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PARALLELIZATION OF THE RATIONAL ARNOLDI ALGORITHM

MARIO BERLJAFA
∗

AND STEFAN GÜTTEL
∗

Abstract. Rational Krylov methods are applicable to a wide range of scientific computing prob-
lems, and the rational Arnoldi algorithm is a commonly used procedure for computing an orthonormal
basis of a rational Krylov space. Typically, the computationally most expensive component of this
algorithm is the solution of a large linear system of equations at each iteration. We explore the op-
tion of solving several linear systems simultaneously, thus constructing the rational Krylov basis in
parallel. If this is not done carefully, the basis being orthogonalized may become badly conditioned,
leading to numerical instabilities in the orthogonalization process. We introduce the new concept
of continuation pairs which gives rise to a near-optimal parallelization strategy that allows to con-
trol the growth of the condition number of this nonorthogonal basis. As a consequence we obtain
a significantly more accurate and reliable parallel rational Arnoldi algorithm. The computational
benefits are illustrated using several numerical examples from different application areas.
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1. Introduction. Rational Krylov methods have become an indispensable tool
of scientific computing. Invented by Ruhe for the solution of large sparse eigenvalue
problems (see, e.g., [25, 26]), these methods have seen an increasing number of ap-
plications over the last two decades or so. Examples of rational Krylov applications
can be found in model order reduction [10, 15, 21, 16], matrix function approximation
[9, 18, 12], matrix equations [23, 8, 2], nonlinear eigenvalue problems [20, 19, 30], and
nonlinear rational least squares fitting [4, 5].

At the core of most rational Krylov applications is the rational Arnoldi algorithm,
which is a Gram–Schmidt procedure for generating an orthonormal basis of a rational
Krylov space. Given a matrix A ∈ CN,N , a vector b ∈ CN , and a polynomial qm of
degree at most m and such that qm(A) is nonsingular, the rational Krylov space of
order m is defined as

Qm+1(A, b, qm) := qm(A)−1span{b, Ab, . . . , Amb}.

This is a linear vector space of rational functions rm(A)b = (pm/qm)(A)b all shar-
ing the same denominator qm. The roots of qm are referred to as the poles of
Qm+1(A, b, qm). Note that Qm+1(A, b, qm) reduces to a polynomial Krylov space
Km+1(A, b) := span{b, Ab, . . . , Amb} if qm ≡ 1. The smallest integer M such
that KM (A, b) = KM+1(A, b) is called the invariance index of A with respect to b.
Throughout this work we assume that m < M , and hence all spaces Qm+1(A, b, qm)
are of maximal dimension m+ 1.

An interesting feature of the rational Arnoldi algorithm is that, under certain
conditions, basis vectors can be computed in parallel. Take, for example, m distinct
poles ξ1, ξ2, . . . , ξm ∈ C \ Λ(A), where Λ(A) denotes the spectrum of A. Then

Qm+1(A, b) = span{b, (A− ξ1I)−1b, (A− ξ2I)−1b, . . . , (A− ξmI)−1b}

is the rational Krylov space Qm+1(A, b, qm) with qm(z) =
∏m
j=1(z−ξj), and clearly all

basis vectors can be computed simultaneously from b. This is particularly attractive
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2 M. BERLJAFA AND S. GÜTTEL

in the typical case where solving the linear systems (A− ξjI)xj = b is the dominant
computational cost in the rational Arnoldi algorithm.

Unfortunately, this naive parallelization approach may quickly lead to numerical
instabilities. An instructive example is that of a diagonal matrix A = diag(λi)

N
i=1, for

which the basis vectors xj = (A− ξjI)−1b are the columns of a Cauchy-like matrix

X =
[
x1 x2 . . . xm

]
∈ CN,m with xij := eTi Xej =

eTj b

λi − ξj
,

where ek denotes the kth canonical vector of appropriate dimension. Hence, X
satisfies the Sylvester equation AX − XB = C with rank-1 right-hand side C =
b
[
1 1 . . . 1

]
and B = diag(ξj)

m
j=1. If the eigenvalues of A and B are well sepa-

rated, e.g., by a straight line, the singular values of X decay exponentially as m in-
creases (see [14]). Thus the matrix X will be exponentially ill-conditioned. Available
rounding error analyses of the modified Gram–Schmidt procedure (with reorthogo-
nalization) typically assume that the basis X to be orthogonalized is numerically
nonsingular, i.e., g(m)εκ(X) < 1, where κ(X) is a condition number of X, ε is the
machine precision, and g is a slowly growing function in m (see, e.g., [11]). Without
this condition being satisfied, as in our case, there is no guarantee that the Gram–
Schmidt procedure computes the exact QR factorization of a nearby matrix X + E,
with E being of small norm relative to X.

The potential for exponential growth in the condition number of a rational Krylov
basis seems to discourage any attempt to parallelize the rational Arnoldi method, and
indeed only very few authors have considered this problem up to date. Most notably,
in [28] Skoogh presented and compared, mostly from an algorithmic point of view, two
(distributed memory) parallel variants. He noted that “generally the parallel rational
Krylov programs get fewer converged eigenvalues than the corresponding sequential
program” and that potential numerical instabilities may arise during the orthogo-
nalization phases. Further remarks on parallel implementations in the model order
reduction context are made in Grimme’s thesis [15, Section 7]. Some comparisons of
different parallel variants, also referred to as continuation strategies, and graphical
illustrations of the instabilities are contained in [17, Section 6.5]. However, up to this
date, a detailed theoretical analysis and practical recommendation on how to best
parallelize the rational Arnoldi algorithm seems to be lacking. The main goal of our
work is to fill this gap by analyzing the numerical instabilities that may occur, and
to propose a new continuation strategy with superior stability properties.

The rest of the paper is organized as follows. In section 2 we review the stan-
dard (sequential) rational Arnoldi algorithm and introduce the notion of continuation
pairs, which represent the free parameters to be chosen during the rational Arnoldi
algorithm. In section 3 we propose and analyze a framework for constructing near-
optimal continuation pairs; near-optimal in the sense of minimizing the growth of the
condition number of the nonorthogonal rational Krylov basis. Finally, sections 4–5 are
devoted to parallel variants of the rational Arnoldi algorithm. Specifically, in section 4
we discuss a generic parallel variant of the rational Arnoldi algorithm, list some canon-
ical choices for continuation pairs, and adapt the previously developed near-optimal
strategy to the parallel case. In section 5 we provide a range of numerical experiments,
comparing different continuation strategies, and different high-performance (parallel)
implementations. Concluding remarks and possible future work are given in section 6.

2. Sequential rational Arnoldi algorithm. In section 2.1 we review the ra-
tional Arnoldi algorithm [25, 26], and a related matrix decomposition. Understanding
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Algorithm 2.1 Rational Arnoldi algorithm [25, 26]. RKToolbox [3]: rat krylov

Input: A ∈ CN,N , b ∈ CN , poles {µj/νj}mj=1 ⊂ C \ Λ(A), with m < M .
Output: Decomposition AVm+1Km = Vm+1Hm.

1. Set v1 := b/‖b‖2.
2. for j = 1, . . . ,m do
3. Choose a continuation pair (ηj/ρj , tj) ∈ C× Cj .
4. Compute wj+1 := (νjA− µjI)−1(ρjA− ηjI)Vjtj .
5. Project cj := V ∗j wj+1, and compute cj+1,j := ‖wj+1 − Vjcj‖2.
6. Compute vj+1 := (wj+1 − Vjcj)/cj+1,j orthogonal to v1, . . . , vj .

7. Set kj := νjcj − ρjtj and hj := µjcj − ηjtj , where tj = [tTj 0]T .

8. end for

the free parameters in the sequential algorithm is central to our parallelization strat-
egy, which is based on continuation pairs introduced and analyzed in sections 2.2–3.3.

2.1. The rational Arnoldi algorithm and RADs. The rational Arnoldi algo-
rithm constructs an orthonormal basis Vm+1 for Qm+1(A, b, qm) in a Gram–Schmidt
fashion as described in Algorithm 2.1. The notation C = C ∪ {∞} is used. From
lines 4–7 we deduce

Vj+1cj = wj+1 = (νjA− µjI)−1(ρjA− ηjI)Vjtj , (2.1a)

(νjA− µjI)Vj+1cj = (ρjA− ηjI)Vjtj , (2.1b)

AVj+1(νjcj − ρjtj) = Vj+1(µjcj − ηjtj), and thus (2.1c)

AVj+1kj = Vj+1hj . (2.1d)

Concatenating (2.1d) for j = 1, . . . ,m provides

AVm+1Km = Vm+1Hm, (2.2)

with the jth column of Km being [k
T
j 0T ]T ∈ Cm+1, and analogously for Hm.

The matrices Km and Hm are upper-Hessenberg, i.e., all the elements below
the first subdiagonal are zero. Moreover, if the (ηj/ρj , tj) are chosen correctly (see
section 2.2), they also form an unreduced upper-Hessenberg pencil (Hm,Km), i.e.,
|hj+1,j |+ |kj+1,j | 6= 0 for all j; see [4]. We can now state the following definition [4].

