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Abstract. Weakly electric fish generate electric current and use hundreds of voltage

sensors on the surface of their body to navigate and locate food. Experiments [G.

von der Emde and S. Fetz, J. Exp Biol, 210, 3082–3095, 2007] show that they can

discriminate between differently shaped conducting or insulating objects by using

electrosensing. One approach to electrically identify and characterize the object with a

lower computational cost rather than full shape reconstruction is to use the first order

Polarization Tensor (PT) of the object.

In this paper, by considering experimental work on Peters’ elephantnose fish

Gnathonemus petersii, we investigate the possible role of the first order PT in the

ability of the fish to discriminate between objects of different shape. We also suggest

some experiments that might be performed to further investigate the role of the first

order PT in electrosensing fish. Finally, we speculate on the possibility of electrical

cloaking or camouflage in prey of electrosensing fish and what might be learnt from

the fish in human remote sensing.

Keywords: Electrosensing, Gnathonemus petersii, weakly electric fish, polarization

tensor, Pólya-Szegö tensor, electrical impedance tomography

1. Introduction

Weakly electric fish can be found in the rivers of South America and Africa. They have

an electric discharge organ and hundreds of voltage sensing cells on their body to perform

electrosensing, which is used for navigation as well as to characterize and locate prey

[35, 36, 17]. Only one electric source is found in each fish. Furthermore, species such as

Peters’ elephantnose fish Gnathonemus petersii generates a broad spectrum pulse like

signal while the black knife ghost fish Apteronotus albifrons uses a signal closer to a sine

wave [26].

In biomedical engineering and industrial process monitoring, a sinusoidal current

is applied to a body and the resulting voltages are measured using surface electrodes to

‡ http://science.utm.my/taufiq/
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determine the interior conductivity (and permittivity) distribution in a system called

Electrical Impedance Tomography (EIT) (see [25, 1]). A similar systems known as

Electrical Resistivity Tomography (ERT) and Induced Polarization Tomography (IPT)

are used by geophysicists for examples to locate subsurface features and archaeological

objects. Typically, a balanced pair of square wave pulses is used, although sine wave

excitation can be used as well. In IPT, the transient response is recorded to locate

polarizable minerals (see references in [1]).

When a weakly electric fish moves through the water approaching an object, its

single but moving electric discharges organ acts in a similar way to switching between

driven electrodes in an EIT/ERT/IPT system. In this case, the moving and changing

surface of the fish is equivalent to a changing boundary shape and electrode positions

in EIT.

Electrical imaging is a non-linear and illposed inverse problem of considerable

computational complexity so it would be surprising if electrosensing fish are able to

perform a complete three dimensional spatial reconstruction in real time. Computational

methods employed include (i). optimization methods, in which a smoothness constrained

conductivity is fitted to the measured data [25, 1] and (ii). shape based methods, where,

the surface on which the conductivity has a jump discontinuity is parameterized [33, 1].

Other methods use sampling or probe methods to locate a surface of discontinuity

[34, 16, 20]. In both types of algorithm, repeated solution of the forward problem,

that is the calculation of solutions of a partial differential equation, are required. We

hypothesise that a less computationally intense method involving fitting a small number

of parameters without the need for the solution of partial differential equations is likely

to be closer to the location and characterization methods used by the fish.

Experimental studies [36] have shown that the fish Gnathonemus petersii can be

trained to recognize and discriminate between conductive and insulating objects with

variety of shapes without seeing the objects. One possible mechanism to recognize

shapes of objects from electrical data at a distance, independent of the orientation of

the object, is to use the Generalized Polarization Tensors (GPT) of the object. This

method requires some knowledge of the unperturbed electric fields to locate the object

and essentially a pattern matching approach to characterization. The GPTs form the

coefficients of an asymptotic expansion of the voltage perturbation as the object size

tends to zero. The lowest order term is determined by a rank 2 Polarization Tensor

(PT), which we called as the first order PT and also known as the Pólya-Szegö tensor.

