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Abstract. Indefinite approximations of positive semidefinite matrices arise in various data anal-
ysis applications involving covariance matrices and correlation matrices. We propose
a method for restoring positive semidefiniteness of an indefinite matrix M0 that con-
structs a convex linear combination S(α) = αM1 + (1 − α)M0 of M0 and a positive
semidefinite target matrix M1. In statistics, this construction for improving an estimate
M0 by combining it with new information in M1 is known as shrinking. We make no
statistical assumptions about M0 and define the optimal shrinking parameter as α∗ =
min{α ∈ [0, 1] : S(α) is positive semidefinite}. We describe three algorithms for computing
α∗. One algorithm is based on the bisection method, with the use of Cholesky factoriza-
tion to test definiteness; a second employs Newton’s method; and a third finds the smallest
eigenvalue of a symmetric definite generalized eigenvalue problem. We show that weights
that reflect confidence in the individual entries of M0 can be used to construct a natural
choice of the target matrix M1. We treat in detail a problem variant in which a positive
semidefinite leading principal submatrix of M0 remains fixed, showing how the fixed block
can be exploited to reduce the cost of the bisection and generalized eigenvalue methods.
Numerical experiments show that when applied to indefinite approximations of correlation
matrices shrinking can be at least an order of magnitude faster than computing the nearest
correlation matrix.
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1. Introduction. Covariance matrices and correlation matrices constructed from
discrete sets of empirical data play a key role in many applications. These matrices are
symmetric positive semidefinite, with a correlation matrix also having unit diagonal.
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However, in practice the matrices obtained may lack definiteness due to missing or
asynchronous observations or by the nature of their construction, such as in stress
testing in finance or when correlations are determined within groups and then the
groups are joined together. To ensure the validity of the subsequent analysis the
indefinite approximation needs to be replaced by a valid covariance or correlation
matrix, which we call a replacement matrix. This restoration of definiteness is needed
in a very wide variety of applications, of which some recent examples include modeling
public health [8] and dietary intakes [36], determination of insurance premiums for
crops [12], simulation of wireless links in vehicular networks [37], reservoir modeling
[26], oceanography [32], and horse breeding [35].

The matrices arising in these applications are generally dense, with the order
ranging from the tens to the tens of thousands. Approaches to repairing an invalid
covariance matrix include computing the nearest positive semidefinite matrix in the
Frobenius norm, which amounts to shifting all the negative eigenvalues to zero while
keeping the eigenvectors fixed [15], and adding a small positive multiple of the iden-
tity to the matrix to make it positive semidefinite. For repairing invalid correlation
matrices a simple approach is to compute the nearest positive semidefinite matrix and
then to diagonally scale it to restore the unit diagonal. As with increasing the diago-
nal of an invalid covariance matrix, this approach may change the matrix more than
necessary. A widely used alternative is to compute the nearest correlation matrix to
the original matrix in the Frobenius norm [4], [18], [30].

In this paper we develop a new method to repair invalid covariance and correlation
matrices, inspired by an idea from statistics called shrinking. Shrinking has a long
history going back to the work of Stein beginning in the 1950s, and is widely used
in statistical estimation; see, for example, [6], [23], [24], [34], [38] and the references
therein. A basic idea of shrinking is to form a convex linear combination αM1 + (1−
α)M0 of two correlation or covariance matrices, where α ∈ [0, 1] is chosen based on
statistical considerations in order to obtain an estimator that has better properties
than the extremes M0 and M1.

Our use of shrinking differs from this standard usage in two respects.
1. For us, M0 is indefinite, not positive semidefinite, so it is not a covariance

matrix or a correlation matrix.
2. We make no statistical assumptions about M0 or M1 and choose α so that
αM1 + (1 − α)M0 is positive semidefinite based solely on information in the
matrices M0 and M1.

The possibility of using shrinking for restoring definiteness was mentioned by
Devlin, Gnanadesikan, and Kettenring [10, sec. 4.4] and also by Kupiec [21, sec. 5],
who suggests a “trial and error” way of choosing the shrinking parameter α. Rebonato
and Jäckel [33] criticize Kupiec’s suggestion on the grounds that it is expensive, since
each trial requires a full eigenvalue decomposition, that a target matrix must be
chosen, and that “there is no way of determining to what extent the resulting matrix
is optimal in any easily quantifiable sense.”

We present a shrinking method that overcomes the drawbacks pointed out by
Rebonato and Jäckel. We define an optimal shrinking parameter that produces a
minimal elementwise perturbation to M0 in the direction of the difference between
the target matrixM1 and the initial approximationM0. We propose three algorithms
for computing the optimal parameter, none of which requires repeated full eigenvalue
decompositions. We also show how a target matrix can be constructed in a natu-
ral way based on the confidence with which the elements of the given matrix are
known.
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Often, additional requirements are put on a replacement matrix, and in this
paper we focus on the case where a positive semidefinite leading principal submatrix
of an approximate correlation matrix is known to be exact and needs to be preserved.
To illustrate the importance of this specific problem variant, we next present two
applications where this requirement occurs: dealing with incomplete data sets and
correlation stress testing.

To see how keeping a block fixed naturally appears as a condition in dealing
with incomplete data sets, suppose that the data from K observations of N random
variables is collected in a matrix X ∈ R

K×N and that some of the entries are missing.
Without loss of generality, we can permute the columns of X so that there are no
missing elements in the first m columns. The pairwise deletion method [25, sec. 2.2],
which in calculating the correlation between a pair of vectors uses only the components
available in both vectors, leads to an approximate sample correlation matrix of the
form

M0 =

[ m n

m A Y
n Y T B

]
∈ R

N×N ,

where A ∈ R
m×m is a valid correlation matrix since it contains the exact correlations

between variables 1 : m, which have no missing observations. In contrast, Y ∈ R
m×n

and B ∈ R
n×n, with m + n = N , contain approximate correlations because their

elements are computed from an incomplete data set. The matrix M0 is symmetric
with unit diagonal and off-diagonal elements in [−1, 1], but there is no guarantee that
it is positive semidefinite. Our goal is to modify M0 to make it positive semidefinite
while preserving the unit diagonal and the (1, 1) block A. We take as the target the
matrix M1 = diag(A, I), for which the optimal α can be interpreted as the minimal
relative change applied uniformly to all unfixed elements of M0.