Definition 2.1. Let A ∈ CN,N . A relation of the form (2.2) is called a ratio-

nal Arnoldi decomposition (RAD) of order m if Vm+1 ∈ CN,m+1 is of full column

rank, Hm,Km ∈ Cm+1,m form an unreduced upper-Hessenberg pencil, and the quo-
tients {hj+1,j/kj+1,j}mj=1, called poles of the decomposition, are outside Λ(A). In
this sense we say that (2.2) is an RAD for Qm+1(A, v1, qm), where the nonzero poly-
nomial qm ∈ Pm has as formal roots the poles of (2.2). Furthermore, if Vm+1 is
orthonormal, we say that (2.2) is an orthonormal RAD.

It is convenient to refer to (2.2) as an RAD even if m = 0, in which case one can
think of the pencil (Hm,Km) as being of size 1× 0, and effectively we only have the
matrix A and the normalized starting vector v1. This corresponds to the initial phase
of Algorithm 2.1.

If (2.2) is an RAD for Qm+1(A, b, qm) and the matrix Rm ∈ Cm,m is upper-
triangular and nonsingular, then AVm+1(KmRm) = Vm+1(HmRm) is also an RAD for
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Qm+1(A, b, qm). Such a right-multiplication of the decomposition by Rm is equivalent
to changing the parameters (ηj/ρj , tj) during the rational Arnoldi algorithm. The two
RADs forQm+1(A, b, qm) are essentially equal ; see [4, Def. 3.1] for a precise definition.
In fact, the rational implicit Q theorem [4, Thm. 3.2] asserts that the RADs related
to Qm+1(A, b, qm) are essentially uniquely determined by A, b, and the ordering of
the poles of the decomposition. Numerically, however, choosing (ηj/ρj , tj) carefully
may be rather beneficial.

2.2. Continuation pairs. A rational Krylov space is defined by the matrix A,
the starting vector b, and by the poles {µj/νj}mj=1. These quantities are assumed
to be given. We now discuss the roles of the “internal” parameters ρj , ηj , and tj , a
problem that can be illustrated graphically as follows:

AVmKm−1 = VmHm−1
(ηm/ρm,tm)7−−−−−−−−→
µm/νm

AVm+1Km = Vm+1Hm. (2.3)

To be precise, we study the influence of (ηm/ρm, tm) ∈ C × Cm for the extension of
an order m− 1 RAD for Qm(A, b, qm−1), namely,

AVmKm−1 = VmHm−1, (2.4)

with the pole µm/νm ∈ C \ Λ(A), into an RAD (2.2) for Qm+1(A, b, qm) of order m.
Definition 2.2. We call (ηm/ρm, tm 6= 0) ∈ C × Cm a continuation pair of

order m. The value ηm/ρm is its continuation root, and tm its continuation vector.
Further, (ηm/ρm, tm) is called admissible for the pole µm/νm ∈ C\Λ(A) and the RAD
(2.4), or, equivalently, for (2.3), if (νmA− µmI)−1(ρmA− ηmI)Vmtm 6∈ R(Vm).

The notion of continuation vector has already been used in the literature, though
not consistently. For instance, in [26] the author refers to Vjtj as the continuation
vector, while in [22] the term is used to denote (ρjA − ηjI)Vjtj . The terminology
of “continuation combinations” is adopted in [4, 30, 26] for the vectors tj . With the
notion of continuation pair we want to stress that there are two parts, a root and a
vector, both of which are equally important.

Let us now find an admissible continuation pair for (2.3). For any η/ρ 6= µ/ν, the
RAD (2.4) can be transformed into

(νA− µI)−1(ρA− ηI)Vm
(
νHm−1 − µKm−1

)
= Vm

(
ρHm−1 − ηKm−1

)
. (2.5)

Set µ/ν ≡ µm/νm. If tm ∈ R(νmHm−1 − µmKm−1) then there exists a vector

zm−1 ∈ Cm−1 such that tm = νmHm−1zm−1 − µmKm−1zm−1. Specifically,

wm+1 = (νmA− µmI)−1(ρA− ηI)Vmtm = Vm
(
ρHm−1 − ηKm−1

)
zm−1 ∈ R(Vm),

showing that a continuation pair, independently of the continuation root, is not ad-
missible if tm ∈ R(νmHm−1 − µmKm−1). This was first observed in [26] and led the
author to suggest a nonzero left null vector qm of νmHm−1−µmKm−1 as a continua-
tion vector. It is shown in [4, Section 3] that (η/ρ 6= µm/νm, qm) is indeed admissible
for (2.3), provided R(Vm) is not A-invariant.

Currently, the choices tm = em and tm = qm appear to be dominant in the lit-
erature; see, e.g., [26, 30]. Note that tm = em may (with probability zero) be not
admissible, i.e., we would not be able to expand the space with the obtained wm+1

even though the space is not yet A-invariant. Such a situation is called unlucky break-
down. Nevertheless, these two choices do appear to work well in practice, but as we
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shall see, this is not always the case for the parallel variant. Moreover, continuation
roots are frequently ignored. Typical choices are zero and infinity, without justifica-
tion. An exception is [22], where a choice for (ϑ, tm) is recommended in a way such
that (ϑ, Vmtm) is a rough approximation to an eigenpair of A.

2.3. Optimal continuation pairs. We will now show that for the sequential
rational Arnoldi algorithm, Algorithm 2.1, there exist continuation pairs which yield
wm+1 such that wm+1 ⊥ R(Vm). We refer to such continuation pairs as optimal, as
we are mainly concerned with the condition number of the basis being orthogonalised.

Definition 2.3. An admissible continuation pair (ηm/ρm, tm) is called optimal
for (2.3) if the condition (νmA− µmI)−1(ρmA− ηmI)Vmtm ⊥ R(Vm) is satisfied.

Equivalently, if the two RADs appearing in (2.3) are orthonormal, the continu-
ation pair (ηm/ρm, tm) is optimal for (2.3) if (νmA − µmI)−1(ρmA − ηmI)Vmtm is
a scalar multiple of vm+1. The key observation is thus triggered by the rational im-
plicit Q theorem [4, Theorem 3.2], which asserts that the new direction vm+1 we are
interested in is predetermined by the parameters (A, b, qm) defining Qm+1(A, b, qm).
The following theorem, which we restate here for completeness, provides a useful
representation of vm+1.

Theorem 2.4 ([4, Theorem 2.6]). Let (2.2) be an RAD. There holds

vm+1 = pm(A)qm(A)−1v1, (2.6)

where pm(z) = det (zKm −Hm) and qm(z) =
∏m
j=1

(
hj+1,j − kj+1,jz

)
.

Denote by ηm/ρm any root of pm from Theorem 2.4, and label with µm/νm ≡
hm+1,m/km+1,m the last pole of (2.2). Let pm(z) =: (ρmz−ηm)p̆m−1(z) and qm(z) =
(νmz − µm)qm−1(z) hold. We clearly have

vm+1 = (νmA− µmI)−1(ρmA− ηmI)p̆m−1(A)qm−1(A)−1v1

= (νmA− µmI)−1(ρmA− ηmI)Vmtm =:M(A)Vmtm,
(2.7)

where tm satisfies Vmtm = p̆m−1(A)qm−1(A)−1v1 ∈ Qm−1(A, b, qm−1) = R(Vm).
Now if (2.2) is an orthonormal RAD and hence vm+1 ⊥ R(Vm), we just verified that
(ηm/ρm, tm) is an optimal continuation pair.

It proves useful to derive a closed formula for the optimal continuation vector tm.
To this end, let xm be a right generalized eigenvector of (Hm,Km) corresponding to
the eigenvalue ηm/ρm; i.e., (ρmHm − ηmKm)xm = 0. Right-multiplying the RAD of
the form (2.5) with µ/ν ≡ µm/νm and η/ρ ≡ ηm/ρm, but of order m, by xm yields

M(A)Vm
(
νmHm − µmKm

)
xm = (ρmhm+1,m − ηmkm+1,m)(eTmxm)vm+1. (2.8)

This gives the optimal continuation vector provided that γm = (eTmxm)(ρmhm+1,m −
ηmkm+1,m) 6= 0, which holds true under the assumption that (2.2) is an RAD. Indeed,
if γm = 0, then Vm(νmHm−µmKm)xm is an eigenvector of A with eigenvalue ηm/ρm,
which implies the non-existence of an RAD of order m with starting vector v1, as
Lemma 2.6 below shows.

To prove Lemma 2.6 we use the following result, which is given for the cases (α, β)
being either (1, 0) or (0, 1) in [4, Sec. 2]. Here we require the more general statement.

