—ai2 —a12 30611 3011

which simplifies, for diagonal coefficient tensors to,

4.1 2
3 a1 3 an
2 1 4.1 0 0
* 3 3
AR = G S an : (2.44)
4 1 2 1
0 0 3 a2z 3 a22
2.1 4.1
0 0 3 az2 3 a2 /

Here, and for general rectangles, AX has diagonal blocks. The crucial observation
is that each one is scaled with respect to a different coefficient. Thus the impact of
anisotropy on the structure and conditioning of AX is entirely different for triangles

and rectangles.

2.4.5 Eigenvalues of unpreconditioned system

To see that (2.37) requires a preconditioner, we now require bounds on the eigenspectra

of C for our specific choice of V;, and Wj,. Rusten and Winther established the following
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generic eigenvalue bound in [86].

Lemma 9 Let 0 < py... < up be the eigenvalues of A and 0 < o1... < oy, be the

singular values of B. The eigenvalues of C in (2.87) lie in the intervals,

1 1 1
[5 (Nl — /i + 40%@) '3 (un —\JuA+ 40’%)] U {ul, 3 (,U'n + Vg + 40%@)] (2.45)

Proof See Lemma 2.1 in [86]. O

For a more explicit statement, we need bounds for u1, p,, o1 and o, that reflect
the role of the discretisation parameter h and the coefficient tensor A. The influence
of h, on the condition number £(C), has been established by Scheichl in [89]. Below,
we use the same arguments to establish the role of the constants v and I' from (2.1),
as well as h, in (2.45). We reiterate that it is not x(C) that ultimately determines the

success of the MINRES iteration but rather the clustering of the eigenvalues.

Remark 3 In the sequel, ¢ or ¢; for some integer i, will always denote a positive

generic constant, independent of h and the coefficients vy and T' appearing in (2.1).

The starting point is the following fundamental bounds for the L? norms of arbitrary

pressure and velocity functions in the lowest-order spaces V}, and Wy,

Lemma 10 Let wy, € Wy, and 0y, € V3, with Wy, and V}, defined in (2.33) and (2.32),
respectively. Let w and v denote their vector expansions in the bases defined in (2.38)

and (2.39). Then, for some constants c1,ca, c3, 4,

cthdinv ™o < || 9, 5 < eoh®T, (2.46)
c;;h‘fm-nyTw < | wp ||(2) < eqhwTw. (2.47)

Proof The bound (2.46) is established by Scheichl in [89, Appendix A], and exploits
an earlier result obtained by Hiptmair, [60], for a different choice of degrees of freedom.

The second bound follows immediately from,

m 2
| w [I§= ( wz‘¢z’) dK,

and the fact that the basis functions ¢; are just characteristic functions satisfying ¢; = 1

in K; and ¢; = 0 elsewhere. Thus,
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m m
w12 = Z/ W dK;, = S w? | K,
j=17K; j=1

where | K | denotes the area or volume of K. Since we have assumed 7T}, is shape-
regular, we easily obtain (2.47). O

By definition (2.1), we have,
Y Fl5< v 4w < T || 7 [l5,
and so the following result is an obvious consequence of (2.46).

Lemma 11 The eigenvalues u1 and p, of A satisfy,
c1y h‘fnm <pr < pin < cThY. (2.48)

Remark 4 Lemma 11 indicates that k(A) is only independent of h if hyin, = h. More-
over, k(A) depends on g Thus, A is not necessarily well-conditioned as is often as-

sumed (cf. Rusten et al. [86], [87]) and cannot in general be approzimated by a scaled

identity matriz.

Lemma 12 The minimum and mazimum singular values o1 and o, of B satisfy

d
C3 hmm

< 01 < oy < egh®h (2.49)
Proof See Scheichl [89, Proposition 2.26).

Combining Lemmas 11 and 12 with Rusten and Winther’s standard result in Lemma

9 now yields the following eigenvalue bound.

Theorem 4 If p, < 201, the eigenvalues of the saddle-point system C in (2.87),
arising in the lowest-order Raviart-Thomas approzimation of (2.12), lie in the union

of the intervals,

1
[—C4hd1 ' 5 (1 — \/§) cwhfnm] U [cyyhfnm, (coT'h + ¢4) hd*l] .

Alternatively, if u, > 201, we may re-state the eigenvalue bound as,

2d

2
a1 Teshy d d—1
[—C4h ’_Zﬁ] U [cnhmm, (coTh + cq) b ]
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Proof The lower bound for the positive eigenvalues is obvious. The upper bound
follows from % (un +pZ + 4072n) < pn + o For the negative eigenvalues it is clear
that % (Nl - \/,LL% + 40%) > —o, > —cah® ! but for the upper bound we must now
proceed as in [89, Theorem 2.27] and distinguish two cases.

If py, < 201, we obtain,

%(un—\/u%+40%> S%(Mn_M):%(l_ﬁ>M”S%<l_\/§) H1,

and the first result follows. On the other hand, suppose that u, > 20;. If we substitute

tanf = %, rearranging gives,

%(un—\/ugﬂ—éla%) = /;—"(1—\/1+tan20).

By manipulating the identity,

[’
2tan§

tan @ = 20
2

1 — tan

we obtain, 1 — /1 + tan?f = — tan @ tan g, and so,

1 0
3 (,un —\/u2 —}—40%) = —0; tan 7

Since 0 < tanf <1 and tang > (), we have tang < tan §. Hence,

tan? 1—tan?? 1 -—tan?Z T T
2 — 2 8 —tan- > —,
tan 0 2 - 2 8 8

and so, finally,

1 5 s 7 o? 7 c3 h2d 7 c2h2d
“ =/ 402 ) < —oytanf- = —— L <~ D3 Tmin o 7 23 min,
2 (“" Hn + Ul) A = "y = 4 pn © 4depDhd

Remark 5 Note that the condition u, < 201 is a condition on the magnitude of the

PDE coefficients. On uniform meshes, the first bound in Theorem 4 is only likely to be

tight if T << 1.

The following Corollary is an obvious consequence of Theorem 4.

Corollary 1 In IR?, with uniform meshes, and unit coefficients, the eigenvalues of the
saddle-point system C in (2.37), arising in the lowest-order Raviart-Thomas approzi-

mation of (2.12), lie in the union of the intervals,

[ah, bh?] U [ch?, dh], (2.50)
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where a and b are negative constants and c and d are positive constants.

It is now clear why we require preconditioners for (2.37), even for trivial coefficients.

2.5 Preconditioning strategies

We conclude this chapter with a brief review of some existing preconditioning strate-
gies for the saddle-point system (2.37). The fields of domain decomposition (see Chan
[32]) and multigrid (see [95] or [29]) offer cheap, practical schemes but are mature for
symmetric and positive definite problems only. Thus, many positive definite reformu-
lations of the model problem, both at the PDE level and at the matrix level, have been
suggested.

The most obvious way to achieve this is to eliminate the velocity variable to obtain

the Schur complement problem,

BA'BTp = BAlg-§, (2.51)

which can be solved with c¢G. This requires multiplication with S = BA~'BT and
thus computation of the action of A~! at each iteration. In the special case of diagonal
coefficients and rectangular finite elements, we have seen that A has a special block-
diagonal structure. Solving for A~! directly is advocated in [85], [48], [64] and [49)].
However, this approach is infeasible for general meshes and general coefficients. In
general, an inner iteration is required to approximate the action of A~!. The success
of the nested iteration depends on the selection of inner and outer stopping tolerances.
In [86], Rusten and Winther demonstrate that convergence is highly sensitive to the
choice of these parameters.

Other positive definite approaches include the penalty method (see Cai et al. [31]
and Vassilevski and Wang [97]), the augmented Lagrangian method (see Hiptmair [60],
[61] and [62]) and divergence-free basis methods (see Ewing and Wang [46], [47], Cliffe
et al. [40] and Scheichl [89].) One of the most popular schemes is the so-called mixed-
hybrid approach (see Arnold and Brezzi [8]), based on a non-conforming variational
formulation of (2.8). This approach will be described in detail in Chapter 6. Note that

none of these reformulations completely achieve both h-optimality and A-optimality.
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A few attempts have also been made at preconditioning the saddle-point system
(2.37). Ewing et al., in [48], replace the leading matrix A with a lumped diagonal ap-
proximation and use the resulting saddle-point matrix to precondition the original one.
The system is solved using a stationary iterative method that is h-optimal. However,
the convergence rate deteriorates for anisotropic coefficients.

Algebraic approaches to solving (1.5) with Krylov methods were initiated by Rusten
and Winther in [86]. The authors consider only well-conditioned coefficient tensors and

propose a preconditioning operator of the form,

0
P= , (2.52)
0 S
where S is an approximation to the Laplacian operator V - V acting on W}, and 7 is
the identity. For the Raviart-Thomas spaces, there is no obvious way to approximate
the Laplacian operator on Wj. In [86], incomplete Cholesky factorisation of BBT is
recommended but it is known (see Greenbaum [55, Ch.11]) that such approximations
are not h-optimal. Moreover, the method is not robust because the coefficient term
is neglected. We will refer to operators such as (2.52) as ‘H' preconditioners’, since
the main focus is on deriving approximations S for a global operator which is only
well defined, in the classical sense, on subspaces of the Sobolev space H'(£). Other
preconditioning schemes which fall into the H' category are presented by Rusten et al.
in [87] and [88]. These papers extend the discussion in [86] using domain decomposition
ideas. The proposed methods are h-optimal but, again, neglect the coefficient term.

Arnold, Falk and Winther observe in [6] that for unit coefficients A = Z, C in (1.5)

also has the same mapping properties as the matrix operator,

H O
P= , (2.53)
0 7
where H : H(div) x H(div) — IR is the H(div) PDE operator defined, for vector
functions 4 and ¥ via,

(H@,7) = (@,7) + (V- 4,V - 7).

We shall refer to this type of scheme as ‘H(div) preconditioning’. # gives rise to a

matrix similar to the one occurring in the penalty and augmented Lagrangian methods
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and thus can be approximated by any of the multilevel schemes suggested for those
problems. A simpler and more practical method is presented in the form of a standard
multigrid V-cycle, with special smoothing, by Arnold et al. in [6] and [7]. It is shown
that the resulting approximation is optimal for H provided that the coefficient is of the
form A = pZ where p is a constant. Discontinuous, anisotropic and variable p are not
considered. We shall describe this scheme in more detail in Chapter 4.

Finally, in [98], Vassilevski and Lazarov consider preconditioners for the augmented

indefinite system (1.11). A parameterised preconditioner of the form,

A+aBT™B 0
P = , (2.54)

0 O[2I

is suggested, which calls on the multilevel schemes of [97] or [47] to approximate the
leading block. Critically, convergence rates are highly sensitive to the artificial param-

eters, a; and ag. Optimal values are not established.

2.6 Concluding remarks

In this introductory chapter, we reviewed stability theory for standard mixed finite
element formulations of the model variable diffusion problem (1.1) and concluded that
the discrete variational problem (2.12) is well-posed with an appropriate choice of
finite element spaces. We introduced Raviart-Thomas approximation and derived the
associated linear algebra problem (2.37). In addition, we made specific the dependence
of the eigenvalue spectrum of the coefficient matrix on the discretisation parameter and
the PDE coefficients. Algebraic properties of the element contributions to the weighted
velocity mass matrix were derived.

Using all of this information, we are now ready to introduce and analyse new

parameter-free preconditioning strategies for the saddle-point system (2.37).
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Chapter 3

Ideal H(div) preconditioning

In this chapter, we use the stability theory outlined in Chapter 2 to motivate an ideal

preconditioner of the form (2.53).

The conditions of Zp-ellipticity,
a(vh,vp) > oy || U ||%/h, Yy € Zy, (3.1)

with Zy = {vj, € V}, | b(vp,wp) =0 Vw, € Wy}, and discrete inf-sup stability,

sup b, wn) > Bu || wn llw, Ywn € Wh, (3.2)

devi Ik v,
essentially ensure (see Brezzi and Bathe, [24], and Proposition 2.1 in Brezzi, [23]), that
the linear operator C' in the saddle-point problem (2.34) defines an isomorphism from
H(div; Q) x L?(Q) onto it’s dual space, and furthermore that || C~! || is bounded in
the natural norm defined on H (div; ) x L?(f2). Intuitively, choosing an operator P
with the same mapping properties as C, such that | P™! || is bounded in the same
norm, will give a good preconditioner for C.

We thus consider a block-diagonal preconditioner P of the generic form,
P = , (3.3)

where the symmetric and positive definite matrices P; € IR™*"™ and P, € IR™*™ are

chosen to represent norms on the lowest-order Raviart-Thomas spaces Vj, and W,
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respectively. We investigate, first, the norms for which stability has been proved and

choose P; and P, to satisfy,
v'Piv = || 5% YU € Vi (3.4)

w'Pw = |wy|§ Yw, € W, (3.5)

where v and w are the vectors of coefficients corresponding to the expansion of arbitrary
v, € Vp, and wp, € Wy, in the chosen finite element basis sets.

To this end, we construct the unweighted velocity mass matrix Ay € IR"*" (equiv-
alent to the weighted velocity mass matrix A in (2.35) with unit coefficients A = 7)

and D € R™"™ via,
Arij = (@i, 95), i,j =1:n, (3.6)
This yields P = Ar + D since,
1 % 130 =1l @ I3 + | V- 5= 2" (Az + D) v.
Note that since the matrix A; is positive definite, so is Ay + D. Since we are dealing
with the lowest-order Raviart-Thomas elements, V - ¢; is a constant for all velocity

basis functions ;. Integration in the construction of D is therefore trivial. Defining

the pressure mass matrix N via,

Nys = (¢Ta¢s) r,s=1:m, (38)

yields || wp, ||3= w? Nw and thus P, = N. Again, the integration is trivial since,
Nys = /¢'r ¢s dS2
Q

= Z/K brlk; ¢s|K,dK;
i=1 /K

|K,| ifr=s,

0 ifr #s.

N is thus a positive definite diagonal matrix with entries corresponding to the areas

or volumes of the finite elements in T},




To gauge the performance of the preconditioner,

Ar+D 0
P = , (3.9)
0 N

our task is now to establish a theoretical bound for the eigenvalues {\;}7™ of,

A BT Ar+D 0
= , (3.10)

0 N

|
I

B 0

(kS
(kS

and determine the extent to which it depends on the discretisation parameter hA and
the coefficient tensor A. To prove results, we begin by deriving the discrete matrix form

of the inf-sup stability inequality.

3.1 Matrix form of inf-sup stability inequality

Since the discrete inf-sup condition (2.20) holds for || - ||y, =]  ||4iv and || - |lw,=]| * |0,
we see that,

T
B (QTNM)% < max w By

vl (yT (A; 4+ D) v)

D=

w'B(A;+D) 72
= max T
2=(A;+D)%v (2T2)2
~ w'B(4 +D) 'BTy
- 1
(wTB (A; + D)~ )2
3
- (neeny o)
Hence,
TB(A;+ D)~ ' BT
g o< LBUAID By, ooy, (3.11)

wl' Nw

Further, the Cauchy-Schwarz inequality yields,

b 2 2 = (|12
R LG R LR, | wn 1311 ¥ -5 I3

wevi(o} | O 113,11 wa 113 devi(o} | wa 112 (| 0% 12 + || V - v |I?)

— sw | V- |13
sevingoy (1R 13+ 11V -4 [13) ~

bl
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and so we obtain the double-sided bound,

T -1 pT
wBAi+D) Bw gy, e mrmo) (3.12)

2
<
P < wl Nw -

An alternative statement of (3.12) is the following eigenvalue bound.
Lemma 13 The eigenvalues {o;};-, of the generalised eigenvalue problem,
B(A;+D)"'BTw = oNuw, (3.13)

arising in the Raviart-Thomas approzimation to (2.12) are bounded by constants inde-

pendent of h and lie in the interval [ B2, 1].
Remark 6 A computable upper bound for the discrete inf-sup constant is the square-
root of the minimum of the eigenvalues of (3.13), i.e. By < \/CTrmin-
3.2 Eigenvalue bounds
To establish eigenvalue bounds for (3.10), we require the following preliminary result.
Lemma 14 If V-V, C Wy, then,

D = BTN !B (3.14)

Proof Consider writing the matrices B, N and D in operator form, where D is the

matrix in (3.7) and N and B are defined in (3.8) and (2.36), respectively. We have,

(Bx—;uzh) = (V.’L'_]’-,/,Zh) = (x—;LaBTzh)a V$_;7, € Vh; Zp € Wha
(Dl‘_;lay_;l) = (V ) ‘T_;la & y71) ) vx_;la y?u € Vh7
(Nzn,wn) = (zn,wn), Vzh, wp € Wh.

Here, N acts as the identity operator on W},. For any Zj, and ¢, in V,, if V-V, C W,

(Dzh,yh) = (V- Zh, V- 9yh) = (BZh, V- 4h)
(NN 'Bg},V - i)
= (N~'Bg}, V-41)
(

BT"N~'Bg}, 4;,). O
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Remark 7 For Raviart-Thomas approzimation, V - Vi, = W}, by construction, so that

D=BTN"'B.

To proceed with the eigenvalue analysis, we distinguish two cases. Consider, first,
the trivial case of unit coefficients, A = Z. Here, the mass matrices A and Aj are

identical and we obtain the following bound which is a new result.

Theorem 5 The n + m eigenvalues of the generalised eigenvalue problem,

A BT Ar+D 0
=0 ) (3.15)

0 N

|
|

B 0

(kS
(S

arising in the Raviart-Thomas approzimation of (2.12) are bounded by constants inde-

pendent of h and lie in the intervals,

[-1, -] VL], (3.16)
where By, is the discrete inf-sup constant satisfying (2.20).
Proof The eigenvalues {o;}7"1" satisfy,

AIQ—I—BT]_) = O'(A[—I—D)g,

Bu = oNp.
If 0 =1, then,
BTp = Du
- = BTN-1Bu = Du. (3.17)
Bu = Np

Using Lemma 14 we deduce that this is true for any vector u in IR"™. Since D € R"*"
is symmetric, there are n linearly independent eigenvectors corresponding to ¢ = 1 and
hence n distinct eigenvalues equal to unity.

Now suppose o # 1. Then u, p satisfy,

B'p = (0—-1)(A;+D)u+ Du,

Bu = oNp.
Using (3.14) we have that,

B(A;+D)'BTp = (0-1)Bu+B(A;+ D)™ Du,
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= o(0—1)Np+B(Ar+ D) ' B'N~'Bu

= o(0c—1)Np+oB(A; + D) ' BTp.

Thus, B (Ar + D)™! BTp = —oNp and the result follows from Lemma 13. O

To summarise, when unit coefficients are present, choosing the preconditioner with
diagonal blocks representing the norms for which stability holds, leads to an h-optimal
eigenvalue bound. To efficiently precondition a problem with a general coefficient

tensor, however, P must supply scaling with respect to the coefficient tensor 4. Hence,

we now propose the preconditioner,

A+D 0
P = , (3.18)
0 N
whose leading block represents the norm || - |4y, 4 Which is equivalent to || - ||giy -

To derive a corresponding eigenvalue bound, it is necessary, first of all, to establish
the dependence on h of the minimum eigenvalue of the Schur complement matrix
BA 1BT. Recall that the matrix A, here, is the weighted velocity mass matrix defined

in (2.35).

Lemma 15 Let i denote the minimum eigenvalue of the matriz BA~'BT | arising
in the Raviart-Thomas approzimation of (2.12). There exists a constant c, independent

of h and the coefficient tensor A, such that,

2hd .
Pilmin < iy, d=2.3, (3.19)

where B, > 0 is the discrete inf-sup constant satisfying (2.20), hpmin, = ming hg and

T > 0 is a constant satisfying (2.1).

Proof The elements of the proof are inf-sup stability, the bound (2.47), and assumption
(2.1). First, recall from Lemma 10 that for any wp, € W), there exist constants c3 and

¢4, independent of &, such that,
eshibinw'w < |l wp |I§ < esh®w’ w, (3.20)

where w is the vector of coefficients corresponding to the expansion of wy in the basis

for Wy,
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Combining this with inf-sup stability, and applying (2.1), we have,

| (wn, V- Tp) |?

Breshthmww < By [lwy g < sup s
TneVia\{0} | Fh 134,
22
< sup \ (wh,Y ’l;h) |
sevinig I onllo
2y 2
< T sw | (wn, V- Tn) [

TheVi\{0} (A L0, Uh)

Translating into matrix notation, we obtain,

(’th,V : ﬁh) QTBQ QTBA_%g
sup ———F = max ——— = max ————
T eVi\{0} (A1, Un)2 LERNO (T Av)2 =4z (272)2
w BA™'BTw

1
T (WTBA-'BTw)? (w' BA™ B w)* .
w w

Hence, we see that,

Cg,@%hd w! BA1BTw

min <
r - wlw

Vu € B™ {0}, (3.21)
which proves the result. O

The following theorem extends the bound established by Vassilevski and Lazarov
in [98]. (Our analysis is for a different matrix A and no artificial parameters.) The

crucial difference is that the matrix D in the preconditioner (3.18) supplies scaling with

respect to N. Recalling the bound (2.47), we obtain,

cshd . wlw < w'Nw < eshww Yw € R™\{0}, (3.22)

min —

and so N represents an h-dependent scaling. We begin with quasi-uniform meshes.

Theorem 6 If T}, is quasi-uniform, the n+m eigenvalues of the generalised eigenvalue

problem,

A BT A+D 0
=0 ) (3.23)

0 N

1S
1S

B 0

(bS]
(bS]

arising in the Raviart-Thomas approzimation of (2.12), lie in the union of the intervals,

(—1,— (Wﬁ)] ul1], (3.24)

where min 45 the minimum eigenvalue of the Schur complement matriz BA~1BT,

| K |min is the volume of the smallest element in T}, and c is a constant independent of

h and A.
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Proof The eigenvalues {o;}7|™ satisfy,

AQ—I—BT]_) = o(A+ D)u,

By = oNp.

As in the proof of Theorem 5, there are n eigenvalues equal to unity and the remaining

m eigenvalues {o;}", satisfy,

B(A+ D) 'B"p = —oNp. (3.25)

Since D = BTN~!B, and N is diagonal, these are the same as the eigenvalues of the

matrix,

~N":B(A+B"N"'B)" B'N"z,
Rearranging gives,

N:B(A+B'N"'B) ' BN
11 Slopao 1o 1o ANTH 1
— N 3BA 2(I+A sB'N~:N~:BA z) ATPBTN":  (3.26)
= X(I+x"x)""x7,
where X = N 3BA 3. Applying the Sherman-Morrison-Woodbury formula (see

Golub and Van Loan [56, p.51]) yields,
(IT+x7x)"" = 1-xT(1+xx7)7"X,
and so,

X(1+xx7) X7 = X (1-x"(1+xx") ' X) X", (3.27)

Now we can apply Lemma 3.1 of [98] with X = N ~3BA~? to relate the eigenvalues of
(3.25) to those of BA~!B”. For completeness, we reproduce this argument below.
Let z; be an eigenvector of X X7 and ); denote the corresponding eigenvalue. Then,

with (3.27), we obtain

X(T+XxX7) "' xTg, = XXTz;— XXT (1+XXT) " XX

7
A2
= Nz; — (l-l-zx\i)%

B 14N

18

Z'-
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Hence, the eigenvalues of X (I + XX T)_l XT are the set of values {ﬁ};’;l, where

{\i}™, are the eigenvalues of X X1 = N-2BA-'BTN3.
Since N"'BA~!'BT has the same eigenvalue spectrum as N_%BAleTN_%, the

negative eigenvalues of our generalised eigenvalue problem (3.23) lie in the interval,

7
maX1+)\i’ mim1+/\,'

7

eperi -]

Since A is positive definite and B is full rank, A\; > 0 for all %, thus,

p
m —1, —_~rmn 2
{Uz}z_l € ( ’ 14+ /\mzn] ’ (3 8)

where A, is the minimum eigenvalue of N"1BA~'BT. (This result was also stated

in [60], for a different choice of N.)
Recall that here the eigenvalues of N are the volumes of the elements. Hence, an

alternative statement of (3.22) is,

C3h;im'n < |K|m'm < |K‘ma:c < C4hd’ (329)

where | K |pin and | K | e, denote the smallest and largest volumes of the finite elements

in T},. For quasi-uniform meshes, it can also be shown that there exist positive constants

¢s and cg, independent of h, satisfying,

cshmin < h < cghmin. (330)
Combining this with (3.29) yields,
C4C

‘K|mm S ‘K|mam S gu{'mm (331)

If we denote ¢ = cf_iy it follows that ;. satisfies,

Climin Hmin Hmin

; 3.32
|K‘mm - |K|maw - o= |K|mm’ ( )

where Ji,i, is the minimum eigenvalue of BA~!BT. Hence,

_ _Hmin _ ClUmin
_ )‘mm ‘K|maac |K‘mln
.= Umin  — Hmin

and we obtain,

Clmin
oy e (-1, - (—=—Fmn___ )| O
{ Z}Z_l ( (‘K|mm + ,U/m'm>:|
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Remark 8 For uniform meshes we obtain cs = cg =1 in (3.30) and c3 = ¢4 in (3.29)

so ¢ = 1 in the eigenvalue bound (3.24).

To show that (3.24) is an h-optimal eigenvalue bound, we refine the previous theorem

to obtain the following two corollaries.

Corollary 2 If T, is quasi-uniform and if |K|min < fmin, the n +m eigenvalues of

(3.23) lie in the union of the intervals,

(=1, —¢] U[1] (3.33)

where ¢ is a constant independent of h and A.