Stress testing is a method used in finance to explore the impact on a financial
instrument of pushing risk parameters toward more extreme levels. In correlation
stress testing [11], [29] we have a valid correlation matrix

C =

[
C11 C12

CT12 C22

]
∈ R

N×N ,

where C11 and C22 are correlation matrices corresponding to a first and second group
of assets and C12 is the cross-group correlation matrix, and wish to modify it by
replacing C22 with a new correlation matrix Ĉ22 that reflects changes to the second
group of assets. If the modified matrix is indefinite it needs to be replaced with a valid
correlation matrix, but the C11 block should remain unchanged since the first group
of assets was not affected. Again, shrinking can be applied, with M1 = diag(C11, I).

An application that generalizes keeping just one diagonal block fixed is risk ag-
gregation [1], [20]. Here, diagonal blocks of a global covariance or correlation matrix
represent individual markets and these can be individually updated with more re-
fined local forecasts. Replacing the old diagonal blocks with the new ones can result
in the global matrix becoming indefinite, so the covariances or correlations in the
off-diagonal blocks have to be readjusted while keeping the new diagonal blocks un-
changed. Shrinking can be used to solve this problem by selecting as target the matrix
comprised of the new diagonal blocks and the optimal α can again be interpreted as
the minimal relative change applied uniformly to all unfixed elements of the global
matrix.
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The paper is organized as follows. In the next section we define the shrinking
problem, characterize the solution, and discuss the choice of target matrix. We present
three methods to compute the optimal shrinking parameter in section 3: one based
on the bisection method, a second based on Newton’s method, and a third that
solves a symmetric definite generalized eigenvalue problem. In section 4 we explain
how weights can be incorporated into the choice of a target matrix. In section 5 we
focus on restoring the definiteness of a correlation matrix while preserving a specified
positive semidefinite leading principal submatrix. We show how the bisection and
generalized eigenvalue methods can be adapted to exploit the problem structure,
explain how the case of a singular fixed block can be reduced to the nonsingular
case, show how a lower bound on the smallest eigenvalue can be incorporated, and
describe how multiple fixed diagonal blocks can be treated. Numerical experiments
are presented in section 6, which include a comparison of shrinking with the solution
of the nearest correlation matrix problem. Concluding remarks are given in section 7.

2. The Shrinking Problem. Given a real symmetric indefinite matrix M0 of
order N our task is to modify M0 to make it positive semidefinite by computing a
convex linear combination ofM0 and a chosen positive semidefinite target matrixM1.
Hence we consider the matrix

(2.1) S(α) = αM1 + (1− α)M0, α ∈ [0, 1].

Clearly, S(α) is symmetric for every α, S(0) = M0 is indefinite, and S(1) = M1 is
positive semidefinite. We define the optimal shrinking parameter as

(2.2) α∗ = min{α ∈ [0, 1] : S(α) is positive semidefinite }.
Since S(α) =M0+α(M1−M0), it is clear that we are seeking the elementwise minimal
change to M0 in the direction M1 −M0.

For another interpretation, note thatM0−S(α) = α(M0−M1), so ‖M0−S(α)‖ =
α‖M0 −M1‖. Since M0 −M1 is fixed, this means that S(α∗) is the nearest positive
semidefinite matrix to M0 of the form S(α), in any norm.

We now characterize the optimal shrinking parameter α∗. The following results
form the basis for the bisection and Newton methods for computing α∗ proposed in
sections 3.1 and 3.2.

Since a symmetric matrix is positive semidefinite if and only if its smallest eigen-
value is nonnegative, we focus on the function f : R → R defined by

(2.3) f(α) = λmin (S(α)) ,

where λmin denotes the smallest eigenvalue of a symmetric matrix. Note that f is a
continuous function, since the eigenvalues of a matrix are continuous functions of its
elements. Hence α∗ is characterized as

α∗ = min{α ∈ [0, 1] : f(α) ≥ 0 }.
Recall that a function g : R → R is concave if for every α1, α2 ∈ R and t ∈ [0, 1],

g
(
tα1 + (1− t)α2

) ≥ tg(α1) + (1 − t)g(α2).

In the following lemma we show that the function f defined in (2.3) is concave. In
the proof below we will use the characterization [19, Thm. 4.2.2] for symmetric C of
order N ,

(2.4) λmin(C) = min{ xTCx : x ∈ R
N , xTx = 1 }.
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Lemma 2.1. The function f in (2.3) is concave on R.
Proof. Let α1, α2 ∈ R and t ∈ [0, 1] be arbitrary and note that S(α) is an affine

function of α. Then we have

f(tα1 + (1 − t)α2) = λmin

(
S(tα1 + (1− t)α2)

)
= λmin

(
tS(α1) + (1− t)S(α2)

)
≥ λmin

(
tS(α1)

)
+ λmin

(
(1− t)S(α2)

)
by (2.4)

= tλmin

(
S(α1)

)
+ (1− t)λmin

(
S(α2)

)
= tf(α1) + (1 − t)f(α2).

Since f(0) < 0, f(1) = λmin (S(1)) = λmin (M1), and f is concave and continuous,
it follows that α∗ is the unique zero of f in (0, 1) if the matrix M1 is positive definite.
In principle we need to allow M1 to be positive semidefinite and singular, as can
happen in our correlation matrix application discussed in section 5, but as we show
in section 5.4 in that case the problem can be reduced to the case in which M1 is
positive definite.

When the only goal is to repair the indefiniteness of the matrix M0, the target
matrix M1 can be chosen as any positive semidefinite matrix. When M0 is an invalid
correlation matrix, which we take to mean that it is indefinite but has unit diagonal,
and we want S(α∗) to be a valid correlation matrix, then from (2.1) it follows that the
target matrix needs to be a correlation matrix, so that the unit diagonal is preserved.
Hence the simplest target in this case is the identity matrix.

In a setting with time-varying matrices a natural target is the (shrunk) matrix
from the previous time step.

3. Computing the Optimal Shrinking Parameter. We present three methods
to compute the optimal shrinking parameter α∗ whenM0 is symmetric indefinite and
the target matrix M1 is positive definite. Recall that in this case α∗ is the unique
zero in (0, 1) of f in (2.3).

3.1. Bisection Method. The simplest iterative method to find a zero of a function
on a given interval is the bisection method, which yields the following algorithm for
our problem.