Lemma 2.5. Let (2.2) be an RAD, and let α, β ∈ C be such that |α| + |β| 6= 0.
Then the matrix αHm − βKm is of full column rank m.
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Proof. Consider auxiliary scalars α̂ = 1 and any β̂ ∈ C such that α̂hj+1,j −
β̂kj+1,j 6= 0 for j = 1, 2, . . . ,m. Multiplying the RAD (2.2) by α̂ and subtracting

β̂Vm+1Km from both sides gives

(α̂A− β̂I)Vm+1Km = Vm+1

(
α̂Hm − β̂Km

)
. (2.9)

The choice of α̂ and β̂ is such that α̂Hm − β̂Km is an unreduced upper-Hessenberg
matrix, and as such of full column rank m. In particular, the right-hand side of (2.9) is
of full column rank m. Thus, the left-hand side, and in particular Km, is of full column
rank. This proves the statement for the case α = 0. For the case α 6= 0, consider
α̂ = α and β̂ = β in (2.9). If αHm − βKm is unreduced, then it is of full column
rank and the statement follows. If, however, αHm − βKm is not unreduced, then we
have αhj+1,j − βkj+1,j = 0 for at least one index j ∈ {1, 2, . . . ,m}. Equivalently,
β/α = hj+1,j/kj+1,j ; that is, β/α equals the jth pole of (2.2) and hence αA − βI is
nonsingular. Finally, since Vm+1 and Km are of full columns rank, the left-hand side
of (2.9) is of full column rank. It follows that αHm − βKm is of full column rank as
well, and the proof is complete.

Lemma 2.6. Let (2.4) be an orthonormal RAD. The space R(Vm) is A-invariant
if and only if there exists an eigenpair of A of the form (ϑ, Vmt).

Proof. Let us assume that AVmt = ϑVmt , with t 6= 0. We can extend (2.4) into

AVm
[
Km−1 t

]
= Vm

[
Hm−1 ϑt

]
. (2.10)

If we can show that [Km−1 t ] is nonsingular, then (2.10) shows that R(Vm) is A-
invariant. It follows from Lemma 2.5 that Km−1 is of full column rank. Therefore, it
remains to show that t 6∈ R(Km−1). Let us, to the contrary, assume that t = Km−1z ,

for some nonzero vector z ∈ Cm−1. As (ϑ, Vmt) is an eigenpair of A, it follows
from (2.4) that ϑKm−1z = Hm−1z . This implies that Hm−1 − ϑKm−1 is not of full
column rank, which is in contradiction with Lemma 2.5.

Let us now summarize our findings from Theorem 2.4, eq. (2.8), and Lemma 2.6.
Proposition 2.7. Let (2.2) be an orthonormal RAD, and let (η/ρ,x ) be an

eigenpair of (Hm,Km). The continuation pair

(ηm/ρm, tm) ≡
(
η/ρ, γ−1[νmHm − µmKm]x

)
, (2.11)

with γ = xm(ρmhm+1,m−ηmkm+1,m), is optimal for (2.3). Alternatively, any optimal
continuation pair for (2.3) is, up to nonzero scaling of tm, of this form.

3. Near-optimal continuation pairs. While Proposition 2.7 characterizes op-
timal continuation pairs precisely, it requires the last column of (Hm,Km), which is
not available without computing vm+1 in the first place. Our idea in this section is

to employ a rough approximation (Ĥm, K̂m) ≈ (Hm,Km) to obtain a near-optimal
continuation pair. We then quantify the approximation accuracy that is required in
order to generate a well-conditioned rational Krylov basis. Some of the equations
from section 2 are restated for ease of reference.

3.1. The framework. Assume we are given an RAD of order j − 1, namely,

AVjKj−1 = VjHj−1. (3.1)

We seek a near-optimal continuation pair (ηj/ρj , tj) for expanding (3.1) into

AVj+1Kj = Vj+1Hj , (3.2)
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using the pole ξj = µj/νj . To this end we make use of an auxiliary continuation pair

(η̂j/ρ̂j , t̂j), the only requirement on which is to be admissible. For example, it could
be the one proposed by Ruhe [26]. Let us consider the associated linear system

(νjA− µjI)w = (ρ̂jA− η̂jI)Vj t̂j . (3.3)

The solution w could be used to expand the rational Krylov space we are constructing.
However, to obtain a near-optimal continuation pair we instead suggest to approxi-
mate the solution w ≈ ŵj+1. (The solution to (3.3) is labeled w , and not wj+1,
since wj+1 is reserved for (νjA − µjI)wj+1 = (ρjA − ηjI)Vjtj .) To make the whole
process computationally feasible, obtaining this approximation should be inexpen-
sive; see Remark 3.5. The pencil (Ĥj , K̂j) is then constructed as usual in the rational

Arnoldi algorithm, pretending that ŵj+1 was the true solution. As a result we obtain
perturbed Hessenberg matrices

K̂j =

[
Kj−1 k̂j

0T k̂j+1,j

]
and Ĥj =

[
Hj−1 ĥj

0T ĥj+1,j

]
, (3.4)

where

k̂j = νj ĉj− ρ̂j t̂j , ĥj = µj ĉj− η̂j t̂j , ĉj = V ∗j ŵj+1, and ĉj+1 = ‖ŵj+1−Vj ĉj‖2. (3.5)

Assume that (η̂/ρ̂, x̂ ) is an eigenpair of (Ĥj , K̂j) such that

ρ̂Ĥj x̂ − η̂K̂j x̂ = 0 and γ̂j := x̂j(ρ̂ĥj+1,j − η̂k̂j+1,j) 6= 0. (3.6)

Then a near-optimal continuation pair is given by

ηj/ρj ≡ η̂/ρ̂ and tj = γ̂−1j
(
νjĤj − µjK̂j

)
x̂ . (3.7)

Our goal in the next section is to evaluate the quality of such near-optimal con-
tinuation pairs within the rational Arnoldi algorithm. In particular, we provide an
upper bound on the condition number of the basis being orthonormalized, based on
the error ‖vj+1 − v̂j+1‖2.

3.2. Inexact RADs. We continue by introducing the residual

ŝj+1 = (νjA− µjI)ŵj+1 − (ρ̂jA− η̂jI)Vj t̂j . (3.8)

By (3.1), (3.4), and (3.8) we have an inexact rational Arnoldi decomposition (IRAD)

AV̂j+1K̂j = V̂j+1Ĥj + ŝj+1e
T
j , (3.9)

where V̂j+1 = [Vj v̂j+1] is orthonormal and

ŵj+1 = Vj ĉj + ĉj+1v̂j+1 with ĉj+1 6= 0. (3.10)

Multiplying (3.9) by νj and then subtracting µj V̂j+1K̂j from both sides provides

(νjA− µjI)V̆j+1K̂j = V̆j+1

(
νjĤj − µjK̂j

)
, (3.11)
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where

V̆j+1 =
[
Vj v̂j+1 + f̂j+1

]
, and

f̂j+1 = −k̂−1j+1,jνj(νjA− µjI)−1ŝj+1 = −ĉ−1j+1(νjA− µjI)−1ŝj+1.
(3.12)

Eq. (3.11) holds since the last row of νjĤj − µjK̂j is zero. We can also “add back”

µj V̆j+1K̂j to both sides of (3.11), and rescale by ν−1j to get

AV̆j+1K̂j = V̆j+1Ĥj . (3.13)

Finally, under the assumption that V̆j+1 is of full rank, (3.13) is a non-orthonormal
RAD, equivalent to the IRAD (3.9). Theorem 2.4 applied to (3.13) asserts that the

eigenvalues of
(
Ĥj , K̂j

)
are the roots of the rational function corresponding to the

vector v̂j+1 + f̂j+1. This discussion is summarized in the following theorem.
Theorem 3.1. Let the orthonormal RAD (3.1) and the auxiliary continuation

pair (η̂j/ρ̂j , t̂j) be given. Denote by ŵj+1 6∈ R(Vj) an approximate solution to (3.3).
If (3.4)–(3.6), (3.10) and (3.12) hold, and (3.13) is an RAD, then choosing the con-
tinuation pair (3.7) in line 3 of Algorithm 2.1 provides

wj+1 = v̂j+1 + f̂j+1 (3.14)

in line 4 of Algorithm 2.1.
The vector wj+1 is not necessarily orthogonal to R(Vj), but if ‖f̂j+1‖2 is “small

enough” it almost is, since the vector v̂j+1 is orthogonal to R(Vj). We make this
more precise in the following corollary.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. If ‖f̂j+1‖2 = 0, then

∠(wj+1, Vj) = π
2 . If 0 6= ‖f̂j+1‖2 < 1, then

∠(wj+1, Vj) ≥ arctan
1− ‖f̂j+1‖2
‖f̂j+1‖2

. (3.15)

Proof. By Theorem 3.1 we have wj+1 = v̂j+1 + f̂j+1, with VjV
∗
j v̂j+1 = 0. If

‖f̂j+1‖2 = 0, then wj+1 = v̂j+1 is orthogonal to R(Vj). If 0 6= ‖f̂j+1‖2 < 1, then

∠(wj+1, Vj) = arctan
‖v̂j+1 + f̂j+1 − VjV ∗j f̂j+1‖2

‖VjV ∗j f̂j+1‖2
.

The statement (3.15) now follows from the reverse triangle inequality and the mono-

tonicity of arctan, using the relation ‖f̂j+1 − VjV ∗j f̂j+1‖2 ≤ ‖f̂j+1‖2.

Note that Corollary 3.2 can be formulated even if ‖f̂j+1‖2 ≥ 1, but in this case
would provide no useful information. Before continuing with the analysis of our near-
optimal continuation strategy, let us remark on the choice of (η̂j/ρ̂j , t̂j).