Proof If |K|min < fmin then clearly |K|min + fmin < 2lmin, and so, in Theorem 6,

we obtain,

Clhmin Clmin Cc3 ~
(e )« s
|K|mm + Umin 2Hmm 2c4c6

Corollary 3 If Ty is quasi-uniform and |K|min > fmin, the n + m eigenvalues of

(8.23) lie in the union of the intervals,

= 32
(— ,——cﬁh] ul1l, (3.34)
r
where ¢ is a constant independent of h and A.

Proof If |K|min > pimin, we have |K|min + pimin < 2|K|min, and so, in Theorem 6,

_ ( Clmin ) _ Clmin _ _ C3 lmin
|K|m'm + Umin 2|K|mm 2C4CG‘K|min

Applying Lemma 15, (3.29) and (3.30) yields,

B Climin < _CCg,B’ZL hmm d < _663,3’21 _ _0218}2;
2| K | min 2¢c4T h 2cacg ar -
2
The result follows with ¢ = % (cj—ﬁﬁ) . g
Remark 9 For uniform meshes we have ¢5 = cg = 1 and c3 = ¢4, S0 ¢ = % in the

eigenvalue bounds (3.33) and (3.34).
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For quasi-uniform meshes, Corollaries 2 and 3 tell us that the preconditioner (3.18) is
h-optimal but may not be A-optimal. Lemma 15 suggests that small coefficients, or,
equivalently, large values of T', can cause fiyn, the minimum eigenvalue of BA~'BT
to be small. Theorem 6 suggests that MINRES convergence will not be efficient in such
cases. However, the bound may be overly pessimistic in this respect. The dependence
of pmin on the coefficient tensor is not straightforward. We comment on two important
classes of test problems in the next section.

For non quasi-uniform meshes, the bounds established in Theorems 6 and Corollar-

ies 2 and 3 also hold. However, the constants defined in (3.29) and (3.30) depend on the

ratio h’;’;”. As a consequence, the constant ¢ appearing in (3.24) tends to zero as hyp
tends to zero. We do not include non quasi-uniform meshes in the statements of Theo-
rem 6 and its corollaries because the results are derived from the bound (3.32) which is
grossly pessimistic for highly non-uniform meshes. Hence, the eigenvalue bound stated
in Theorems 6 is also too pessimistic for non-uniform meshes. Numerical evidence of

this will be given later.

To illustrate that the above theory is tight, we present a simple numerical example.

Numerical example

Consider the model problem (1.4) discretised on ©Q = [0, 1] x [0, 1] with uniform meshes
of right-angled triangles, unit coefficients A = Z, and a homogeneous Dirichlet bound-
ary condition, 002 = 0Qp. The observed eigenvalues of the preconditioned system
{o1,...,0n+m} are listed in Table 3.1; they confirm that the bounds (3.16) and (3.24)
in Theorems 5 and 6 are tight. Note that the constant ¢ in (3.24) is one by Remark 8.

The observed negative eigenvalues are plotted in Fig. 3.1.

h _/82 Hmin - mﬁ:ﬁ g1 Om Om+1 | Om+n
i -0.9525 | 0.6268 -0.9525 -0.9983 | -0.9525 1 1
1 1-0.9519 | 0.1549 -0.9519 -0.9996 | -0.9519 1 1
% -0.9518 | 0.0386 -0.9518 -0.9999 | -0.9518 1 1

Table 3.1: Bounds and observed eigenvalues of preconditioned system
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Figure 3.1: Negative eigenvalues of preconditioned system, h = i, %, 16

3.2.1 Deterioration of the eigenvalue bound due to coefficients

Anisotropic coefficients

To illustrate the impact of anisotropic structure in A on the bound (3.24), we consider

a class of test problems in IR?>. Choose,
A= VZ e,

with anisotropy parameter € — 0o or € — 0, so that A is ill-conditioned with,
.1 1
v =min{-,1}, T =max{-,1}.
€ €

Although the bound (3.19) in Lemma 15 suggests that g, behaves like € as € — 0, this
bad behaviour can be avoided by choosing a mesh aligned with the anisotropy. Here,
the use of rectangular finite elements is crucial to the success of the preconditioning.
To see this, recall from Chapter 2 that using rectangular elements aligned with the
coordinate axes produces element matrices AX with the special block structure (2.44).
Thus, with appropriate edge ordering, the global weighted mass matrix has the special

structure,
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with A, and A, defined via,
szg = / (ﬁi,z . (ﬁ],w an Za] =1: Ng,
Q
Ayrs = / Bry - P,y dS, T8 =mng +1:nz+ny,
Q

where n, and n, denote the number of edges aligned with the z-axis and the y-axis
respectively. Consequently, the Schur complement matrix BA~'B7T also has a special
block structure. In fact this is true whenever diagonal coefficients and rectangular
meshes are present. Moreover, this structure can be exploited to good effect by our
preconditioner.

We can write,

eA71 0 eA71 0 BT
BA™'BT = B ? BT = (Bw By) i i
0 At 0 At B}

= €B,A;'B] + ByA;'B].

Thus, if we denote by Apin(-) and Apez () the minimum and maximum eigenvalues of
a designated matrix, we obtain, as a consequence of the minimax theorem (see [56,
p.411]),

Amin (BoA7 'BL) + Amin (ByA; 'By) < fmin

Amin (Bs A7 'BL) + Amas (ByA;'BY) > fimin.
Now we see that if € << 1, pmin is bounded independently of the anisotropy parameter.

Only when all the coefficients on the diagonal of A are small, does ., deteriorate.
The same phenomenon occurs using brick elements aligned with the coordinate axes in
R3.

Now, for triangular elements, the matrix A cannot be partitioned in the same way.

Each row is scaled by all of the coefficients. Hence,
]‘ — - — — - .
Aij = Z Yiz " Pjx dQ) + Viy " Piy dQ 1,] = 1: n, (3.35)
Q Q
and we can write, A = %Am + Ay, where, here,
Ay = [ i Gt ig=1:m,
Q

Ayrs = / Sar,y : (ﬁ's,y dQ, r,8s = 1:n.
Q
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Hence, in the limit € — 0,
BA'BT — ¢(BA, 'BT),

and SO fmin Will also tend to zero. Unlike rectangular elements, if just one coefficient
on the diagonal of the coefficient tensor A tends to zero then so does pmip.

Consider again, the model problem discretised on Q = [0, 1] x [0, 1] with a homo-
geneous Dirichlet boundary condition. The minimum eigenvalues of the Schur com-
plement matrix for uniform square meshes and varying e are listed in Table 3.2. For
e — 0 and a fixed mesh, pm, does not decay to zero and MINRES convergence is in-
sensitive to €. For the same problem solved using uniform triangular Raviart-Thomas
elements, we observe that i, — 0 as € = 0. To see this, compare the eigenvalues of

the preconditioned systems in Fig. 3.2 for a fixed h and varying e.

h e| 107t | 1072 1073 10~4 10~° 1076
L 10.1718 | 0.1578 | 0.1564 | 0.1562 | 0.1562 | 0.1562
% 0.0425 | 0.0391 | 0.0387 | 0.0387 | 0.0387 | 0.0387
5 | 0.0106 | 0.0097 | 0.0096 | 0.0096 | 0.0096 | 0.0096
h €| 10 107 103 10* 10° 106
L[ 1.7182 | 15.777 | 1.564e2 | 1.562e3 | 1.562e4 | 1.562¢5
% 0.4254 | 3.9064 | 3.872el | 3.868¢2 | 3.868e3 | 3.868¢4
35 | 0.1061 | 0.9742 | 9.6557 | 9.647el | 9.646e2 | 9.646e3

Table 3.2: Observed values of p,,;,, anisotropic coefficients, square elements

@] ] O o]

10° o o 10° ) o
@] (o) [e] o)

@] (] (e} @]

@] (@] (o) @]

o 0] o] o]

w 10° o o w 10° @ o
[ ) (o) [ ) o)

™ ] L: )] o]

a (@] 00 @]

Qa (o) [oXe] o)

107 ™ o 107 o o
[¢ 3] (@] (] @]

-1 0 1 -1 1

Figure 3.2: Eigenvalues of preconditioned system, h = %, € € [107%,10%], anisotropic
coefficients, squares (left), triangles (right)
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Discontinuous coefficients

In practical applications, both entries on the diagonal of A may be small. Consider

then a class of discontinuous test problems. Take,

el VT € Q,,

A= (3.36)

I VI € Q\Q,,
where I is the identity matrix and Q, C Q = [0,1] x [0,1]. Setting 0 < ¢ < 1 in Q,
describes a zone of low permeability, a feature common to groundwater flow problems.
To illustrate the numerical difficulties inherent in solving this problem, choose a
jump zone €, = [0.25,0.5] x [0.25,0.75] and the permeability coefficient € € [1076,10%].
The corresponding values of iy, for uniform meshes of square elements, are listed in

Table 3.3. (Exactly the same behaviour occurs with uniform triangular meshes.)

h 100 ] 1027 103 1014 10°° 10°6
1 10.2074 | 0.0308 | 0.0036 | 3.648e-4 | 3.648e-5 | 3.649¢-6
% 0.0506 | 0.0078 | 0.0008 | 8.051e-5 | 8.053e-6 | 8.054e-7
= | 0.0156 | 0.0019 | 0.0002 | 1.894e-5 | 1.895e-6 | 1.895e-7
h 10" 107 10° 10* 10° 108
1 10.3409 | 0.3452 | 0.3456 | 0.3457 | 0.3547 | 0.3547
% 0.0846 | 0.0857 | 0.0858 | 0.0858 | 0.0858 | 0.0858
+ |0.0211 | 0.0214 | 0.0214 | 0.0214 | 0.0214 | 0.0214

Table 3.3: Observed values of iy, discontinuous coefficient, square elements

If € is large, the right-hand bound for the negative eigenvalues in Theorem 6 con-
verges rapidly to —1 as h — 0. MINRES convergence is fast. On the other hand, if

€ < 1 then pmn is close to zero and MINRES convergence deteriorates.

Alternatively, take € < 1 and solve the same problem with coefficients,

I VIe,

A= (3.37)

%I VI e Q\Q,.
The eigenvalues of the preconditioned systems associated with coefficients (3.36) and
(3.37), for fixed h and € € [107%, 1] are shown in Fig. 3.3. The plot on the left illustrates
the decay to zero of a subset of the negative eigenvalues of problem (3.36) as ¢ — 0.
The plot on the right indicates that all the negative eigenvalues of problem (3.37) are

bounded independently of the jump coefficient.
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Figure 3.3: Eigenvalues of preconditioned system, discontinuous coefficients, h = %,

€ € [1075,1], unscaled (left) and scaled (right)

Notice that if the source term f is rescaled, solving problem (3.37) instead of prob-
lem (3.36) corresponds to multiplying the underlying PDE by a constant and has the
effect of multiplying all the eigenvalues of BA~'BT by % The result is that for e < 1,
Ymin is large and by Theorem 6, large eigenvalues of BA~!BT and uniform meshes
produce a tight cluster of negative eigenvalues. For more general problems with dis-
continuous coefficients, scaling with respect to the smallest coefficient will have to be
performed to ensure the iteration is efficient. The magnitude of the scaling parameter

needed will be fixed by the problem at hand.

3.3 Preconditioned MINRES

To illustrate the practical implications of the above discussion, we now report on MIN-
RES convergence for a range of coefficients. The iteration counts listed are for exact

preconditioning. Thus,
P = , (3.38)

is factorised. Iteration counts for the unpreconditioned experiments are given in paren-
theses.
Consider problem (1.4) discretised on Q = [0, 1] x [0, 1]. Uniform square meshes are

used, unless stated otherwise. We apply MINRES to the assembled system with zero
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initial guess, and terminate the iteration when the residual error r(*) satisfies,
(3.39)

All experiments were performed with MATLAB 6.0 on a SUN ultraSPARC workstation.

The symbol * indicates that more than 500 iterations were required.
Example 1

We begin with a trivial case. Choose A =7, f = 1 and a homogenous Dirichlet bound-
ary condition. Iteration counts are given in Table 7.1 and confirm the h-optimality of

the preconditioner.

1 L L
8 32 64

5 5 5

h 1
5
(25) (75) (165) (311)

L
6

Table 3.4: MINRES iterations, Example 1, Dirichlet boundary condition

A simple flow problem is induced by setting f = 0 and introducing mized boundary
conditions, p =1 on {0} x[0,1], p=0o0n {1} x[0,1] and -7 = O on (0,1) x{0,1}. The
corresponding iteration counts are given in Table 3.5. Imposing the essential Neumann

condition (see Chapter 2) has no impact on the performance of the preconditioner.

h 5 % ®m  m
6 6 6 6
(18) (34) (66) (130)

Table 3.5: MINRES iterations, Example 1, mixed boundary conditions

Example 2

For non-diagonal tensors, convergence is completely determined by the eigenvalues of

A. To demonstrate this, we solve the model problem with f = 1 and,

1+4 (22 4 ¢ 3
A = (#* +47) W . (3.40)
3zy 1411 (22 + y?)

Iteration counts are given in Table 3.6.

3.3. Preconditioned MINRES



1 1 1 1
h 3 16 3 o1
5 5 5

(191) (426) () (%)

Table 3.6: MINRES iterations, Example 2, full coefficient tensor

Choosing A to be the diagonal tensor A = diag(A1, A2), with entries corresponding to

the eigenvalues of (3.40),

1 1
M= (2 +15(2® +9%) + (49 (@ + %) + 36x2y2> 2) :
1 1
Yo =3 (2 +15 (22 + y?) — (49 (s + )" + 362%?) 2) :
yields the iteration counts in Table 3.7. Observe that convergence does not deteriorate

in the non-diagonal case.

h s % = @
) 5 ) 5
(146) (343) () (%

Table 3.7: MINRES iterations, Example 2, diagonal coefficient tensor

Example 3

Next, consider a problem with a variable diagonal coefficient tensor whose entries vary

by three orders of magnitude across the domain. Choose,

1
AT 0
A = 1+1000(x2+y2) _ (3.41)
1
0 14+1000(z2+y2)

Iteration counts are listed in Table 3.8.

R
24 27 27 27
(442) () () (")

Table 3.8: MINRES iterations, Example 3, variable coefficient tensor

Analysis of the negative eigenvalues reveals that this problem is more challenging than
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the previous examples due to the small magnitude of the entries of the coefficient tensor

in some parts of the domain. The iteration count rises because piy,;, is smaller here.
Example 4

Now consider the anisotropic test problem from section 3.2.1 with A = diag(e, 1).
Using square uniform meshes we achieve both h-optimality and A-optimality. The
iteration counts listed in Table 3.9 below are perfectly consistent with the eigenvalue
clusters shown in Fig. 3.2. Note that to resolve boundary layers in the solution when
homogeneous Dirichlet boundary conditions are present, anisotropic meshes should be
used. The experiment is simply to show the impact of ¢ with respect to the shape of

the elements. For triangles, convergence completely breaks down if e << 1.

e h

108
10°
10*
103
102
10
101
102
103
1074
105
1076

oo|—
u=|"‘

SRS R IR REN (S B N NS
NN N 000 N Ot A e
SN RN RO ICRNCCREN (RS S N N
ENEEN B RPN | - N NN NN Y

Table 3.9: MINRES iterations, Example 4, anisotropic coefficient tensor

If the anisotropy is not aligned with the coordinate axes, then there is no benefit

in using rectangular elements. For example, choosing,

A = : (3.42)

with €2 # 1, produces off-diagonal anisotropy as € — 1. The problem is best tack-
led using meshes of uniform triangles with diagonal edges aligned to the direction of
anisotropy. Iteration counts for triangular and square meshes are listed in Tables 3.10

and 3.11, respectively.
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1 1 1 1

e h 3 5 ) 61
0.9 6 6 6 6
0.99 6 6 6 6
0.999 76 6 6
09999 7 7 7 7

Table 3.10: MINRES iterations, Example 4, anisotropic coefficient tensor, triangles

1
ceh § % m @
09 6 6 6 6
09 7T 7 6 6

0999 10 10 9 9
09999 13 16 17 17

Table 3.11: MINRES iterations, Example 4, anisotropic coefficient tensor, squares

Example 5

Next, we perform a discontinuous coefficient experiment. Choose A as in (3.36) with e
€ [10_6, 106]. Take 2, = [0.25,0.75] x [0.25,1], f = 0 and mixed boundary conditions:
- =0o0n 00y and p =1— 2 on Qp with 0Qy = [0,1] x 0 U {0,1} x [0,0.75]
and 0Qp = Q\Qy. The pressure contours and velocity fields obtained for e = 105 and

¢ = 107° are shown in Figs. 3.4-3.5.

Without scaling, the iteration counts listed in Table 3.12 deteriorate as € — 0. This
behaviour is consistent with the eigenvalues shown in the right plot in Fig. 3.3. Again,
this is due to the small magnitude of py,;,. However, if for € < 1, we solve the rescaled
problem as discussed in section 3.2.1 by applying the coefficients (3.37), we obtain the
iteration counts listed in Table 3.13. This behaviour is consistent with the eigenvalues
shown in the left plot in Fig. 3.3.

The accuracy of the solution is not unaffected by the rescaling but we can compen-
sate for this cheaply by iterating to a smaller tolerance. In this example, we apply a

stopping tolerance of 10~9. This is sufficient to ensure that the velocity solution to the
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rescaled problem is the same as that of the original problem to 8 decimal places for the

smallest value of € considered.
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Figure 3.4: Pressure contours (left) and velocity field (right), €

Figure 3.5: Pressure contours (left) and velocity field (right) , e =




eh % 1 @
106 7 7 7
10° 7 7 7
10* 7 7 7
103 7 7 7
102 7 8 8
10" 7 7 7
10T 9 9 9
10~2 15 15 15
1073 30 30 32
1074 64 77T 82
10~° 89 143 191

106 105 187 308

Table 3.12: MINRES iterations, Example 5, discontinuous coefficient tensor, unscaled

=

—

S

N
r—i|H
= I == IS TEN BN EEN SN EEN SN I
DD N D NN 0NN g
=P = BN BENEN SCCREN SIEN SES SEN I FeN

Table 3.13: MINRES iterations, Example 5, discontinuous coefficient tensor, scaled

Example 6

Finally, for a more challenging discontinuous coefficient example, we consider the so-
called ‘Kellogg problem’ (see Kellogg [63]). The test problem we consider is one sug-
gested by Morin et al. in [71]. Set Q = [-1, 1] x [-1, 1] and f = 0. A is chosen as a;Z
in the first and third quadrants of €2 and a2Z in the second and fourth quadrants, so

that the analytical pressure solution, in polar co-ordinates, is p(r, ) = r7u(6), where,
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[ cos(5 o)) cos((0— 5 +p)7) 0<0<3,
WO = | cos(py) - cos((0 — 7 + o)) <0<,
cos(o7y) - cos((6 — ™ — p)y) T<0<3,
| cos(3 — o)) -cos(0— % —0)y) E<Oo<om

and the constants o, p and -y are chosen to satisfy the non-linear relations,

R = “o_ tan((z — 0)7) - cot(po),
as 2
1
s tan(po) - cot(o7y),
T
R = —tan(ovy)- cot((§ - p)v),

max{0,7my — 7} < 2yp < min{my, 7}

max{0,7 — 1y} < —2yo < min{m, 27 —7y}.

Figure 3.6: 2 x 2 checkerboard coefficient ordering

Following [71], we set v = 0.1, producing a singular solution at the origin. Solving for

the various constants using a Newton iteration, yields,

R=" ~161.4476387, p= %, o ~ —14.922565105.
a2

We then set a; = R and ay =1 (see Fig. 3.6.)

The interpolant of the exact solution on a uniform mesh with h = 3% is shown

(rotated though 90 degrees, clockwise, about the origin) in Fig. 3.7.
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Figure 3.7: Interpolant of exact solution, Kellogg problem

To accurately capture the singularity at the origin, locally refined meshes should be
used. For this preconditioning experiment, we use adaptive meshes generated by the

ALBERT toolbox, [2]. Examples are shown in Fig. 3.8, below. Iteration counts corre-

sponding to discretisations with varying levels of local refinement are listed in Table

3.14. Mesh-independent MINRES convergence is achieved.

Figure 3.8: Locally adapted meshes

The observed eigenvalues of the preconditioned system are listed in Table 3.15. They
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|K|min |K|mez Iterations

28 272 5 (65)
2-10 272 5 (91)
2712 274 5 (128)
2716 274 4 (196)
2718 278 4 (269)
220 278 4 (339)

Table 3.14: MINRES iterations, Example 6, discontinuous coefficient tensor, adapted
meshes

remain bounded independently of the mesh parameters, hy,;, and h. The right hand
bound for the negative eigenvalues in Theorem 6 decays to zero with mesh refinement.

This is clearly too pessimistic, as predicted.

|K|mzn |K|maz Eigenvalues

28 272 [—0.9999, —0.9244] U [1]
2-10 272 [—0.9999, —0.9284] U [1]
2712 274 [—0.9999, —0.9238] U [1]
2716 24 [—0.9999, —0.9280] U [1]

Table 3.15: Observed eigenvalues, Example 6, Kellogg problem

3.4 Concluding remarks

In this chapter, we proposed the ideal, parameter-free preconditioner (3.38) with diag-
onal blocks representing the norms || - ||giy,4 and || - ||o on the lowest order Raviart-
Thomas spaces V;, and Wj. New inclusion intervals for the eigenvalues of the precondi-
tioned system matrix were derived and we made specific the impact of the discretisation
parameter h and general coefficient tensors A on those bounds. A range of numerical
examples were performed in IR? to illustrate the theory.

For uniform and quasi-uniform meshes, our theoretical eigenvalue bounds are tight.
The suggested preconditioner is h-optimal. The impact of the coefficient is not al-
ways trivial; anisotropic and discontinuous coefficients produce sub-optimal eigenvalue

bounds. However, in some cases, the theoretical bounds are overly pessimistic and the
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difficulty can be overcome with the appropriate mesh or scaling with respect to PDE
coefficients. In this way, A-optimality can be also be achieved.

For non quasi-uniform meshes, the same inclusion intervals for the eigenvalues ap-
ply. However, the right-hand bound for the negative eigenvalues is too pessimistic.
Numerical evidence suggests that mesh independent MINRES convergence is achieved

with the suggested preconditioner even for highly non-uniform meshes.
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Chapter 4

Practical H(div) preconditioning

To obtain a practical scheme, the ideal preconditioner,

A+D 0
P = (4.1)

0 N

must be implemented in a cost-effective way. Specifically, we require that the action
of the inverse of P can be computed in only O(n) flops, where n is the dimension
of the system. Recall that the leading block, A + D, arises in the weighted H(div)

inner-product,
(@hs Un)giva = (A" ih, Bn) + (V- @, V- 5n) = u’ (A+ D). (4.2)

In the sequel, we shall adopt the matrix notation H = A + D. We also define the

associated PDE operator, H, via,

(s ) giw,a = (Hin, Tn) - (4.3)

We say that H is the ‘pure’ H(div) operator if the coefficient tensor A is the identity
matrix.

Implementing (4.1) cheaply is not easy since it is not a trivial task to compute the
action of the inverse of H. There is no difficulty with the mass matrix, N, however,

since it is a diagonal matrix. Now that we have a handle on the theoretical properties

66



of the ideal preconditioner, we look to multigrid schemes to approximately invert the
matrix H. This is not straightforward since the corresponding # is not a full elliptic
operator, to which multigrid methods are best suited. However, there exists a special
class of methods that have been suggested for the pure H(div) operator. We will discuss
a particular multigrid approximation introduced by Arnold, Falk and Winther in [6]

and [7].

4.1 Multigrid

Multigrid methods were introduced in the 1960s as a means to solve finite difference
equations arising in approximations of the Laplacian operator. They became widely
used in the 1970s for solving finite element equations associated with other elliptic op-
erators. This revolution is attributed to a work of Brandt, [16], who popularised the
notion of ‘multi-level adaptive solution techniques’. It is a powerful philosophy based
on the observation that exploiting a hierarchy of coarser grids i.e. discretisations of the
same PDE on different geometries, can lead to a solution scheme requiring only O(n)
flops, where 7 is the dimension of the problem to be solved. Today, ‘multigrid’ encom-
passes many families of different methods but all share two fundamental components:
‘smoothing’ and coarse-grid correction.

To understand these concepts, suppose that it is required to solve, in operator form,

the symmetric and positive definite system,
Mjz; = by, (4.4)

arising in the discretisation of a self-adjoint elliptic PDE, on a given mesh T;. Standard
geometric multigrid methods assume the existence of a nested sequence of J+1 solution
spaces, Vo C V1 C ...Vj =V}, associated with a set of uniformly refined grids, Ty C
Ty C ... Ty = Tp. Nested solution spaces and uniform refinement are not necessary in
general but in this chapter we shall only consider these cases.

Stationary iterative methods, (see section 1.2.1), perform efficiently on (4.4) for a
few iterations but stall when oscillatory components of the error have been damped

out. This phenomenon can be easily observed by applying Gauss-Seidel, say, to an
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elliptic problem with zero righthand side and initial guess comprising high and low
frequency Fourier modes. The method is called a ‘smoother’ because high frequency
modes are rapidly damped out. If we terminate the iteration once this is achieved,
say after m iterations, the error e(Jm) =x5— xsm), where acf,m) is the mth iterate, is
geometrically smooth, and can be well represented on a coarser grid 1Ty 1 = Ty, with
mesh width H > h. A standard choice is H = 2h. If we construct a restriction operator
Ij_l : V; — Vj_1 (a matrix mapping vectors defined on 7'y to vectors on Ty_1), then

(m) (m)

we can restrict the residual error r; 7 = by — Mz to Tj_1 and solve the error

equations M J_16F]T)1 = Ij_lrsm), on the coarser grid.