Algorithm 3.1 (bisection method). Given the indefinite matrix M0 ∈ R
N×N ,

a positive definite target matrix M1 ∈ R
N×N , and a convergence tolerance tol this

algorithm uses the bisection method to compute the optimal shrinking parameter α∗
defined by (2.2).

1 α� = 0, αr = 1
2 while αr − α� > tol
3 αm = (α� + αr)/2
4 if S(αm) is not positive semidefinite
5 α� = αm
6 else
7 αr = αm
8 end
9 end

10 α∗ = αr.
In the last line of the algorithm we have set α∗ to αr rather than to the generally

more accurate value (α�+αr)/2 in order to ensure that S(α∗) is positive semidefinite.
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The main computational task in Algorithm 3.1 is testing for positive semidefinite-
ness. As argued in [15, sec. 5], an arbitrarily small perturbation can make a singu-
lar positive semidefinite matrix become positive definite and hence in finite precision
arithmetic testing for positive semidefiniteness is equivalent to testing for positive def-
initeness. One way to test for definiteness is to compute the eigenvalues of S(αm) and
check whether the smallest one is positive. A less expensive approach is to attempt
to compute the Cholesky factorization of S(αm) and declare the matrix positive defi-
nite if the process succeeds. Although it might seem numerically dangerous to apply
Cholesky factorization to a potentially indefinite matrix, this approach is numerically
stable [15, sec. 5]. Hence, we replace step 4 in Algorithm 3.1 with “if the Cholesky
factorization of S(αm) breaks down.”

The number of steps needed by Algorithm 3.1 is �| log2 tol|�, where the ceiling
function �α� denotes the smallest integer greater than or equal to α, reflecting the
linear convergence of the bisection method. However, in practical applications the
data is often accurate only to three or four significant digits, in which case the tolerance
tol will be of order 10−4 or larger and bisection will need less than 15 iterations. The
cost per step of Algorithm 3.1 depends on the number of successful elimination stages
in the Cholesky factorization of S(αm) and is at most N3/3 flops.

3.2. Newton’s Method. For a method with faster convergence than the bisec-
tion method it is natural to turn to Newton’s method, defined by αk+1 = αk −
f(αk)/f

′(αk). If λmin (S(α)) is a simple eigenvalue then f in (2.3) is differentiable
and [13, sec. 7.2.2]

(3.1) f ′(α) = x(α)TS′(α)x(α),

where x(α) is a unit norm eigenvector for λmin (S(α)) and, from (2.1), S′(α) =M1 −
M0. Note that S′(α) is independent of α.

Lemma 3.2. The Newton iteration for finding the zero of f(α) = λmin (S(α)),
where S(α) is defined in (2.1), can be written as

(3.2) αk+1 =
x(αk)

TM0x(αk)

x(αk)T (M0 −M1)x(αk)
,

where x(αk) is a unit norm eigenvector for λmin (S(αk)) and it is assumed that
λmin(S(αk)) is simple for each k.

Proof. Dropping the index k for simplicity, let us look at the quotient f(α)/f ′(α).
We have, from (2.1),

f(α) = λmin (S(α)) = x(α)TS(α)x(α) = x(α)T (M0 + α(M1 −M0)) x(α)

and, from (3.1),

f ′(α) = x(α)TS′(α)x(α) = x(α)T (M1 −M0)x(α).

Hence

αk+1 = αk − f(αk)/f
′(αk) = αk − αk − x(αk)

TM0x(αk)

x(αk)T (M1 −M0)x(αk)
,

which yields the result.
Recall that we are looking for α∗ ∈ (0, 1) such that f(α∗) = 0, where f is contin-

uous and concave with f(0) < 0 and f(1) > 0. The function f is monotone increasing
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on an interval [0, β] ⊆ [0, 1] that contains α∗, but β is not necessarily equal to 1 (and
it is possible that f decreases on [β, 1]). Therefore we have the geometrically obvious
result that for any α0 < α∗ the Newton iterates converge monotonically to α∗ and
hence the Newton method for our problem is globally and quadratically convergent.
In practice, we can set α0 = 0.

Taking all of this into consideration, we have the following algorithm.
Algorithm 3.3 (Newton method). Given the indefinite matrix M0 ∈ R

N×N , a
positive definite target matrix M1 ∈ R

N×N , and a convergence tolerance tol this algo-
rithm uses Newton’s method to compute the optimal shrinking parameter α∗ defined
by (2.2).

1 α0 = 0, k = 0
2 while not converged to within tolerance tol
3 Compute x(αk), a unit norm eigenvector for λmin (S(αk))

by tridiagonalization followed by bisection and inverse iteration.
4 Compute the new iterate αk+1 by (3.2).
5 k = k + 1
6 end
7 α∗ = αk.
A possible stopping test is |αk+1 − αk| ≤ tol, which corresponds to the bisection

stopping criterion.
The main computational work in the algorithm is computing a unit norm eigen-

vector for the smallest eigenvalue at each step, and of the many methods that compute
one or a few of the (extremal) eigenvalues and their corresponding eigenvectors we have
chosen tridiagonalization followed by the bisection method and inverse iteration [9,
sec. 5.3.4]. Other possibilities include the power method [13, sec. 8.2.1], orthogonal
iteration [13, sec. 8.2.4], and the Lanczos method [13, sec. 10.1].

Note that there is no guarantee that the computed α∗ from Algorithm 3.3 will in
fact define a positive semidefinite S(α∗) since the iterates stay to the left of α∗.

We do not consider the secant method. While its convergence rate is lower than
for the Newton’s method it has the general advantage that it avoids the need for
derivatives. However, for Newton’s method the cost of computing λmin (S(αk)) and
x(αk) is dominated by the cost of the tridiagonalization, so avoiding the computation
of x(αk) produces no significant saving.

3.3. Generalized Eigenvalue Problem. The third method for computing the
optimal shrinking parameter is essentially different from the root-finding methods
presented above and provides the most elegant description of α∗. Recall that we are
looking for the smallest α ∈ (0, 1) for which the matrix

(3.3) S(α) = αM1 + (1− α)M0 =: E − αF

is positive semidefinite. The matrix S(α) is a symmetric matrix for every α, which
means that it has real eigenvalues. Then α 
→ λ1 (S(α)) , . . . , α 
→ λN (S(α)) is a
continuous parametrization of the N eigenvalue functions λ1 ≥ · · · ≥ λN , and in this
notation, λN = f in (2.3).