Remark 3.3 (auxiliary continuation pairs). The authors in [22] consider the
rational Arnoldi algorithm with inexact solves, and suggest to use continuation pairs
(ηj/ρj , tj) such that (ηj/ρj , Vjtj) is an approximate eigenpair of A close to conver-
gence. As inexact solves are used within our framework to get a near-optimal continu-
ation pair, this observation also applies to the auxiliary continuation pair (η̂j/ρ̂j , t̂j).
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3.3. Condition number of the Arnoldi basis. As V̆j+1 = V̂j+1 + f̂j+1e
T
j+1,

with V̂ ∗j+1V̂j+1 = Ij+1, it follows from [13, Cor. 2.4.4] that

σmax(V̆j+1) ≤ 1 + ‖f̂j+1‖2 and σmin(V̆j+1) ≥ 1− ‖f̂j+1‖2. (3.16)

Composing these bounds for all indices j we are able to provide an upper bound on
the condition number κ(Wm+1) of the basis

Wj+1 :=
[
w1 w2 . . . wj+1

]
with w1 = b, j = 1, 2, . . . ,m,

which is constructed iteratively by Algorithm 2.1. The Gram–Schmidt orthogonaliza-
tion process is mathematically equivalent to computing the thin QR factorisation

Wj+1 = Vj+1

[
‖b‖2e1 Kjdiag(η`)

j
`=1 −Hjdiag(ρ`)

j
`=1

]
=: Vj+1Rj+1, (3.17)

where the first equality follows from (2.1). As already discussed in the introduction,
numerical instabilities may occur if κ(Wj+1) is too large.

Theorem 3.4. Let the assumptions of Theorem 3.1 hold for j = 1, 2, . . . ,m, and
let the orthonormal RAD (2.2) be constructed with Algorithm 2.1 using near-optimal
continuation pairs (ηj/ρj , tj) given by (3.6)–(3.7). Let R1 = I1, and Rj+1 be as

in (3.17). Assume that the scaled error f̂j+1 at iteration j satisfies ‖f̂j+1‖2 < 1. Then
for all j = 1, 2, . . . ,m we have

σmax

(
Wj+1

)
≤

j∏

i=1

(
1 + ‖f̂i+1‖2

)
=: σuj+1, and

σmin

(
Wj+1

)
≥

j∏

i=1

(
1− ‖f̂i+1‖2

)
=: σlj+1.

(3.18)

In particular, κ(Wm+1) ≤ σum+1/σ
l
m+1.

Proof. For any j = 1, 2, . . . ,m we have

Wj+1 = Vj+1Rj+1 =
[
VjRj v̂j+1 + f̂j+1

]
=
[
Vj v̂j+1 + f̂j+1

] [
Rj ej+1

]
, (3.19)

with V ∗j v̂j+1 = 0, and ‖v̂j+1‖2 = 1. The proof goes by induction on j. For j = 1 the

statement follows from (3.19), (3.16), and the fact that [R1 e2] = I2.
Let us assume that (3.18) holds for j = 1, 2, . . . , ` < m. For the induction step we

consider the case j = ` + 1, and use the fact that, for any two conformable matrices
X and Y of full rank, there holds σmax(XY ) ≤ σmax(X)σmax(Y ) and σmin(XY ) ≥
σmin(X)σmin(Y ). Hence, (3.18) for j = ` + 1 follows from (3.19), the bound (3.16)
for [V`+1 v̂`+2 + f̂`+2], the fact that the singular values of R`+1 coincide with the
singular values of W`+1, and the observation

σmax

([
R`+1 e`+2

])
≤ σu`+1, and σmin

([
R`+1 e`+2

])
≥ σl`+1.

This last relation holds since the singular values of [R`+1 e`+2] are the singular

values of R`+1 with the addition of the singular value 1 ∈ [σl`+1, σ
u
`+1].

We now briefly comment on the results established in Theorem 3.4, the assump-
tions of which we assume to hold. If, for instance, ‖f̂j+1‖2 = 0.5, then σuj+1/σ

l
j+1 ≤
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Fig. 3.1: Evaluating the quality of the near-optimal continuation strategy. Left: We plot the

functions j 7→
(

1+‖f̂ ‖2
1−‖f̂ ‖2

)j
for three different values of ‖f̂ ‖2. Theorem 3.4 asserts these to be

upper bounds on κ(Wm+1) provided that far all j there holds ‖f̂j+1‖2 ≤ ‖f̂ ‖2. Right: We

plot the function ‖f̂j+1‖2 7→ arctan
1−‖f̂j+1‖2
‖f̂j+1‖2

, which provides a lower bound on ∠(wj+1, Vj).

3σuj /σ
l
j . That is, the bound σuj+1/σ

l
j+1 on the condition number κ(Wj+1) grows

by at most a factor of 3 compared to σuj /σ
l
j , which does not necessarily imply

κ(Wj+1) ≤ 3κ(Wj). It would imply that, if σmin(Wj) ≤ 1 ≤ σmax(Wj) holds true
(this observation is clear from the proof of Theorem 3.4). In Figure 3.1(a) we illus-

trate the upper bounds given by Theorem 3.4 for some particular values of ‖f̂j+1‖2.
Figure 3.1(b) visualizes the lower bound, provided by Corollary 3.2, on the angle

∠(wj+1, Vj). For example, for a rough approximation ŵj+1 that gives ‖f̂j+1‖2 = 0.5,
we have ∠(wj+1, Vj) ≥ π

4 .
Remark 3.5. If the poles of the rational Krylov space are fairly well separated

from the spectral region of A, a good approximate solution to (3.3) may be obtained
with a few iterations of a cheap polynomial Krylov method, like unpreconditioned FOM
or GMRES, or with a cycle of multigrid [27]. Computational examples of this situation
are given in sections 3.4, 5.1, and 5.2. When direct solvers are used within the rational
Arnoldi algorithm, it may even be worth solving (3.3) to full accuracy, as the most
costly computation is the analysis and factorization of each shifted linear system, which
is done at most once per pole. An example of this situation is given in section 5.3.

3.4. Numerical illustration. In Figure 3.2 we illustrate the effectiveness of
our near-optimal continuation framework. The matrix A is of size N = 1000, and it
is generated in MATLAB with A=-5*gallery(’grcar’,N,3). This is a nonnormal
matrix and its eigenvalues are shown in Figure 3.2(a), together with the m = 16 poles
used in this example. The poles are obtained using the RKFIT algorithm [4, 5] and
optimized for approximating exp(A)b, where the starting vector b has all its entries
equal to 1. (A similar example is considered in [4, Sec. 5.3].) Two experiments are
performed with this data, and they differ in the way the approximants ŵj+1, used
to obtain the near-optimal continuation pairs, are computed. Since the poles are
far away from Λ(A), we expect a few iterations of FOM to provide good approxi-
mants ŵj+1. To obtain each ŵj+1 we hence use a fixed number k of FOM iterations;
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(c) Approximating ŵj+1 with FOM(2).
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(d) Approximating ŵj+1 with FOM(3).

Fig. 3.2: Near-optimal continuation strategy on a nonnormal matrix A; see section 3.4.

this is referred to as FOM(k). In Figure 3.2(b) we plot the angles ∠(wj+1, Vj) and
the lower bound (3.15) at each iteration j = 1, 2, . . . ,m. Both FOM(2) and FOM(3)
are giving satisfactory results, with FOM(3) performing slightly better.

Figures 3.2(c)–3.2(d) show the condition numbers κ(Wm+1) of the bases as well as
the upper bounds from Theorem 3.4. Additionally, we provide a refined upper-bound
on κ(Wm+1). The refined bound can be derived in the same manner as the one from
Theorem 3.4, but using (3.20) below instead of (3.16). We remark that (3.20) imposes

a slightly more stringent condition on f̂j+1. We start by introducing the projection

êj+1 := V̂ ∗j+1f̂j+1 and noting that

V̆ ∗j+1V̆j+1 = Ij+1 + ‖f̂j+1‖22ej+1e
T
j+1 + ej+1ê

∗
j+1 + êj+1e

T
j+1 =: Ij+1 + Ej+1.

Directly from the definition of Ej+1 we have ‖Ej+1‖2 ≤ 2‖êj+1‖2 + ‖f̂j+1‖22. Finally,

under the assumption ‖f̂j+1‖2 <
√

2− 1, we deduce

σmax(V̆j+1) ≤
√

1 + 2‖êj+1‖2 + ‖f̂j+1‖22 =: σ̃uj+1/σ̃
u
j , and

σmin(V̆j+1) ≥
√

1− 2‖êj+1‖2 =: σ̃lj+1/σ̃
l
j ,

(3.20)
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with the σ̃uj+1 and σ̃lj+1 being defined recursively with initial values σ̃u0 = σ̃l0 = 1.