By choosing an orthogonal basis, the PT can be represented as a symmetric matrix

and for the first order PT, the eigenvalues of this matrix have been described by the

depolarization or demagnetization factors depending on the context. Recently, Ammari

et. al [10] have modelled electrosensing fish in a two dimensional space. They then

apply the PT to investigate a possible two dimensional method that could be used by

electrosensing fish for shape recognition and classification [11].

On the other hand, by considering electrosensing fish in three dimensional space, we

evaluated numerically the PT for some objects used during the experiments conducted
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on Gnathonemus petersii by [36]. Later, in [2], we examined the calculated PT and

related it to the first part of the experiments (the training phase) of [36] to investigate

the role of the first order PT in electrosensing. We then extended our investigation in

[7] by considering another experiment (the discrimination tests) in [36]. Based on these

studies, we have found that the fish can easily distinguish two objects when the first

order PTs of the objects have a big difference. These findings are consistent with our

hypothesis that weakly electric fish use the first order PT as part of their characterization

algorithm. Our approaches in [2, 7] are also different with the works done by Ammari

et. al [10, 11] as we calculate the real eigenvalues of the first order PT of objects used

during some experiments in three dimensionsal space which include the fish and also a

conductivity contrast, whereas Ammari et. al [10, 11] use the PT in two dimensions,

dependent on frequency, to simulate discrimination and shape reconstruction.

More generally, the polarization (also called polariziability) tensor is widely used

to describe the perturbation in potential and wave fields due to an object of contrasting

material. One key advantage is that the PT depends on the shape and material,

transforms as a tensor under rotation (see Theorem 1 in Section 2), and the perturbation

can be expressed in an asymptotic expansion in which all the spatial dependence is

represented by the unperturbed fields. This provides a method of object recognition

and characterization. However, in other electromagnetic and acoustic problems, the

leading order term in the asymptotic expansion of the perturbed field is not always

associated with the Pólya-Szegö tensor and can have different forms depending on the

chosen application. For a general introduction including potential fields and the acoustic

case, see [14]. For far field electromagnetic methods, see [15, 22]. For near field inductive

detection and characterization of conductive objects, see [23, 24].

In this paper, we will revisit our results in [2] by using a slightly different approach to

demonstrate the possible role of the first order PT in electrosensing fish. The difference

between our approach in this more detailed paper and our approach in the papers [2, 7]

will be further explained in Section 3, but specifically, our earlier work used crude

zeroth-order quadrature while our new approach builds on quadrature methods used in

the Boundary Element Method (BEM). In addition, we also suggest some experiments

to further investigate the hypothesis.

2. Mathematical Formulation of the First Order Polarization Tensor

Let the conductivity of the water or other objects in the water in the region exterior to

a weakly electric fish be σ. The electrical voltage u due to electrical current generated

by the fish in the region satisfies the equation

∇ · (σ∇u) = 0, (1)

assuming no current source exterior to the fish. Consider the domain Ω = R3−F where

F is the fish. Suppose that there is an isolated object B which is assumed to be a

Lipschitz bounded domain in R3 at some distance from the fish and for any point x
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∈ R3

σ(x) =

{
k for x ∈ B
1 for x ∈ Ω−B

(2)

where k is constant. Here we take a static approximation where u is assumed time

invariant. Ammari and Kang [14] have shown that the perturbation in the voltage due

to a small object in the region Ω can be approximated by an asymptotic expansion

where the dominant term of the expansion is determined by the PT.

Let H be the voltage in the water without the object B such that ∇2H = 0 from

(1). Then, from [14], we have

(u−H)(x) = −∇Γ(x) ·M∇H(0) +O(1/|x|2) as |x| → ∞ (3)

where the origin O ∈ B , Γ(x) = −(4π|x|)−1 and M is the first order PT. Moreover, M

of an object B is represented in the standard basis as 3×3 matrix (so, the juxtaposition

with a vector on the right is matrix multiplication, equivalent to contraction of the rank

2 symmetric tensor over one index, while the dot product is contraction over the other

index) and can be determined by evaluating the following moment integral over the

boundary of B, ∂B [14]

M =

∫
∂B

Φ(y)y dσ(y) (4)

where

Φ(y) = (λI −K∗B)−1νx (5)

such that λ is defined as λ = (k+ 1)/2(k− 1) and νx is the unit outward normal vector

to ∂B at x ∈ ∂B. K∗B is an integral operator defined with Cauchy principal value P.V.

as

K∗BΦ(x) =
1

4π
P.V.