If α is such that λk (S(α)) = 0 for some k then the matrix S(α) is singular which
means, by definition, that α is a generalized eigenvalue of the pencil E−αF . It follows
that α∗, the zero of λN , is a generalized eigenvalue of the matrix pencil E − αF , and
among all generalized eigenvalues in (0, 1), α∗ is the rightmost one.

The matrices E = M0 and F = M0 −M1 are symmetric, and the QZ algorithm
for computing the generalized eigenvalues of E − αF cannot exploit the symmetry.
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Table 3.1 Approximate costs, in flops, of k1 iterations of the bisection algorithm (Algorithm 3.1
with Cholesky factorization), k2 iterations of Newton’s method (Algorithm 3.3), and the
generalized eigenvalue-based algorithm (Algorithm 3.4), all for M0 of size N .

Bisection Newton Generalized eigenvalue

k1N3

3

4k2N3

3
3N3

However, some symmetric pencils, known as definite pencils, can be transformed into
pencils in which one of the matrices is positive definite, and there are algorithms for
attempting to find such a transformation [5], [14]. In our case, it is trivial to obtain
a definite pencil. We write

S(α) = (1 − α)

(
α

1− α
M1 +M0

)

and, since α∗ < 1, S(α) is singular precisely at the generalized eigenvalues of the
definite pencil M0 − μM1, where μ = α/(α − 1). We find α∗ by computing the
smallest generalized eigenvalue of this pencil. To do so we transform it to a standard
symmetric eigenvalue problem C − μI, where C = R−TM0R

−1 and M1 = RTR is the
Cholesky factorization ofM1; see, for example, [7]. To compute the smallest eigenvalue
of the matrix C we use tridiagonalization followed by the bisection method.

The algorithm can be summarized as follows.
Algorithm 3.4 (generalized eigenvalue method). Given the indefinite matrix

M0 ∈ R
N×N and a positive definite target matrix M1 ∈ R

N×N , this algorithm uses
the generalized eigenvalue interpretation to compute the optimal shrinking parameter
α∗ defined by (2.2).

1 Compute the Cholesky factorization M1 = RTR.
2 Form C = R−TM0R

−1 by multiple right-hand side triangular solves.
3 Find μ∗, the smallest eigenvalue of C, by tridiagonalization followed by

bisection.
4 α∗ = μ∗/(μ∗ − 1).

3.4. Comparison. Table 3.1 summarizes the approximate costs in flops of the
three algorithms. Which method is the cheapest depends on the desired accuracy,
with relatively large values of tol (corresponding to low precision data) favoring the
bisection algorithm. The bisection algorithm also has the advantage of being the
easiest to implement and it guarantees a positive semidefinite solution.

Note that when M1 = I, the first two lines of Algorithm 3.4 are empty and the
cost reduces to 4N3/3 flops.

4. Introducing Weights. In practice, different elements of M0 may be known to
different levels of accuracy or confidence [2]. This can be reflected by introducing a
symmetric matrix W ∈ R

N×N of nonnegative weights wij ∈ [0, 1] and defining the
target matrix as M1 = W ◦M0, where ◦ is the Hadamard (elementwise) product.
Then

S(α)ij =
(
1 + α(wij − 1)

)
(M0)ij .

Therefore a weight wij = 1 signifies that the (i, j) element ofM0 must not be changed,
while a weight wij = 0 allows that element to be changed as much as necessary.
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Intermediate values wij ∈ (0, 1) put a greater restriction (for larger wij) or lesser
restriction (for smaller wij) on the relative amount by which the (i, j) elements ofM0

can change. The unit diagonal in correlation problems poses no difficulties as it is
simply obtained for W with a unit diagonal.

Weighting provides a natural answer to the question of how to choose the target
matrix: the target is based on the original information in M0 and the trust that can
be put in each individual entry. However, there is no guarantee that M1 obtained
this way is positive semidefinite, which is a requirement for a target matrix in the
shrinking method. If the target matrix turns out to be indefinite then the weights are
too restrictive and W should be modified.

Since weighting is reflected entirely in the target matrix M1, all the methods
from section 3 apply without change. This is in contrast to the nearest correla-
tion matrix problem in the Frobenius norm, where the so-called H-weighted problem
min{ ‖W ◦(M0−X)‖F : X is a correlation matrix } is much more challenging to solve
than the unweighted problem with wij = 1 [18], [31]. For example, the NAG code
nag_nearest_correlation_h_weight (g02aj) solves the H-weighted nearest corre-
lation matrix problem, but the documentation says that if the weights vary by several
orders of magnitude then the underlying algorithm may fail to converge [28].

5. Correlation Matrix with Fixed Block. We now consider an important special
case of weighting in which the given matrix M0 is an invalid correlation matrix and
has a positive semidefinite leading principal submatrix that must remain fixed. As
explained in section 1, this problem arises when a correlation matrix is formed from
incomplete data sets or through stress testing.

One approach is to replaceM0 by the nearest correlation matrix in the Frobenius
norm with a prescribed block fixed, which can be computed by a simple modification of
the alternating projections method from [18]. The modified algorithm and numerical
experiments with it can be found in [3], [25]. The algorithm is guaranteed to converge
to the unique solution of the problem but the convergence is at best linear and so it
can be slow.

We derive a new alternative based on shrinking. Recall from section 1 that we
have

(5.1) M0 =

[ m n

m A Y
n Y T B

]
∈ R

N×N , A a correlation matrix, bii = 1, i = 1: n,

and we wish for A and the unit diagonal of B to remain unchanged. Hence the (1, 1)
block of the target matrix M1 must equal A and the (2, 2) block must have a unit
diagonal. The target matrix

(5.2) M1 = diag(A, I)

is the simplest matrix that satisfies these conditions. We are looking for

(5.3) α∗ = min{α ∈ [0, 1] : f(α) ≥ 0 },
with f(α) = λmin (S(α)) and

(5.4) S(α) = αM1 + (1− α)M0 =

[
A (1− α)Y

(1− α)Y T αI + (1− α)B

]
.