(m)

Smoothing on Ty ; is more efficient because Ij_lr 7~ appears more oscillatory
than r(Jm). Moreover, iteration is cheaper because there are fewer unknowns. For a two
grid method, the error equations are solved exactly on T’y 1, and an interpolated error
is used to correct the initial approximation wf,m) to zy on Ty. If a full sequence of grids
is available, we recursively combine smoothing, restriction and coarse grid correction
on the whole set, solving the error equations exactly only on the coarsest grid Tp. A

basic algorithm, employing v pre-smoothing and v, post-smoothing steps, is described

in Fig. 4.2.

Figure 4.1: Standard V-cycle and W-cycle on 4 levels

The order in which the grids are visited gives rise to the terms ‘V-cycle’ and ‘W-
cycle’ (see Fig. 4.1.) Crucially, it can be established (see, for example [95, p.74]), in IR?
and IR3, that each cycle can be performed in O(N) flops, where N is the dimension of
the system at the finest level. Computational work increases only linearly with respect

to the problem size.

4.1. Multigrid



q=J, a:go) = zeros

function v = mg_cycle(M,, by, x((}o))

for 7 =1: v, smooth: :v,(]j) = Sa:gj_l)

restrict: Tg—1 = Ig_l (bq - qul(]'/l))

if ¢ =1 solve: ego1= (Mg_1) g

elseif ¢ > 1 initialise: :cgo_)l = zeros

call p times: Vg—1 R eq—1 = mg-_cycle (Mq_l,rq_l,xgo_)l)
correct 2yt = ) +I7 vg

for j=v1+1:v1 + v+ 1, smooth: :v((lj) = ngj‘”
update v = 3;((1”1+”2+1)

end function

Figure 4.2: Standard multigrid V-cycle (p = 1), W-cycle (p = 2)

The convergence of any multigrid algorithm is determined by the interaction of the
chosen smoother and the coarse grid correction. Error not reduced by the smoother,
S, must lie in the range of the chosen interpolation operator IJJ_l. Error components
that do not lie in the range of the interpolation operator, must be efficiently reduced

by the smoother. A standard choice for interpolation is
T, = (Ij—l)T.
Choosing the coarse grid operator as,
My =17 "M;T]_,,

is known as Galerkin approrimation and ensures that the coarse grid correction e(ff)l

has minimal norm, (in the norm induced by Mj;_;), over the space of all corrections

vy_1 lying in the range of the interpolation operator.
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Rigorous convergence theory is available for many schemes. For the nested ap-
proach, fundamental contributions were made in IR? by Bank and Dupont, [12], for the
W-cycle and by Braess and Hackbush, [18], for the V-cycle. For a general discussion
of multigrid methods see Briggs et al., [29], or Braess, [17]. For an introduction to
convergence theory, and a review of the state of the art see Trottenberg et al., [95].

When solving problems in IR3, the generation of large amounts of geometric infor-
mation on nested grids is infeasible. As a remedy to this, algebraic multigrid methods
(AMG), which generate coarse levels and transfer operators by exploiting only the sten-
cil of the given matrix, were developed in the 1980s (see, for example, Ruge and Stiiben
[83], [84]). Today, they are becoming increasingly popular in many important applica-
tions (see, for example, [70], [81]). However, convergence theory for AMG is much less
developed than for the geometric case and is limited to so-called M-matrices which are
characterised by large positive diagonal entries and negative off-diagonal entries. We

shall discuss AMG in more detail in Chapter 5.

4.2 Multigrid in H(div; Q)

Now, we require a multigrid approximation V to the operator H : V}, — V}, arising in the
inner-product (4.3), such that x (V~'#) is bounded independently of the discretisation
parameter h and the coefficient tensor A. To begin, we note that # is a symmetric

and positive definite operator.

Lemma 16 # is a symmetric and positive definite operator with respect to the L*(Q)

inner-product.

Proof Since we have assumed that the coefficient tensor A is positive definite, it is a
trivial consequence that (Hiy,dp) = (A ‘dp, @) + (V- G, V- @) > 0 for all @, in

Vh\{ﬁ} Since we have also assumed that A is symmetric, we obtain for all iy, 7, € Vp,

(Midn, %) = (A Y, @) + (V- dh, V- T3)

= (ip, A7) + (V- @y, V- 0) = (Hy,dp). O
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Unfortunately, standard multigrid methods described in the previous section are un-
suitable (see Cai et al., [31], for numerical evidence of this) since H lacks some of the
characteristics of elliptic operators that are necessary to obtain h-optimal convergence.
A first suspicion of this can be gleaned from the stencil of the matrix corresponding to
the so-called pure H(div) operator.

For example, the element basis functions for RTy(K), on a square of edge length

h, with oriented normal vectors as shown in Fig. 2.5, and edge mid-side co-ordinates

0

—_
4
o)
5
|
S8
|
=8
+
S
o

h _ “
"PK = » PR = yPK =
0 0 1+ g+

Integrating, we find that the element contributions to the matrices A and D are,

(

3 200 +1 -1 41 -1
2| 2 1 00 -1 41 -1 +1
Ak =M1 303 DK =
4 s 2 |’
00 % 2 +1 -1 +1 -1
2 4
2 4 -1 41 -1 +1

\00

Adding them together produces the matrix stencils shown in Fig 4.3.

-1+h%/6
1 -1
2+2h%/3
1 -1
2+2h%3
) ) -1 1
-1+ h“/6 -1+ h“/6
2
I 1 -1+h%/6

Figure 4.3: Stencil of H¥, squares

Similarly, for uniform right-angled triangles, with oriented normal vectors as shown

in Fig. 2.4, and vertex co-ordinates (z;,¥;), ¢ = 1 : 3, we obtain element basis functions,

_x3 4z _x3vV2 | zV2 T3 _x
S hTh o 22+ 2y L [ 1+t
P — yPK = V3 V3 yPKR — )

1_y 4y _wn y vy

1= +3 ot % h " h

4.2. Multigrid in H(div; Q)



yielding,

0 3 2 2v2 -2
AK=n1 0 Lo, DN=]2v2 4 -2/2

1 1

§ 0 3 -2 —2v2 2

Matrix stencils for the sum HX are given in Fig. 4.4.

2302

2h%3

4 4
_p312 _p¥2

2312

Figure 4.4: Stencil of HE triangles

An important observation is that we obtain positive and negative off-diagonal entries
in each HX. The global matrix H is certainly not an M-matrix, and, moreover, does
not have the appearance of a standard discrete elliptic operator.

Now, error modes that cannot be damped out by standard smoothers such as Gauss-
Seidel or Jacobi iteration are attributed to eigenfunctions associated with the eigen-
values closest to the origin. For elliptic problems, these eigenvalues correspond to
geometrically smooth eigenfunctions which can be well represented on coarser grids. In
contrast, standard smoothing for matrices with significant positive off-diagonal entries,
such as H, leaves oscillatory error components (see Stiiben, [93]) that do not lie in
the range of standard interpolation operators. In such cases, multigrid with stationary
iterative smoothers fails.

At a more abstract level, this ‘non-elliptic’ behaviour is a consequence of the non-
trivial null space of the divergence operator. To gain insight into this, recall first that

any ¥ € L?(Q)¢ satisfying V - ¥ = 0 can be represented as a curl field.

Theorem 7 Let Q) be a bounded and simply-connected domain with Lipschitz contin-
uous boundary. A vector-field 7 € L*(Q)? satisfies V -7 = 0 in Q if and only if there

exists a 7 € H'(Q)? satisfying v = V x Z.
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Proof See Girault and Raviart, [54, Theorem 1.3.4].

Under the same assumptions on 2 we can also invoke the Helmholtz decomposition of

an arbitrary vector ¥ € L?(92)? into a gradient field and a curl field.

Theorem 8 FEvery 7 € L?(Q)¢, d = 2,3, has a unique orthogonal decomposition,
v=Vw+V X 2

where w € H' (Q)\IR and 7 € H' (Q)%.

Proof See Theorem 1.3.2 and Corollary 1.3.4 in Girault and Raviart, [54].

For the lowest order triangular or tetrahedral Raviart-Thomas elements, we obtain

the discrete orthogonal decomposition,
Vih=VpW,®V x5},

where S, = {s € H'(Q) | s|lx € Pi(K)} is the set of continuous piecewise linear

polynomials. Since the pressure space Wy, ¢ H' (), gradient fields are defined via,
(Vhwn, ) = — (wp, V - ) .

Now, when restricted to the divergence-free subspace V x S, C V}, we obtain, for all

Uh:szlandﬁh:szQ,

(Hﬁha Il_)'h) = (Hv X 81, V x 323)
= (A'Vxs1, Vxsy,)+(V-Vxs,V-Vxs)

= (.A_l V x 81, V x 82) = (A_lﬂh, 77}1) .

Hence, H behaves like the non-elliptic operator A~1Z.

Since H only fails to be elliptic on a subspace of V},, it is no surprise that most
existing multilevel approximations to operators of this form, exploit the decomposition
of V}, into divergence-free and curl-free parts. In [31], Cai et al. propose a hierarchical
basis preconditioner based on such a splitting. In [97], Vassilevski and Wang propose
a domain decomposition method. The subject of that work is the penalty method. A
domain decomposition approach is also recommended by Hiptmair in [60]. Divergence-

free and curl-free subproblems are solved separately, at all levels. The same author,
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in [61], extends the method of [97] to the case of adaptively refined grids. However,
the subject of that work is the augmented Lagrangian method in which parameters are
present. None of these papers discuss general coefficient tensors A.

The approach of Arnold, Falk and Winther, in [6] and [7], however, is set in the
framework of the standard multigrid V-cycle. Only the smoother is modified. Their
method offers a simpler implementation because the Helmholtz decomposition is em-
ployed only as a theoretical tool for obtaining error estimates. It is not physically
performed. We give an outline of the method in the next section. Readers who are
not interested in multigrid theory can skip to the next section to find details of the

practical implementation.

4.3 Arnold-Falk-Winther multigrid

To investigate the performance of the method of Arnold et al., for our model problem
(2.8), we restrict our attention, in the remainder of this chapter, to triangular and tetra-
hedral elements and shape-regular, quasi-uniform meshes. The domain €2 is assumed to
be convex. Now, given a sequence of quasi-uniform meshes, Ty C 11 C ...T; = T}, the
corresponding velocity spaces V; form a nested sequence of subspaces of L?(Q). That
is,

Vo CcViC...Vy =V, C L*(Q).

We define, for each level, j = 0 : J, the operator H; : V; — Vj via,
(Hju,v) = (ﬁ,f;’)dw,A Vi,v €V

By Lemma 16, each H; is a symmetric and positive definite operator. To obtain a

multigrid algorithm, we require the L?-projection operator Q; : Vi, = Vj defined via,
(Q;u,v) = (a,v) Vu € Vp,V7eV,

and the H-orthogonal projection operator P; : Vi, — V;, defined via,

(PjU, 0) gy 4 = (@,0)gjpa VU E VR, VTEV;

We denote the generic smoothing operator by S; : V; — Vj.

4.3. Arnold-Falk-Winther multigrid



Our aim is to solve a system of the form,

Hizg = f1,

for zy € Vj. Let V}l denote the application of a V-cycle of multigrid to this system.
If we employ the algorithm in Fig. 4.2, with m pre-smoothing and m post-smoothing
steps, with Galerkin approximation and restriction given by Q;, then an h-optimal
algorithm results, provided we can construct a set of smoothers {S; }‘j]:0 satisfying the

conditions of the following theorem.

Theorem 9 Suppose that, for j = 0: J, the smoother S; is L?-symmetric and positive

semidefinite and satisfies the conditions,

(I - SiH;)8,9) o a = 0 V€V, (4.5)
(879.9) < a@Dgeu VFE T-Pr)V (4.6)

where « is a positive constant, then

0 < (T-Vy"Hy]0,0) gy < §(8,0) g0 VT €V, (4.7)

where § = (atom) and m is the number of pre-smoothing steps.

Proof This result is established by Arnold et al. in [6, Appendix B] and is a modifi-

cation of a more general theory due to Bramble [15, Theorem 3.6]. [

Remark 10 If the conditions of Theorem 9 are satisfied, we see that the eigenvalues

of V;'H lie in the interval [1 —§,1].

The choice of the smoother is therefore critical. The class of smoothers recom-
mended by Arnold et al. are the so-called additive and multiplicative Schwarz methods.
These schemes are based on particular geometric decompositions of the triangulations
T} into ‘patches’ which induce a partition of the spaces V;. To understand this, suppose
that there exists a partition of 7} into overlapping subdomains {Qf} such that each Vj

can be decomposed as a sum of closed subspaces,

Vi=2 Vi
k
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where, ij ={v e V; | supp(¥) C ﬁf }. If we define, for each grid level j, and for each

subdomain k, the H-projection operator ’PJ’-c V= ij via,
k— = S , . k
(Pras), = @ua Vi€V VTEVS,
then the additive Schwarz smoother is defined as,

Sj=ny PiH;’, (4.8)
k
where 7 > 0 is a scaling parameter.
To be specific, admissible domain decompositions are those for which a bound on
the L2(Q) norm, of the form,

Yl E< el 71,

k

holds with a constant ¢ independent of h. For details, see [7] or Hiptmair, [60]. One
possibility, for the Raviart-Thomas spaces, is a vertex-based decomposition. Hence, set

Qg‘"‘ to be the patch of elements surrounding vertex k in T} (see Fig. 4.5.)

Figure 4.5: Vertex-centered patch

Then, in matrix form, each PJIc takes the form,
k T r7—1

where Hy is the principal submatrix of H; corresponding to the rows and columns
associated with nodes lying on the edges or faces attached to vertex k. Ry, is a restriction

matrix with entries zero or one. Hence, applying the smoother,

SiHj=nY  Ri{H;'RyH;=n) P},
k k
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corresponds to taking a scaled sum of solutions to local subproblems, and is equivalent
to block-Jacobi iteration. Alternatively, a multiplicative smoother, akin to block Gauss-
Seidel can be defined by solving the subproblems in sequence and updating the residuals
after each local solve. We will apply the additive smoother (4.8).

In [6] and [7] it is demonstrated that the additive and multiplicative Schwarz

smoothers satisfy the conditions of Theorem 9, if the bilinear form (-,-) div, A 15
(ﬁ’ ﬁ)div,A =p (ﬁa 77) + (V : ﬁa V- IU) )

for some constant p > 0. Moreover, it is established that § is independent of p and the
discretisation parameter h. For our model problem, this corresponds to choosing the
coefficient tensor A (%) = pZ for all points ¥ € 2, and thus only corresponds to a trivial
subset of the problems we would like to solve. However, we must not be discouraged.

Note, first, that the symmetry and positive definiteness of the smoother is com-
pletely unaffected by general, symmetric, coefficient tensors. To see that the additive

smoother §; is L?-symmetric, observe that,

(85,9 = 0> (Po;'5,2) = 0y (Phu; ', w5z
k
(

It is also evident that (4.5), the first condition in Theorem 9, holds in the generic
bilinear form (4.3). Indeed, the analysis of Arnold et al. can be applied without

modifications. If we choose the additive smoother (4.8), we obtain, for any ¥ in V},
(2 = SiH;10, D) gipa = (0,0)gin,a = (SiH;0,0) 4y, 4
— TS kG T
= ('Ua U)div,A -n ; (PJ U, U) div, A
= ( 3 )div,A - zk: (PJ s Pj U) div, A

—_ = k =
= (Uav)dw’_A - 772 || Pjv ||3iv,.A .
k

1

<y

Now, if we denote by || - ||¢iv, 4,k the weighted H (div) norm with integration performed
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on the kth subdomain, we obtain,

k=12 _ k=~ pk= _ k= — k=11 . 21 ,.
I Pjv ||dz'v,_,4 = (Pj vapj U)(m,A = (Pj U’U>dz’v,A < Pj"’ ||dw,.A|| v ||dw,A,k: .

Hence, || PJ’-CQ‘)' ||§iU,AS|| 0l ||3wﬂ4,,c and so,

(IZ - SjHj] 7, 77)div,.A > (7, "7)div,A /| Z (¥, "7)(1@'1,,.,4’19 > (1 —nw) (7, "7)(1,‘1,,,4,
k

where w is an overlap parameter denoting the maximum number of subdomains to
which any point & in T); belongs. The message is that choosing the scaling parameter
7n appropriately, guarantees (4.5) independently of A.

Unfortunately, it is not possible to obtain « independent of A in (4.6) using the
existing analysis. Intermediary results for (4.6), in [6] and [7], exploit the approximation
properties of the Raviart-Thomas spaces V;. The error bounds appearing in Lemmas 7
and 8, in Chapter 2, play a crucial role. Since the constants appearing in those bounds
depend heavily on the regularity of the discrete solutions %, and pp, it is inevitable
that the proofs contain constants that potentially blow-up for, say, highly anisotropic
coefficients. As a consequence, the accuracy of the multigrid approximation described
above is not currently understood for general coefficient tensors. However, this will not
detract from the main message of this chapter. We will provide new eigenvalue analysis
for the preconditioned saddle-point problem in the next section. For the benefit of the

reader, we end this section with some hints for practical implementation in IR?.

4.3.1 Implementation

The method is the V-cycle algorithm described in Fig 4.2, with Galerkin coarse-grid
approximation. Applying the additive Schwarz smoother S; in (4.8) to a vector, at
level j, is straightforward. We require, for each vertex in the mesh T}, the labels of
the nodes lying on the edges that emanate from that vertex. Pseudo-code is given in
Fig. 4.6. Here, H; is the matrix H, corresponding to (4.3), assembled on the mesh Tj.
Following [6], we choose the scaling parameter 7 = 3.

It remains only to construct the interpolation operators Ig_l. The restriction op-
erators I; ~! are then defined as their transposes. We use so-called injection, but care

has to be taken since the vectors we want to transfer between grids represent normal
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function y = smooth(H, z)

initialise:

Yy = zeros
for n=1:# vertices
get edge labels: L = labels
solve and update: y(L)= y(L) + H;(L,L)"'z(L)
end
scale: y=ny

Figure 4.6: Additive Schwarz smoothing

components of vector fields. To fix ideas, consider the meshes T} 1 and T} shown in

Fig. 4.7.

*

o oe
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¢ 10 11 12 ¢

* W
2

1 1 2
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Figure 4.7: Coarse grid Tj_1 (left), fine grid T} (right)

Let v;_; denote the discrete representation of a function %1 on Tj_; that we wish to
transfer to Tj. Recall that v;_,(i) = ¥j_1 - 7, i =1:5, where 7% is an oriented unit
normal vector at edge 7 on 7} 1. Now, normal components of lowest-order Raviart-
Thomas functions are constant along edges of triangles. Providing that the orientation
of normal vectors is consistent, for nodes lying on edges of T} that coincide with edges
in Tj_; we can inject the vector values of v; ; directly. Thus, for example, v;(14) =
Qj(15) = Qj—1(5)-

Formally, we define a function ¥; via the injection,

vj - ’73 (zi,yi) = ij_l (-1 - 17}‘) (i, yi) = (Tj-1 - 172) (x4, :)

where, here, 17]Z denotes the oriented unit normal vector to edge 7 in the fine level grid

T; and (z;,y;) denotes the mid-point of that edge. Thus, for a node 7 in 7} lying in the
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interior of a triangle K in Tj_;, we obtain, in discrete vector notation,
v (i) = Tj - % (@i, 95) = (Tj-1lk - ) (26, 3) -

Expanding ¥;_1 in terms of local basis functions for K gives,

3
~ K
i1k = Zﬂj—1(”) Pn -
n=1
Hence, if we denote the local edges of K at level j — 1 by n1,n9,n3, we obtain, in vector

notation,
v;(2) = ;1 (n1)er +v; 1 (n2)ea + v,y (n3)es,
where,
ck = gb'ffk (:I:i,y,-)-ﬂ;‘:, k=1:3.
Thus, in Fig. 4.7, v;(3),v,;(8) and v;(13) are linear combinations of v;_,(1),v,_;(5)

and v;_;(3). For the configuration of normal vectors shown in Fig. 2.3, we obtain the

interpolation matrix,

11 53 0 0005300 0 045500 0 1
00 0 5 110 0 00-530 0 00 55 |2
Tin =100 -3 0 001 5§ 00 0 05500 0 [3
00 0 —3000 0 11 5 1 0 00 554
\00%%000\%00%0%11% 5

We report on numerical experiments at the end of the chapter. First, we present
our main result. This is a new eigenvalue analysis which establishes the impact on the
eigenvalue bound of Theorem 6 of replacing H, in the ideal preconditioner (4.1), with

an approximation.

4.4 Eigenvalue bounds

Let V be any symmetric and positive definite approximation to the matrix H = A+ D,

arising in (4.2), such that there exist positive constants 6 and ©, satisfying,

u! Hu

0 <
— ul'Vu

<O <1 Vue R"\{0}. (4.9)
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We now consider preconditioning the lowest-order Raviart-Thomas saddle-point system

(2.37) with the matrix,

V 0
P= . (4.10)
0 N
To establish bounds for the eigenvalues of the preconditioned system, we require the

following preliminary result.

Lemma 17 The n eigenvalues {o;}}; of Du = oHu, lie in the interval [0,1).

Proof Recall from (3.14) that H = A+ D = A+ BT N~!B. Since H is positive definite
and D is semi-positive definite, it is easy to see that o > 0. If u € null(B), then 0 =0
by positive definiteness of A. The dimension of null(B) is n — m, so there are n — m

zero eigenvalues. Now, if u ¢ null(B), o > 0 and we have,
(1-o0) ul Du = oul Au > 0.

Since u’ Du > 0 in this case, we must have 1 —¢ > 0 and thus 0 < 1. O
Our starting point is the eigenvalue bound (3.24) in Theorem 6, for the ideal pre-

conditioned system (3.23). To simplify notation, let,

Clhmin
a= , 4.11
<| K |mm +#min) ( )

so that the bound (3.24) is,

[—1,—a] U [1]. (4.12)

We now obtain the following result.

Theorem 10 The n +m eigenvalues {\;}'™ of the generalised eigenvalue problem,

A BT Vo0
=) , (4.13)

0 N

IS
IS

B 0

I3
I3

arising in the Raviart-Thomas approzimation of (2.12), lie in the union of the intervals,

[_1, % (9(1 —a) = /62 (a—1)? +4a0>] U 6,1, (4.14)

where 0 is the positive constant satisfying (4.9) and a is the positive constant defined

in (4.11).
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Proof First, suppose that A > 0. The eigenvalues {);}]"1" satisfy,

Au+B'p = IVu,

Bu = ANp.
Eliminating p yields,

Mu+ BTN"'Bu = MVu,
Mu+Du = NVu,
MA+D)u+(1-XNDu = IVu,

MAu+(1-NDu = MVu.

Thus,

(1 =X u'Du = X2 Vu — 2 Hu, (4.15)
and since, by assumption (4.9),
"Hu, (4.16)
it follows that,

(1-Nu'Du > (N -\ u Hu
Applying Lemma, 17, and noting that H is positive definite, we obtain,

(1-Nu"Hu > (A —X)u"Hu,
-3 > (-2,

1 > X\

From (4.15) and (4.16), it also follows that,

2
(1-XNu"Du < (% - /\) u" Hu.

Since 0 < u” Du and we have established 0 < A < 1, it follows that,

0 < A@ —1) u! Hu.

0

Hence X > 6, and the bound for the positive eigenvalues is proved.
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Now assume that A < 0. Eliminating u yields,

B(A- V) 'BTp = —ANp, (4.17)

an implicit equation for A. Note that since A < 0, the matrix (A — AV) is positive

definite. Now, the values of A satisfying (4.17) are the eigenvalues of the matrix,

N :B(\V - A) 'BTN:
— N :B(AV-H+D)'B'N:
— N :B(AW-H+B'N"'B)'B'N:
11 _1 _ i\l _1
— N-3BY"% <I+Y s BTN-'BY 2) Y-3BTN->
= X(I+Xx7x)"'x7,
where, here, X = N “3BY 7 and Y = AV — H. Applying the same arguments as in

Theorem 6, and applying the Sherman-Morrison-Woodbury formula, the eigenvalues

{\i} we are seeking in (4.17) are the values:

o
A= ——, 4.18
’ 1+o0; ( )

where each ¢; is an eigenvalue of,
B(\V —H)™'BTp = oNp. (4.19)

We can obtain a bound for these values by exploiting the spectral equivalence of H and
V defined in (4.9). Note that bounds for the eigenvalues of (4.17) cannot be obtained
without the above manipulation, since we have no readily available information about
the spectral equivalence of A and V.

Consider, first, the eigenvalues {u} of,
AW -—H) "'y = pH 'u (4.20)

Since A < 0, the matrix (\V — H) is negative definite. Since H~! is positive definite,
the values of u are negative. Rearranging gives,
HAV-H)'u = pu

()\H_lV—I)ily = puu
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()\H_IV—I)Q = lg
I
AVu = (l—l—l) Hu
7
A B ul' Hu
— = =
(2+1)  wVu

Combining this with (4.9) we obtain,

Recalling that 8 > 0, 4 < 0 and A < 0, we find that,

1 0
Y —- 4.21
moe [/\—1’/\—0] (4.21)
Now, combining (4.20) and (4.21), we obtain Vp € IR™\{0},
1 _ p'BOV - H)"'BTp _
A—1 — p!'BH-'BTp A0
and so,
1 \ p'BH'BTp p’B(\WV —H)"'BTp 0 \ p"BH'BTp
A—1 pTNp pT'Np —\\—-0 pINp

In Theorem 6, we obtained the bound,

pTBH—lBTp .
a < Wﬁl Vp € R™\{0},

with @ > 0. Since the bounds for the eigenvalues in (4.21) are negative, we obtain,

1 - p"'B(\V — H)"'BTp
A—1 pI'Np

For any A < 0, the eigenvalues {o} of (4.19) therefore satisfy,

1 ab
~—— o< — <0,

A—1 A—06
and also,
1 1 1
T L Ciroo 1+2
T g b=
Hence, we obtain,
1 af_
A—1 g A=0
1++5 140~ 14527

< ab
—\A-0

)

(4.22)
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and so, using (4.18), the eigenvalues X of (4.17) satisfy,

<A<

> =

A+0(a—1)

Finally, solving for A in,
1> A2, M+ M(a—1)—ad >0,

yields, since A\ < 0,

1< A< %(0(1—(1)—\/02((1—1)24—4@0). O

Remark 11 Notice that when 0 = 1, we recover the eigenvalue bound (4.12) for the

ideal preconditioner.