∫
∂B

(x− y) · νx

|x− y|3
Φ(y) dσ(y) (6)

where |x − y| is the distance between x and y. Furthermore, M is independent of

position B from the fish, F as given by (3) and it can also be shown from [14] that

M is symmetric. Alternatively, M can also be determined by finding the solution of a

transmission problem of the Laplace equation [14].

If B is an ellipsoid E, aligned with the coordinate axes, represented by x2

a2
+ y2

b2
+ z2

c2
=

1 in Cartesian coordinates, where a, b and c are the lengths of semi principal axes of E,

the first order PT of E at conductivity k denoted by M(k,E) is known explicitly [14]

as

M(k,E) = (k − 1)|E|


1

(1−P )+kP
0 0

0 1
(1−Q)+kQ

0

0 0 1
(1−R)+kR

 (7)

where |E| is the volume of E and P , Q and R are constants defined by the elliptic

integrals

P =
bc

a2

∫ +∞

1

1

t2
√
t2 − 1 + ( b

a
)2
√
t2 − 1 + ( c

a
)2

dt,
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Q =
bc

a2

∫ +∞

1

1

(t2 − 1 + ( b
a
)2)

3
2

√
t2 − 1 + ( c

a
)2

dt, (8)

R =
bc

a2

∫ +∞

1

1√
t2 − 1 + ( b

a
)2(t2 − 1 + ( c

a
)2)

3
2

dt.

The constants P , Q and R are related to what are known classically as demagnetization

factors, from their use in magnetostatics (see [24, eq 60]). They date from at least as

early as the work of Poisson [29].

The following theorem given in [14] is also useful to describe the first order PT for

an object in this study.

Theorem 1 Let R be an orthogonal matrix transformation of a domain B and RT is

the transpose of R such that B′ = RB. If M(k,B) and M(k,B′) are the first order PT

associated to domains B and B′ respectively for a conductivity 0 < k 6= 1 < +∞ then

M(k,B′) = RM(k,B)RT .

According to this theorem, the first order PT of an object rotates as the object

rotates. For example, if B rotates 90◦ around z-axis, the first order PT for B also

rotates and it is the first order PT for B after the rotation. If we know the first order

PT for B, the first order PT for B after the rotation can be obtained by using Theorem

1 with

R =

0 −1 0

1 0 0

0 0 1

 . (9)

This suggests that, for a fixed k, the eigenvalues of the first order PT depend on the

shape while the eigenvectors tell the orientation of the object in space. At the same

time, this also means shape of two different objects might not be discriminated by this

method if they both have the same first order PT.

3. Methodology

In order to investigate the role of the first order PT in electrosensing, we first review

the experiments called the training phase conducted by von der Emde and Fetz [36] on

eight fish of the species Gnathonemus petersii. These experiments have being conducted

to test the ability of the fish to discriminate between two different objects. During their

study, the fish were actually trained to accept or reject two different objects. Each

fish was rewarded for choosing the correct object and punished for choosing the wrong

object until they were able to choose the correct object with 75% succession rate in

three consecutive days. Some controls were also used to ensure that the fish depended

only on their electrical sense when making decisions.

In this paper, we will refer to the recorded period taken by each fish to complete

the training in [36]. However, only five fish from the study will be considered as only
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Figure 1. Triangulation of a cylinder and a pyramid

these objects that they were trained to recognise had sufficient dimensional information.

For later convenience, we have renamed Fish 1, Fish 2, Fish 3, Fish 7 and Fish 8 in [36]

as Fish B, Fish A, Fish E, Fish C and Fish D respectively.

We need to numerically determine the first order PT for the objects used during

the experiment by using (4), (5) and (6). These are boundary integral operators so the

boundary of the desired object B is firstly approximated by using N flat triangles (see

Figure 1 for examples). We used Netgen [30] to create a surface mesh with N triangles

for the objects.