In addition to the interpretation mentioned in section 2 that the resulting matrix
S(α∗) is the elementwise minimal change of M0 in the direction M1 −M0, here we
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0 1

0

α

λmin

(a) A positive definite

0 1

0

α

λmin

(b) A positive definite

0 1

0

α

λmin

(c) A singular

0 1

0

α

λmin

(d) A singular

Fig. 5.1 Plots of the function f(α) = λmin (S(α)) for S(α) in (5.4) for A positive definite in (a)
and (b) and positive semidefinite and singular in (c) and (d).

also have that α∗ is the minimal relative change applied uniformly to all the unfixed
elements of M0.

A desirable property is that if the rows and columns of A and of B are symmetri-
cally permuted then S(α∗) is permuted in the same way. It is easy to show that this
is the case, using the formulae in section 5.4.

We first assume that A is positive definite, so that we have a positive definite tar-
get matrix. The matrix S(α) has special structure: its leading positive definite block
A does not change with α and this can be very efficiently exploited in the bisection
method (Algorithm 3.1) and the generalized eigenvalue approach (Algorithm 3.4) to
compute α∗, as we show in the next two sections.

Having the fixed block A singular leads to significant changes to both the prob-
lem and the proposed methods for computing the optimal shrinking parameter, as
discussed further in section 5.4 and illustrated by the differing plots in Figure 5.1.

We now show how to modify the bisection and generalized eigenvalue methods to
exploit the fixed block.

5.1. Bisection Method. Let us look more closely at the Cholesky-based test for
definiteness in the case where S(α) is given by (5.4). If R =

[
R11 R12

0 R22

]
is the Cholesky

factor of S(α) then
1. R11 is the Cholesky factor of the fixed block A.
2. R12 is the solution of the multiple right-hand side triangular system RT11R12 =

(1− α)Y .
3. R22 is the Cholesky factor of αI + (1 − α)B −RT12R12.

Note that R11 is independent of α and so needs to be computed only once. Also,
since R12 = (1−α)R−T

11 Y , once we have computed the solution X of RT11X = Y then
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for each α we do not need to solve a linear system for R12, but can instead set R12 =
(1−α)X . Hence, to determine if the matrix S(α) is positive definite or not for a given
α we attempt to compute the Cholesky factor of the matrix αI+(1−α)B−(1−α)2XTX
(which of course is the Schur complement of A in S(α)).

Taking all this into account, our optimized bisection algorithm for the case when
A is positive definite is as follows.

Algorithm 5.1 (bisection method). Given the indefinite matrix M0 in (5.1)
with positive definite (1, 1) block A and a convergence tolerance tol, this algorithm
uses the bisection method with Cholesky factorization to compute the optimal shrinking
parameter α∗ defined by (5.3) for the target matrix (5.2).

1 α� = 0, αr = 1
2 Compute R11, the Cholesky factor of A.
3 Compute the solution X of RT11X = Y and form Z = XTX .
4 while αr − α� > tol
5 αm = (α� + αr)/2
6 T = αmI + (1− αm)B − (1 − αm)2Z
7 if the Cholesky factorization of T breaks down
8 α� = αm
9 else

10 αr = αm
11 end
12 end
13 α∗ = αr.
The cost of Algorithm 5.1 is at most m3/3+m2n+ n2m+ n3�| log2 tol|�/3 flops.

5.2. Generalized Eigenvalue Problem. Recall from section 3.3 that we are look-
ing for the smallest generalized eigenvalue of the definite pencil M0 − μM1, with M0

and M1 now given by (5.1) and (5.2). If A = RT11R11 is the Cholesky factorization
then

M0 −μM1 =

[
A− μA Y
Y T B − μI

]
=

[
RT11 0
0 I

]([
I R−T

11 Y
Y TR−1

11 B

]
− μI

)[
R11 0
0 I

]
.

Hence we obtain a standard symmetric eigenvalue problem for the matrix

(5.5) C =

[
I R−T

11 Y
Y TR−1

11 B

]
,

at the cost of one Cholesky factorization and one multiple right-hand side triangular
system solve.

In summary, we have the following algorithm.
Algorithm 5.2 (generalized eigenvalue method). Given the indefinite matrix

M0 in (5.1) with positive definite (1, 1) block A this algorithm uses the generalized
eigenvalue interpretation to compute the optimal shrinking parameter α∗ defined by
(5.3) for the target matrix (5.2).

1 Compute R11, the Cholesky factor of A.
2 Compute the solution X of RT11X = Y and form C from (5.5).
3 Find μ∗, the smallest eigenvalue of the matrix C, by tridiagonalization

(exploiting the identity block) followed by the bisection method.
4 α∗ = μ∗/(μ∗ − 1).
The cost of Algorithm 5.2 is at most m3/3 +m2n+ 4(m+ n)3/3 flops.
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The essential difference between Algorithm 3.4 and Algorithm 5.2 is that we need
the Cholesky factorization of M1 in the former but only that of A in the latter.

5.3. Enforcing a Lower Bound on the Smallest Eigenvalue. In applications it
may be required that a replacement correlation matrix is strictly positive definite.
When the (1, 1) block A is positive definite we therefore generalize the problem to

(5.6) αψ∗ = min{α ∈ [0, 1] : f(α) ≥ ψ := θλmin(A) },

where θ is a parameter. For θ = 0 we have the original problem. To obtain an upper
bound on the possible choices of θ we next show that the function f in the fixed block
case attains its maximum value at α = 1. Note that, since S(1) = diag(A, I), we have

(5.7) f(1) = λmin (S(1)) = min{λmin(A), 1} = λmin(A),

because λmin(A) ≤ 1 by (2.4) for any symmetric matrix with unit diagonal.
Lemma 5.3. For S(α) in (5.4) with A positive definite the function f defined by

(2.3) is nondecreasing on [0, 1].
Proof. Since f(0) < 0, f(1) = λmin(A) > 0, and f is concave and continu-

ous, it is sufficient to show that for every α ∈ [0, 1] we have f(α) ≤ f(1), that is,
maxα∈[0,1] f(α) = f(1).

From (5.4), since A is a leading principal submatrix of S(α), for every α we have,
using (2.4), λmin(A) ≥ λmin (S(α)) = f(α). Since f(1) = λmin(A) by (5.7), we have
f(α) ≤ f(1).

From the proof we have f(α) ≤ λmin(A). Therefore θ in (5.6) should be restricted
to [0, 1] and hence ψ ∈ [0, λmin(A)].

