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This thesis presents new theoretical results and algorithms for two matrix problems
with positive semidefinite constraints: it adds to the well-established nearest correla-
tion matrix problem, and introduces a class of semidefinite Lagrangian subspaces.

First, we propose shrinking, a method for restoring positive semidefiniteness of an
indefinite matrix M0 that computes the optimal parameter α∗ in a convex combination
of M0 and a chosen positive semidefinite target matrix. We describe three algorithms
for computing α∗, and then focus on the case of keeping fixed a positive semidefinite
leading principal submatrix of an indefinite approximation of a correlation matrix,
showing how the structure can be exploited to reduce the cost of two algorithms. We
describe how weights can be used to construct a natural choice of the target matrix and
that they can be incorporated without any change to computational methods, which
is in contrast to the nearest correlation matrix problem. Numerical experiments show
that shrinking can be at least an order of magnitude faster than computing the nearest
correlation matrix and so is preferable in time-critical applications.

Second, we focus on estimating the distance in the Frobenius norm of a symmetric
matrix A to its nearest correlation matrix ncm(A) without first computing the latter.
The goal is to enable a user to identify an invalid correlation matrix relatively cheaply
and to decide whether to revisit its construction or to compute a replacement. We
present a few currently available lower and upper bounds for dcorr(A) = ‖A−ncm(A)‖F
and derive several new upper bounds, discuss the computational cost of all the bounds,
and test their accuracy on a collection of invalid correlation matrices. The experiments
show that several of our bounds are well suited to gauging the correct order of mag-
nitude of dcorr(A), which is perfectly satisfactory for practical applications.

Third, we show how Anderson acceleration can be used to speed up the convergence
of the alternating projections method for computing the nearest correlation matrix,
and that the acceleration remains effective when it is applied to the variants of the
nearest correlation matrix problem in which specified elements are fixed or a lower
bound is imposed on the smallest eigenvalue. This is particularly significant for the
nearest correlation matrix problem with fixed elements because no Newton method
with guaranteed convergence is available for it. Moreover, alternating projections is a
general method for finding a point in the intersection of several sets and this appears to
be the first demonstration that these methods can benefit from Anderson acceleration.

Finally, we introduce semidefinite Lagrangian subspaces, describe their connection
to the unique positive semidefinite solution of an algebraic Riccati equation, and show
that these subspaces can be represented by a subset I ⊆ {1, 2, . . . , n} and a Hermitian
matrix X ∈ Cn×n that is a generalization of a quasidefinite matrix. We further ob-
tain a semidefiniteness-preserving version of an optimization algorithm introduced by
Mehrmann and Poloni [SIAM J. Matrix Anal. Appl., 33(2012), pp. 780–805] to com-
pute a pair (Iopt, Xopt) with M = maxi,j|(Xopt)ij| as small as possible, which improves
numerical stability in several contexts.
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Chapter 1

Introduction

Structures are the weapons of the mathematician.

—Nicolas Bourbaki

One maxim of numerical linear algebra is to exploit the structure of matrices when-

ever it appears. The key structure considered in this thesis is positive (semi)definiteness:

as it leads to remarkable gains in matrix computations it is one of the most desirable

structures a matrix can possess. For example, the triangular factor in the Schur de-

composition of a positive semidefinite matrix is a nonnegative diagonal matrix and the

complete set of eigenvectors is orthonormal; solving a positive definite linear system

using the Cholesky factorization is not only numerically stable but also achieved in

half the time and half the space of Gaussian elimination applied to a general sys-

tem [30, Chap. 2.7.1]; and definite generalized eigenvalue problems are equivalent to

standard symmetric ones, see, for example, [28]. It is therefore pleasing that positive

semidefinite matrices frequently appear in applications.

However, in several very different practical contexts a positive semidefinite matrix

is expected but an indefinite one is obtained, and a lot of effort has been invested

into resolving this issue. Modified Cholesky methods of Gill, Murray, and Wright [42,

Sec. 4.4.2.2], Eskow and Schnabel [102], [103], and Cheng and Higham [24] are used

to deal with indefinite Hessians encountered in nonlinear optimization, and a popular

way to correct an indefinite approximation to a correlation matrix (a real symmetric

positive semidefinite matrix with unit diagonal) is to replace it by the nearest correla-

tion matrix in the Frobenius norm. Chapters 3, 4, and 5 of this thesis are concerned

with definiteness in this setting and section 1.1 provides a detailed overview of the

nearest correlation matrix problem.

The continuous development of methods that both make use of the structure of

the input matrix and ensure the structure of the resulting matrix is of great interest

13



14 CHAPTER 1. INTRODUCTION

in many applications from statistics, physics, and engineering, as structure–preserving

algorithms are usually faster and more accurate, have reduced storage requirements

and computational cost, and, perhaps most importantly, they are expected to produce

more meaningful solutions. Namely, structure often comes from the physical properties

of the problem and it might get destroyed by rounding or truncation errors, leading

to a meaningless result. A beautiful illustration can be found in control theory, where

solving a stable Lyapunov equation A∗X + XA = −B∗B by the general Bartels–

Stewart method [9] does not guarantee that the solution X will be positive semidefinite

in finite arithmetic, but Hammarling’s method [49], [50], [106] solves the equation

directly for the Cholesky factor R of X, thus guaranteeing that X is semidefinite by

construction. Moreover, in some applications (cf. the references in [106]) the Cholesky

factor R is in fact more useful than X and overall, since for the 2-norm and condition

numbers we have κ(X) = κ(R)2, X may be significantly more ill-conditioned to work

with.