In both Figures 3.2(c)–3.2(d) we include the norms ‖f̂j+1‖2 and ‖êj+1‖2 for ref-

erence. With FOM(2), we have ‖f̂j+1‖2 ≈ 0.30 on average (geometric mean), and

the overall upper bound on κ(Wm+1) ≈ 1.51 is σum+1/σ
l
m+1 ≈ 2.30 × 104. The re-

fined upper bound that makes use of the projections êj+1 gives σ̃um+1/σ̃
l
m+1 ≈ 461,

which is about two orders of magnitude sharper. Using FOM(3) produces on av-

erage ‖f̂j+1‖2 ≈ 0.15. The condition number of the basis being orthogonalised is

κ(Wm+1) ≈ 1.20, while the upper bound provided by Theorem 3.4 is σum+1/σ
l
m+1 ≈

130. The refined upper bound based on (3.20) yields σ̃um+1/σ̃
l
m+1 ≈ 12. We observe

that the bounds get sharper as the error ‖f̂j+1‖2 gets smaller, and also that the two
bases Wm+1, computed using both the FOM(2) and FOM(3) near-optimal continua-
tion strategy, get better conditioned as the approximations ŵj+1 get more accurate.
In both examples the nonorthogonal bases are in fact remarkably well-conditioned.

Note that computing or estimating ‖f̂j+1‖2 may be too costly in practice. How-
ever, the main message of Theorem 3.4 and this numerical illustration is that rather
poor approximations ŵj+1 are sufficient to limit the growth of κ(Wm+1) considerably.
See also Figures 3.1–3.2.

4. Parallel rational Arnoldi algorithm. In this section we introduce a new
parallel variant of the rational Arnoldi algorithm based on near-optimal continuation
pairs. The parallelism we consider comes from generating more than one of the
basis vectors concurrently. Another possibility is to parallelize the involved linear
algebra operations, thought that might scale less favorably as the number of parallel
processes increases. Combining both parallelization approaches is also viable, and
our implementation supports this. Further comments about the implementation and
numerical examples are given in section 5.

4.1. High-level description of a parallel rational Arnoldi algorithm. The
aim of the parallel rational Arnoldi algorithm, outlined in Algorithm 4.2 and the
discussion below, is to construct an RAD for Qm+1(A, b, qm) using p > 1 parallel
processes. The basis is constructed iteratively, but unlike the sequential version, at
each iteration p > 1 vectors are computed simultaneously, one per parallel process
(with a possible exception of the last iteration if m is not a multiple of p). The poles
assigned to distinct parallel processes have to be mutually distinct, as otherwise we
would not obtain p linearly independent vectors to expand the rational Krylov space.

We assume a copy of the matrix A, the starting vector b, and the poles {ξj}mj=1

to be available to each parallel process. After the orthogonal basis vectors have
been constructed, they are broadcasted to the other parallel processes for use in the
following parallel iterations. This means that a copy of the basis Vj+1 is available to
every parallel process. We now go through Algorithm 4.2 line by line.

In line 2 of Algorithm 4.2 the starting vector b is normalized (on every parallel

process ` = 1, 2, . . . , p), providing the first basis vector v1 ≡ v
[`]
1 . We use the super-

script notation (·)[`] to denote that the quantity (·) belongs to the parallel process `.

If a quantity is sent to another parallel process ˆ̀ 6= `, a copy (·)[ˆ̀] = (·)[`] becomes

available to ˆ̀. The main part of the algorithm is the j-loop spanning lines 3–27,
where the remaining m vectors of the orthonormal basis are generated by p parallel
processes, which requires dmp e iterations. The variable s represents the order of the
RAD AVs+1Ks = Vs+1Hs constructed so far, and every parallel process has its own
copy of it. The variable p ≤ p equals p for all iterations j, except perhaps the last one
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Algorithm 4.2 Parallel rational Arnoldi for distributed memory architectures.

Input: A ∈ CN,N , b ∈ CN , poles {µj/νj}mj=1 ⊂ C\Λ(A), with m < M , and such that
the partitions {µkp+`/νkp+`}p`=1, for k = 0, . . . , bmp c − 1, and {µj/νj}mj=pbmp c+1,

where p is the number of parallel processes, consist of pairwise distinct poles.

Output: The RAD AV
[1]
m+1K

[1]
m = V

[1]
m+1H

[1]
m .

1. Let the p parallel processes be labelled by ` = 1, 2, . . . , p.

2. Set v
[`]
1 := b/‖b‖2.

3. for j = 1, . . . , dmp e do
4. Set s := (j − 1)p. The RAD AV

[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s holds.

5. Let p := min{p,m− s}.
6. if ` > p then
7. Mark processor ` as inactive. Applies to the case j = dmp e if p - m.
8. end if
9. Choose continuation pair (η

[`]
s+`/ρ

[`]
s+`, t

[`]
s+`) ∈ C× Cs+1.

10. Compute w
[`]
s+`+1 := (νs+`A− µs+`I)−1(ρ

[`]
s+`A− η

[`]
s+`I)V

[`]
s+1t

[`]
s+`.

11. Project c
[`]
s+1 := (V

[`]
s+1)∗w

[`]
s+`+1.

12. Update w
[`]
s+`+1 := w

[`]
s+`+1 − V

[`]
s+1c

[`]
s+1.

13. for k = 1, . . . , p do
14. if ` = k then
15. Compute c

[`]
s+`+1 := ‖w [`]

s+`+1‖2, and set v
[`]
s+`+1 := w

[`]
s+`+1/c

[`]
s+`+1.

16. end if
17. Broadcast v

[`]
s+k+1 from parallel process k.

18. if ` = k then
19. Let c

[`]
s+`+1 := [ (c[`]

s+1)
T
c
[`]
s+2 ... c

[`]
s+`+1 ]T , and t

[`]
s+` := [ (t [`]s+`)

T
0
T ]T ∈ Cs+`+1.

20. Form k
[`]
s+` := νs+`c

[`]
s+`+1 − ρ

[`]
s+`t

[`]
s+`, and h

[`]
s+` := µs+`c

[`]
s+`+1 − η

[`]
s+`t

[`]
s+`.

21. else if ` > k then
22. Project c

[`]
s+k+1 := (v

[`]
s+k+1)∗w

[`]
s+`+1.

23. Update w
[`]
s+`+1 := w

[`]
s+`+1 − c

[`]
s+k+1v

[`]
s+k+1.

24. end if
25. Broadcast k

[`]
s+k and h

[`]
s+k from parallel process k.

26. end for (orthogonalization loop)
27. end for (main loop)

where p = m− s represents the number of remaining basis vectors to be constructed.
Parallel processes with labels greater than p do not perform the remaining part of the
last iteration of the j-loop.

The selection of continuation pairs in line 9 is discussed in subsection 4.2. We shall
only stress that the continuation pairs are of order s+ 1 for all `, and that we assume
the choice to be such that unlucky breakdown is avoided. Once the continuation

pairs have been computed, a new direction w
[`]
s+`+1 is computed the same way as in

the sequential rational Arnoldi algorithm; cf. line 10. The orthogonalization part,
however, is more involved and consists of two parts.

The first part of the orthogonalization process corresponds to lines 11–12, where

the newly computed vector w
[`]
s+`+1 is orthogonalized against R(V

[`]
s+1). The second
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part of the orthogonalization corresponds to the loop in lines 13–26, and involves
communication between the parallel processes. In this part the (partially) orthogo-

nalized vectors w
[`]
s+`+1 are gradually being orthonormalized against each other. As

soon as w
[k]
s+k+1 is normalized to v

[k]
s+k+1 in line 15, it is broadcasted to the remaining

active parallel processes in line 17. At this stage the parallel process k updates the
RAD from order s+ k − 1 to order s+ k (lines 19–20), while the active parallel pro-

cesses ` > k orthonormalize w
[`]
s+`+1 against the just received v

[`]
s+k+1; lines 22–23. The

final part, line 25, is to broadcast the update for the reduced upper-Hessenberg pencil
from parallel process k to the remaining active ones. The communication between
the p parallel processes involves O(p2) messages, which is not prohibitive in our case
as p is typically moderate (not exceeding p = 8 in our experiments in section 5).

Alternative implementation options. Depending on possible memory con-
straints, one may consider distributing the basis, instead of having copies on every

parallel process. In this case the p vectors V
[`]
s+1t

[`]
s+` could be formed jointly by all the

parallel processes, and once all are formed and distributed, the vectors w
[`]
s+`+1 may be

constructed independently. The Gram–Schmidt process can be adapted accordingly.
A shared memory implementation may follow the same guidelines of Algorithm 4.2,

excluding the broadcast statements. Also, the second part of the orthogonalization
may be performed jointly by assigning an (almost) equal amount of work to each
thread. (The index notation adopted in Algorithm 4.2 guarantees different threads
not to overwrite “each others” data.)

4.2. Locally near-optimal continuation pairs. We now discuss the choice
of continuation pairs for Algorithm 4.2. To this end we use the continuation matrix
Tm := [t1 t2 . . . tm] ∈ Cm,m, which collects the continuation vectors (padded
with zeros, if needed) of order j = 1, 2, . . . ,m as they are being used in the sequential
rational Arnoldi algorithm. Consequently, Tm is an upper triangular matrix. For the

parallel rational Arnoldi algorithm, we order the continuation vectors t
[`]
s+` increasingly

by their indices s + `, obtaining again an upper triangular matrix. In the parallel
case there are, however, further restrictions on the nonzero pattern of Tm, as can be

observed in Figure 4.1. There we display three canonical choices for t
[`]
s+`.