Clearly, finding αψ∗ is equivalent to finding the minimal α such that the matrix

(5.8) Sψ(α) = S(α)− ψI

is positive semidefinite, and since fψ(α) = λmin (Sψ(α)) = f(α)−ψ it follows that fψ
has all the same properties as f : it is a concave and nondecreasing function on [0, 1].

With Aψ = A− ψI and Bψ = B − ψI, we can write Sψ(α) from (5.8) as

Sψ(α) =

[
Aψ (1− α)Y

(1− α)Y T α(1 − ψ)I + (1− α)Bψ

]
.

For ψ < λmin(A) the matrix Aψ is positive definite and with only minor changes the
methods from sections 5.1 and 5.2 for computing α∗ in (5.3) can be used to compute

αψ∗ in (5.6).
The extreme case, when θ = 1, significantly changes the nature of the problem.

Here we are asking that α∗ is such that λmin(S(α∗)) = λmin(A) and it follows that the
matrix Aψ is singular and positive semidefinite. In this case, α∗ = 1 might be the only
solution or all values on the interval [α∗, 1], with α∗ < 1, might be solutions. These two
cases are illustrated in plots (c) and (d) of Figure 5.1, with A there representing Aψ.

In the next section we discuss the problems, both theoretical and computational,
that arise from the singularity of the leading block in S(α).

5.4. Singular A. We now suppose that A in (5.1) is positive semidefinite and
singular. For the bisection method, none of the computational savings discussed in
section 5.1 is now applicable, since they were derived under the assumption that A is
positive definite. We still have the basic Algorithm 3.1, but f may now be zero on an
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interval [α∗, 1] (see Figure 5.1(d)). In this case we cannot use the standard Cholesky
factorization, since its success or failure for a singular positive semidefinite matrix
is unpredictable. Instead we need to use the Cholesky factorization with complete
pivoting. If the factorization runs to completion with positive pivots we declare the
matrix positive semidefinite. If the factorization terminates with a nonpositive pivot,
we declare the matrix positive semidefinite if the norm of the remaining block Sk
(the Schur complement) satisfies ‖Sk‖ ≤ cnu‖A‖, where cn is a constant and u is the
unit roundoff, and indefinite otherwise. A weakness of this approach is that cn could
potentially have to be of order 4n−1 in order to not misdiagnose a positive semidefinite
matrix as indefinite [16], [17, sec. 10.3.2].

The case of an interval of zeros is not problematic for the Newton method. How-
ever, the method might run into difficulties when α = 1 is the only solution and the
function f is slowly increasing near that point, because then the computed iterates
might leave the [0,1] bracket. Therefore the Newton method should be safeguarded.

The most severe difficulties arise in the generalized eigenvalue method. If A is
singular then M1 is singular and we no longer have a definite pencil; moreover, if f
has infinitely many zeros then the pencil (3.3) is singular, which means that every α
is a generalized eigenvalue and we cannot characterize α∗ as before.

Our preferred way to handle the case of singular A is to employ a deflation method
that reduces the problem to the nonsingular case. As a bonus, this analysis also allows
us to distinguish the case when f has infinitely many zeros in [0, 1] from the case when
its only zero is 1.

Since A is singular and positive semidefinite it has the eigenvalue decomposition
A = QDQT , where Q is orthogonal and D = diag(0, D+), with D+ a nonsingular
diagonal matrix of size r = rank(A) containing all the positive eigenvalues of A. Then

S(α) = α

[
A 0
0 I

]
+ (1− α)

[
A Y
Y T B

]

=

[
Q 0
0 I

](
α

[
D 0
0 I

]
+ (1− α)

[
D QTY

Y TQ B

])[
Q 0
0 I

]T
= diag(Q, I)S̃(α) diag(Q, I)T ,

with

S̃(α) = α

⎡
⎢⎣ 0 0

0 D+
0

0 I

⎤
⎥⎦+ (1− α)

⎡
⎢⎣ 0 0

0 D+
QTY

Y TQ B

⎤
⎥⎦

=

⎡
⎢⎣ 0 0

0 D+
(1− α)QTY

(1− α)Y TQ αI + (1 − α)B

⎤
⎥⎦ .

A necessary condition for S̃(α) to be positive semidefinite is that the first m− r rows
of (1 − α)QTY are zero. If the first m − r rows of QTY are not zero then α∗ = 1.
Otherwise, α∗ < 1 and α∗ is the smallest α such that

S̃+(α) =

[
D+ (1− α)Z

(1 − α)ZT αI + (1− α)B

]

is positive semidefinite, where Z comprises the last r rows of QTY . Since the leading
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(1,1) block of this matrix is now positive definite, we can find α∗ by either of the

methods from sections 5.1 and 5.2 with S(α) replaced by S̃+(α).
Note that the condition that the first m − r rows of QTY are zero means that

each column of Y is in the column space of A.

5.5. Generalization to Multiple Fixed Blocks. The problem of this section gen-
eralizes naturally to applications where a large correlation matrix needs to be con-
structed from blocks, as in the risk aggregation problem described in section 1. Shrink-
ing can easily be used to solve this problem by choosing as target the matrix compris-
ing the diagonal blocks of the large matrix: M1 = diag(A11, A22, . . . , Akk). As in the
case of keeping just one block fixed, α∗ is characterized as the minimal elementwise
relative change in the cross-correlations.

When k = 2 it is easy to show that the optimized bisection algorithm is a simple
modification of Algorithm 5.1, where in step 6 the matrix T is now T = A22 − (1 −
αm)2Z. For optimal efficiency the matrix should be reordered, if necessary, so that
the larger of the two diagonal blocks is in the (1, 1) position. For the generalized
eigenvalue method, Algorithm 3.4 leads to computing the smallest eigenvalue of

C =

[
I Z
ZT I

]
,

where Z = R−T
11 Y R

−1
22 is formed by solving linear systems with the Cholesky factors

R11 of A11 and R22 of A22. Note that the required smallest eigenvalue of C is equal to
1−σ∗, where σ∗ is the largest singular value of the matrix Z, so instead of computing
the smallest eigenvalue of a matrix of orderm+n we can compute the largest singular
value of an m×n matrix. For k > 2, the general algorithms from section 3 should be
used.

When some of the diagonal blocks are singular, deflation analogous to that in
section 5.4 can be done by employing the eigenvalue decomposition of each singular
diagonal block.