We choose V' to be the discrete form of the Arnold-Falk-Winther multigrid operator
described in the last section. By Theorem 9, this V' yields © = 1 in (4.9).

Using the the result of Theorem 10, we can now deliver the key message of this
chapter. The A-optimality of the preconditioner (4.10) is completely determined by
that of the ideal preconditioner (4.1). To see this, recall from Theorem 6 in Chapter 3

that,

Clmin
a= , 4.23
<| K |mm +ﬂmin) ( )

where fiin is the minimum eigenvalue of BA™'B” and, for quasi-uniform meshes,
¢ > 0 is a constant independent of the discretisation parameter. If a decays to zero due

to the small magnitude of the entries of the coefficient tensor A, then, asymptotically,

lim%(9(1—a)—\/02(a—1)2+4a9> =%(9—\/9_2) = 0.

a—0

Thus, even if the chosen multigrid approximation to H is both h-optimal and A-
optimal, the eigenvalue bound (4.14) deteriorates. The deficiency in the ideal precon-
ditioner carries over to the practical preconditioner and scaling will still be needed to
obtain efficient MINRES iteration.

On the other hand, if the coefficient term is sufficiently large so that a — 1, we

obtain, asymptotically,

a—1

lim % (9(1—@)—\/92(a—1)2+4a0> = —%\/4_ = 0.
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Hence, for large pimin, the eigenvalue bound (4.14) takes the form,
(—1, —\/5] ule, 1,

and the efficiency of the method is completely determined by the multigrid approxima-

tion.

4.5 Preconditioned MINRES

To illustrate that the above theory is tight, we now report on MINRES convergence
for a range of coefficients, using the preconditioner (4.10). All of the experiments are
performed with uniform meshes of right-angled triangles and the stopping tolerance
(3.39).

Example 1

Consider the case Q = [0,1] x [0,1], p = 0 on 89, and f = 2(z? — z + % — ¥), so
that for A = 7 we obtain the analytical pressure solution p = z(z — 1)y(y — 1). The
eigenvalues of V"' H, using the method of Arnold et al., are listed in Table 4.1. They
indicate that the multigrid approximation is h-optimal. In Table 4.2 we compare the
observed eigenvalues of the preconditioned saddle-point system with the bounds in

(4.14). Iteration counts are given in Table 4.3.

h 6 &)
% 0.5938 1
5 0.4595 1
& 04273 1

Table 4.1: Eigenvalues of V"' H, unit coefficients

h bounds observed

% [—0.9983, —0.7381] U [0.5938,1] [—0.9879, —0.8507] U [0.5943, 1]
% [—0.9996, —0.6504] U [0.4595,1] [—0.9972, —0.8438] U [0.4598, 1]
6 [—0.9999, —0.6503] U [0.4273,1] [—0.9994, —0.8481] U [0.4273,1]

Table 4.2: Theoretical bounds and observed eigenvalues, unit coefficients
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L L L L
16 32 64 64

1
5
17 18 18 18 18
(81) (183) (367) (%) (%)

Table 4.3: MINRES iterations, Example 1

h

Example 2

Next, we introduce a jump in the coefficient and set A = €Z in one quadrant of € so
that g, — 0 in (4.23), if e << 1. Values of 0 are listed in Table 4.4. Although this
case is not covered by the theory of Arnold et al., the approximation to H is A-optimal
and h-optimal; ® = 1 in all cases. The negative eigenvalues of the preconditioned

saddle-point system, for e = 1072 and € = 10~° are listed in Tables 4.5-4.6.

e h % 11_6
105  0.4725 0.4326
10°  0.4725 0.4326
10*  0.4725 0.4326
103 0.4725 0.4326
102 0.4722 0.4325
101 0.4698 0.4316
10°  0.4595 0.4273

1071 0.4099 0.3784

1072 0.3642 0.3423

1073 0.3513 0.3319

107 0.3494 0.3302

107° 0.3491 0.3299

1075 0.3491 0.3299

Table 4.4: Values of 0, discontinuous .4, single jump

Observe that the righthand bound for the negative eigenvalues is tighter as the jump
parameter decreases. This is illustrated in Fig. 4.8 where we compare the observed
and predicted righthand negative eigenvalues for a fixed h and varying €. The observed
values are marked with crosses, the theoretical bounds are marked with circles. The
scale on the y-axis corresponds to values of € € [107°%,10°]. For e > 1, we observe that

the theoretical bound is a conservative estimate.
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>

bounds observed

[—0.9982, —0.0695] [—0.9864, —0.0766]
[—0.9996, —0.0665] [—0.9969, —0.0741]
[—0.9999, —0.0653] [—0.9993, —0.0733]

ool

Table 4.5: Theoretical bounds and observed negative eigenvalues, e = 1073

h bounds observed

% [—0.9982, —0.000083273] [—0.9864, —0.000083284]
§ [—0.9996, —0.000080216] [—0.9972, —0.000080227]
6 [—0.9999, —0.000079271] [—0.9994, —0.000079284]

Table 4.6: Theoretical bounds and observed negative eigenvalues, € = 10~°

X X X X X X X
(¢}

1
-1 -0.5 0 0.5

Figure 4.8: Observed negative eigenvalues (x) and theoretical bound (o), € € [1076,106]

The eigenvalues of the preconditioned system, for a fixed mesh and varying e
are plotted in Fig. 4.9. Again, the scale on the y-axis corresponds to values of
e € [107%,10°]. Despite the optimal multigrid performance, for values ¢ < 1, it is
clear that MINRES convergence will deteriorate. Iteration counts obtained with the
ideal preconditioner and the multigrid preconditioner are listed in Table 4.7 and Table

4.8, respectively.
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Figure 4.9: Eigenvalues of multigrid preconditioned system, h = %, €€ [10_6, 106]

As our theory predicts, the multigrid preconditioner exhibits the same asymptotic
behaviour as the exact version as ¢ — 0. The deterioration can be corrected, however,

by rescaling the coefficients, as discussed in section 3.2.1.

€ h

108
10°
10*
103
102
10!
10°
1071
1072
1073
1074
1075
106

ol
gl=

N =
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Table 4.7: MINRES iterations, exact preconditioner, Example 2
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eh 3 %
10 17 18 18
10 17 18 18
104 17 18 18
108 17 18 18
102 17 18 18
100 18 18 18
100 17 18 18
1071 18 20 20
1072 22 24 25
1073 41 45 47
107 71 119 130
1075 106 220 342
1075 131 328 574

Table 4.8: MINRES iterations, multigrid preconditioner, Example 2

Example 3

For a more challenging discontinuous coefficient example, we consider, again, the so-
called ‘Kellogg problem’ described in Example 6 in Chapter 3. Recall that the coefficient
is prescribed in a 2 X 2 checkerboard fashion on Q@ = [-1,1] x [-1,1]. We choose
A =a1Z ~ 161.477 x T in two quadrants of ©Q and A = T elsewhere.

Unfortunately, the multigrid method of Arnold et al. is limited to quasi-uniform
meshes, which are not desirable for this problem. We perform the experiment, however,
to observe the behaviour of the multigrid approximation with respect to the complicated
coefficient term. We will describe an alternative practical preconditioning scheme that
is suited to locally refined meshes in Chapter 5.

Iteration counts are listed in Table 4.9. For h = %, we obtain 0 ~ 0.1538 and © =1,
yielding the eigenvalue bound, [—0.9999, —0.7568] U [0.1538, 1]. The observed values

lie in the interval [—0.9998, —0.8431] U [0.1541, 1].

L1 11 1 L
8 16 2 64 128
23 25 26 26 26
™ & " ® O

Table 4.9: MINRES iterations, exact preconditioner, Example 3
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Again, this type of coefficient tensor is not covered by the theory. However, we observe
that the scheme is robust. To illustrate this, values of 0 are listed in Table 4.10 for
different values of a;. ©® =1 in all cases. Although 6 is smaller than in Example 2 for

large coefficients, it remains bounded away from zero.

a1 h % %
105  0.1470 0.1043
10°  0.1470 0.1043
10*  0.1471 0.1044
103 0.1481 0.1055
102 0.1578 0.1156
101 0.2358 0.1994
10°  0.4340 0.4179
1071 0.4449 0.4211
10~2  0.4457 0.4209
1073 0.4453 0.4208
107% 0.4451 0.4208
1075 0.4451 0.4208
1079  0.4451 0.4208

Table 4.10: Values of 6, discontinuous A, 2 x 2 checkerboard jumps

Example 4

If we set the coefficient to be the full tensor (3.40) we obtain (V™1 H) = 3.84. Iteration

counts are given in Table 4.11.

ho L 11 1 L
8 16 2 64 12
21 22 22 22 22
(322) (* ™

Table 4.11: MINRES iterations, Example 4

Example 5

Choosing the variable coefficient tensor (3.41) yields x(V ~1H) = 1.95. Iteration counts
are listed in Table 4.12. Once again, the multigrid approximation is h-optimal and so
therefore is the preconditioner (4.10). However, the iteration count rises since the

minimum eigenvalue of BA !B7 is smaller here than in the other examples. (Recall
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Example 3 in Chapter 3.)

hoL 11 1 1
8 16 32 64 128
45 59 67 69 69

—~

Y YOS

Table 4.12: MINRES iterations, Example 5

Example 6

Finally, consider an anisotropic test problem with A = diag(e, 1). Condition numbers
for V-1 H are listed in Table (4.13); they show that the suggested multigrid scheme is
totally unsuitable as an approximation to the H(div) operator with anisotropic weight-
ing. ©® =1 in all cases but @ deteriorates with e. MINRES does not converge, even for

mild anisotropies.

1 p_ 1
€ h_s h—16

106 8.98e5 9.60e5
105 8.98¢4 9.60e4
10*  8.94e3  9.61e3
103 8.99¢2 9.61e2
102 91.12  97.37
100 10.27  10.90
100 2.18 2.34

10°' 971  10.75
1072 59.48  85.43
1073 1.98¢2 4.30e2
10~* 8.06e2 1.30e3
1075 6.42e3  7.25e3
1075 6.24e4 6.56e4

Table 4.13: Condition number of V~'H, anisotropic coefficients

4.6 Concluding remarks

In this chapter, we developed the preconditioning scheme introduced in Chapter 3. To
obtain a practical scheme, we replaced the weighted H (div) operator with a multigrid

approximation due to Arnold et al. We rigorously established the performance of the
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resulting preconditioner with new eigenvalue analysis. Further, we demonstrated the
impact of general coeflicient tensors on the performance of the multigrid approximation
and on the theoretical eigenvalue bound.

Two key issues arise. First, the multigrid approximation failed in anisotropic test
cases. This failure begs the question of whether general coefficient tensors can be han-
dled efficiently in the V-cycle framework of Arnold, Falk and Winther. Our suspicion
is that coefficient dependent transfer operators should be employed, rather than pure
injection, between grids. However, we must defer this to future work. More impor-
tantly, it is clear that if the ideal preconditioner (4.1) is not A-optimal, which is likely
in practical simulations, then neither is the suggested practical preconditioner (4.10).
Iteration may only be efficient if scaling with respect to the minimum coefficient, is
applied. This is true independently of the approximation properties of the multigrid

scheme.
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Chapter 5

H! preconditioning

This chapter is motivated by the observation that the continuous variational problem
(2.10) is well-posed in a second pair of function spaces. This leads to ideal precon-
ditioners of the generic form (2.52). First, we outline an alternative stability theory
which gives rise to the concept of a ‘jump operator’. We discuss an ideal precondi-
tioning scheme that incorporates this operator and consider some of the difficulties in
constructing finite element matrices to represent it. Finally, we propose and analyse a

novel practical scheme based on black-box algebraic multigrid (AMG).

5.1 Motivation

Our starting point is the mixed first-order PDE system (2.8) with homogeneous Dirichlet
boundary condition, p = 0 on 9€2. (The boundary condition will not be imposed in the
sequel, it is simply to facilitate the initial discussion.) Now choose V = L?(Q)¢ and
W = H{(Q). Multiplying by arbitrary test functions, integrating and applying Green’s
formula to the second equation leads to the continuous, mixed variational problem,
find (@,p) € V x W satisfying,
a(it,¥) +b(v,p) = 0 VT eV,
b(i,w) = —(f,w) Yw € W,

where a (+,) : V xV - Rand b(-,:) : V x W — IR are now defined via,

a(@,7) = (A7'4,9), b(d,w) = — (Vw, ).



Zp-ellipticity certainly holds in the norm || - ||o if (2.1) holds, and since VW C V,

=l

b(#, w) (Vuw,) _ || Vo |2 1
sup =Ssup ———3 > =|w 1> — || w |,
S TT T o T S Vel Y e

where c is the constant arising in Friedrich’s inequality (see Lemma 1). Hence, inf-sup

(5.2)

S

stability holds in || - [lo and || - |1 with 8 = \/117

Following the discussion in Chapter 3, it seems feasible to consider block-diagonal

preconditioners P of the generic form,

P = (5.3)

with symmetric and positive definite blocks P, € IR™*™ and P, € IR™*™ chosen to
represent the norms || - ||p and || - ||1 on the subspaces V}, and W},. However, formulating
the discrete problem,

find (up,pp) € Vi, x Wy, satisfying,

a(tp,Up) + b(Th,pp) = 0 Vi, € Vj,
(5.4)
b(idn, wp) = —(f,wn) Vwn € Wh,
using the lowest-order Raviart-Thomas spaces now corresponds to a non-conforming
approach because W;, ¢ H' (). Recall that W}, is the space of piecewise constant
functions and so the definition of Vw does not hold in the classical sense. Hence, there

is no obvious way to construct a suitable matrix P,. Moreover, discrete inf-sup stability

cannot be established in the standard Sobolev norm || - ||; .

5.1.1 Alternative inf-sup inequality

As pointed out in [88], we can establish inf-sup stability in an alternative mesh-
dependent norm, if 7} is quasi-uniform. The advantage is that the new norm can
be defined locally on each element of 7} and has a simple algebraic representation.
In essence, we require a ‘jump operator’. The reader should note, however, that the
details are specific to the choice (2.39) of the degrees of freedom for V},. We outline an
approach for the lowest-order schemes in IR?. Similar concepts carry over to IR3.
Assume, now, that T} is a quasi-uniform partition of €2 and denote the set of all

edges of Ty, by . Then, for any given wy, € Wp,, we can define a norm via,
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lwn ITn =0 Yece, J, [wnl; ds. (5.5)

Here, h denotes the maximum characteristic edge length and e denotes a generic edge.

[wp], denotes the jump in wy, across an edge between two elements K1, Ko. Thus,

[wh], = wh [k, —wh |k, -

By extending wy, by zero outside €2, jumps across boundary edges are well defined. The
norm (5.5) is a special case of a general norm, for higher order schemes, considered
by Rusten et al. in [88]. We will use it to establish new eigenvalue bounds and to
construct a matrix operator that is spectrally equivalent to the Schur complement
matrix BA BT for the choice (2.39). The authors of [88], on the other hand, derive
an operator that is spectrally equivalent to BBT. To begin, we have the following

result.

Lemma 18 Let V, and W} be the lowest-order Raviart-Thomas spaces defined in
(2.32) and (2.33), respectively. Let the degrees of freedom for Vi be chosen accord-
ing to (2.89). If Ty, is quasi-uniform, there exists a constant C > 0, independent of h,

satisfying,

(wh7 V- 17}7,)
sup —r—"

V0) G Y € Wi (5.6
geviray | Ph o

Proof Let wy € Wy, be given. For any U, € V}, we obtain,
(wp, V- ) = Z/ wy |k V - Tp| x dK
7 JK
= th|K/ V - oy |gdK
7 K
= Z’wh‘K/ ﬁh'ﬁKdS
= D lwal, /?7h'ﬁed5
e

e€&y,

- /h,—% [wh], h2 T - 7 ds

=
SIS

IA
=
A
g
Sl
N
<y
w
=
St
SL
@
e

ec&y € ec&y, €
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NI

= [lwnllin | D hhe @)
ecé,

Here, he denotes the length of edge e. Recalling (2.39) and writing v as the vector

corresponding to the expansion of ¥, in the basis for V},, we obtain, by Lemma 10,

S hhe (Gh-7€) <D0 K2 (1) - 7°)

e€&y e€&y

N A
ecép
= h*'y

1/ h\°, _
—_— )
Cl(hmm) TAE

Cll 9 Ilg -

IN

IN

Note we have applied quasi-uniformity in the last step. Combining the two bounds, we
obtain,

(wp, V) < C |l wp l[pll Urllo VUi € Vi,

and the result immediately follows. O
Now, by making a particular choice of @, = ¥} we can also deduce an alternative

inf-sup inequality.

Lemma 19 Let V,, and Wy be the lowest-order Raviart-Thomas spaces defined in
(2.32) and (2.33), respectively. Let the degrees of freedom for Vj be chosen accord-

ing to (2.89). If Ty, is quasi-uniform, there exists a constant C > 0, independent of h,

satisfying,
7V i
sup V) oy ln  Ywp € Wi (5.7)
FneVa\{0} Il 7h llo

Proof Any 9, € RTy(K) is uniquely defined by the set of values of its normal com-
ponents at the edges of K. Recall that ¥} - 7 is a piecewise constant function and so,
given any wy, € Wy, we can define for all elements K, a unique ¥} € RT(K) via the
set of jumps of wy, across the edges of that element. Hence we can construct a v} € Vj,

from the element contributions so that,

’l_)”,;-ﬁe: ['wh]e Ve € &p.
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As in the proof of Lemma 18, applying Lemma 10 and quasi-uniformity, yields,

— —e * * 1 h 7
S hhe @ ds 2 K@) e 2 D (M) g o

e€ly

where C is a constant independent of h. Now, for any wy, € W,

(wn, V) = Z[wh]e/ﬁ;;-ﬁeds

ec&y
= Y [ as
e €&y, €
1 1
2 2
= [n? Z /[wh]g ds h Z /wh
e€EEy € eegh ¢
= | > hhe[wy]?

e€y,

= [lwnllin | D hhe (5 - )

ecé,

> VO || wn vl o -
Choosing @, = ¥}, we deduce that there exists a constant C', independent of h, satisfy-
ing,

sup (Iwha_'v . IUh) > (’(Uh, V- 7—)7;)
gnevin@y | llo Il 7 [lo

> C || W, ||1,h Ywp € Wy,

and the result is proved. O

5.1.2 Matrix form of alternative inf-sup inequality
Now suppose that we can construct a matrix X satisfying,
w'Xw = | wy |2, Vwn € Wi (5.8)

By writing the alternative inf-sup inequality (5.7) in matrix form, we see that, for

quasi-uniform meshes, X is an h-optimal preconditioner for the matrix BA~'BT.

Lemma 20 If T}, is quasi-uniform, there ezist positive constants Cy and Cy, indepen-
dent of h and A, satisfying,

Cy w! BA 1By C1
Lt =70 7 = & 2 m .
¢S uTXw < Yw € R™\{0}, (5.9)

where X is defined in (5.8) and v and T are positive constants satisfying (2.1).
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Proof In matrix notation, we obtain,

(wp, V - T) wl By
sup  ~————— = max ———
mevin@ | Fnllo velR™ (yT Azv)?
TR
> /7 max =

— 7 @"BAT'B"w)®  Vu € R™\{0}.

By Lemma, 18 it now follows that there exists a constant ', independent of A and A

satisfying,
TpA-1pT
w' BAT'B'w Cl
T < w € R™\{0}

Similarly,

(wp, V - Tp) w? By

sup —r——— < I' max T

TheVi\{0} | Un llo veR" (vT Av)?

1
= VT (QTBA_lBTQ)"’ Vw € R™\{0},

and so by Lemma 19, there exists a constant C5, independent of & and A satisfying,

Cy wIBA1BTy
=L < = — — m

r S T X Vw e R™\{0},
which proves the result. [

It will become evident why we require good preconditioners for the Schur complement

matrix in the next section.

5.2 Ideal preconditioners

Block-elimination on the matrix associated with (2.34) yields a PDE operator of the

form,

A7l vV
(5.10)
0 V-(AV)
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Hence, it is very natural to approximate (2.34) by a block-diagonal matrix (5.3) whose
blocks are discrete representations of the operators A~'Z and V - (AV) acting on the
spaces V}, and Wy, respectively. The Schur complement matrix § = BA~'B7 is a good
choice to approximate the scalar diffusion operator V- (AV) in the 2 —2 block. Indeed,

it is a well-known result that the eigenvalues of,

-1

A0 A BT
, (5.11)

0 S B 0

lie in 3 clusters at % (1 — \/5), 1, and % (1 + \/5) To make the approach (5.11) feasible
in practice, S must be replaced by a sparse matrix. In view of Lemma 20, the matrix
X is an obvious choice when quasi-uniform meshes are used. Whilst some authors have
used such approximations (see, for example, Rusten et al., [88]), we stress that it is not
good enough for our purposes since it does not provide an A-optimal approximation.

This is illustrated in the following bound.

Lemma 21 If T}, is quasi-uniform, the eigenvalues of the generalised eigenvalue prob-

lem,

A BT A 0
=\ ) (5.12)

0 X

1S3
1S

B 0

(S
(k]

arising in the lowest-order Raviart-Thomas approzimation of (2.12), with X defined in

(5.8), lie in the intervals [—b,—a] U[1,1] U[1 + a,1 + b] where,

N 1 1
V1+4CI-t, b= —3 + 5\/1 +4Cyy~1, (5.13)

_I_

>
Il

|
N | =
N | =

C1, Cy are constants independent of h and A, and v and T are positive constants

satisfying (2.1).

Proof Given any approximation X to § = BA™!B” it is a standard result (see,
for example, [90, Theorem 2.3]) that the eigenvalues of (5.12) lie in the union of the

intervals [—b, —a] U [1,1] U [1 + &, 1 + b] where,

a=—=+

1 N 1 1
§V1+40min7 b:_§+§V1+4Umam,

N =

and o, and O, are the minimum and maximum eigenvalues of,

Sp = oXp. (5.14)
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Applying Lemma 20 for our particular choice of X yields the stated result. O

In view of (5.13), the ideal preconditioner,

A 0

P= , (5.15)

0 X
is h-optimal for quasi-uniform meshes. However, since the constants v and I' appear in
the eigenvalue bound, it is clear that the jump operator in (5.8) does not provide the
right kind of scaling with respect to the coefficients. Forsaking, temporarily, the notion
of ‘jump operators’, we now motivate a different ideal preconditioner (introduced in
[78]), using purely algebraic arguments.
Suppose that we have an approximation P4 to the weighted velocity mass matrix

A, satisfying,

— < jip, Vu€ Rn\ {Q}7 (5'16)

with positive constants ji; and fi,, and consider the preconditioner,

Py 0
P = . (5.17)
0 BP,'BT
For efficiency, we choose P4 to be a diagonal matrix. If we consider symmetric pre-

conditioning, the following result is a simple consequence of Rusten and Winther’s

standard eigenvalue bound in Lemma 9.

Lemma 22 Let 0 < fi1... < [in, be the eigenvalues of P;lA, then the eigenvalues of

the generalised eigenvalue problem,

A BT u Py 0 u
= : (5.18)
B 0 p 0 BP;'BT P
C P

lie in the union of the intervals,
1 /. N 1 /. v . 1/ ~
[5 (m — /i +4) ' 5 (un — Vi3 +4>] U [ul, 3 (,Un + iz +4)] . (5.19)
Proof Observe that,
11 _1 _1 .
P,?AP,”> P,?BT (BP;'BT) 2 A BT

P :CP 7 — ! ) =~
(BpP,'B") > BP,” 0 B 0
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is a saddle-point matrix. Further,

BBT = (BP;lBT)’%BP;%P;%BT (BP;*BT) P,

where [ is the identity matrix. The result follows immediately from Lemma 9 since the
singular values of B are all equal to one. [

The success of the preconditioner (5.17) is completely determined by the choice
of P4. An h-optimal and A-optimal eigenvalue bound results if an h-optimal and .A-
optimal approximation for the weighted mass matrix A can be found. We now consider

the simple choice P4 = diag(A) = Agiag-

5.2.1 Diagonal scaling for the weighted mass matrix

The advantage here is that it is sufficient to consider the element matrices AK.

Lemma 23 Let \X. and MK

min maz denote the minimum and mazimum eigenvalues of the

diagonally scaled element matriz (diag (AX)) L1AK. Then,
n}én{)‘rlgm} < ﬂl’ p”” < mI%X{Agaw} .

Proof See Wathen [101]. O
Using this result, we now consider the efficiency of diagonal scaling for A using triangle

and square elements in turn.