Perhaps the two most canonical choices for continuation vectors are

t
[`]
s+` = emax{1,s+1−p+`}, (4.1)

where each parallel process ` applies the transformation (νs+`A− µs+`I)−1(ρ
[`]
s+`A−

η
[`]
s+`I) to either the rescaled starting vector v

[`]
1 (for s = 0) or to the vector v

[`]
s+1−p+`

(for s > 0), and

t
[`]
s+` = es+1, (4.2)

where the same vector v
[`]
s+1 is used for all `. These two choices are illustrated with

the aid of the corresponding continuation matrices in Figures 4.1(b)–4.1(c) for the
case m = 12 and two distinct choices for p. The choice (4.1) was used in [28] with
infinity as the corresponding continuation root, while (4.2) has been introduced in [17,
section 6.5]. Another possibility for continuation vectors is to use Ruhe’s strategy [26]
locally on each parallel process;

t
[`]
s+` = Q

[`]
s+1es+1, where νs+`H

[`]
s − µs+`K [`]

s =: Q
[`]
s+1R

[`]
s (4.3)
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1(b) Parallel with p = 3.
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1(c) Parallel with p = 4.
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1(d) Parallel with p = 5.

Fig. 4.1: Canonical continuation matrices T12 for the sequential, 4.1(a), and parallel, 4.1(b)–
4.1(d), rational Arnoldi algorithm. The shaded area in the upper triangles of the continuation
matrices represents the allowed nonzero pattern, while the elements marked with × represent
a particular choice of nonzeros. For instance, the sequential continuation strategy in 4.1(a)
corresponds to tj = γjej 6= 0. Each of the three parallel variants corresponds to a canonical
choice described in section 4.2, with a varying number of parallel processes p > 1.

is a full QR factorization of νs+`H
[`]
s − µs+`K

[`]
s , i.e., Q

[`]
s+1 ∈ Cs+1,s+1 is unitary

and R[`]
s ∈ Cs+1,s is upper triangular with last row being 0T . The corresponding

continuation matrix Tm is shown in Figure 4.1(d) for the case when the poles on
each parallel process are being used repeatedly, which generates this curious nonzero
pattern. If the poles were not repeated cyclically, Tm would generally be populated
with nonzero elements in the allowed (shaded) region. These canonical choices for the
continuation vectors may be supplemented with continuation roots being either zero
or infinity, for example.

Let us now move on to discussing the admissibility and optimality conditions on
continuation pairs in the parallel case. By assumption, the p active parallel processes

at a given iteration j have mutually distinct poles {µs+`/νs+`}
p

`=1, where s = (j−1)p.

It is easy to show that if for every ` = 1, 2, . . . , p the continuation pair (η
[`]
s+`/ρ

[`]
s+`, t

[`]
s+`)

is admissible for AV
[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s , that is, if it is locally admissible for each par-

allel process, then no unlucky breakdown occurs during iteration j overall, assuming
exact arithmetic and s+ p < M . Hence, an example of admissible continuation pairs

for Algorithm 4.2 is (η
[`]
s+`/ρ

[`]
s+` 6≡ µs+`/νs+`, t

[`]
s+`), with t

[`]
s+` provided by (4.3). Un-

fortunately, obtaining p > 1 optimal continuation pairs concurrently is almost always
impossible.

Proposition 4.1. Let AV
[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s be mutually equal RADs for all

` = 1, . . . , p, and {µs+`/νs+`}
p

`=1 be mutually distinct poles, with p > 1 and s +

p < M . In general, there are no continuation pairs (η
[`]
s+`/ρ

[`]
s+`, t

[`]
s+`) of order s + 1

such that [V
[`]
s+1 w

[1]
s+2 . . . w

[p]

s+p+1], with the vectors w
[`]
s+`+1 given by line 10 of

Algorithm 4.2, is orthonormal.
Proof. The rational implicit Q theorem [4, Theorem 3.2] implies that the RADs

AV
[`]
s+1K

[`]
s = V

[`]
s+1H

[`]
s can be expanded essentially uniquely toAV

[`]
m+1K

[`]
m = V

[`]
m+1H

[`]
m ,

with m = s+ p. Theorem 2.4 provides the representation

v
[`]
s+`+1 = ps+`(A)qs+`(A)−1b, with ps+`(z) = det(zK

[`]
s+` −H

[`]
s+`).

Hence, the essentially unique basis vectors v
[`]
s+`+1 which are mutually orthogonal to

each other and to R(V
[`]
s+1) are represented by rational functions ps+`q

−1
s+` of type at
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most (s+`, s+`). (The type of a rational function is the ordered pair of its numerator

and denominator polynomial degrees.) For any (η
[`]
s+`/ρ

[`]
s+`, t

[`]
s+`), the vectors w

[`]
s+`+1

are rational functions in A times the starting vector b of type at most (s+1, s+1) for
all `, which does not match the type (s+ `, s+ `) when ` > 1. The only possibility to

obtain, e.g., w
[`]
s+`+1 = v

[`]
s+`+1 for ` > 1 would be if, by chance, ` − 1 of the (formal)

roots of ps+` canceled with ` − 1 poles of qs+`. By remarking that this may never
happen, for instance, for Hermitian A with real-valued poles outside the convex hull
of Λ(A), as the roots of pm+` are contained in the aforementioned convex hull (which
is easy to show), we conclude the proof.

For the sequential version we have just enough degrees of freedom to be able to
find an optimal continuation pair. For p > 1 there is a lack of degrees of freedom,
which gets more pronounced as p increases. This can also be interpreted visually in
Figure 4.1, where the shaded area decreases with increasing p.

Our proposal is thus to apply the near-optimal framework from section 3 locally
on each parallel process `, i.e.,

η
[`]
s+`/ρ

[`]
s+` ≡ η̂

[`]/ρ̂[`], t
[`]
s+` = γ̂−1s+`

(
νs+`Ĥ

[`]
s+1 − µs+`K̂

[`]
s+1

)
x̂ [`], (4.4)

where (Ĥ
[`]
s+1, K̂

[`]
s+1) approximates the pencil (H

[`]
s+1,K

[`]
s+1), that is, the extension

of (H [`]
s ,K

[`]
s ) with the pole µs+`/νs+`, and where (η̂[`]/ρ̂[`], x̂ [`]) is an eigenpair of

(Ĥ
[`]
s+1, K̂

[`]
s+1) such that γ̂s+` = x̂

[`]
s+1(ρ̂[`]ĥ

[`]
s+2,s+1 − η̂[`]k̂

[`]
s+2,s+1) 6= 0. This should

yield vectors w
[`]
s+`+1 close to orthogonal to R(V

[`]
s+1), thought nothing can be said a

priori about their mutual angles.
With such an approach we expect the condition number of the basis Wm+1 un-

dergoing the Gram–Schmidt orthogonalization process to increase compared to the
sequential case. However, as the growth of κ(Wm+1) gets substantially suppressed

with our near-optimal strategy (if the ‖f̂j+1‖2 are small enough), we hope that the
growth due to the parallelization is not prohibitive. Our numerical experiments in
section 5 confirm that our approach based on near-optimal continuation pairs is more
robust than the canonical continuation strategies. We end this section with a few
practical considerations.

Real-valued near-optimal continuation pairs. Recall that a near-optimal
continuation pair is formed from an eigenpair of (Hj ,Kj); cf. (2.11). Even if A, b and
the poles are real-valued, a near-optimal continuation pair may hence be complex,
which may be undesirable. This problem can be resolved easily: in particular, if j
is odd, there is at least one real-valued eigenpair of (Hj ,Kj), and it can be used to
construct a real-valued continuation pair (ηj/ρj , tj). Thus, for the parallel algorithm
with p being even, we have that s+1 = (j−1)p+1 is odd and hence a real-valued near-
optimal continuation pair exists. In our implementation for real-valued data we hence
construct near-optimal continuation pairs as in (2.11), but with (η/ρ,x ) replaced by
(<(η/ρ),<(x )), where (η/ρ,x ) is an eigenpair of (Hj ,Kj) such that =(η/ρ) = 0
or otherwise =(η/ρ)/<(η/ρ) → min. Therefore, for odd j or odd s + 1, we obtain
(<(η/ρ),<(x )) = (η/ρ,x ). One could also consider the constrained problem of finding
a best real-valued (ηj/ρj , tj), but we have not done this as the problem with complex
continuation pairs disappears with common (even) values of p.

Matrix pencils and nonstandard inner products. The proposed near-optimal
framework carries over to a rational Arnoldi variant working with a pencil (A,B) in-
stead of a single matrix A. The only modification is to replace (νjA− µjI)−1(ρjA−
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ηjI)Vjtj by (νjA − µjB)−1(ρjA − ηjB)Vjtj , and to ensure that µj/νj 6∈ Λ(A,B).
Furthermore, the analysis from section 3 can be adjusted to allow for a nonstandard
inner product, as the main results are based on the representation from Theorem 2.4,
which only assumes Vm+1 to be of full rank (not necessarily with columns orthonormal
in the standard inner product).

Reordering poles. The ordering of the poles {µj/νj}mj=1 is likely to influence
the condition number κ(Wm+1) of the basis Wm+1 being orthogonalized in the Gram–
Schmidt process. By (approximately) maximizing the distance between any two dis-

tinct poles from {µs+`/νs+`}
p

`=1 used simultaneously, one may obtain a better con-
ditioned basis Wm+1. We have not yet analyzed the numerical influence of the pole
ordering and leave this for future work.