6. Numerical Experiments. Our tests were carried out in MATLAB R2014a on
a machine with an Intel Core i7-4910MQ 2.90GHz processor and 16GB RAM.

We first compare the performance of our methods on a correlation matrix problem
with a fixed block. We generate M0 in (5.1) and M1 in (5.2) by forming A ∈ R

m×m

using the MATLAB function gallery(’randcorr’,m) and the elements of the blocks
Y ∈ R

m×n and B ∈ R
n×n are taken from the uniform distribution on [−1, 1], with

B symmetric and forced to have unit diagonal. The size N = m + n of M0 varies
from 300 to 1500 and the test matrices are split into three groups. In the first group
the matrices A and B (the diagonal blocks of M0) are of the same size, in the second
A is twice the size of B, and in the third B is twice the size of A. Unless specified
otherwise, we use tolerance tol = 10−6, which is small enough for most practical
applications.

We use the following algorithms.
1. bisection: Algorithm 3.1 with Cholesky factorization.
2. bisection fb: Algorithm 5.1, the optimized bisection algorithm for the fixed

block case.
3. newton: Algorithm 3.3. On each iteration the required eigenvector is com-

puted by tridiagonalization followed by the bisection method (with the same
tolerance as for the Newton iteration itself), using routines from the NAG
Toolbox for MATLAB Mark 24 [27].
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Table 6.1 Computation times in seconds for the three general algorithms and the two algorithms
optimized for the fixed block problem, for invalid correlation matrices of size m+ n with
fixed leading block of size m.

(m, n) bisection bisection fb GEP GEP fb newton

(150, 150) 0.0069 0.0028 0.0039 0.0028 0.0194
(300, 300) 0.0384 0.0091 0.0224 0.0147 0.1052
(450, 450) 0.1029 0.0206 0.0642 0.0399 0.3055
(600, 600) 0.2143 0.0435 0.1474 0.0895 0.6242
(750, 750) 0.3835 0.0815 0.2913 0.1819 1.4204
(200, 100) 0.0075 0.0017 0.0039 0.0031 0.0189
(400, 200) 0.0405 0.0058 0.0230 0.0170 0.1215
(600, 300) 0.1087 0.0121 0.0679 0.0472 0.3053
(800, 400) 0.2381 0.0227 0.1571 0.1093 0.7699
(1000, 500) 0.3848 0.0382 0.2744 0.1911 1.5115
(100, 200) 0.0067 0.0043 0.0035 0.0025 0.0166
(200, 400) 0.0308 0.0138 0.0180 0.0114 0.0827
(300, 600) 0.0908 0.0367 0.0528 0.0313 0.2531
(400, 800) 0.2068 0.0797 0.1304 0.0727 0.5445
(500, 1000) 0.3306 0.1426 0.2667 0.1588 1.1879

4. GEP: Algorithm 3.4, the algorithm based on solving a generalized eigenvalue
problem. The tridiagonalization and bisection are again done using the NAG
Toolbox.

5. GEP fb: Algorithm 5.2, the optimized generalized eigenvalue problem algo-
rithm for the fixed block case.

The computation times for the five methods averaged over 10 matrices of each
size are presented in Table 6.1. The average number of steps for newton varies from
7 to 10 and the bisection methods always take 20 steps.

The experiments confirm the merit of using the optimized versions of bisection
and the generalized eigenvalue method in applications where we keep a block fixed.
Newton’s method is the slowest of the three methods. GEP is a little faster than
bisection, while bisection fb is faster than GEP fb for m = n and m = 2n and of
similar speed for n = 2m.

To illustrate the effect of weighting, we consider an example with M0 and W
defined by

M0 =

⎡
⎢⎢⎢⎢⎣
1.000 0.900 0.450 0.300 0.225
0.900 1.000 0.900 0.450 0.300
0.450 0.900 1.000 0.900 0.450
0.300 0.450 0.900 1.000 0.900
0.225 0.300 0.450 0.900 1.000

⎤
⎥⎥⎥⎥⎦ , W =

⎡
⎢⎢⎢⎢⎣
1 1 0 0 0
1 1 0 0 0
0 0 1 0 1
0 0 0 1 0.5
0 0 1 0.5 1

⎤
⎥⎥⎥⎥⎦ .

The eigenvalues of M0 are, to the digits shown, −0.18, 0.05, 0.50, 1.27, 3.36, therefore
M0 is indefinite. We see that

M1 =W ◦M0 =

⎡
⎢⎢⎢⎢⎣
1.00 0.90 0.00 0.00 0.00
0.90 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.45
0.00 0.00 0.00 1.00 0.45
0.00 0.00 0.45 0.45 1.00

⎤
⎥⎥⎥⎥⎦ ,

with eigenvalues 0.10, 0.36, 1.00, 1.64, 1.90. Hence, M1 is a valid target matrix. Using
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bisection we obtain α∗ = 0.24 and

S(α∗) =

⎡
⎢⎢⎢⎢⎣
1.000 0.900 0.343 0.228 0.171
0.900 1.000 0.685 0.343 0.228
0.343 0.685 1.000 0.685 0.450
0.228 0.343 0.685 1.000 0.793
0.171 0.228 0.450 0.793 1.000

⎤
⎥⎥⎥⎥⎦ ,

with eigenvalues 0.00, 0.16, 0.52, 1.37, 2.95. Note that the elements corresponding to
weight wij = 1 (typeset in bold) are unchanged, as required by the interpretation of
weights.

To explore this example further, denote the elements ofM0 and S(α∗) by sij and
s′ij , respectively. Then s34 = 0.9 = s45, but since w34 = 0 and w45 = 0.5 the elements
s′34 and s′45 are not the same. The relative change in the (3, 4) element is

s34 − s′34
s34

= 0.24 = α∗ = α∗(1 − w34),

but that in the (4, 5) element is

s45 − s′45
s45

= 0.12 =
α∗
2

= α∗(1 − w45),

confirming that each element s′ij in S(α∗) was obtained by multiplying the corre-
sponding element sij in M0 by 1 + α∗(wij − 1).