Triangles

Let K be a right-angled triangle of edge length hx with oriented normal vectors as

shown in Fig. 2.4. Recall that,

a1l a2
Alg =
a2 a9
denotes the coefficient tensor A evaluated at the centroid of that element. We distin-
guish three cases. For full A|g, recall from section 2.3.4 that integration yields,
ag +3a11 +3a12 V2 (a2 — a11 + a12) a2 + a1 + 3a12
h2
K _ K
 12det(A|k) V2(an —an +az)  2(a2+aen—aw) V2(an - an —an)

az + a1 + 3a12 V2 (ag2 — a1 —a12)  3ag + a1 + a2
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which simplifies to,

1 1
12a11 + 4ao9 12 \ a11 @) 12a11 + 12a925

AK = p% ﬁ(L_L) 1 1 ﬁ(L_L> ’

12 \ a1 a2 6ai1 6a22 12 \ a1 a2

1 1 \/5(1_1

Loy 1 v2 (1 _ 1 1o, 1
12a11 12a22 12 \ a1 a22 da11 12a22

for diagonal A|g, and further to,

1 1
3a11 0 6a11
AKX = p? 1
K 0 3a11 0 ’
1 1
6a11 0 3a11
if al]p = ag.
Applying diagonal scaling, yields,
1 V2(azs—a114a12) az2+a11+3a12
a22+3a11+3a12 a22+3a11+3a12
diag(AK))"1AK = | _(az—antain) 1 _(az—a11—a1p)
( g( )) \[2((122-1-(111—&12) \/i(llzz-l-an—alz)
a22+a11+3a12 V2(a22—a11—ai12) 1
3az2+a11+3a12 3az2+a11+3a12
in the first case,
1 \/5(022—0'11) a22+ai11
a22+3a11 a22+3a11
: K\\—1 4K — —
diag(A AKX = | _(e22—an1) 1 _(azp—a11)
( g( )) \@((122-#(111) \[2((122-1-(111)
a22+a11 V2(az2—a11) 1
3a22+a11 3az2+a11
in the second and,
1
10 4
. K\\—1 4K
(diag(A®))™*'A" =1 0 1 0 [, (5.20)
1
11

for Alx = a11Z.
In all cases it is clear that the eigenvalues of the scaled matrices are independent of

hx. For piecewise constant scalar coefficients, we trivially obtain the following result.

Lemma 24 For meshes of right-angled triangles, and piecewise constant scalar coeffi-
cients of the form Alx = axZ with ax € R,V K € Ty, we obtain,

1 ul Au 3
- < < = VYue R"{0}, 5.21
2 - MTAdiagQ -2 “ \{_} ( )

where A is the weighted velocity mass matriz arising in the lowest-order Raviart-

Thomas approzimation of (2.12).
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Proof The result follows immediately from Lemma, 23 and the fact that the eigenvalues

of (5.20), for each K € T}, are,

A{f:%, A =1, A?,K:g. 0

Hence, for discontinuous A, diagonal scaling is A-optimal, independently of the size of
the jumps, provided that the coefficient is constant in each element. Notice that the
mesh does not have to be uniform or quasi-uniform. The bound (5.21) also holds for
locally refined meshes if each element is a right-angled triangle. A similar bound can
be derived for equilateral triangles (see [76]).

For general diagonal and full tensors, characteristic polynomials can be derived and
studied. We distinguish one important case. Suppose we have a diagonal coefficient
tensor A|x with strong anisotropy, say with a1; fixed and age — 0 so that a;; >> ags.

In the limit ase — 0, we obtain,

V2 1
L =5 3
. K\\—1 1K 1 1
(diag(4®))*A% — | -L 1 L
1 V2 1
The characteristic polynomial is,
4
-3 432 2
with roots,
3 1 /11 3 1 /11
AM=0, Xo=c—-t/=, 3=+ _-4/%
=0 =g Ty MTe T
In that case, we obtain,
3 1 /11
< Qg fin < 24 2a )=
0 S M1, Mn S 2 + 9 3

In practice, the minimum eigenvalue ji; is close to zero. A-optimal results cannot be
achieved using triangular elements in such anisotropic cases but this can be remedied

by using rectangular elements instead.

Squares

Let K be a square of edge length hx with oriented normal vectors as shown in Fig.2.5.

For full coefficient tensors we obtain,
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3 3 —G12 —Q12
2a22 dazo
AE h?% = 3% —a12 —ar
N 4det(A 4a 2a ’
(A) —a1s  —ao 311 311
—a;y —ap 4L f4u
and diagonal scaling yields,
( 1 1 __3ai12 __3ai2
2 4az2 daz2
1 1 _ 3a12 _ 3a12
. - 2 4 4
(a10g(4%)) T AK =
_3a12 _ 3a1» 1 1
4a11 4a11 2
_3a12  _ 3612 1 1
4a11 4a11 2

The associated characteristic polynomial is,

11 9a? 9a? 9 9a?
At g3 o T2 )2 772 3 It v
+ ( 2 4aqia92 + 4a11a99 + 16  16aj1as /)’

yielding eigenvalues,

1 1 3 a1 3 a2
Moo=, M=2) M ="1(14+ == Mo=Z(1-——).
1 2’ 2 2’ 3 2 + 7 4 2 \/m

For diagonal A|x, we obtain,

1 200

Kt K 2100
(diag(A4"))~tA" = , (5.22)

001 3

00 3 1

and eigenvalues,

1
5 A= 3ok .3 (5.23)

1

K K
AL = 9 Ay =
independently of a1; and ag2. An h-optimal and A-optimal approximation results for

all diagonal coefficient tensors including anisotropic cases.

Lemma 25 For meshes of squares, and any piecewise constant diagonal coefficient
tensor, we obtain,

u’ Ay

3
— = < — n .24
0T A gy = 2 Vu € R™\ {0}, (5.24)

1

- <

5 =
where A is the weighted velocity mass matriz arising in the lowest-order Raviart-

Thomas approzimation of (2.12).
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Proof The result follows immediately from Lemma 23, (5.22) and (5.23). O
Note that square, uniform meshes are not essential. The general requirement for h-
optimality is that the elements should not be too stretched.

In IR3, the same analysis can be applied. For any given coefficient tensor in IR? or

IR3, Lemma 23 offers a quick and cheap criteria for assessing optimality of the suggested

preconditioner,
Agi 0
P = 1 , (5.25)
-1
0 BA diagBT

via the bound (5.19). Note that the optimality of diagonal scaling for A must be verified
before implementing (5.25). For full coefficient tensors, diagonal scaling for A may be

less efficient.

5.2.2 Jump operator

Returning to more abstract considerations, it is clear that the matrix X, representing
the ‘pure’ jump operator in (5.8) does not provide an adequate preconditioner for the
Schur complement matrix. Moreover, h-optimality is only achieved with quasi-uniform
meshes. However, it is now easy to see that the matrix, BA;Z.L gBT in (5.25) provides
exactly the right kind of scaling. Indeed, given g7 and fi;, satisfying (5.16), with P4 =

Adiag, We obtain,

1 pT BA71BTp 1 m
= < =g < — Vpe R™\{0}, (5.26)
n B BAdiagB p 1

=
=

which is now an A-optimal and h-optimal approximation if diagonal scaling for A is
A-optimal and h-optimal. We shall see that this can be achieved without quasi-unform
meshes.

At first glance, it appears that the preconditioner (5.25) has very little to do with
the preconditioner (5.15) and the norms in which the alternative inf-sup inequality
property (5.7) were established. However, with a little linear algebra, we can show
that BA;Z-}Z!]BT is actually a weighted jump operator, representing a weighted mesh-

dependent norm of the form (5.5). To see this in IR?, observe that,
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Ipltu=p"Xp = 0y [ i
e €
= hilzhe (p|Ki -p |K]~)2 eCKiij
[

= h_IZhe@?—l-B?—%_)ig_)j) eC K;NK;j
€

= TR\ Dhe | ShTX D ey | D el
K;

eCK; K; K;#K; eCK;NK;
DI DL B D SIFTN D DI FECE
L] h —i=J h
K; eCK; K; Kj;ﬁKi ECKiﬂKj
That is, the jump operator (5.5) has the algebraic representation (5.27).

Now consider the matrix BA,! BT. We have,

diag
B;.B;
BAGL,BT) =3 T =1,
( diag ij - A, s %) m
Recalling (2.41), the diagonal entries are,
B2 B? h?
BAGLBT) =3 e = 3 T o ©,  i=1l:m. 5.28
(B4a,B"), = X0 = 2 1 o
e eCK; eCK;

For the off-diagonal entries (i # j) , recall that (BA(;i}l gBT) ~is zero unless elements
ij

K; and K share a common edge e. If K; and K share an edge,
Bie —/cpe-ne ds, Bije —/cpe-ne ds.
€ €

By construction we have,

R 1 ifk=e,
Pe -V =
0 ifk#e,
where 7% is a fixed oriented normal vector at edge k. Since it is essential to impose

.. NN ¢ . e o .
continuity of normal components, one of {nfi, e’ } coincides with 7*; the other carries

the opposite sign. Hence,

(BA*1 B) = Bl R (5.29)

dzag { Aee Aee )

Using (5.28) and (5.29), we obtain,

T -1 T -1 T
p BAdiagB p = Z ZZ_)Z (BAdiagB )ij Bj
K; K;
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_ 2 —1 pT —1 pT
o ZI_)i (BAdiagB )n + Z Z b; (BAdiagB )ijljj
K;

K; K;#K;

B2 BB,

DA D35l DD D Dl wel F-F
K; eCK; ee % Kj;ﬁKi eCKiﬂKj ee
h? h?
=2l -2 X oen| X £
K; eCK; ee K; K;#K; eCK;NK; ee

Recalling, now, that the diagonal entries of the weighted velocity mass matrix are,
A= [ A7 g do,
Q
we obtain, by Lemma 10 and condition (2.1),
2 2
c17y hmzn S Aee g CQFh’ ’

for all edges e. Hence, for quasi-uniform meshes we obtain,

h? h?
T -1 T 2 e e
P BB = > 0| X mom |~ 2 ey X gam)
K; ’ eCK; Ce(A)h K; K;#K; v eCK;NK; Ce(A)h

where C,(.A) is a constant depending on A. Comparing (5.30) with (5.27), we see that
BA;Z.}I gBT is also an algebraic representation of a jump operator. The difference is that
in (5.30), each term in the sum is weighted with respect to A.

To summarise, we have achieved, via algebraic arguments, an ideal preconditioner

(5.25), whose diagonal blocks roughly represent coefficient and mesh-dependent versions

of the L?(2) and H*(92) norms,

u Adiagu = || T34, " BAGB 0 =PI pa-

5.3 Practical preconditioning

To obtain a practical scheme, we again look to multigrid methods to approximately

invert the sparse matrix BA(;Z.}I gBT in O(m) flops. (Recall that, here, the dimension of

the system, m, corresponds to the number of elements in the mesh.)

First, observe that for any given symmetric positive definite matrix V satisfying,

TBA,! BT
B 7 aing” B o g vpe R™ {0}, (5.31)

9
p'Vp

IA
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for some positive constants @ and ©, Lemma 22 can be extended to obtain the following

theoretical eigenvalue bound.

Lemma 26 Let 0 < fi1... < fip be the eigenvalues of A} A, then the eigenvalues of

diag

the generalised eigenvalue problem,

A BT u Adiag 0 u
= A : (5.32)
B 0 P 0 \%4 P
N———
C P

lie in the union of the intervals,
1/. - 1/. — -
[5 <u1 -/ +49) ' 5 (un -V +49)] U [m, > (un +Via + 4@)] (5.33)

where 0 and © are positive constants satisfying (5.31).

Proof The result follows directly from Lemma 9 and Lemma 22 with A = A dZZ gAA dl;g
and B=V" 2BAdZ§g Applying (5.31), we obtain,
QTBBTQ = TV_f (BAdwgBT> V- %1_)
< TV VY ip

= @BTQ.

That is, the maximum singular value G,, of B satisfies, 62, < ©. Similarly, the

minimum singular value satisfies 62 > 0. O

Observe that we are dealing with a sparse representation of the scalar diffusion
operator, V- AV—the most widely studied of standard elliptic operators—and so many
possibilities for V' arise. Suitable codes in the public domain include multigrid, domain
decomposition, algebraic multilevel iteration, AMLI, (see Axelsson and Vassilevski, [9])
and algebraic multigrid, AMG, (see Ruge and Stiiben, [83], [84]). However, our goal
is to have a truly black-box method which requires no tuning for anisotropic and
discontinuous coefficients. In addition, we would like to solve problems with non quasi-
uniform meshes without having to generate large amounts of geometric information.

Only the second two types of method are suited to these requirements.
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Algebraic methods have recently undergone a resurgence in popularity due to in-
creasing geometric complexity of physical models. AMLI and AMG offer the possibility of
creating a hierarchy of ‘levels’ using only information in the coefficient matrix. No ge-
ometric information is required. The former is based on block incomplete factorisation
and recursively solves subproblems using matrix polynomials defined on the intervals
of eigenvalues of the created sub-matrices. Public domain code is currently limited to
IR? (see Neytcheva, [73].)

The classical AMG method, introduced and analysed by Ruge and Stiiben in the
1980s, is still freely available as the black-box code! amgir5. Today, many variants
exist (see, for example, [67], [22], [34], [35], [96]) and ‘AMG’ now refers to a philosophy
rather than a single algorithm. From an algorithmic point of view, it fits into the
V-cycle or W-cycle framework outlined in Fig. 4.2 in Chapter 4. However, coarsening,
interpolation and restriction operations are all performed using the simple algebraic
notion of ‘strength of dependence’ of the matrix entries. Consequently, all multigrid
components are tailored to the underlying PDE operator.

The theoretical foundations of AMG, are, however, somewhat sketchy compared to
geometric multigrid methods. AMG is heuristically motivated and full V-cycle conver-
gence theory has not been achieved to date using purely algebraic arguments. Recall
that our aim is to satisfy (5.31) with constants # and © that are independent of h
and A. However, we must not be discouraged. Two-level AMG V-cycle convergence is
proved to be h-optimal (see Ruge and Stiiben, [84], [93]) for a particular class of ma-
trices, namely, symmetric M-matrices. These are diagonally dominant matrices with
positive diagonal entries and negative off-diagonal entries. Further, a wealth of numer-
ical evidence (see [83], [84], [39], [95]) demonstrates that full V-cycle convergence is
likely to be h-optimal for matrices belonging to this class. Lemma 27, below, tells us

that AMaG is perfectly suited to the problem at hand.

Lemma 27 The matriz BA(;Z.}IQBT, arising in the lowest-order Raviart-Thomas ap-

prozimation of (2.12), with the choice of degrees of freedom (2.39), is symmetric,

positive definite and diagonally dominant with positive diagonal entries and negative

!The code can be downloaded from www.mgnet .org
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off-diagonal entries.

Proof Symmetry is obvious. By assumption,

(A%, ¥) >~ (7, %), Vi:Q—> RY
with v > 0. The matrix A therefore has positive diagonal entries since,

Aii = (A1, 8:) > v(Gi@i) >0, i=1:n.

Positive definiteness of BA;Z.}I gBT follows from that of Agjqg. Now,

B;.B;
-1 pT\ _ ieDje . . _ o,
(BAdiagB )ij = ge A 1,7 =1:m,

where e denotes an edge (or face) of T},. The diagonal entries are positive by (5.28) since

the diagonal entries of A are positive. The off-diagonal entries (i # j) are negative by

(5.29). Diagonal dominance follows immediately from (5.28) and (5.29). O

Remark 12 For the alternative choice (2.40) for the degrees of freedom for Vi, we

obtain, B;; = +1 with,

1 1
BAg L BT) = (BAz,BT) = - Y
( diag Y eg]:(- Aee’ diag i Aee’ ? 7é.7’

and Lemma 27 still holds.

To summarise, BA;Z.}I gBT is a symmetric M-matrix in IR? and IR®. When applying
black-box methods, it is crucial to give consideration to the structure and stencil of
the coefficient matrix of the system to be solved. Observe that the saddle-point matrix
C and the Schur complement matrix S cannot be tackled directly with AMG. Here,

we are applying the method to a matrix which has all the necessary characteristics to

achieve h-optimal convergence.

5.3.1 Algebraic multigrid

We now choose V in (5.31) to be a single V-cycle of the AMG code amglr5. Since our
argument is that we can apply it as a black-box method—without geometric informa-
tion and without having to tune any parameters to deal with different coefficients—we

do not go into the fine details of the algorithm. Rather we give a brief outline of the
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main concepts and make some comments on how the method must be tailored for use
as a preconditioner with MINRES.

Full details of the original code can be found in [83]. Two-level convergence theory
is discussed in [84]. A review of AMG philosophy and recent developments is given
in [94] by Stiiben. A range of numerical examples is given by Cleary et al. in [39].
The reader should bear in mind that many variants of each of the AMG components
to be described exist. For symmetric M-matrices, however, the basic choices perform
efficiently.

Henceforth in this chapter, we are concerned with generic linear systems, of dimen-
sion m,

ZMH% =b i=1:m,
J

where M is a symmetric M-matrix. The reader should now recall the terminology of
the standard geometric multigrid V-cycle in Fig. 4.2. The components of basic two-

level AMG, which is based on the Galerkin principle (see Chapter 4), are summarised

in Table 5.1.
Fine grid: Qr=1:m
Splitting routine: Qy—>CUF
Coarse grid: QN 1=CCQy
Smoother: S = stationary iterative method
J-1 ry
: fieC
Interpolation: I7 /7). = = e
nierpolation ( J-1€ )z Zjeﬂ wijg;-] L oifieF
Restriction: Ij_l = (Ij_l)T

Coarse grid operator: M1 = I‘{*IMJIj_1

Table 5.1: Basic components of AMG

To define a concrete algorithm we must specify a coarsening algorithm and choose
interpolation variables P; and weights {w;;}. In contrast to standard multigrid, the
AMG philosophy is to fix the smoother to be a stationary iterative method such as
Jacobi or Gauss-Seidel and then design interpolation to eliminate the remaining error

components. For discontinuous coefficients, error remaining after this type of smoothing
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will be geometrically oscillatory (see Alcouffe et al., [3], or Wan, [100]) so ‘smooth error’
is now defined to be any error components not reduced by the initial iteration. It has
no geometric connotation.

The smoother is fixed in this way because it is easy to write down algebraic equa-
tions for smooth error for the class of symmetric M-matrices. Consider, for exam-
ple, weighted-Jacobi iteration, with scaling parameter o. Splitting M = D — L — U,
into diagonal and triangular parts, recall that the associated iteration matrix is G =
(I — O'D_IM) . The iteration stalls after ¢ steps if and only if, et ~ el = Gie®),
Thus, smooth error, satisfies Ge = e, or alternatively, (Ge, Me) = (e, Me). As a con-
sequence, we obtain,

(D™ 'Me, Me) << (Me,e),

or equivalently,
m

r? @
i=1 A_/‘[—Z“ == zz:;&g,
and so, on average, for each i, | r; |[<< Mj; | ¢; | - The same result holds for Gauss-
Seidel relaxation. Now we can say ‘smooth error is characterised by small residuals’ and
approximately satisfies Me =~ 0. Under this assumption, solving the error equations for
the 7th component, or node, yields,

Mi;e; = fi_zMiij ~ = ZMiij = - Z Mije; |,
j#i i JEN;

where N; = {j | M;; # 0} denotes the set of nodes that have non-zero connection to
1. This is the error that interpolation must capture efficiently. To derive a concrete
scheme, we approximate the sum using only the strongest connections.

For M-matrices, a node j is defined to be strongly connected to i, relative to some

given parameter ag with 0 < ag < 1, if
—M;i; > as Iggx{—Mm}- (5.34)
7

(Here, off-diagonal connections are implicitly assumed to be negative.) For any node
1, we can then identify a set of strongly connected neighbours S;, by examining the

magnitude of the entries in the ith row of M,

Si={j€ N;| —M;; > as Iggz?({—Mik}}-
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Now, at level J, given a splitting of the nodes into coarse level (C) and fine level (F')
subsets, we can distinguish, for each i, three types of connections. We have N; =
C? U D{ U DY, where C; = §; N C, is the set of strong C-connections, D} = S; N F,
denotes strong F-connections and DY’ = {j € N; | j ¢ S;}, is the set of all connections
that are weak.

Hence, for smooth error we have,

Mie; ~ — Z Mije; — Z Mije; — Z M;j e;. (5.35)

JECS jED? jEDY

A simple, direct interpolation scheme to determine e; as a linear combination of errors
at neighbouring points is derived from (5.35) by choosing the set of interpolation points
P, = Cf . First, we must express ¢; for j € D} U D}’ in terms of ¢;. For j € D;’ we can
simply write e; ~ ¢;, and lump those connections onto the diagonal,
M;; + Z Mij e = — Z Mije; — Z Mij e;.
jeby JECS jeDs

Note that if D} contains any connections of significant magnitude, it can be shown (see
[93, pp.439-443]) that error varies slowly in the direction of strong dependence, provided
that the M-matrix property is satisfied. Hence, this is always a valid approximation.
Now, for each j € D, we approximate e; by a weighted linear combination of errors
at points in Cf. That is,

N ZkeC’f My ey,

~

€. e
=7 . bl
2kecs M

The motivation for this is that coarse grids are constructed so that any F node that is

Vj € D;.

strongly connected to 7, also strongly depends on the set C}. Finally, then, we obtain,

> kecs Mmke
M;; + Z Min | &g = — ZMijgj_ Z Mim (ZEZ—M
neby jecy meD} kecs Mmk
My, My, 5
= _ZMijgj_ZZ _mTmy e;
jec; JECE meDs Lkec; Mmk
M My,
= - Z MZ]—l— Z _Tvm oTmy ej.
JeCt me D 2 kecs Mk

Hence we arrive at an interpolation as outlined in Table 5.1 with weights,

.. MimMmj
MZ] + ZmGDf (ZkEC‘? Mok
7

wij =
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If 7 is designated a C node, then simple injection is used.
To fully define interpolation, a splitting algorithm must also be chosen. Standard

coarsening has two stages and aims to satisfy the following heuristics:
I No C-point should strongly depend on another C-point.

IT For each F-point 4, each j € S; should either belong to the interpolation set C;

or should strongly depend on at least one point in C7.

Condition I is imposed to regulate grid sizes and hence the amount of computational
work per cycle. Condition IT loosely says that there should be no strong F-F connections
unless they have an interpolation variable in common. This is crucial for efficient
interpolation. If an F node is strongly connected to ¢ but does not depend on any of
the points 7 € C7, error at that point is not represented in the interpolation.

For a given set of points {1,...,m}, an initial C-F splitting, designed to satisfy I,

is achieved as follows:

l.setC=F=0andU =1:m

2. for all undecided points i € U, calculate S] = {j | i € S;} and define the rank of

i via R; =| ST |
3. choose an i with maximum rank R; and set C = C U {i}, U =U — {i},
4.VjeSINU,set F=FU{j}and U =U - {j}
5.Vk € STNU,set R = R +1
6. Vj € SINU,set Rj=R; —1
7. Return to 3. and continue until U = (}

We sweep through the undecided points and calculate, for each one, how many other
nodes strongly depend on it. A rank is assigned to each node by counting how many
other nodes strongly depend on it. It makes sense to designate the points with the

largest ranks C nodes because they are the most desirable interpolation variables.
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For example, applying this to BA;Z.}I gBT, with the default value ag = 0.25, on a
geometrically uniform square grid with unit coefficients, produces the splitting depicted
in Fig. 5.1. In this case, condition II is already satisfied. In general, however, more
steps will be needed. Strong F-F connections are identified and examined. If there

are strong F-F connections that do not share an interpolation C-point, some of the

F-points are changed to C-points.

Figure 5.1: Initial coarsening, h = %, ag =025 A=T7

By constructing coarse grids (sets of C-points) in this way, the strongest connections
tend to be chosen as C-points. This means that coarsening occurs in the direction of
strong dependence. For example, applying amglr5b to BAJZ-}1 gBT, with ag = 0.25, on a
uniform grid with anisotropic coefficient tensor A = diag(10%,1), produces the splitting
depicted in Fig. 5.2. Geometrically, this makes sense since the solution only varies in
the y direction.

Clearly, before multilevel cycling can begin, all of the coarse grids, interpolation
weights, transfer operators and coarse grid operators have to defined. This is known
as the set-up phase. The expense of this part of the algorithm varies from problem to
problem, and may be considerably higher in JR? than in IR?>. However, the time cost is
typically the same as that of a few V-cycles. When applying AMG as a preconditioner,
set-up only has to be performed once, outside the iteration loop.

We will comment, in more detail, on the computational work involved in applying

AMG in Chapter 6 where we compare the current approach with another method. Here,
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Figure 5.2: Full coarsening, g = 0.25, anisotropic A, triangles

we simply make a few remarks. Two important measures that directly influence the
computational cost of applying AMG are the grid complexity, Cq, and the operator

complexity, C4, defined via,

Total number of nodes on all levels
Co: = ,

number of nodes at finest level

Total number of non-zeros in M; on all levels

Cp: =

number of non-zeros in My at finest level

In Tables 5.2-5.3, we summarise details of standard AMG coarsening for BA(;Z%I gBT for
a couple of test problems in IR?. The results in the first table correspond to Poisson’s
equation, with unit coeflicients, as described in Example 1 of Chapter 3. The second

table gives information for the flow problem considered in Example 5 of Chapter 3 with
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jump parameter € = 1073.