During our investigations in [2] and [7], by using the mesh and a simple zeroth

order quadrature formula (which is exact for functions that are constant on triangles),

we have generated a discrete approximation for K∗B in (6) to solve (5) numerically for

Φ and the same quadrature is then used to numerically compute the first order PT

from (4). Moreover, the triangularization of the surface can be refined in Netgen to

increase the accuracy of the computation. We have explained in more detail about

these procedures in [3].

Meanwhile, in this study, we will use some ideas from BEM and the software

BEM ++ [32] to efficiently and quickly compute the first order PT. A brief guide to use

BEM ++ for this purpose is presented in [4]. Similar to [2, 7], the number of triangles,

N for the mesh of the object is choosen to be sufficiently large so that every coefficient of

the approximated first order PT converges. Our approach using higher order quadrature

with BEM ++ as presented in [4] provides better approximation to the first order PT

than the approach described in [3] (see [8] for more examples). BEM ++ is actually an

object-oriented code for BEM and is specifically developed by [32] to solve boundary

value problems in the form of boundary integral equations.

Figure 2 shows the error when the first order PT for the sphere of radius 1 with

k = 1.5 is approximated according to our approach in [3] using Matlab and also with
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Figure 2. The error, e when the first order PT for the sphere of radius 1 is

approximated at k = 1.5 by both Matlab and BEM++ on the mesh consisting

242, 620, 2480, 4480 and 9920 triangles against the number of triangles

BEM ++ as described in [4]. Note that we used Matlab for our previous studies in [2, 7]

whereas, we are going to use BEM ++ in this particular study. By using the entry-wise

norm for the 3 × 3 matrix A given by ‖A‖2=
√∑3

i=1

∑3
j=1 |Aij|2, the error in Figure

2 is defined by e =
∥∥M − M̄∥∥

2
/ ‖M‖2. Here, M is the first order PT for the sphere

computed based on (7) while M̄ is the approximated first order PT computed by both

Matlab and BEM++ on five different meshes for the sphere. Based on the curves in

Figure 2, we can see that e decreases as the number of triangles used for the mesh

increases when approximating the first order PT for the sphere with k = 1.5 by both

Matlab and BEM++. However, e are smaller when the first order PT for the sphere

are approximated by BEM++ for each mesh. This suggests that the approach by using

BEM++ gives better approximation to the first order PT.

After computation with BEM ++, the approximated first order PT for all

considered objects are then analysed. Here, for the first order PT of an object B,

denoted by MB, all three eigenvalues of MB are determined. Each eigenvalue of MB

is then normalized by dividing with the largest eigenvalue of MB. The average of the

normalized eigenvalues is computed as a measure of the magnitude of MB. We say

that shape of two objects (say B1 and B2) are electrically similar if the average of

the normalized eigenvalues for MB1 is the same with the average of the normalized

eigenvalues for MB2 .

We also suggest as future work to test the ability of the fish to distinguish between

objects with the same first order PT. One way to do this is to make an ellipsoid that has

the same first order PT as that calculated for a given non-elliptical test object. This is

possible because an analytical formula of the first order PT for ellipsoid, (7), is known.

By fixing the conductivity k and setting (7) equal to the first order PT for the other
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Table 1. The First Order PT for Several Objects

Object, B Dimension (cm) MB êMB
ĉ

10−4 ×

0.28 0 0

0 0.28 0

0 0 0.31

 0.91

Cone d = h = 3 0.91 0.94

1

10−4 ×

0.98 0 0

0 0.98 0

0 0 0.98

 1

Cube l = w = h = 3 1 1

1

10−4 ×

0.42 0 0

0 0.42 0

0 0 0.32

 0.75

Pyramid l = w = h = 3 1 0.92

1

note : d = diameter, h = height, l = length, w = width

object, three non-linear equations can be derived from (7) and (8). This system of non-

linear equations can then be solved simultaneously to determine all semi-principal axes

for the ellipsoid. Here, we will use our previous technique explained in [5] to determine

the ellipsoid.