In our next example, we use two invalid correlation matrices from the finance
industry. The matrix C1 is of order 1399 and the matrix C2 is of order 3120. We use
the identity matrix as the target in the shrinking method, thus we are not fixing any
off-diagonal elements. We compare the execution times of bisection and GEP with
that for computation of the nearest correlation matrix (NCM) to C1 and C2 by NAG
code nag_correg_corrmat_nearest (g02aa) which implements a Newton method
[4], [30]. We also use three further matrices constructed as block 2× 2 matrices with
diagonal blocks C1 and C1, C1 and C2, and C2 and C2, with remaining off-diagonal
elements from the random uniform distribution on [−1, 1]. Convergence tolerances of
both 10−3 and 10−6 are taken for bisection and g02aa, as well as for the bisection
part of GEP. The times are shown in Table 6.2, where N denotes the size of the matrix.
The shrinking solution is computed one to two orders of magnitude faster than the
NCM. It is clear that g02aa and GEP do not benefit significantly from a relaxed
tolerance, whereas the time for bisection is proportional to the logarithm of the
tolerance. The table also shows that the Frobenius norm distances from the original
matrix to the shrinking solution range from being similar to the distance to the NCM
to much larger than it.

Our final experiment provides some insight into how the Frobenius norm distance
from the original matrix to the shrinking solution compares with the distance to the
NCM when the smallest eigenvalue varies in size. We take forM0 a random symmetric
indefinite matrix with unit diagonal of size 500, constructed by a diagonal scaling of a
random orthogonal similarity applied to a diagonal matrixD; the diagonal elements of
D are generated from the uniform distribution on [0, 1] and half of them are multiplied
by −10−p for some p. We generate 10 random target correlation matrices M1 using
MATLAB function gallery(’randcorr’,500) and apply bisection. For each M0,
Table 6.3 shows the average shrinking parameter, the NCM distance, the maximum
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Table 6.2 Times in seconds to compute shrinking solution by bisection and GEP and NCM using
g02aa, for tolerances 10−3 and 10−6, and Frobenius norm distances to original matrix.

Time Distance

N bisection GEP g02aa shrinking NCM

1e-3 1e-6 1e-3 1e-6 1e-3 1e-6

1399 0.17 0.28 0.14 0.13 3.66 4.37 321.03 21.03

3120 1.01 2.22 2.44 2.46 28.08 34.31 178.71 5.44

2798 0.70 1.61 1.69 1.69 44.24 50.88 1221.21 1089.51

4519 2.29 4.99 8.10 8.00 220.88 234.68 1761.50 1631.52

6240 7.13 17.50 21.64 21.84 447.32 449.91 2578.10 2446.80

Table 6.3 Comparison of the distances in the Frobenius norm of the NCM and the solution computed
by shrinking for matrices M0 of size 500 with varying order of magnitude for the smallest
eigenvalue.

Distance

λmin(M0) Avg. α∗ NCM shrinking (max) shrinking (I)

−4.6635e-1 6.0586e-1 5.5041e0 2.3506e1 1.0936e1

−4.2839e-2 9.7077e-2 5.0532e-1 3.5461e0 1.2367e0

−4.2466e-3 1.0144e-2 4.9173e-2 3.5748e-1 1.2255e-1

−4.0378e-4 9.4919e-4 4.6492e-3 3.3126e-2 1.1789e-2

−4.3278e-5 1.0900e-4 5.3498e-4 3.9736e-3 1.2897e-3

−4.0634e-6 1.0014e-5 4.5978e-5 3.4107e-4 1.3969e-4

distance for the shrinking solution, and the distance for shrinking with M1 = I. We
see that the distance with M1 = I is smaller than the worst case for the random
targets M1 and the shrinking distance is one order of magnitude larger than the
NCM distance. This experiment gives some feel for the trade-off between the speed
of shrinking versus the optimality of the NCM as measured by distance, at least for
the case where there are no fixed elements.

It is clear from the last two experiments that in applications where it is not
essential to compute the nearest correlation matrix, shrinking provides an attractive
and much faster alternative for restoring definiteness.

7. Concluding Remarks. The motivation for this work was the growing number
of applications in which matrices that are supposed to be (semi)definite turn out
to be indefinite. We aimed to develop an alternative to the popular, but relatively
expensive, approach of replacing the given matrix by the nearest positive semidefinite
matrix or nearest correlation matrix. We have shown that shrinking is an attractive
way of restoring definiteness. The method is flexible as it allows the practitioner to
choose a target matrix that best serves the needs of the application; all that is required
is to make sure that the chosen matrix is positive semidefinite or, in the correlation
matrix case, a correlation matrix. We have described how to define a target matrix
in the case of fixed diagonal blocks, as occur in stress testing, for example, and have
shown that shrinking can also take advantage of this structure. Weighting is a popular
feature of the nearest correlation matrix methods used in practice and we have shown
that with shrinking weights can be incorporated in the target matrix without any
effect on the solution techniques.
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Shrinking can be achieved in at least three different ways, all of which are straight-
forward to implement. Of our three shrinking methods we favor the bisection and
generalized eigenvalue methods. Bisection is perhaps preferable for convergence tol-
erances of 10−6 and larger, whereas the generalized eigenvalue method is preferable
for more stringent tolerances, since its cost is essentially independent of the tolerance.
Bisection also has the advantage that it produces a numerically semidefinite matrix
(one for which the Cholesky factorization succeeds).

The problems for which we believe shrinking is of interest range in size from order
10–100, as arise, for example, in foreign exchange trading, and which may need to be
solved thousands of times in a simulation, to orders in the thousands or millions, as, for
example, in bioinformatics [34]. In the case of invalid correlationmatrices an attractive
feature of shrinking is that it is at least an order of magnitude faster than computing
the nearest correlation matrix. This is due to the fact that computing the nearest
correlation matrix requires at least several full eigenvalue decompositions, while we
can completely avoid computing any eigenvalues in the bisection method and need to
compute only one for the generalized eigenvalue method. Therefore, in applications
where the computation time is the governing factor, shrinking is preferable.

An implementation of Algorithm 3.1 is available in Mark 25 of the NAG Li-
brary (2015) as the routine g02anf [28]. MATLAB implementations of all the al-
gorithms discussed here are available at https://github.com/higham/shrinking

and Python implementations, which do not require access to the NAG Library, are
available at https://github.com/vsego/shrinking. The matrices C1 and C2 can
be downloaded in MATLAB form from https://github.com/higham/matrices-

correlation-invalid.
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