Lagrangian subspaces are an essential structure in control theory applications,

especially in the context of algebraic Riccati equations. In Chapter 6 we define La-

grangian semidefinite subspaces and develop a structure–preserving algorithm that

computes their optimal representation (basis) by working directly with the factored

forms of certain matrices; the motivation for this work is similar to the above. Relevant

preliminary results for this topic are described in section 1.2.

The next two sections give an introduction to the two central problems on which

the subsequent chapters of this thesis are built: the nearest correlation matrix problem,

and the representation of Lagrangian subspaces. The remaining sections in this chapter

present a detailed overview of the thesis and main research contributions, provide links

to the developed software, and describe the test matrix collections that were used in

the numerical experiments sections throughout the thesis.

1.1 The nearest correlation matrix problem

In many applications involving statistical modelling the first step in the analysis is to

compute the sample correlation matrix—a real symmetric positive semidefinite ma-

trix with unit diagonal—from empirical or experimental data [104, p. 25]. Indefinite
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approximations of correlation matrices appear in practice for a variety of reasons and

we next present a few key examples.

• Robust estimation.

The sensitivity of sample correlation matrices to outliers in the data has led

to the development of robust estimators. Devlin, Gnanadesikan, and Ketten-

ring [31] propose several possibilities and note that some methods that compute

the estimator in an elementwise manner can produce matrices with negative

eigenvalues.

• Missing data.

The pairwise deletion method (see, for example, [76, Sec. 2.2]) is a very common

way of calculating the correlation coefficient between a pair of vectors with miss-

ing values. It uses only the components available in both vectors and results in

an approximate sample correlation matrix that is symmetric with unit diagonal

and off-diagonal elements in [−1, 1], but there is no guarantee that it is positive

semidefinite.

• Expert judgement.

Some applications require assigning different values to certain elements of a valid

correlation matrix. For example, stress testing in finance [39], [93] is used to

explore the effect on a portfolio of pushing risk parameters toward extreme levels.

This is achieved by replacing specific elements of a valid correlation matrix by

new values, which may result in the new matrix becoming indefinite.

• Aggregation.

Aggregation methods used in large-scale resource assessment, for example in ge-

ology [16] or finance [4] combine reliable estimates of correlation matrices for

each group, say a geographical region or a market portfolio, into a global corre-

lation matrix. The combination is achieved either by embedding small, “within

group” correlation matrices as diagonal blocks into a crudely estimated global

correlation matrix, or by constructing a block-diagonal matrix from the individ-

ual group correlation matrices and filling out the off-diagonal blocks by assign-

ing the “between group” correlation coefficients according to expert judgement.
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Again, there is no guarantee that the newly constructed matrix is in fact positive

semidefinite.

To ensure the validity of the subsequent analysis the indefinite approximation needs

to be replaced by a valid correlation matrix. This restoration of definiteness is needed

in a very wide variety of applications, of which some recent examples include modelling

public health [29] and dietary intakes [120], determination of insurance premiums

for crops [41], simulation of wireless links in vehicular networks [124], analysis of

wind farms [40], reservoir modelling [81], reconstructing 20th century sea levels [96],

genetic evaluations for thoroughbred horse breeding [108], probabilistic forecasts of

streamflows [123], prediction of electricity peak-demand during the winter season in

England and Wales [86], analysis of carbon dioxide storage resources in the US [16],

and a modelling framework that combines different sources of variability in biological

systems [110].

The matrices arising in these applications are generally dense, with the order rang-

ing from the tens to the tens of thousands. A simple approach for repairing an invalid

correlation matrix , by which we mean a real symmetric indefinite matrix with unit

diagonal, is to compute the nearest positive semidefinite matrix in the Frobenius norm,

which amounts to shifting all the negative eigenvalues to zero while keeping the eigen-

vectors fixed (see Lemma 4.2.1), and then to diagonally scale it to restore the unit

diagonal. However, this approach may change the matrix more than necessary—we

analyze this in Chapter 4—and so a standard way to correct an invalid correlation

matrix A is to replace it by the nearest correlation matrix in the Frobenius norm, that

is, by the solution of the problem

min{ ‖A−X‖F : X is a correlation matrix }, (1.1)

where ‖A‖2F =
∑

i,j a
2
ij. Due to the convexity properties there is a unique global

minimizer which we denote by ncm(A).