4. Results and Discussion

Now, we consider a selection of the objects presented in [36] where, each is made from a

highly conducting metal such that the conductivity contrast is k = 107. By considering

mesh with sufficiently large N (more than 15000 triangles), the first order PT for each

object B considered, denoted by MB, can be calculated accurately to six decimal places

as shown in Table 1. The normalized eigenvalues of MB, êMB
and their average denoted

by ĉ are also included in the table. From Table 1, we can see that each MB is a diagonal

matrix. Furthermore, the cone and pyramid have two distinct eigenvalues while cube

has only one.

Table 2 shows time taken by the fish in [36] to complete their training in accepting

and rejecting two objects (denoted by S+ and S- respectively) based on the explanation

in the previous section. In this table, Fish A and Fish B are asked to distinguish pyramid

and cube, Fish C and Fish D distinguish cone and cube while Fish E distinguish cone

and pyramid. As given by [36], Fish A, Fish B, Fish C, Fish D and Fish E are able

to complete their task in 4, 7, 8, 10 and 19 days respectively. Now, we extend these

results by finding the absolute difference of ĉ for S+ and S- denoted by d to measure

the difference between the first order PT for S+ and S-. According to the table, Fish
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Table 2. Results for the Training in [36]

Fish Accept, S+ Reject, S- Period (Days) d

A
Pyramid Cube

4
0.08

B 7

C
Cone Cube

8
0.06

D 10

E Cone Pyramid 19 0.02

E takes the longest time to discriminate cone (S+) and pyramid (S-) and we can see

that this pair of S+ and S- has the smallest d among the other pair of S+ and S-.

Furthermore, Fish A and Fish B are able to achieve their tasks in a shorter period than

Fish C and Fish D while d between pyramid and cube is larger than between cone and

cube. This suggests that the fish use the first order PT as part of their recognition

algorithm where they need more time to complete the training when both S+ and S-

have almost similar first order PT.

5. Future Work

In the introduction, we have remarked that PTs are also known for other problems.

Ammari et al. have obtained an asymptotic expansion for the perturbed magnetic

field generated in the presence of small conducting objects in the eddy current regime

[12, 13], which is relevant for metal detection problems. The leading order term is

expressed in terms of a new class of rank 4 PTs. In [23], Ledger and Lionheart

have shown that for orthonormal coordinate, the expansion in [12, 13] reduces to a

simpler result involving a new symmetric magnetic rank 2 PT and they have also

obtained several interesting properties of the new PT in [24]. This new explicit formula

provides a rigorous mathematical foundation to the PT previously used in inductive

security screening [27, 28] and landmine detection [18]. In [9], we have numerically

computed this magnetic rank 2 PT for several interesting threat objects. In these studies

[9, 18, 27, 28], the magnetic PT is used to improve metal detection i.e. to distinguish

between threat and non-threat objects for inductive security screening and to locate the

metal component of buried landmines. The magnetic PT being derived from the eddy

current approximation to Maxwells equation is different to the Pólya-Szegö PT (4),

which is derived from the solution of a different set of integral equations. By contrast,

the far field full Maxwell’s equation case results in the same PT as for the static case

[22]. As yet, a GPT expansion for inductive metal detector case is not known. We

expect that from a better understanding of the characterization algorithms used by fish,

we will be able to improve our methods for security screening and classifying buried
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objects using inductive and microwave measurements.

During this study, we have found results which are consistent with our hypothesis

that the first order PT is used by the fish for object recognition and presented them

in the previous section. However, our findings are not yet conclusive so, in order to

decide whether the first order PT has a role in the way fish perform this task, further

experiments must be carried out. First of all, as the expansion (3) is asymptotic in

distance, any experiment should be performed in such a way that the fish are at least

a certain distance from the object. According to Sicardi et. al [31], depending on the

object, the signal received by the fish about an object also depends on the distance

between the fish and the object. However, as stated before, the first order PT does not

depend on the distance. In this case, we have to make sure the distance is not too close

to ensure that formula (3) is mathematically valid. On the other hand, the object also

must not be too far from the fish so that it can be electrically sensed.