Level m=>512 | m=2,048 | m = 8,192
1 512 2,048 8,192

2 256 1,024 4,096

3 86 324 1,366

4 26 119 460

5 - 29 126

6 - 11 34

7 - - 11
Cy 2.45 2.66 2.72
Ca 1.72 1.74 1.74
Set-up time 0.015 0.059 0.262

Table 5.2: AMG coarsening, unit coefficients

Level m=>512 | m=2,048 | m = 8,192
1 512 2,048 8,192

2 257 1,025 4,097

3 89 345 1,369

4 33 117 471

5 14 39 153

6 - 11 58

7 - - 23
Ca 2.57 2.64 2.75
Ca 1.77 1.75 1.75
Set-up time 0.015 0.059 0.262

Table 5.3: AMG coarsening, discontinuous coefficients

Observe that there is essentially no difference in the way set-up is performed for
these two examples. The time cost grows only linearly with respect to problem size, as
desired. The grid complexities are entirely acceptable, although the operator complex-
ities are a little high by conventional standards. The value C'4 < 2 is desirable. This is
something that we would try to improve, with alternative coarsening strategies, if we
intended to use AMG as a solver.

In fact, AMG has many parameters, controlling, for instance, the coarsest grid size
and the strength of dependence of nodes. We would be tempted to try to tune these if
we intended to apply AMG as a solver. However, since we are applying it as a precon-

ditioner, there is little to gain. Convergence, for us, is determined by the minimisation
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properties of the Krylov subspace solver MINRES and the eigenvalue bound (5.33), pro-
vided that the V-cycle operator corresponding to the matrix V in (5.31) is symmetric.

To achieve this, for our model problem, we must modify the smoother.

5.3.2 Symmetric smoothing

Freely available and commercial AMG codes apply point Gauss-Seidel smoothing. Recall
that for a symmetric matrix M, we can write M = D+ L+ U = D+ L+ LT. The
standard Gauss-Seidel smoothing operator Sgg is defined as Sgs = (D + L), since, in
solving the linear system Mz = b we have Sgsz = b— Uz, from which we can derive
the iteration,

2D — S&é (b— Uz(z‘)) .

This can be solved, pointwise, via,
LD = p-1 (b— Lz(+D — Uz(i)) ’

sweeping though the indices 1 to m, updating each z(¥ as it becomes available. This
is easy to implement but Sgg = (D + L) is not a symmetric operator. The resulting

preconditioner,
Agi 0
P= " , (5.36)
0 Vv
is not symmetric, the values of € and © in (5.31) are complex and, in that case, MINRES

convergence is totally unpredictable.

Instead, we choose the symmetric Gauss-Seidel smoothing operator,
Ssas = (D+L)D(D+L)" = SgsD 'St

which can be implemented by applying one iteration of standard Gauss-Seidel to obtain

a vector Z and then solving,
Q(Z—i—l) — D—l (b_ Li _ U£(2+1)) ’

by performing a second Gauss-Seidel iteration, sweeping through the points in reverse

order.
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Numerical tests revealed that by performing one pre-smoothing step and one post-
smoothing step with Sggg, instead of Sgg, the resulting AMG V-cycle operator as
defined by the algorithm in Fig 4.2 always yields real values § and ©. This means that
the performance of the preconditioner (5.36) is completely determined by the eigenvalue
bound (5.33) in Lemma 26.

Typical values of 8 and © for discontinuous, variable and anisotropic coefficient test

problems on uniform grids in IR? are listed in Table 5.4.

Discontinuous Variable Anisotropic
h 6 e 0 S 0 S
% 0.918 1 0.957 1 0949 1
5 0.845 1 0955 1 0948 1
3 0.836 1 0950 1 0948 1

Table 5.4: Values of 8 and O, assorted coefficients

Observe that these values do not depend on the discretisation parameter and are in-
sensitive to the coefficient tensors in each case. More details are given in the next

section.

5.4 Preconditioned MINRES

We now report on MINRES convergence for a range of coefficients. We apply one V-cycle
of amglr5, with symmetric Gauss-Seidel smoothing, to the sparse matrix BA(;i}lgBT.
The code is implemented as a black-box; no parameters are estimated a priori. Iteration
counts are reported for no preconditioning (P = I), ideal preconditioning (Pj4eq;)
corresponding to P in (5.25), and AMG preconditioning (Pypy) corresponding to P in
(5.36). The time units reported in parentheses are elapsed time in seconds for the
total solve with a stopping tolerance of 10=¢ on the relative residual error, using a mex

fortran interface in MATLAB 6.0. The symbol ‘*’ indicates that more than 500 iterations

were required. Unless otherwise indicated, uniform meshes of triangles are employed.
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Example 1

First, consider 2 = [0,1] x [0,1] with unit coefficients, f = 1 and ¢ = 0. MINRES

iteration counts for the assembled linear system are reported in Table 5.5.

h P=1 Pideal Pamg
= 186 26 26 (0.18)
? 375 26 26 (0.48)
= * 26 26 (1.90)
5 * 26 26 (9.06)

Table 5.5: MINRES iterations (and time), Example 1

Solve times grow linearly with respect to problem size, as desired. The eigenvalues of

the multigrid preconditioned system are shown in Table 5.6. The spectral equivalence

of the ideal and inexact version of the preconditioner is illustrated in Fig. 5.3. We

obtain 6 ~ 0.954 and © = 1, yielding the theoretical bound [—0.781, —0.477] U [0.5, 2]

in (5.33).

-15 -1 -0.5 0 0.5

L
» 167 32

Qo[

1

15

2 25

Figure 5.3: Eigenvalues of preconditioned system; Pjgeq; (top), Pamg (bottom), h =
1
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i1 fn 0 Observed eigenvalues

&)
05 15 0957 1 [-0.777, —0.532] U [0.707, 1.896]

1

1

0.5 15  0.955 [—0.777, —0.508] U [0.707, 1.939]
0.5 15 0.954 [~0.777, —0.496] U [0.707, 1.964]

%|"‘;|>—‘°°|’—‘ >

Table 5.6: Eigenvalues of preconditioned system, Example 1

Example 2

Choosing A to be the variable coefficient tensor (3.41) yields the iteration counts listed

in Table 5.7.
h pP=1I Ijideal Pamg
= * 26 26 (0.20)
35 * 26 26 (0.65)
o * 26 26 (2.57)
5 * 26 26 (11.57)
Table 5.7: MINRES iterations (and time), Example 2
h i1 fn 0 © Observed eigenvalues
% 05 1.5 0957 1  [-0.777, —0.539] U[0.707, 1.879]
75 05 15 0.955 1 [-0.777, —0.512] U [0.707, 1.931]
3% 0.5 15 0950 1 [—0.777, —0.498] U [0.707, 1.960]

Table 5.8: Eigenvalues of preconditioned system, Example 2

Eigenvalues of the preconditioned system are given in Table 5.8. We obtain j; = %,

i = %, 0 ~ 0.950, and © = 1, leading to the theoretical bound [—0.7808, —0.5] U[0.5, 2]

in (5.33).
Example 3

Next, we apply anisotropic coefficients A = diag(10~%,1). Since diagonal scaling for
the weighted mass matrix is now not efficient on triangles, we use square elements.
Iteration counts are listed in Table 5.9. We obtain g1 = %, Hn = %, 0 ~ 0.9477, and

© = 1, leading to the theoretical bound [-0.781, —0.479] U [0.5,2] in (5.33) which is
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observed to be tight.

h P=1I Pideal Pamg
= * 27 27 (0.10)
I 8
E * 24 26 E8:68g
128

Table 5.9: MINRES iterations (and time), Example 3

Unlike the H(div) preconditioner in Chapter 4, the performance of the AMG scheme is

unaffected by the anisotropy.
Example 4

Next consider the flow problem, with discontinuous coefficients, described in Example

5 in Chapter 3. Iteration counts are given in Table 5.10.

h P=1 indeal Pamg
% * 25 25 (0.17)
= * 25 26 (0.46)
o * 25 27 (2.67)
% * 25 27 (10.74)

Table 5.10: MINRES iterations (and time), Example 4

Eigenvalues are reported in Table 5.11. Fig. 5.4 illustrates the spectral equivalence of
the ideal and inexact versions of the preconditioner. We observe that # ~ 0.835 and

© =1, yielding the theoretical bound [-0.781, —0.433] U [0.5,2] in (5.33).

b1 fip 0 Observed eigenvalues

G

0.5 1.5 0918 1 [-0.774, —0.480] U [0.822, 1.965]
1
1

05 15 0.845 [0.775, —0.448] U [0.822, 1.965]
05 15 0.836 [—0.775, —0.452] U [0.822, 1.974]

Bl o= | =

Table 5.11: Eigenvalues of indefinite preconditioned system; Example 4

Now, if we increase the magnitude of the jump, 6 remains bounded (see Table 5.12).

The preconditioner is completely insensitive to the magnitude of the coefficient.
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Figure 5.4: Eigenvalues of indefinite preconditioned matrix; Pjgeq; (top), Pamg (bot-

_11 1
tom), h =g, 15, 33

10° 107t 102 10~ 10~* 10~° 1076

6 0929 0.868 0.850 0.845 0.845 0.845 0.845
S} 1 1 1 1 1 1 1

Table 5.12: Values of # and © for varying jump coefficient, h = %

Example 5

For the final example, we return to the Kellogg problem (see Fig. 3.7) described in
Example 6 in Chapter 3. We assemble and solve the test problem on three different
types of meshes, generated using the ALBERT toolbox (see [2]). The advantage here is
that no modifications need to be made to the AMG algorithm for locally refined meshes.
In contrast to the multigrid method described in Chapter 4, complex geometries require
no special treatment.

Iteration counts corresponding to discretisations on uniform, graded, as well as
locally adapted meshes of triangular elements, (illustrated in Fig. 5.5) are listed in
Tables 5.13-5.14. Note that, here, N corresponds to the dimension of the saddle-
point system. The minimum and maximum eigenvalues of the multigrid preconditioned
operator V_IBA;i}lgBT are listed in Tables 5.16-5.17. We obtain fi; = %, fn = %, in

all cases. We observe that AMG performance is not influenced by mesh type.
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Figure 5.5: Locally adapted (left) and graded (right) meshes

N P=1 P:]Dideal

P:Pamg

168 127 17
656 268 18
2,952 519 18
10,304 954 18
41,088 1,675 18

22 (0.08)
22 (0.09)
22 (0.25)
22 (1.27)
23 (6.06)

Table 5.13: MINRES iterations (and time), uniform meshes, Example 5

N P=1 P = Pigear

P = Py

184 147 23
728 312 24
2,896 602 24
11,552 1,126 24
46,144 2,094 23

25 (0.07)
24 (0.08)
25 (0.36)
25 (2.50)
25 (8.34)

Table 5.14: MINRES iterations (and time), graded meshes, Example 5
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N P=1I P = Pigear P:Pamg

680 365 23 25 (0.08)
1,910 592 24 25 (0.14)
2,290 673 24 26 (0.26)
3,110 799 26 26 (0.36)
4,844 919 25 26 (0.40)

13,010 1,368 24 26 (1.85)
18,780 1,407 24 26 (3.05)
30,526 1,795 24 26 (6.35)

Table 5.15: MINRES iterations (and time), adapted meshes, Example 5

m 0 (S}
64 0.8626 1
256 0.8516 1
1024 0.8495 1

Table 5.16: Eigenvalues of V_IBA(;Z-}L gBT, uniform meshes, Example 5

m 0 e
72 0.8146 1
288 0.8521 1
1,152 0.8061 1

Table 5.17: Eigenvalues of V_lBAEZ-}l gBT, graded meshes, Example 5

5.5 Concluding remarks

In this chapter, we introduced a second generic approach to preconditioning the model
variable diffusion problem (1.4). We used simple algebraic arguments to derive an h-
optimal, ideal preconditioner and demonstrated that the diagonal blocks of the matrix
actually represent weighted and mesh-dependent versions of a second pair of norms

in which the underlying variational problem is stable. To obtain a practical scheme,
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m 0

C)
128 0.8722 1
1
1

268 0.8645
756 0.8579

Table 5.18: Eigenvalues of V_lBAEi}1 gBT, adapted meshes, Example 5
we applied a black-box algebraic multigrid method, taking care to implement it sym-
metrically so as to preserve the minimisation properties of the chosen Krylov subspace
solver. In IR?, h-optimal results were obtained for uniform and locally-refined meshes.
For diagonal coefficient tensors, A-optimality was also achieved.

In Chapters 3-5, we have studied two different h-optimal, parameter-free precon-
ditioning schemes. Both have advantages and disadvantages. On the one hand, the
H (div) preconditioner is sensitive to the magnitude of the entries of the coefficient ten-
sor, but deals with diagonal and full tensors equally efficiently. The H! preconditioner,
on the other hand, is not influenced by the magnitude of the coefficients as long as they
are diagonal. However, structure is important because this determines how efficient di-
agonal scaling will be for the weighted mass matrix. In IR?, A-optimality can always
be achieved, however, provided that due consideration is paid to the remarks we have
made concerning mesh limitations and scaling requirements.

The black-box preconditioning strategy developed in this chapter, is, however, more
generic and more widely applicable. Not only can we solve variable diffusion problems
on diverse geometries, with no extra computational effort, but we now also have a device
for preconditioning saddle-point systems that arise in mixed finite element formulations
of other second-order, self-adjoint, elliptic PDES. In fact, whenever mixed formulations
give rise to subproblems in which variable diffusion operators or Poisson-like operators
are present, AMG is always a good choice for a plug-in solver or preconditioner. We
shall explore this in Chapter 7.

The ideal versions of the preconditioners we have suggested are derived from the

stability properties of the underlying discrete variational problem. In our philosophy,
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this is the most natural approach of all to preconditioning the model problem. How-
ever, many other authors, in an attempt to avoid solving saddle-point systems, have
reformulated the problem as a positive-definite one and have derived preconditioners
for those systems, instead. We now consider one of the most popular of these schemes
and make a performance comparison with the black-box method we have developed for

the indefinite problem in this chapter.
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Chapter 6

Lagrange multiplier problem

Recall that the standard mixed variational formulation of (2.8) is,

find 4y, € V, pp, € W), satisfying,

(A~Yan, Th) + (o, V- Th) = (9,0h-M)pq, VO € Vi, 6.1)
(V - i, wp) = —(f,wn) Vwy € Wh.

For a conforming approximation, we require Vj, C Hy y(div; ). To achieve this, V}, is

chosen to contain functions that vanish on the Neumann boundary and whose normal

components are continuous across interelement boundaries. Hence, for the lowest order

Raviart-Thomas scheme, we construct,

Vi ={vh € RTH(%;Ty) and U, -7 =0 on 0Qn }, (6.2)
where,
RTy (4 Ty) = {ah € L2(Q)% | T |k € RTy(K) Y K € Ty and [3, - e = 0 Ve € 51}.

Here, £; denotes the set of interior interelement boundaries, e, of the triangulation, T},
and [¥}, - 7], denotes the jump in the normal component of ¥}, across e with respect to
the unit normal vector. In section 2.4.3, we demonstrate that this is simple to achieve.
We fix oriented normal vectors ¢ at each boundary e (see Fig. 2.3) and use them to

define element basis functions for V}, before assembling the corresponding finite element

matrices. As we have seen, the resulting linear system (2.37) is indefinite.
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Most numerical analysts avoid solving the indefinite system (2.37). Indeed, Brezzi
and Fortin, [20], describe it as a ‘considerable source of trouble’. They advocate,
instead, an idea attributed to Fraeijs de Veubeke (see [53].) In that approach, the
continuity constraint on V}, is relaxed and enforced, implicitly, by imposing extra con-
straints involving a Lagrange multiplier. This leads to a so-called mixed-hybrid varia-
tional problem which can be condensed to a positive definite linear system and solved
iteratively using the conjugate gradient method (CG.)

In [79, Ch.7], Quarteroni and Valli compare the computational cost of solving this
so-called ‘Lagrange multiplier problem’, using preconditioned CG, with that of solving
the positive-definite Schur complement system (2.51) of the original saddle-point matrix
(2.37). Their study suggests that solving the latter problem is cheaper. However,
optimal preconditioners for the Lagrange multiplier problem are not considered and
the results of that study are, in our opinion, misleading.

In this chapter, we review the main concepts of the mixed-hybrid scheme. For tri-
angular elements, and diagonal coefficient tensors, the system matrix is known to be
an M-matrix. We consider black-box AMG preconditioning for the Lagrange multiplier
system, in IR?, with triangular and rectangular elements. We compare the computa-
tional cost of applying AMG to this system with that of applying AMG to the matrix
BA>! BT, using the black-box preconditioning approach described in Chapter 5.

diag

6.1 A mixed-hybrid method

First, we denote by &7, Ep and &y, the sets of edges lying in the interior of T}, and on
the boundaries 9Qp and 0y, respectively. Now, for any g € L? (82p), we define the

space of Lagrange multipliers, Ly p C L? (£) via,

1
Lyp = {Hh € Po(én) | pn = @/gds Ve € ED}-
€

Recall that Py(&,) denotes the set of piecewise constant functions on the set &,. To
define a mixed-hybrid method, our starting point is the variational problem (6.1). We

now seek a velocity approximation, #y, in the discontinuous Raviart-Thomas space,

v, = {rah € L2(Q) | ¥ |k € RTy(K) VK eTh}.

6.1. A mixed-hybrid method



Since Vj, ¢ H(div;Q), we replace the inner product (py, V - @), for @), € Vj, with,
> [ Y GdK = Y (o V)
KeT, ' K KEeT),
and similarly for the inner-product (V - @, wy) , with @), € V.
An important observation is that any @, € V), can be forced to belong to the

continuous space Vj,, defined in (6.2), by imposing condition (6.3), below.

Lemma 28 Let o, € Vi, then , € Vj, if and only if,

Z / p,h’l_)'h-ﬁKdSZO V,uhELO’D. (6.3)
KeT, V9K

Proof This is easy to see from the definitions of V},, Lo p, and the fact that,

Z/ Lp Ty i ds = Z/uhah-ﬁederZ Lp T+ Tie ds
oK

KeTy, ecEp V€ ecEn V€

+ Y [ un [t ficeds. O
ec&r V€

Now it follows that a mixed-hybrid variational formulation of the model variable
diffusion problem is,

find iy, € Vi, pn, € Wj, and Ny, € L, p satisfying,

(A Y, ) + > (00 V) — D nBh-fix)gx =0 V¥, €V,
K

K

Z (V ) ﬁhawh) = - (f7 U)h) th € Wh7 (64)
K

Z (Uh - g, pr)gx = 0 Y € Lo,p.

K

The third equation of (6.4) imposes condition (6.3), so we actually obtain a velocity
solution @y, € Vj. Further, it can be shown (see Brezzi and Fortin, [26, pp.178-180])
that the unique solutions i, and py, to (6.4) coincide with the unique solutions to (6.1).
The form of the first equation suggests that the Lagrange multiplier solution, Ay, is
an approximation to the trace of the pressure solution, p, at interelement boundaries.
Arnold and Brezzi studied this in [8] and demonstrated that an improved approximation
to the pressure unknown can be achieved by combining A\, and pj, from (6.4) in a post-

processing step.
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The resulting linear system has the block form,

A BT C7T u g
B 0 0 p =171 (6.5)
cC 0 0 A 0

and, like the original system (2.37), is symmetric and indefinite. Here,

Aij = (A_lfiax_'j), 6,j=1: n*, (66)
Bkj = Z(VX_.JMZSIC)K7 kzl:m,jzl:n*, (67)
K
Crj = =D (Xj-iik¥nlog, k=1:lj=1:n (6.8)
K

where {)‘(’Z}?:*l, {#} ,, and {t;}}_, denote standard basis sets for Vi, Wp, and Lo.p,
respectively. Recall that m is the number of elements, and the row dimension, [, of
C, is the number of interior edges. Since no continuity is imposed on Vh, the leading
matrix, A, is now block-diagonal with m blocks of dimension 3 x 3, for triangles, or
4 x 4, for rectangles.

To arrive at a positive definite problem for the discrete Lagrange multiplier solution,
A, we may proceed in two ways. The naive approach is to construct (6.5). Then, since A
is block-diagonal, and can be inverted relatively cheaply, the discrete velocity solution

u, can be eliminated, yielding,
—BA 'BTp—BA'CTX = f-BAlg,

~-CA™'BTp—cA™'C") = -CcAly

For the lowest-order Raviart-Thomas schemes in IR?, (and in IR?), BA™' BT is a diago-
nal matrix here (see Brezzi and Fortin [26, pp.184-185].) Hence p can also be eliminated

cheaply, yielding, finally, a symmetric, positive definite system,
L\ =F, (6.9)
of dimension [, where,

L = CA'BT(BA™'BT) 'BA'CT —cA~\(CT,

CA—'BT (BA™'BT) ' (BA g f) —CA™g.

I
|

6.1. A mixed-hybrid method



Alternatively, we can construct L and F in (6.9) directly. This can be achieved
with element by element calculations, by making special choices of test functions in
(6.4). Such a process is described by Brezzi et al., [28], [27], for triangular elements
and scalar coefficient functions in IR2. In [36], Chen demonstrates that this so-called
algebraic condensation can be extended to tetrahedral and brick elements. Further,
general coefficient tensors can be treated in the same framework if we approximate A
in (6.4) with a piecewise constant function. More details of this will be given later. On
the other hand, (6.9) can also be constructed directly by observing that it is equivalent
to the algebraic systems arising in certain other variational formulations of our model

problem.

6.2 Equivalence results

Analysis of the algebraic system (6.9), reveals that the Lagrange multiplier solution,
A, generated by the mixed-hybrid method, is equivalent to certain non-conforming
Galerkin approximations of the primal problem,

find p satisfying,

-V-AVp = f inQ,
p = g ondfp, (6.10)
AVp-i = 0 on 0Qp.

Such equivalence results are the starting point for most solution methods for (6.9).

Arnold and Brezzi, [8], establish a variational equivalence for (6.4) in IR?, using

triangles and a homogeneous Dirichlet boundary condition. To describe it, we must

define the spaces,

Skt = {wel?(Q) | wlkeP(K) YK €Ty},
Xn = {w € S} | w is continuous at the midpoints of e € &7, w |.=0 Ve € 5D}’

By, = {weSpnH{(Q) | w|.=0Ye € &}.

Thus, Ny, = Xj + By, is the space of midside continuous, piecewise linear functions, aug-

mented by cubic bubble functions. In addition, we require the L?-projection operators,
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P, : N, > Wy and I, - N, — LO,D, defined via,
(Pren,wn) = (en,wn) Veop € Ny, Vwp, € Wy, (6.11)
(Mpon, un) = (Protn) Yon € Np, Yun € Lop, (6.12)

and the weighted L?-projection operator Prr 4-1 : VN, — V}, defined via,
(.A_l (PRT,A—l Fh),ﬁh) = (A_lfh,’l_)’h) V7, € VN, Vi, € Vh. (6.13)

Arnold and Brezzi’s classical result is summarised in the following lemma.

Lemma 29 Let (up,ph, A\n) € Vi X W), x Lo,p be the solution of the mized-hybrid
variational problem (6.4), discretised using lowest-order, triangular, Raviart-Thomas

element. Let @y € Np, be defined via,

Puoop = pr, Tlpop = M. (6.14)

Then, @y, is the unique solution to: find @ € Ny such that,

Z/K (Prra-1 (AVen), Vxn) = (BPufixn) VXn € Np. (6.15)
K
Proof See [8, pp.25-31]. O
The reduced problem (6.15) is symmetric and positive definite and can therefore be
solved with ¢G. However, the condition number of the corresponding system matrix
grows like =2 and preconditioners are required. A suitable h-optimal multigrid method
is described by Brenner in [21] but the impact of the coefficient tensor is not discussed.
In [36], [37] and [38], Chen et al. study a slightly modified version of the mixed-
hybrid problem (6.4). Again, a homogeneous Dirichlet boundary condition is assumed.
By replacing the inverse of the coefficient tensor, A !, by its L?-projection, P, A~ !,
onto Wy, the space of piecewise constant functions, algebraic equivalence results for
the linear system (6.9) can be established without employing bubble functions. The

corresponding result for triangles, in IR?, is summarised below.

Lemma 30 For lowest-order, triangular, Raviart-Thomas elements, the linear system
(6.9) associated with (6.4), with A~ approzimated by P, A, is equivalent to the linear

system in the problem: find @y € Xy such that,

Z/K((PhA—l)lwh,th) — (Pufixn) VYxn € Xn  (6.16)
K
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Proof See Chen, [36]. O

Hence, the advantage is that (6.16) is more easily tackled with multigrid. For trian-
gles, convergence of the W-cycle is proved by Brenner, [20], and Braess and Verfiirth,
[19]. Alternative V-cycle and W-cycle multigrid schemes are proposed in [36] and [65].
Domain decomposition methods are suggested in [37]. Although mesh independent
convergence is achieved in all of these methods, it is not clear how the coefficient ten-
sor influences their efficiency. In fact, the existence of A-optimal preconditioners for
(6.9) appears to be an open question.

An attempt was made to address this important issue, for diagonal, anisotropic
coefficient tensors, in IR®, by Maliassov, [66], and Chen et al., [38]. In those stud-
ies, an ideal preconditioner for L in (6.9) is constructed by assembling parameterised
versions of the local stiffness matrices defined on prism-shaped and tetrahedral subdo-
mains. Although the condition number of the preconditioned system is shown to be
h-optimal, it deteriorates severely if the direction of the anisotropy is not aligned with

the subdomains.

6.3 System assembly

Before demonstrating the efficiency of black-box AMG preconditioning for (6.9), in IR?,
we outline the algebraic condensation method of Brezzi et al., [28], and Chen, [36],
for assembling (6.9) and recovering discrete approximations to the original unknowns
@ and p. We stick to the notation conventions used in [36]. Hence, we restate the
mixed-hybrid problem as,

find 4, € Vh, pp € Wy, and \p, € Lg,D Satisfying,

(A7 Yn, 5h) = Y (0n VB + D B fik)ogg =0 Vi €V,
K K

> (VY -iin,wp) = (f,wn) Vwp € Wa, (6.17)
K

Z <'&”h . ﬁlﬁ/‘h)a[{ =0 Y up € LO,D-
K

Note this is the same as (6.4) with 4, replaced by —u}.
The derivation of (6.9) for triangles and general coefficient tensors can be found

in [36], [38] or [66]. For rectangles, the derivation is performed by Chen in [36], for
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scalar coefficient functions only. Below, we give full details for rectangles and diagonal
coefficient tensors. This includes discontinuous and anisotropic coefficients. For non-

diagonal coefficient tensors, the method is the same but the algebra is ‘messy’.