5. Numerical experiments. In this section we report on three numerical ex-
periments from different application areas, each illustrating another aspect of our
parallel algorithms. The algorithms are implemented in C++, using Intel MKL’s LA-
PACK and BLAS for dense linear algebra operations, SparseBLAS for sparse-matrix
dense-vector multiplications, and PARDISO for the linear system solves (Intel MKL
version 10.0.1). Sparse matrices are stored in the CSR format. All tests are run on an
Intel Xeon CPU E56-2640, with 6 cores (12 threads), running at 2.5 GHz. We have
64 GiB of RAM at our disposal. The code is compiled with the Intel icpc compiler
(version 12.0.5) using the -O3 flag. The implementation of the MPI standard is Open
MPI (version 1.6). Both the sequential and the parallel rational Arnoldi algorithm
are linked with either the sequential or multi-threaded version of Intel MKL, giving
raise to the following four configurations:

variant algorithm Intel MKL
1× 1 Algorithm 2.1 sequential
1× p Algorithm 2.1 multi-threaded
p× 1 Algorithm 4.2 sequential
p× p̂ Algorithm 4.2 multi-threaded

In addition to our (parallel) high-performance C++ implementation1, we provide
a MATLAB implementation rat krylov of the rational Arnoldi algorithm in our
Rational Krylov Toolbox on http://rktoolbox.org [3]. The implementation is se-
quential, but it can simulate the parallel execution by using appropriate continuation
vectors; cf. Figure 4.1. Dedicated toolbox examples allow to reproduce the numerical
results in this section (except the timings) in a straightforward manner.

Given a computed rational Arnoldi decomposition AVm+1Km = BVm+1Hm,
where B may but does not have to be the identity matrix, we assess various con-
tinuation strategies using the following quantities.
orth Departure from orthonormality ‖Im+1 − 〈Vm+1, Vm+1〉‖2. Here, the notation

〈 · , · 〉 : CN,k × CN,n → Cn,k denotes the employed inner product and is
application dependent.

cond The condition number κ(Wm+1D) =
√
κ2(〈Wm+1D,Wm+1D〉) of the rescaled

basis Wm+1D, with respect to the inner product used. We have used MAT-
LAB’s fminsearch to determine a diagonal matrix D such that κ(Wm+1D)
is (approximately) minimized. This is because the stability of the Gram–
Schmidt procedure applied to Wm+1 is unaffected by column scaling of Wm+1.

space The space R(Vm+1) is a (rational) Krylov space for B−1A, where we assume

1
Available from http://www.maths.manchester.ac.uk/~berljafa/RAIN.zip.
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B to be nonsingular, if and only if S = B−1AVm+1−Vm+1〈B−1AVm+1, Vm+1〉
has rank at most one; see [29, Cor. 3.3]. We therefore look at the ratio σ2/σ1
of the second largest and the largest singular values of S. The smaller the
ratio is, the least R(Vm+1) deviates from a (rational) Krylov space.

In all our experiments the relative backward error

‖AVm+1Km −BVm+1Hm‖2/(‖A‖2‖Vm+1‖2‖Km‖2 + ‖B‖2‖Vm+1‖2‖Hm‖2)

of the computed RAD was always close to the level of machine precision, and is hence
not reported. When reporting the total CPU time, we provide a breakdown made up of
four components. The component mv+orth measures the elapsed time for lines 2, 11–

26, and the computation of (ρ
[`]
s+`A− η

[`]
s+`I)V

[`]
s+1t

[`]
s+` in line 10 of Algorithm 4.2. The

component solve measures the solution phases consisting of backward and forward
substitutions for the linear systems in line 10, while factorize measures the initial
symbolic and numerical factorizations. Finally, continuation measures the time
spent in line 9 of Algorithm 4.2. An analogous breakdown is given for Algorithm 2.1.

5.1. Exponential integration. Our first example relates to the modeling of
a transient electromagnetic field in a geophysical application [6]. We are given a

symmetric positive semidefinite matrix A ∈ RN,N and a symmetric positive definite
matrix B ∈ RN,N , and the task is to solve Be ′(t) + Ae(t) = 0, e(0) = b, for the
electric field e(t). The time parameters of interest are t ∈ T = [10−6, 10−3].

The approach suggested in [6] is to build a B-orthonormal rational Krylov basis

Vm+1 ∈ RN,m+1 of Qm+1(B−1A, b, qm), where B−1A is never formed explicitly, and
to extract Arnoldi approximants

fm(t) = ‖b‖BVm+1 exp(−tAm+1)e1, Am+1 = V Tm+1AVm+1

for all desired time parameters t ∈ T . Here ‖b‖B = (bTBb)1/2. The two test
problems in [6, Sec 5.1] are of sizes N = 27623 and N = 152078, and they correspond
to discretizations of a layered half space using Nédélec elements of orders 1 and 2,
respectively. Following [6, Table 1] we use p = 4 mutually distinct poles

{−2.76× 104,−4.08× 104,−2.45× 106,−6.51× 106},

each repeated cyclically 9 times, resulting in a rational Krylov space of order m = 36,
and guaranteeing Arnoldi approximants with (absolute) errors ‖e(t) − fm(t)‖B ≤
6.74× 10−8 for all t ∈ T , independent of the spectral interval of (A,B).

We test various parallel continuation strategies for computing the basis Vm+1,
namely, our near-optimal FOM(5) continuation strategy and the two canonical vari-
ants specified by (4.1) and (4.2). We also compare to the sequential approach using
again the FOM(5) strategy for predicting the next basis vector. The numerical results
are shown in Table 5.1 and Figure 5.1. We highlight that all these tests have been
run using classical Gram–Schmidt without reorthogonalization. The reasoning behind
this choice is that our FOM(5) continuation strategy tries to choose continuation
pairs which lead to very well-conditioned basis vectors and hence the Gram–Schmidt
procedure will work fine without reorthogonalization. This is justified by the condi-
tion number cond and the orthogonality measure orth in Table 5.1, which are both
much better with the parallel FOM(5) strategy than they are with the canonical
variants (4.1) and (4.2).

We observe that for variant (4.1) the space R(Vm+1) deviates significantly from
a rational Krylov space (column space). This instability in computing the rational
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Table 5.1: Numerical quantities associated with the transient electromagnetics problems from
section 5.1 solved by various (parallel) rational Arnoldi variants.

GEOPHYS27623 GEOPHYS152078strategy
cond orth space cond orth space

p = 1, (3.7) 7.5×100 2.2×10−14 1.7×10−15 3.6×101 3.1×10−13 5.7×10−15

p = 4, (3.7) 9.1×102 4.2×10−5 3.5×10−14 7.5×103 3.2×10−1 6.3×10−13

p = 4, (4.1) 9.6×109 1.9×101 2.1×10−7 6.7×109 1.8×101 8.5×10−7

p = 4, (4.2) 1.9×103 9.4×10−1 2.8×10−14 1.8×103 1.1×100 1.2×10−13

10−310−410−510−6

t

10−12

10−10

10−8

10−6

10−4

FOM(5) seq.

FOM(5)

(4.1)

(4.2)

(a) GEOPHYS27623: Error ‖e(t)− fm(t)‖B .

10−310−410−510−6

t

10−12
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10−6

10−4

(b) GEOPHYS152078: Error ‖e(t)− fm(t)‖B .
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(c) GEOPHYS27623: CPU timings.

[1×1] 1×1 [1×4] 4×1 [1×8] 4×2
0

10

20

30

40

50

60

ti
m

e
[s

]

100%

122%

41%
30% 33%

21%

mv + orth

solve

continuation

factorize

(d) GEOPHYS152078: CPU timings.

Fig. 5.1: Numerical results for the transient electromagnetics examples from section 5.1.

Krylov basis affects the accuracy of the extracted Arnoldi approximants, as can be seen
in Figures 5.1(a)–5.1(b), where we plot the B-norm errors ‖e(t)−fm(t)‖B as a function
of the time parameter t. While our parallel FOM(5) strategy yields approximants of
approximately the same accuracy as the sequential FOM(5) variant, the errors of the
approximants computed with (4.2) and in particular (4.1) are larger.
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(a) (Approximate) transfer function response.

p cond orth space

1 1.2×103 3.5×10−12 1.0×10−13

2 1.0×104 2.7×10−10 1.8×10−11

4 4.8×102 8.2×10−12 2.2×10−13

8 2.0×103 1.3×10−10 2.6×10−12

12 6.6×103 7.5×10−8 9.8×10−12

24 5.1×104 1.6×100 6.7×10−11

(b) Numerical quantities.

Fig. 5.2: Inlet example described in section 5.2.

In Figures 5.1(c)–5.1(d) we report the CPU timings (averaged over 50 runs) for
our C++ implementations. The first bar labeled [1× 1] corresponds to the sequential
algorithm run using the continuation strategy (4.2). We find that the computationally
most costly parts are the four matrix factorizations (one factorization for each of the
four distinct poles), and the solution phases consisting of the 4 × 9 backward and
forward substitutions. Some speedup is achieved by using four threads to factorize
and solve with each system one after the other; note the reduction in computation
time when going from [1× 1] to [1× 4] in our notation. However, it is apparent that
even more speedup is obtained by using a single core to factor and solve, but to do this
with four matrices simultaneously (this corresponds to the 4 × 1 case), even though
our near-optimal FOM(5) continuation strategy adds significant computational cost.