Next, we may test the ability of the fish to distinguish between two objects with

the same first order PT. If the fish can discriminate these two objects then we can

conclude that it uses not just the first order PT. It might be that it uses higher order

GPT as well for example. Table 3 shows ellipsoids E with semi principal axes a, b and c

that have similar first order PT as given objects B where, the ellipsoids are obtained as

explained in the last paragraph of Section 3. According to [36], electrosensing fish can

discriminate between two objects of different materials. Therefore, to make sure that

the choice of the fish is not based on the material of the object, the conductivity should

be the same for all objects. In our computations, we choose k = 107, that is all of them

are made by the same high conducting metal. A pair of objects with similar first order

PT from this table could then be used during the experiment in the future.

In their study, [36] has also showed that electrosensing fish tend to choose objects

with a smaller volume from a pair of objects. Thus, it might be important also for the

pair B and E in Table 3 to have the same volume so that the fish will not make the

choice based on the volume of the objects. Therefore, we also include in Table 3 the

absolute difference between the volume of B and E (denoted by v (cm3)) for all pairs.

From these values, we can see that there is only a small difference between the volume

of B and E for each pair B and E. In the future, we may assume that the volume of B

is similar to the volume of E when testing whether electrosensing fish can discriminate

between B and E.

Another straight forward experiment that can be performed is to give a pair of cones

pointing up and down for the fish to discriminate. In this case, not only the eigenvalues

but also the eigenvectors are the same, as can be seen from Theorem 1. Indeed, as the

first order PT in some sense electrically best in fitting ellipsoid, it is clear that the size

and orientation of the ellipsoid is the same for both orientations of the cone. As the

full series of all GPTs determines the shape of object completely up to rotation [14],

features such as the direction a cone is pointing are encoded in the higher order PTs.

Beyond the first order PT, it is not yet known what features are encoded in the GPTs

up to a certain order.
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Table 3. Ellipsoids and Objects with Similar First Order PT

Object, B Ellipsoid, E First Order PT of B v

a = 1.28

10−4 ×

0.28 0 0

0 0.28 0

0 0 0.31

Cone b = 1.28 2.54

d = h = 3 c = 1.40

a = 1.98

10−4 ×

0.98 0 0

0 0.98 0

0 0 0.98

Cube b = 1.98 5.52

l = w = h = 3 c = 1.98

a = 1.69

10−4 ×

0.67 0 0

0 0.67 0

0 0 0.82

Cylinder b = 1.69 2.60

d = h = 3 c = 1.99

a = 1.50

10−4 ×

0.31 0 0

0 0.31 0

0 0 0.15

Hemisphere b = 1.50 0.66

d = 3 c = 0.82

a = 1.56

10−4 ×

0.42 0 0

0 0.42 0

0 0 0.32

Pyramid b = 1.56 3.64

l = w = h = 3 c = 1.24

note : dimensions are in centimeter (cm),

d = diameter, h = height, l = length, w = width

6. Discussion and Conclusions

In this paper, we have shown that the weakly electric fish studied take a longer time to

electrically discriminate two objects with a small difference between the average of the

eigenvalues for their first order PT. This result suggests that the first order PT may play

a role in object recognition but it is not conclusive. Therefore, a few future experiments

that can be conducted to the fish to further investigate this have also been suggested

here.

Moreover, we have considered only the static approximation, and it is possible that

the fish use time domain and phase information to discriminate between, for example

prey and inedible objects, which may well have a different dispersion relationship. This

could be analysed using frequency dependent complex polarization tensors.

Given the possible selective advantage for prey species, it seems likely that prey

of electrosensing fish have developed electrical camouflage or cloaking. For camouflage,

if the hypothesis that the (complex) PT is used as important classifier by the fish,

it would be interesting to test the PT of organisms for which electrosensing fish are

important predators and compare with similar organisms that have evolved without

such predators. Meanwhile, cloaking is a phenomena that has been widely explored in

theoretical EIT [19], in which anisotropic meta materials can be used to make targets

invisible to EIT measurement. It would be interesting to investigate using an EIT test

cell if any prey species have evolved electrical cloaking. Our suggestion would be to look

first in areas where electrosensing fish such as Apteronotus albifrons that use a relatively

narrow bandwitdth are also the main predators. We suspect it would be easier to achieve
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effective cloaking in such a range over a narrow band of frequencies.
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[29] S.D. Poisson. Second mémoire sur la théorie du magnétisme, Imprimerie royale, (1825)
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