6.3.1 Rectangles

Recall that, for rectangular elements, i), € V}, and p, € W}, have the local definitions,

. af + vz K
i |k = , Prlk=p".
K +diy
Hence the unknowns, i, and py, in (6.4), are fully defined by the set of constants a’,
bK, K, d¥ and p¥ in each rectangle, K.
Let A = diag(ai1(z,y),a2(z,y)) be any given diagonal coefficient tensor and let

P, A™! denote the L%-projection of the inverse onto the set of piecewise constant func-

tions. In each rectangle K, we write,

K
_ a;; 0
P,A I‘K =
0 aé(z

Computationally, this means that each entry of A~! is approximated by a constant.
Our starting point is the equations (6.17). Setting wy, = 1 in rectangle K and zero

elsewhere, in the second equation, yields,

1
bE +df = m/Qf dQ = fk, (6.18)

and hence, b = fK — dX. Choosing the test function @, in the first equation of (6.4)

to be 7, = (1,0)T or ¥, = (0,1)” in rectangle K, and zero elsewhere yields,

4
aK/ ol dK = —bK/ ofrdK — Z)\h |eiK ﬁzl((w) | et |, (6.19)
K K i=1
4 , .
cK/ ok dK = —dK/ akydK — Z)\h |e{< ﬁzl((y) | e | - (6.20)
K K

=1

Here, A |« denotes the value of X\, at the ith edge of rectangle K. 'r‘iZK is the unit
outward normal vector to that edge, and | €% | is the edge length.
To evaluate the integrals in (6.19) and (6.20), a simple calculation shows that, for a

rectangle of dimension h; x h,, with edges aligned with the co-ordinate axes, we obtain,

/Kde::cchwhy:xc|K|, /ydK:ychxhy:yc|K|a
K
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where (z.,y.) denotes the co-ordinates of the centroid of the element. Substituting for

bX from (6.18) in (6.19) and (6.20) and writing,

-1

ok dK 0 ck o
GK: fK 11 _ 11 ’ (6.21)
0 [x od5d 0 CX¥
yields,
o = zd¥ —z X -CK Z A lex 7@ e |, (6.22)
i=1
4 N .
K = —yed® = CES M o AW | e | (6.23)

i=1
In the same way, choosing ), = (z,0)” and @, = (0,y) in element K and zero

elsewhere, yields the pair of equations,

aK/ ordKk = —bK/ oz dK — pK|K|—Z)\h| _'l(z / zds,
K K im1 def
4 .
CK/ olydK = —dK/ afSy? dK — p | K | —Z)\h |5 "fill((y)/ yds.
K K : ¢ ek
=1 e’L

To evaluate the integrals, we calculate that,

1 1
/ 22 dK = (xghx + Ehf;) hy, / y?dK = (yghy + Ehg) ha.
K K

Using these expressions and substituting for % from (6.18), yields,

K _ tK 2 pECK K 4
aK:_u(mh) M_%th\e *”)/ zds, (6.24)

T, 12 T
d“ h? | K| CcK
K y Cy L29
. (6.2
c " <y6+12> E Ah |K7LK /(%i yds. (6.25)
Thus, combining (6.18), (6.19)—(6.20) and (6.24)—(6.25), we have five equations in

K and

five unknowns. Using the last two, we can eliminate pX and substitute for a
cX from (6.19)-(6.20) to obtain an explicit expression for di. We omit the details.

Defining,
RA:hi/ aﬁdK+h§/ o dK,
K K

we obtain, after a lot of simplification (due to the particularly simple form of the vectors

Ty, e, T, M for rectangles),

RZfE [ ol 6| K ;
a5 = of R{tK 11 | | Z( zlgy) |) M L -
1=1
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Then, substituting for d¥ in the remaining equations, we obtain the following explicit

expressions for the other unknowns,

2 1K K 4 _i(x)
K wchy f Jx %5 6zc [, Li(z) _i(y) Mg
a8 = —————4 | K — || 7 — |7 -] A ,
oy K1Y (T 1= 1T 1) = e M e
R2FE [ o 6| K| < _
bK — Yy RfK 22 | | ( | ] SL‘) | + | nl(y) |> Ah, |eiK,
A 1=1
2 K K 4 ~i(y)
K yeho 5 [ ofy 6y, _i(x) _i(y) Ny
o= B KE g (<A 1 A ) - A ) ML,
Ra Z_; Ra ( " K ) hy [x o35 K
K _ |K|foKa{(1fKa§2 1 2 _.za:) 2 _.z(y)
pT = 12R, +2RAZ by | 7ig” | a22+h | iy | 0411 Ah lex -

=1

For the case aff = oL, these equations reduce to the expressions given in [36].

Once a discrete approximation to Ap, is obtained, the original pressure and velocity
approximations can be recovered by computing a¥, b, ¢&, d¥ and p¥ in each element.
To obtain (6.9), we study the third equation of (6.17). For a specific edge of a given
rectangle K, we choose the test function uj that takes value one at that edge and zero
at all other edges. Repeating this for all four edges of the chosen rectangle yields the

system of equations,

| et | ﬁ;f)aKJF | et | 7 nK e +bKﬁiI((w) (/ :cds>+dK"z(y) (/ yds) =0, i=1:4.
ek ae{(

Substituting for a® cX and d¥ yields, for i = 1: 4,
4 Sj(x)
6z i 7
_,z e c _.g(z =5(y) 1) _ K A
e 182 @{ ) - by
4 25(y)
i o 9Yc _,J m) ~j(y) 178
Tl | {R 1) gz}me;«

1)
"'Lf'i(r”w )me

)

e | _i
= TAK xchinzl({w) Kaé{ dK —I—ych2

fK .
— h2 i x) (/ ok dK) / xds +h§ﬁzf((y) (/ o dK) / yds | ;.
R4 K ek K Oek

Using the mid-point rule to evaluate the edge integrals and labelling the edges aligned

with the z-axis ef and ek, and the edges aligned with the y-axis, eX and el we
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obtain,

rds = zchy,

/86
rds = xchy, / yds = (yc—i—
ek dek
h
/ rds = <$C——z> hy, /
Beé" de

2
hg
Tds Te+ — | hy, yds = ychy.
ek 2 ek

Making these substitutions, on the left-hand side, we finally obtain a 4 x4 local problem

K
€1

o —

on the chosen K, of the form,

L*)\K = F¥, (6.26)
with AKX = \p, |.x, for i = 1: 4, and,
» N 3\K|2 il » il i
L = Jef |1ef | (% k) - whe+ 0 (1787 | =17 1) (1757 1 =175 1),
A
EzK - 7f | €l | xchQﬁlI((z)/ ag dK—I—ychir_iZI((y)/ a{(l dK
R_A Y K K

)o@ K 2 i(y) K
Fa hytig /Koz22dK /aerds + hyii e /KaudK /i)eKyds .

The global system (6.9) is assembled from these element contributions.

6.3.2 Triangles

For triangles, the derivation of (6.9) is simpler because the velocity solution @), € V}

has only three degrees of freedom per element. That is, for any triangle K,

. o + Kz
Up |K=
K+ b5y

Given a general, symmetric, coefficient tensor,

ail ($, y) a2 (:L'a y)

A= ,
a12(z,y) a2(z,y)
we denote,
1
o off ol dK ol dK
PhA_l Ik = 11 @12 ’ CcK _ fK 11 fK 12 ' (6.27)
a{(z ag fKaﬁdK fKag(ZdK
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Since we have already illustrated the method of derivation, we simply state the

result of Chen, [36]. We obtain 3 x 3 local problems of the form,
LE)NE = FK, (6.28)
with MK = ), |exc, for i =1:3, and,
LK = |ef| el | (%) CKidle,  ij=1:3,

P = ol [ ek (70 ) arc e B [ (o0 ) as

2| K| Jk
For both rectangles and triangles, recovering the original velocity and pressure
unknowns requires the inversion of the 2 x 2 matrix, C¥, in (6.27), in each of the m
elements. Thus, in addition to the cost of solving the Lagrange multiplier system (6.9)
for )\, this approach incurs an extra cost of inverting a block-diagonal matrix with m

diagonal blocks of dimension two.

6.4 Structure of element matrices

In [36], Chen claims that the Lagrange multiplier system matrix, L, is always an M-
matrix for triangles. Recall, then, that M-matrices are diagonally dominant matrices,
characterised by positive diagonal entries and negative off-diagonal entries. For scalar
coeflicient functions, and diagonal coefficient tensors with positive diagonal entries, the
sign of the off-diagonal entries of LX in (6.28) depends on the cosine of the angle,
0, between two normal vectors to two edges of the triangle. The sign is negative if
6 < 7. However, for general coefficient tensors, the same argument does not apply.
Unfortunately, we have observed that the M-matrix property does not hold, in general,

for non-diagonal coefficient tensors.

To illustrate this, consider right-angled triangles with i} = (0, —1)T, 72, = (% %)T
i3, = (=1,0)", and | X |= h, | e§ |= V2h, | ef |= h. The element matrix L¥ in
(6.28) is then,

o af —af} —afy
LK 2 K K K K K K K (6.29)
= get | @2 —ain oqy tagy — 201, app —ay | )
—afy af — agy o5
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where det = of off, — (a{é)?. Suppose the coefficient tensor is non-diagonal with

constant entries,
a1 a2
Alx = ;

a1  a22

Rewriting LX in terms of the original coefficients, we obtain,

a2 —a12 — a9 a12
LX =2 (6.30)
= —a12 — a2 a11 + a2 +2a12 —ai2 —air | -
ai2 —a12 — a1 a1l

which has positive off-diagonal entries whenever a5 > 0. LX is not an M-matrix and

neither is the global matrix L. If, on the other hand, a1o = 0, we obtain,

a2 —ag 0
LK =2 —a22 a11+ax —ai1 |- (6.31)
0 —ay a1

which is always an M-matrix for positive a1; and a9o. In view of our discussion in

Chapter 5, these observations have consequences for black-box AMG preconditioning.
For rectangles, the M-matrix property almost never holds, even for diagonal coef-

ficient tensors. Consider rectangular elements with edges aligned with the co-ordinate

axes, as shown in Fig. 6.1, with | el |=| eX |= hy, and | X |=| el |= hy,.

Figure 6.1: Rectangular element

Since the four unit outward normal vectors are,
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the element matrix, L, in (6.26), for diagonal coefficient tensors, is,

3hahy __he 3hahy _ 3hghy _ 3hahy

hz

alShy + Ry alhy + Ry R Ra
b 3hahy ha 3hahy 3hahy 3hahy

LK — T o hy Ra afh, Ra " Ra ~ Ra
_ 3hghy _ 3hahy -+ 3hahy __hy_ | 8hshy

Ra Ra 0‘11 "Ra ak he Ra

3hahy 3hahy hy 3hahy hy 3hahy

Ba L af he Ea af he Ra

where, here, we redefine, R4 = a11h2 + a22h2 Now, LX has a 2 x 2 block structure.
The entries in the off-diagonal blocks always have negative signs, since we assume that
ok and off are positive. This property is due to the difference in the signs of the
normal vectors and is independent of the coefficients. In the trivial case h; = hy and

A =T, we obtain,

( 5 i _3 _3
2 2 2 2

1 5 _3 _3

2 2 2 2
-3 _3 3 1

2 2 2 2

-3 3 1 5

2 2 2 2

(6.32)

Even here, the global matrix L is not an M-matrix.

6.5 AMG preconditioned CG

In Chapter 5, we introduced algebraic multigrid and explained how its standard com-
ponents are tailored to M-matrices. For instance, in (5.34), in the definition of strong
connections, it is implicitly assumed that off-diagonal entries of the matrix are negative.
Positive connections are ignored. Thus, if large positive entries exist, the interpolation
scheme we described can be very inefficient. Further, the interpolation weights may
be negative or undefined. Of course, all of the components of AMG can be modified
to cater for other types of matrix but this requires tuning. Recall that the matrix,

BAZ! BT to which we applied AMG in Chapter 5, is always an M-matrix. Standard

diag

black-box codes will always be robust for that problem.

We are now interested in the efficiency of standard black-box AMG@G, for solving
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the Lagrange multiplier problem, LA = F. For triangular elements and diagonal co-
efficients, at least, we are assured that L is an M-matrix. For rectangles, if positive
off-diagonal entries occur, but are small in magnitude, relative to the other entries,
then we can still expect standard AMG to work well, particularly if we apply it as a
preconditioner in conjunction with a Krylov subspace solver.

We use CG to solve (6.9), applying one V-cycle of the code amgir5, with symmetric
smoothing, as a preconditioner. The test problem we consider is (1.4), discretised on
Q =10,1] %[0, 1], with g = 0. Iteration counts are reported below for a range of diagonal
coefficients with uniform meshes of triangles and squares. The time units reported in
parentheses correspond to the average elapsed time in seconds for the total solve with

a stopping tolerance of 107% on the relative residual error.
Example 1

We begin with unit coefficients. Iteration counts for triangular and square elements are
reported in Tables 6.1 and 6.2. Here, [ refers to the dimension of the system matrix.
Eigenvalues of the multigrid preconditioned operator V ~'L are listed in Table 6.3. The
minimum eigenvalue, Ay, is slightly smaller for square elements, and thus accounts

for the slightly higher iteration count.

h I ¢cG C©G-AMG  time

L 736 50 4 (0.058)
% 3,008 102 4 (0.177)
& 12,160 202 4 (0.859)
5 48,896 408 5 (4.543)

Table 6.1: CG iterations, Example 1, unit coefficients, triangles

h [ ©cG CG-AMG time

= 480 40 6 (0.055)
& 1,984 86 7 (0.118)
& 8,064 175 7 (0.452)
5z 32,512 354 7 (1.813)

Table 6.2: CG iterations, Example 1, unit coefficients, squares
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triangles squares
h Amm )\maz )\m'm /\mazc
% 0.9656 1 1]0.7389 1
i 0.9532 1 |07307 1
& 09473 1 | 0.7247 1

Table 6.3: Eigenvalues of V'L, Example 1, unit coefficients

Note that L is not an M-matrix in the second case but black-box AMG yields an h-
optimal preconditioner, for both elements. However, if we perform the same experiment

with rectangles, say with h, = %hy, then the black-box AMG scheme fails.
Example 2

Next, consider anisotropic coefficients, A = diag(e,1). CG-AMG iteration counts for
triangles are reported in Table 6.4. For square elements, convergence is observed to be
highly erratic. Iteration counts for the case ¢ = 10® are given in Table 6.5. Again, the
M-matrix property is violated too strongly, causing the convergence rate to deteriorate

with mesh refinement.

h e=10°% e=10"3 e=10> ¢=10° time

% 4 4 4 4 (0.0172)
i 4 4 4 4 (0.0294)
T 4 4 4 4 (0.0743)
a 4 4 4 4 (0.2540)

Table 6.4: CG iterations, Example 2, anisotropic coefficients, triangles

h CG CG-AMG
% 23 5

& 69 9

= 101 20

1

a1 307 42

Table 6.5: ca iterations, Example 2, anisotropic coefficients, squares
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h €=10"% =102 =102 e=10° time

% 4 4 4 5 (0.0354)
= 4 4 4 4 (0.0588)
= 4 4 4 4 (0.1775)
o 4 4 5 5 (0.8705)

Table 6.6: CG iterations, Example 3, discontinuous coefficients, triangles

Example 3

Now consider discontinuous coefficients. Choose A = €Z in Q* = [0.5,1] x [0,0.5], and
A =T in Q\Qx. Iteration counts for triangles and squares are listed in Tables 6.6 and

6.7, respectively. Black-box AMG yields an optimal preconditioner in both cases.

h e=10°% e=102 e=10®> e=105 time

% 7 7 7 7 (0.0195)
16 7 7 7 7 (0.0375)
= 7 7 7 7 (0.1104)
a 7 7 7 7 (0.4003)

Table 6.7: ca iterations, Example 3, discontinuous coefficients, squares

Example 4

Finally, we choose a variable diagonal tensor, A = (1 + 100(z* + yQ))flI. Iteration
counts for triangles and squares are listed in Tables 6.8 and 6.9, respectively. Again,

black-box AMG yields an optimal preconditioner in both cases.

h CG CG-AMG time

1 187 4 (0.0313)
% 296 4 (0.0591)
% 877 4 (0.1743)
a1 2,292 4 (1.1950)

Table 6.8: CG iterations, Example 4, variable coefficients, triangles
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h CG CG-AMG time

% 57 6 (0.0209)
= 193 7 (0.0417)
& 600 7 (0.1189)
& 1,636 7 (0.4182)

Table 6.9: ca iterations, Example 4, variable coefficients, squares

6.6 Computational work

For triangles, and diagonal coefficients, black-box AMG always provides a robust precon-
ditioner for the Lagrange multiplier system because the M-matrix property is satisfied.
For rectangles, the numerical results above show that AMG is not a reliable precondi-
tioner. However, in cases where the M-matrix property is not violated too strongly,
AMG does work and provides an h-optimal and .A-optimal preconditioner. CG conver-
gence, in those cases, is fast. Hence, we are faced with the question, ‘is solving the
Lagrange multiplier problem a more efficient approach to solving the model variable
diffusion problem?’ A comparison with the approach of Chapter 5 cannot be made
solely on the basis of iteration counts. More information is needed.

In the standard indefinite problem, recall that we applied AMG to the positive
definite matrix, BA;Z.L gBT. For triangles and rectangles, it has 4 and 5 non-zero entries

per row, respectively (see Fig. 6.2.)

Figure 6.2: Connectivity of BA(;i}lgBT

The dimension of the system corresponds to the number of finite elements in the mesh.
In the Lagrange multiplier problem, the coefficient matrix L is denser, with a maximum
of 5 or 7 non-zero entries per row (see Fig. 6.3.) It is also larger since its dimension is

equal to the number of edges in the mesh.
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Figure 6.3: Connectivity of L

The computational cost of applying V-cycles of AMG to a given matrix depends on
many factors, including the size and density of the coefficient matrices and the number
of chosen interpolation points, at all levels. To evaluate this cost, for the two precondi-
tioning schemes we have described, we use the standard theoretical estimates of Ruge
and Stitben. Full details of the calculations can be found in [83] or [59].

Suppose that we are solving a linear system, Mz = b, of dimension N. The major
tasks in the AMG set-up phase are the construction of the coarse grid operators and the
interpolation weights. We denote, by F¢ and Fyy, respectively, theoretical estimates of
flop counts for these processes. Let s denote the total number of levels created by the
multigrid algorithm. M® = M is the matrix associated with the finest level. NV JJV[ is the
number of non-zeros in the coarse-grid matrix, M7, and Ngz is the number of points
used at level 5. With this notation, the operator complexity and the grid complexity,

are, respectively, ) .
Z;:l N]]M Z;:l Ngl

C
A N, Ng

Next, we denote, by a, the average number of non-zero entries per row in M?*, and

define,

the average number of non-zeros entries per row, of the matrices M7, over all levels.
Finally, let p denote the average, over all levels, of the number of interpolation points

per F-point. Then, according to [83], we obtain,

Fc = Np(2p(@—p)+3p+a), (6.33)

Fw = N3@—(p+1)p+1)+p. (6.34)
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Once set-up has been performed, a V-cycle is composed of smoothing, restriction
and interpolation operations. If we perform a total of v smoothing steps, at each level,

the estimated total cost (again, see [83]) is,
Fy = N (2(1 + v)aCa +4p + Co — 1) . (6.35)

Combining (6.33)-(6.35), an estimate of the total flop count associated with apply-

ing AMG as a preconditioner is,
(Fo + Fw) +iFy. (6.36)

Here, ¢ is the number of iterations required by the Krylov subspace solver to reduce
the residual error to 107%. Note that set-up only has to be performed once. Below,
we compare time costs (seconds) and estimated work costs (flops) for applying AMG
as a preconditioner for L, in the Lagrange multiplier problem, and for BA;Z.}L gBT, in
the indefinite problem described in Chapter 5. We consider the test problem described

1

g1, and one pre- and one post-smoothing

in the last section with fixed mesh size, h =

step.

6.6.1 Examples

We begin with uniform meshes of right-angled triangles and unit coefficients. Costs
for the associated Lagrange multiplier problem are given in Table 6.10. Costs for the

indefinite problem are given in Table 6.11.

Grids Set-up time V-cycle time 1 Total time
6 0.1419 0.0225 4 0.2319
a Ca Cao a p
3.65 1.99 1.56 4.67 1.91
Fco Fw Fv N Total MFlops
39.91 17.28 51.77 12,160 3.21

Table 6.10: Lagrange multiplier problem, triangles, unit coefficients

Consider, also, the discontinuous coefficient problem described in Example 3, above,

with € = 1073. Costs for the associated Lagrange multiplier problem are given in Table
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Grids Set-up time V-cycle time ) Total time

6 0.1380 0.0191 26 0.6346
a Cx Cq a P
3.97 2.63 1.73 6.04 2.13
Fo Fw Fy N Total MFlops
63.05 30.38 73.34 8,192 16.39

Table 6.11: Indefinite problem, triangles, unit coefficients

6.12. Costs for the indefinite problem are given in Table 6.13. In both examples,

—1

applying AMG to BA;, gBT is approximately 5 times more expensive than applying it

to the Lagrange multiplier system.

Grids Set-up time V-cycle time ) Total time
6 0.1455 0.0237 4 0.2403
a Ca Ca a P
3.65 1.99 1.56 4.67 1.90
Feo Fw Fy N Total MFlops
39.70 17.0 51.74 12,160 3.21

Table 6.12: Lagrange multiplier problem, triangles, discontinuous coefficients

This is easily explained. The combination of right-angled triangles and any diagonal

coefficient tensor, A, produces a matrix, L, that is actually sparser than BA;Z.}I gBT

(compare the values of a and a.) The operator complexity, Cjy, is also slightly higher

for BAl;ithT. Combining these features with the increased iteration count, for the

indefinite problem, results in a more expensive preconditioner. For test problems of
this size, in IR%, however, note that the difference in time costs is negligible.

Now consider square elements. Again, we begin with unit coefficients. Costs for
the associated Lagrange multiplier problem are given in Table 6.14. Costs for the
indefinite problem are given in Table 6.15. Although more iterations are required for

the indefinite problem, the total AMG cost is now sightly lower than for the Lagrange

-1

multiplier problem. This is due to the superior sparsity of BA;, gBT and its relatively
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Grids Set-up time V-cycle time ) Total time

6 0.1469 0.0202 27 0.6923
a Cx Cq a P
3.97 2.58 1.72 5.96 2.10
Fo Fw Fy N Total MFlops
59.79 28.70 70.58 8,192 16.34

Table 6.13: Indefinite problem, triangles, discontinuous coefficients

small dimension.

We observe the same phenomenon for squares and other diagonal coefficient tensors.
Consider, finally, the variable coefficient tensor in Example 4. Costs for the associated
Lagrange multiplier problem are given in Table 6.16. Costs for the indefinite problem

are given in Table 6.17. Once again, performing AMG on BA! BT in the indefinite

diag
problem is slightly cheaper.
Grids Set-up time V-cycle time ) Total time
6 0.1929 0.0253 7 0.37
a Ca Ca a p
6.91 2.40 1.67 9.93 2.35
Fc Fw Fy N Total MFlops
123.62 68.48 109.57 8,064 7.73

Table 6.14: Lagrange multiplier problem, squares, unit coefficients

Grids Set-up time V-cycle time ) Total time
5 0.0724 0.0090 22 0.27
a Ca Cq a P
4.94 2.26 1.68 6.65 2.25
Fo Fu Fy N Total MFlops
74.70 35.40 76.67 4,096 7.36

Table 6.15: Indefinite problem, squares, unit coefficients
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Grids Set-up time V-cycle time ) Total time

6 0.1960 0.0255 7 0.3745
a Cy Ca a P
6.91 2.40 1.67 9.93 2.35
Fo Fw Fy N Total MFlops
100.29 68.48 109.58 8,064 7.55

Table 6.16: Lagrange multiplier problem, squares, variable coefficients

Grids Set-up time V-cycle time 1 Total time
5 0.0714 0.0089 22 0.2672
a Ca Caq a p
4.94 2.18 1.67 6.84 2.34
Fo Fu Fy N Total MFlops
76.53 33.50 74.64 4,096 7.18

Table 6.17: Indefinite problem, squares, variable coefficients

The cost of applying AMG, in the preconditioning schemes outlined in this chapter
and in Chapter 5, is the major expense, but not the total cost of solving (1.4). The
indefinite system (2.37) is larger than L in (6.9). Matrix-vector multiplications in the
Krylov subspace iteration may be more expensive in the former case. The total time
cost for solving the indefinite problem is usually slightly higher. For the Lagrange
multiplier problem, we must also factor in the cost of recovering the velocity solution,
which, after all, is what we seek. For non-diagonal coefficient tensors, this amounts to

inverting a matrix with 2 x 2 diagonal blocks.

6.7 Concluding remarks

In this chapter, we reviewed properties of the mixed-hybrid formulation of the model
variable diffusion problem (1.4) and explicitly derived the associated Lagrange multi-
plier system (6.9) for rectangular elements and diagonal coefficients. We established

that the positive definite system matrix is not strictly an M-matrix, except in the
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special case of triangular elements and diagonal coefficients. Numerical evidence sug-
gests, however, that black-box AMG is an h-optimal and .A-optimal preconditioner, for
triangular and square elements, whenever the M-matrix property is not violated too
strongly. Whether or not the same observation applies in IR?, is a subject for future
research.