Further reduction in computation time is achieved by combing both levels of
parallelism, i.e., factorizing and solving with all four matrices simultaneously using
two threads in each case (the 4 × 2 case which we have only timed for the larger
example). Let us also point out that the mv+orth portion is slightly bigger for the
4×1 case compared to the [1×4] case. This is mainly due to the added communication
between the parallel MPI processes within the 4× 1 variant. However, the difference
is not large and indicates that communication costs are negligible here.

5.2. Model order reduction. Our second example is the INLET problem from
the Oberwolfach Model Reduction Benchmark Collection [1], an active control model
of a supersonic engine inlet; see also [21]. There are two nonsymmetric matrices

{A,E} ⊂ RN×N , a block of vectors B ∈ RN×2, and a row vector cT ∈ R1×N in this
problem, where N = 11730. In this test we only use the first column of B, say b,
and consider the problem of approximating the transfer function H(s) = cT (sE −
A)−1b over a range of frequencies. To this end we choose a number of p poles being
distributed equidistantly over the interval i[0, 40] and repeated cyclically, until we
obtain a rational Krylov space of order m = 24. The gain |H(is)| of the full model as
well as the gains of the reduced models are shown in Figure 5.2(a). (The deviations
from the transfer function of the full system are not necessarily related to instabilities,
but also due to the distribution of the poles.)

In all cases we have used our FOM(5) near-optimal continuation strategy with
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classical Gram–Schmidt orthogonalization (without reorthogonalization). The table
given in Figure 5.2(b) shows how the condition number of the basis being orthogo-
nalized has the tendency to increase with the number of processors (albeit not mono-
tonically, which is partly due to the fact that different poles are used for the different
variants), and how the orthogonality measure deteriorates. This is a demonstration
of how increasing the level of parallelism leads to operations on more ill-conditioned
bases, but the level of ill-conditioning may still be acceptable for this application.

5.3. A complex non-Hermitian eigenvalue problem. Our last example is a
finite element discretization matrix of a three-dimensional waveguide (waveguide3D)
from The University of Florida Sparse Matrix Collection [7]. This non-Hermitian
matrix A is of size N = 21036 and has complex entries. Our aim is to compute a few
of the propagating wave modes associated with eigenvalues of A close to the interval
[0, 6× 10−3]. To this end we place p = 8 equidistant poles on this interval and repeat
them cyclically for eight times, thus building a rational Krylov space of order m = 64,
using modified Gram–Schmidt with reorthogonalization. From the computed rational
Krylov decomposition AVm+1Km = Vm+1Hm we extract harmonic Ritz pairs (see

e.g. [24]) with target σ = 3 × 10−3, i.e., we solve a generalized eigenvalue problem
K∗m(Hm − σKm)y = (ϑ − σ)K∗mKmy and use (ϑ, Vm+1Kmy) as approximations to
some of the eigenpairs of A. See Figure 5.3(a) for a visualization of the eigenvalues,
poles, and harmonic Ritz values.

As is typical for eigenvalue problems, the poles of the rational Krylov space are
close to the eigenvalues of A, and hence a continuation prediction using FOM is likely
to be unsuccessful. We therefore use the direct solver itself to predict the continuation
vectors, which doubles the number of linear system solves but the factorizations are
computed only once (per distinct pole). Figure 5.3(b) shows the harmonic Ritz resid-
uals with various continuation strategies discussed in this paper for p = 8 processors,
including our near-optimal continuation pair (4.4), which becomes optimal for p = 1
(i.e., the predicted basis vectors are already orthogonal to the previous vectors). The
timings are reported in Figure 5.4. We notice that due to the rather expensive con-
struction of near-optimal continuation pairs the [1×p] version is faster than the p×1
for p = 2, but already for p = 4 the situation is reversed as then p× 1 scales better.

We note that better results with all variants can be obtained by explicitly pro-
jecting the eigenvalue value problem with respect to the computed rational Krylov
basis, instead of using the quantities from the RAD. Such an explicit projection is,
however, undesirable because of the added computational cost.

strategy cond orth space

p = 1, (4.3) 1.6×103 9.8×10−16 1.8×10−13

p = 1, (2.11) 1.1×100 1.2×10−15 5.3×10−15

p = 8, (4.1) 2.5×1015 8.9×10−16 9.1×10−2

p = 8, (4.2) 6.8×108 8.4×10−16 3.0×10−8

p = 8, (4.3) 5.0×108 9.9×10−16 1.1×10−8

p = 8, (4.4) 2.1×104 1.0×10−15 7.3×10−12

Table 5.2: Numerical quantities for the 3D waveguide example from section 5.3.
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Fig. 5.3: Left: “Exact” eigenvalues of the waveguide problem and harmonic Ritz approxima-
tions with relative residual norms below 10

−8
extracted from a rational Krylov space of order

m = 64 with eight cyclically repeated poles, computed using the near-optimal parallel strategy
with p = 8 processors. Right: Residual norms of all m = 64 harmonic Ritz pairs computed
using different (parallel) strategies to compute the rational Krylov basis.
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Fig. 5.4: CPU timings for the 3D waveguide example from section 5.3.

6. Summary and future work. In the first half of the paper, sections 2–3, we
introduced and analyzed the new notion of continuation pairs (ηj/ρj , tj) used within
the sequential rational Arnoldi algorithm to extend the orthonormal basis Vj of a
rational Krylov space Qj(A, b, qj−1) by adding the new direction wj+1 = (νjA −
µjI)−1(ρjA − ηjI)Vjtj orthonormalized against R(Vj) in a Gram–Schmidt fashion.
This process is mathematically equivalent to computing a thin QR factorization of
Wm+1 :=

[
b w2 w3 . . . wm+1

]
= Vm+1Rm+1 and, if Wm+1 is ill-conditioned,

numerical problems may occur in finite precision arithmetic.

By choosing continuation pairs carefully the growth of κ(Wm+1) can be lim-
ited. In particular, in Proposition 2.7 we showed how to choose (ηj/ρj , tj) so that
Wm+1 = Vm+1 is already orthonormal. These continuation pairs are called optimal.
However, the construction of such optimal pairs requires the knowledge of vj+1, which
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is why we proposed in section 3 to consider near-optimal continuation pairs based on
approximations v̂j+1 ≈ vj+1. In Corollary 3.2 we provided a lower bound on the

angle ∠(wj+1, Vj) based on the norm ‖f̂j+1‖2 of the error f̂j+1 = v̂j+1 − vj+1. More-
over, with Theorem 3.4 we provided an upper bound on κ(Wm+1), again in terms of

‖f̂j+1‖2. These results show that rather poor approximations (e.g., ‖f̂j+1‖2 = 10−1)
can already reduce κ(Wm+1) significantly. It is worth noting that our analysis applies
to the polynomial Arnoldi algorithm as well. To the best of our knowledge, this is the
first time that an approach of this kind has been proposed.

The second half of the paper, sections 4–5, was devoted to the parallel rational
Arnoldi algorithm. In section 4.1 we described a generic parallel rational Arnoldi
variant for distributed memory architectures, and in section 4.2 we considered the
selection of continuation pairs. Unlike the sequential case, in the parallel case it
is generally impossible to choose continuation pairs so that Wm+1 is orthonormal;
see Proposition 4.1. We thus suggested using the (sequential) near-optimal contin-
uation strategy locally on each parallel process. Numerical experiments from three
different application areas were reported in section 5. The results indicate that our
near-optimal continuation strategy performs more robustly than other (canonical)
strategies, and how this affects the quality of the approximations, e.g., to f(A)b or
to some eigenpairs, extracted from these bases. The example from section 5.3 shows
that near-optimal continuation pairs can be beneficial for the sequential algorithm as
well; see Figure 5.3. In terms of computational efficiency, our experiments also showed
that parallelizing the rational Arnoldi algorithm, as opposed to parallelizing only the
involved linear algebra operations, leads to better scaling properties and ultimately
to a faster rational Arnoldi algorithm.

We now list some open questions that may be considered for future work from both
a theoretical and a practical point of view. The impact of the choice of auxiliary con-
tinuation pair (η̂j/ρ̂j , t̂j) may be further studied. The work presented in [22] may be
relevant for making progress in this direction. The question concerning (constrained)
real-valued near-optimal continuation pairs mentioned at the end of section 4.2 is also
interesting, as well as the question of what is the best pole ordering. Another open
question is that of formulating and solving (if possible) an optimization problem that
would give near-optimal continuation pairs which actually minimize κ(Wm+1) in the
parallel case. For p > 1 we have shown that κ(Wm+1) > 1 (strictly), but it is not
clear how “close to orthonormal” can Wm+1 be brought.
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[17] S. Güttel, Rational Krylov Methods for Operator Functions, PhD thesis, Institut für
Numerische Mathematik und Optimierung der Technischen Universität Bergakademie
Freiberg, Freiberg, Germany, 2010.

[18] , Rational Krylov approximation of matrix functions: Numerical methods and optimal
pole selection, GAMM-Mitt., 36 (2013), pp. 8–31.
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