In Chapter 5, we outlined a preconditioning strategy for the standard indefinite
problem (2.37), which requires the application of AMG to the positive definite matrix
BA;Z.}I gBT. For right-angled triangles, and diagonal coefficient tensors, we established
that applying AMG to the Lagrange multiplier system is cheaper than applying it to
the matrix BA(;Z-}l gBT. We conclude that solving the Lagrange multiplier system is the
cheapest approach to solving the model variable diffusion problem in this special case.

For rectangles, however, AMG is not a robust preconditioner for the Lagrange mul-
tiplier system and may fail, even for simple diagonal coefficients. The search for h-
optimal and A-optimal preconditioners for that system continues. When the M-matrix
property is not violated too strongly, and AMG does work, it is not cheaper to apply it
to the Lagrange multiplier system than to BA;iz gBT.

Since BAJZ.}I gBT is always an M-matrix, the indefinite problem (2.37) is more
amenable to solution by black-box multigrid methods than the positive definite system
(6.9). The preconditioning scheme described in Chapter 5 will never breakdown and is
applicable to a broader range of geometries and coefficient tensors. We conclude that

solving the indefinite system, using the method described in Chapter 5, is the only

reliable black-box approach to solving the model variable diffusion problem.
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Chapter 7

Black-box preconditioning for

other saddle-point systems

Our analysis of solution schemes for the particular saddle-point system that arises in
the lowest-order Raviart-Thomas approximation of the model variable diffusion prob-
lem, is now complete. We have described two distinct preconditioning schemes, so-
called ‘H (div) preconditioning’ and ‘H' preconditioning’, each having links to stability
properties of the underlying variational problem. To conclude our discussion, we now
want to point out that the black-box scheme outlined in Chapter 5, provides a generic
framework for tackling saddle-point systems that arise in other applications.

Many important physical processes are modelled by second-order elliptic PDES and
are discretised with mixed finite element methods to preserve physical properties of the

unknowns. Consequently, saddle-point systems of the generic form,

A BT

IS
[y

= [, (7.1)

B 0 5

I3
|~

arise in many fields in mathematics and engineering. If A is symmetric, we can always
tackle (7.1) with MINRES. If A is also positive definite and B has full rank, then it is

easy to show that an ideal, generic preconditioner is,
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pP= , (7.2)
0 S

where S = BA~'B”. To obtain a practical scheme, we usually require approximations
of A and/or S. Clearly, this requires knowledge of the properties of the underlying
PDE operators. However, if the diagonal blocks of (7.2) represent Laplacian or diffusion
operators, and are close to being M-matrices, then we now know that applying a V-cycle
of black-box algebraic multigrid (AMG) is a good choice.

In this final chapter, we briefly outline black-box preconditioning schemes for saddle-
point problems arising in two other applications. Numerical results are presented for
the Stokes equations arising in incompressible flow modelling and Maxwell’s equations,
describing the classical magnetostatic problem. In analogy to the discussion in Chapter
5, we demonstrate that an optimal tool for preconditioning the associated saddle-point

systems, is a V-cycle of black-box AMG.

7.1 Stokes equations

Let Q C IRY, (d = 2,3), be a specified flow domain, with piecewise smooth boundary
09. The classical Stokes problem is,

find a velocity @ and a pressure p satisfying,

-

_VVZIJ_FVP = f’

V-

£
I

0 inQ, (7.3)
@ = 0 on 0.

For simplicity in our description, we consider a ‘no-flow’ boundary condition. The
parameter v represents viscosity of the fluid and f is a given forcing term. The equations
(7.3) arise in the modelling of low-speed, viscous flows, and play an important role in
steady-state approximations of the Navier-Stokes equations.

A standard, conforming mixed finite element approximation is obtained by con-
structing finite-dimensional subspaces V;, C (H} (Q))d and W}, C L?(Q). The associ-

ated discrete variational formulation is,
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find 4y € V},, pr € W, satisfying,

v (Vity, Vin) — (pn, V- T) = (f,ﬁh) Vi, € Vi (7.4)

(V-Uh,wh) = 0 VYwp € Wp. (7.5)

Choosing basis sets,
=N
Vi =span{ii} ., Wi = span{g;}],, (7.6)

leads to a linear algebra problem of the form (7.1). We obtain,

vA BT

S
I~

B 0

(kS
=)

where @, = > 1, uip; and py = Y71, pjd; with,

Aij = /vqﬁi:vqﬁjda i,j=1:n,
Q
By; = —(V-Jj,qﬁk) k=1:m,j=1:n,

[, = (.f:'JZ) i1=1:n.

Li
Note that, here, A is a vector Laplacian matrix with d diagonal blocks corresponding
to scalar Laplacian matrices.
To ensure existence and uniqueness of a solution to the problem (7.4)—(7.5), we

choose V}, and W}, to satisfy the discrete inf-sup condition,

V - 9
Bllwnllo< sup (WY %h)
aevi || Viu lo

Ywy € Wy, wy, # constant, (7.8)
where 8 > By > 0 and [y is a constant independent of h. Note that since we have
specified the velocity everywhere on the boundary, the pressure solution is only defined
up to a constant. Also, since Vj, C (H} (Q))d, the norms, || V&, ||o and || @), ||1 are

equivalent on Vj,.

Now, by defining the pressure mass matrix,

le = (¢k7¢l), k,l=1:m,

the inf-sup condition (7.8) can be expressed in matrix form as,

BtBA_lBTp

B> < Op Vp e R™\{1}. (7.9)

7.1. Stokes equations



(The reader is referred to Chapter 3 for the derivation of such results.) It can also be

shown that for a conforming finite element space,
M <1 Vpe R™{0}. (7.10)

pep T " B
Thus, if we choose finite element spaces V;, and W}, that satisfy (7.8), it follows that
the associated pressure mass matrix () provides an h-optimal preconditioner for the

Schur complement matrix BA-1BT.

7.1.1 Preconditioning strategy

In [90] and [91], Silvester and Wathen prove that for any stable finite element method,

the eigenvalues, {o;}"™, of the generalised eigenvalue problem,

vA BT vPy 0
=0 , (7.11)

0 P

1S
1S

B 0

I3
I3

are bounded by constants independent of the discretisation parameter, h, if P4 and Pg

are chosen to satisfy,

ul Au
< == <A n 12
NS ESE <A Vue R0}, (712
T
p Qp
) < =25 <0 VYpeR™ {0}, 7.13
< s S © VRERM () (7.13)

with positive constants A, A, § and O, independent of h. Specifically, they prove the

following Lemma.

Lemma 31 Assume a stable discretisation satisfying (7.9) and (7.10) and choose Py
and Py to satisfy (7.12) and (7.13), respectively. The eigenvalues of the generalised

eigenvalue problem (7.11) lie in the union of the intervals,

3 (A-vaTHaeR) . L (A - VT aF)))] _—
U[n 3 (A+vATFa6R)]. '
Proof See [91]. O
By applying, once again, the analysis of Wathen, [101], it is possible to show that
(7.13) holds with Py = diag(Q). In other words, diagonal scaling is always an h-

optimal preconditioner for the Stokes pressure mass matrix. One of the best Stokes
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: L.

Figure 7.1: Q2 — P_1 element; velocity components (left), pressure ( , %, g—g) compo-

nents (right)

approximations in IR? is the Qg — P_; finite element (see Fig. 7.1), consisting of
piecewise biquadratic velocity and discontinuous piecewise linear pressure. Not only is
(7.8) satisfied but @ is also a diagonal matrix. Thus, Py = @ is an optimal choice with
0=0=1.

The task of defining an efficient preconditioner for (7.7) is thus reduced to finding a
Py satistying (7.12). Since A is a discrete representation of the vector Laplacian oper-
ator V2, any black-box solver for Poisson problems is a potential candidate. Silvester
and Wathen demonstrate numerically in [91] that one V-cycle of standard geometric
multigrid is an optimal choice, for uniform grids in IR2. Instead, we choose P, in (7.11)
to be one V-cycle of the algebraic multigrid algorithm amgir5, described in Chapter 5.

Thus, in IR?, the preconditioner we propose is,

WV (4y) 0 0
Pumg = 0 V(4 o |, (7.15)

0 0 1Q
where V(A;) and V(A,) denote the application of a single V-cycle of AMG to the
diagonal blocks A, and A, of A. Again, we implement AMG as a black-box, with

symmetric Gauss-Seidel smoothing. No parameters are estimated a-priori.

Remark 13 When biquadratic approximation is used for the wvelocity, the matrices
Ay and Ay have positive as well as negative off-diagonal entries. However, the positive
entries are small in magnitude, relative to the other entries, and do not adversely affect

the multigrid approrimation.
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7.1.2 Numerical example

To illustrate the h-optimality of (7.15), we perform a numerical example. Consider the
Stokes equations (7.3), discretised on [—1,1] x [—1, 1] using stable Q)2 — P_; approxi-

mation. Choose v =1, f = 0, and the velocity boundary condition,
(ug,uy) = {(1-2%0) |y =1, -1< z <1}, (7.16)

This corresponds to the benchmark, ‘regularised lid-driven cavity’ flow problem (see

Fig. 7.2).

20 | ‘ ) /O\

.

-1 -1

Figure 7.2: Contour plot of constant streamlines (left) and pressure solution (right)

We apply preconditioned MINRES to the assembled system (7.7), with a stopping
tolerance of 10~ % on the relative residual error. Iteration counts for the preconditioned
system are reported in Table 7.1. The second column contains unpreconditioned counts;
the third column lists counts for the ideal (without AMG) version of the preconditioner.
The time units reported in parentheses are elapsed time in seconds for the total solve,
including AMG set-up time.

The eigenvalues of the preconditioned system are reported in Table 7.2. Substituting
=1,0=1,A=0.884, A =1 and 82 = 0.222 in (7.14) yields the theoretical bound,
[—0.651,—0.184] U [0.884,1.618]. Fig. 7.3 illustrates the spectral equivalence of the

AMG version (Py,g) and the ideal version (Pjgeq) of the preconditioner. Note that in
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this example the preconditioned system is singular. The nullspace is spanned by the

hydrostatic constant pressure solution. This accounts for the zero eigenvalue.

h pP=1 Ijideal Pamg

% 64 22 (0.2) 25 (0.2)
= 147 24 (1.3) 26 (0.5)
35 274 24 (11.5) 28 (2.2)
o 513 24 (96.8) 29 (9.2)

Table 7.1: MINRES iterations, Stokes problem

>
>

B2 Observed eigenvalues

A

0951 1 0.256 [—0.615, —0.211] U [0] U [0.960, 1.613]
1
1

0.235  [—0.618, —0.196] U [0] U [0.939, 1.617]
0.222  [—0.618, —0.186] U [0] U [0.924, 1.617]
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Table 7.2: Eigenvalues of preconditioned system
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Figure 7.3: Eigenvalues of indefinite preconditioned matrix; Pjgeq; (top), Pamg (bot-
tom), h = §, 15, 35

The experiment shows that we have a simple, h-optimal preconditioner for Stokes

problems. Next, we consider the so-called ‘magnetostatic problem’, in IR?.

7.1. Stokes equations



7.2 Maxwell’s equations

Let © C IR? be a convex polygon, with piecewise smooth boundary 992 = 0Qx U 0€p.
The classical magnetostatic problem is,

find a magnetic field, H , and a magnetic displacement field, B', satisfying,

V-B = 0 in Q, (7.17)

VxH = j in Q, (7.18)
B = uH inq, (7.19)

B-i =0 on 09 p,

H-¥f =0 on 0Q0g.

This corresponds to a steady-state subset of Maxwell’s equations, and models the
properties of the magnetic field obtained when electrical currents are passed through
magnetic media. Again, for simplicity in our description, we consider homogeneous

boundary conditions. Note that in IR?, we define the curl operator via,

= 0H, OH,
H=-—24+ Y
VX dy + oz

The parameter u is the magnetic permeability coefficient and is assumed to be piecewise
constant. The vectors 7 and ¢ represent the unit normal and tangential vectors to 0Qp
and 0Qp, respectively, and j denotes an imposed current density.

There are many different ways to formulate (7.17)—(7.19) as a mixed variational
problem. The scheme we have in mind is one described by Perugia and Simoncini, [76],
and Perugia et al., [75], which aims to preserve the physical properties of B and H by
solving (7.17)-(7.18) exactly, whilst minimising the residual of (7.19). Specifically, we
solve the constrained optimization problem,

min 1 | B = pH ||? in €,
V.B=0,VxH=j 2
by introducing two Lagrange multipliers, A1, Ag, for the constraints (7.17) and (7.18).
The natural norm, || - ||, for the minimisation is the weighted L?-norm, defined via,

| 7 ]|?= (u~'%,7) . Full details can be found in [75] and [76] and the references therein.

7.2. Maxwell’s equations



For a conforming formulation, we require subspaces W} C L?(Q), W2 C L?(Q),
Vi C Hy p(div;?), and V2 C Hy g (curl; ), to approximate Aj, A, B and H, respec-

tively. Here,
Hyp(div;Q) = {# € L*(0)?| V-7 € L*(Q) and 7 #i|pn, =0}
Hopm(curl;) = {h € L*(Q)?| V xh € L*(Q) and h - #]aq, = 0}
Now, given a mesh T}, an inf-sup stable approximation is obtained by choosing W, =
Wff = W}, the set of piecewise constant functions, Vh1 =V}, the continuous Raviart-

Thomas space defined in (6.2), and V}2 = Ej, N Ho, g (curl; ), where Ej, is the so-called

‘edge-element’ space, defined via,
Ey={h|heB(K) VK € T}, BE(K) = (P(K))’ + (~y,2)" Po(K).

Functions in th have continuous tangential components at interelement boundaries.
The corresponding discrete mixed variational problem, is,

find By, € V;!, Hy € V2, A1, € Wi, and Ay, € W, satisfying,

15 = 1
(—Bh,’ﬁ'h) — (Hhaﬁh> + (—Al,h,v-ﬁh> =0 Vi € Vhl, (7.20)
12 ©
— (Eh,wh) + (uﬁh,wh) + (o, V X Tp) = 0 Vi, € V2, (7.21)
1 -
(;V-Bh,mh> =0 Y, € W, (7.22)

(NVXﬁhayh> = (uj,yn) VYyn € Wp. (7.23)

Choosing basis sets,
=3\"Nn
Vi =span{di} . V2= span{¥;}l, Wh = span{é}iL,,

1=

we again obtain a saddle-point system, with the block form,

A11 A12 B{ 0 \ B\

B 0
A A 0By fH 0 : (7.24)
B, 0 0 0 A 0
0 B 0o 0 )\ ) f
where, for 4,7 =1:n,and k=1:m,
Ar1,ij = (%Ju 11_;3) o A = — (Jz, )?j) o Asaig = (X X5) 5 (7.25)

Biis = (6 2V %), Bows = (b bV X X), £, = (uis o).

7.2. Maxwell’s equations



7.2.1 Preconditioning strategy

Sparse direct and iterative solution schemes for (7.24), based on factorisation methods,
are discussed and evaluated by Perugia et al. in [75] and [76]. In particular, following
Rusten and Winther, [86], the authors consider the performance of the ideal block-

diagonal preconditioner,

(IO 0 0

071 0 0
pP= . (7.26)

0 0 ByBF 0

00 0 BQBQT)

As we have already explained in Chapter 2, and Chapter 5, the major deficiency of this

approach is that it assumes that the leading block of (7.24),

A Agg
A= ,
ATy Ay

can be well approximated by the identity matrix. To see this, consider (7.14) in Lemma
31 with Py = I, v =1 and Py = Q replaced by BBT = diag (B]_B{,BQB;) .

The preconditioner P in (7.26) is not h-optimal. To improve on this, Perugia et
al. perform diagonal scaling on the whole of the system matrix (7.24), before applying
(7.26). This has the effect of damping out some of the ill-conditioning due to the
permeability coefficient p, which can be highly discontinuous in practical simulations.
A-priori scaling is essential to obtain h-optimal MINRES convergence. It is not clear,
however, that u-optimal convergence can be achieved, even with diagonal scaling.

To obtain a practical scheme, Perugia et al. propose incomplete Cholesky factorisa-
tion for the diagonal blocks By Bf and ByB2. We denote the resulting preconditioner
P, ., where € is the chosen drop tolerance parameter for the factorisation. Instead, we

propose the preconditioner,

I 0 0 0
0 I 0 0

Pymg = : (7.27)
0 0 V(BiBY) 0
00 0 V (B2BYJ)

7.2. Maxwell’s equations



where V' denotes the application of a single V-cycle of black-box AMG. Qur choice is
appropriate because the matrix Ble is, by definition, a discrete representation of a
scalar diffusion operator. Any fast solver for Poisson problems is, again, a potential
candidate but with AMG we can handle unstructured meshes with ease. The second
matrix, Bng , 18 a discrete representation of the curl operator acting on the space th. In
IR?, it has the appearance of a diffusion operator and hence can also be preconditioned

effectively with AMG.

7.2.2 Numerical example

To illustrate the h-optimality of the preconditioner P, 4 in (7.27), we perform a numer-
ical example. The test case we consider is the one proposed in [75] and [76]. Consider
a hollow iron cylinder, placed in a prescribed induction field that is uniform in the
direction orthogonal to the cylinder axis. To fix ideas, suppose that the cylinder axis
is aligned with the z-axis, so that it is sufficient to consider a cross-section in the z-y
plane. For simplicity, assume that the cross-section is centered at the origin of that
plane. Due to symmetry, only a quadrant of the cross-section then needs to be studied.

Thus, we consider the equations (7.17)—(7.19), discretised on the square domain
[0,1] x [0,1]. Let the internal and external radii of the cylinder be 0.2 and 0.1 units
respectively. The jump in the magnetic permeability y at the iron-air boundary is of
three orders of magnitude. Boundary conditions are homogeneous, except at the side
of the square that coincides with the inflow direction of the induction field, where Bt

takes a prescribed value. Unstructured, non-uniform meshes are employed.

N Pigeal Pz'c,O 1:)z'c,10*2 ]Dic,10*4
2,088 49 180 (1.85) 72  (0.91) 49 (0.57)
3,810 49 233 (3.88) 85  (1.69) 49 (1.17)
9,102 52 365 (17.53) 123  (5.69) 53 (3.78)
14,808 49 462 (37.11) 153 (11.98) 50 (6.45)

Table 7.3: MINRES iterations, magnetostatic problem

We apply MINRES to the diagonally scaled version of the assembled system (7.24)

with the preconditioners P;.. and FPypg. For comparison purposes, we use a stopping
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tolerance of 10~ on the relative residual error. Iteration counts for the preconditioned
system with P, . are reported in Table 7.3. In the first column, N corresponds to the
dimension of the system. The second column contains iteration counts for the ideal
version of the preconditioner (7.26). The remaining columns list iteration counts for
the preconditioner with incomplete Cholesky factorisation, with various values of e.
The time units in parentheses are elapsed time in seconds for the total solve, including
factorisation time.

The key observation is that the drop tolerance parameter needs to be tuned to
obtain h-optimal convergence. Since we do not know, a-priori, how much fill-in is
required, this is a serious drawback. Iteration counts for the preconditioned system
with Pypg are reported in Table 7.4. We apply AMG as a black-box with symmetric
smoothing. Here, no parameters are tuned at all. Observe that h-optimal convergence

is immediately achieved.

N Pideal P, amg

2,088 49 51 (0.82)
3,810 49 51 (1.33)
9,102 52 55 (3.32)

(4.73)

14,808 49 53

Table 7.4: MINRES iterations, magnetostatic problem

Remark 14 In simulations in IR?, it is clear that Pymg is a more desirable precon-
ditioner than P .. Unfortunately, we cannot apply black-box AMG in IR? because the

matriz BoB1 has very different properties.

7.3 Concluding remarks

The message that we want to convey in this final chapter is that the saddle-point
systems arising in mixed finite element formulations of variable diffusion problems,
Stokes flows problems and the magnetostatic problem in IR?, can all be solved efficiently,
with a variety of coefficients, and on a range of finite element meshes, using the same

preconditioning strategy. The ingredients are MINRES, a V-cycle of black-box AMG and
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possibly diagonal scaling, applied to one or more diagonal blocks of the matrix (7.2).
Any other saddle-point system of the form (7.1) that gives rise to matrices A and

S = BA~!BT, that are close to being M-matrices, can be treated in the same way.

7.3. Concluding remarks



Appendix A

Mathematical Notation

Symbol Definition
Function spaces and norms
Q := bounded and connected domain in IR ¢
0 := boundary of Q
Q = QuUoQ

0Qx := Dirichlet boundary of Q

0Qp := Neumann boundary of Q2
7 = (v1,...,vq)7, a vector in IR¢
o) o) T :

Vw = (%, e 8—;‘;) , the gradient operator

V-7 = Zgzl g—gi, the divergence operator
a = (a1,a,...,0q), a multi-index
2 . yd .

@] =3

Déyw = _0%w

aq ad
Oz -0x,

Ck(Q) := set of functions with continuous derivatives of up to degree k
L2(Q) = {w | f,u?d <oo)
L2(Q)¢ ={F | v €L?Q),i=1:d}

(w,s) =[qwsdQ

(@,0) = [qu-700
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1

wle = (T 1D 3)°
1
k ,
lwle = (Il + S5, [wl)®

HY(Q) = {we LQ) | Vw e LX)}
Hip(6) = {weH(®) | w=gondp}
HYQ) ={w]| [yswdQ <oco Vse HH(Q)}
H(div;Q) = {7eL2Q)?|V -7eL?Q)}
Hon(div;Q) = {17 € H(div; Q) | (7-it,w) = 0Vw € H} ,(Q) }
(@7, w) = [y wiiids

(@, 0) g4 = (A7) + (V- @,V - )
1
14 ldiv,a = (8, ) gy, 4

(0Q) = {g | g:w|39,w€H1(Q)ﬂCO(§)}

=

H

=

H™2(09Q) = {7y |v=(V-)|on,v € H(div) N (C°(Q))*}
PDE parameters
A = A(Z) € R%?, permeability tensor

v, T =737 < (A713,7) < T(#,5) V7:Q— R

Finite element meshes and spaces
Ty, := partition of

K := finite element of T},

hix := diameter of K
h = MaxKeTy, hK
hmin = minKGTh hk

Py(K) := set of polynomials of degree < k on K
Qrs(K) := set of polynomials of degree < k in z
and degree < siny on K

w|g = restriction of a function w(Z) to element K




En
&1

Wh

Vi
Lyp

n

m
{gi}iz,

{¢j}z@1

: = set of all edges of T},

: = set of interior edges of T},
: = set of edges of Ty, on 0€Q2p
: = set of edges of Ty, on 0Qn

:= an edge belonging to &, with global label ¢

an edge of element K with local label j

:= unit normal vector to global edge e;

:= unit outward normal vector to local edge j of K
:= orientated unit normal vector of global edge e;

:= orientated unit normal vector of local edge j of K

_ +1 if % =y
_ e 2 o
1 if 7% = Uk

Rawviart- Thomas approzimation

= (Py(K))? + & Py (K) for triangular K

= Qk+1,k(K) X Qg k+1(K) for rectangular K
= {7 € H(div;Q) | #lx € RTHWK)Y K € Tp}

= {s | s € L?(0K), s|e{< € Py(ef)Vek}

= {7 e (L*(K)?| V-7 € L*(Q)}, s >2

= {7 € Hyn(div;Q) | ¥ € (L5(Q)}, s> 2,

= {7 € RTR(%T)) and 7-7 =0 on 00y }

={we L) | w|ke P(K)VK € Ty}

={7eL*(Q)?¢ |7 € RT,(K)VK € Ty}

={w € Py(&,) | wle = éfegds =0,Ve € £&,NOOD }
:= dimension of V},, the number of edges (faces) in Tj,\0Qn
:= dimension of W}, the number of elements in T},

:= vector basis functions for V},

:= scalar basis functions for W},




Finite element matrices

Ajj (A™1gi, @), 4,i=1:n

By = (¢, V- @), r=1:m,j=1:n
Arij = (8, 8;), i, j=1:n

Diyj =(V-@,V-gj), i,j=1:n

Nys = (¢, 0ps5), 1,8=1:m

S :=BA-'BT

H =A+D
A BT
C =
B 0

Standard stability analysis
a(i,v) = (A_lﬂ', 17)
b(v,w) = (V-7,w)

a = continuous coervicity constant

B := continuous inf-sup stability constant
ap = discrete coervicity constant
By, := discrete inf-sup stability constant

Z ={0eV |bvw) =0 Vwe W}
Zy = {’176 Vi | b(?')',w)z() VwEWh}

Multigrid
v := no. of smoothing steps
S = generic smoothing operator
Ssgs = Symmetric Gauss-Seidel smoothing operator
Ty : = finite element mesh, at level J
M = representation of operator M on level J
x(Jm) := mth approximation to vector defined on level J
Mj_1 := coarse grid representation of operator A

z3_; = mth approximation to vector defined on level J — 1




as

N QT

Z

:= restriction operator

:= prolongation operator

:= algebraic error in mth iterate at level J

:= residual error in mth iterate at level J

Algebraic Multigrid

:= parameter measuring strength of dependence

:= set of interpolation variables for node

:= set of coarse grid variables

:= set of fine grid variables

:= set of non-zero connections to node 1

:= set of all weak connections to node i, relative to ag
:= set of strong C-connections to node i, relative to ag

:= set of strong F-connections to node i, relative to ag
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