The first method for solving (1.1) with guaranteed convergence was the alternating

projections method proposed by Higham [56], which iteratively projects onto the set

of matrices with unit diagonal and the convex cone of symmetric positive semidefi-

nite matrices, see Algorithm 5.3.1. Since each iteration of the alternating projections

method requires a full eigenvalue decomposition and the rate of convergence is at best
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linear, the method can potentially be very slow. A quadratically convergent Newton

method was subsequently developed by Qi and Sun [92], who work on the dual of (1.1)

and use the theory of strongly semismooth matrix functions to prove global conver-

gence. Significant speed up to the original Newton method is due to the refinements

introduced by Borsdorf and Higham [18]. Still, the alternating projections method

remains widely used in applications and in Chapter 5 we show that its convergence

can be accelerated significantly using Anderson acceleration.

The following variants of the problem (1.1) are common in practice and will also

be addressed in the work presented in this thesis.

• Fixed elements.

Missing data, correlation stress testing, risk aggregation, and large-scale resource

assessment were listed as examples of applications where an indefinite approxi-

mation of the correlation matrix might occur but they also naturally lead to the

fixed elements requirement, as we now explain.

In case of missing values, the data from k observations of n random variables

is collected in a k × n matrix X. We may assume that the missing entries do

not occur in the first n1 columns because we can permute them if necessary.

The pairwise deletion method [76, Sec. 2.2] results in a unit diagonal symmetric

matrix C of the form

C =


n1 n2

n1 A Y

n2 Y T B

 ∈ Rn×n.

The leading block A is positive semidefinite (hence, a correlation matrix) because

it is constructed from the columns of X that have no missing values but if C

is indefinite it needs to be replaced with a valid correlation matrix. Since the

correlations in A are considered exact we wish to replace C by a valid correlation

matrix with this block unchanged.

In a variant of correlation stress testing [39], [93] the assets are split into two

groups. Their correlation matrix can then be block-partitioned as

C =

C11 C12

CT
12 C22

 ∈ Rn×n,
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where the inter-group correlations correspond to the diagonal blocks C11 and

C22, and the off-diagonal block C12 carries the cross-group correlations. A stress

test replaces the block C22 with a new correlation matrix Ĉ22. If this results in an

indefinite modified matrix C we can again compute its replacement correlation

matrix, but the C11 block should remain unchanged since the first group of assets

was not affected.

In risk aggregation [4], [64] and large-scale resource assessment [16] we have a

generalization of the above constraint, where in a global block-correlation matrix

more diagonal blocks get replaced by new correlation matrices. If this results in

the indefiniteness of the global matrix we must restore it while keeping the new

diagonal blocks unchanged.

Hence, the nearest correlation matrix problem to be solved is

min{ ‖A−X‖F : X is a correlation matrix,

xij = aij for (i, j) ∈ N },
(1.2)

where N denotes the index set of the fixed off-diagonal elements. Clearly, for

(i, j) ∈ N we have (j, i) ∈ N . Unlike (1.1), this variant of the nearest correlation

matrix problem might not have a solution: N must be chosen such that there

exists a correlation matrix with the prescribed fixed elements. This need not be

true for every N , as the following simple example shows. Take

A =


1 0 0 0

0 1 1 0

0 1 1 1

0 0 1 1

 (1.3)

and N = {(2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}. We cannot replace A with a

valid correlation matrix while keeping the elements prescribed by N fixed, since

they correspond to the trailing 3× 3 block of A, which is indefinite.

• Bound on the smallest eigenvalue.

Singularity of a correlation matrix is an issue in applications where the inverse

of the matrix is needed, for example in regression [51], [90] or multivariate data

analysis [95].
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The sample correlation matrix in the so–called “small k, large n” case is singular,

and this case is common in practice. In finance applications for example there

can be over a 1 000 stocks to choose from, but there is rarely more than 10 years

of monthly data available per stock, while in biological studies, the budgetary

and time constraints might dictate that there is only a small number of samples

available for analysis, but the data set under observation, such as genomic data,

is very large.

Moreover, for an invalid correlation matrix A with t nonpositive eigenvalues,

from [56, Thm. 2.5] it follows that the nearest correlation matrix to A will have

at least t zero eigenvalues, which means that the alternating projections method

and the Newton method will compute a singular matrix.

Nonsingularity requirement leads to formulating the nearest correlation matrix

problem as

min{ ‖A−X‖F : X is a correlation matrix,

λmin(X) ≥ δ },
(1.4)

where δ is a given positive tolerance and λmin(X) denotes the smallest eigen-

value of the symmetric matrix X. Since for a correlation matrix trace(X) =∑
i λi(X) = n, it follows that we must take δ ≤ 1. As the original nearest

correlation matrix problem, (1.4) always has a unique solution [92, p. 372].

• Weights.

In practice, different elements of an invalid correlation matrix may be known to

different levels of accuracy or confidence [12]. Moreover, larger or more important

lines of the model might need to be given more significance in the analysis.

This can be reflected by introducing a weighted Frobenius norm to problem

(1.1). The first choice is the W -norm, ‖A‖W = ‖W 1/2AW 1/2‖F , where W is a

symmetric positive definite matrix and W 1/2 its unique positive definite square

root (cf. [58, Cor. 1.30]), and the second is the H-norm, ‖A‖H = ‖H◦A‖F , where

H is a symmetric elementwise nonnegative matrix and ◦ denotes the Hadamard

(elementwise) matrix product.

For the H-norm, a large value of hij should force xij to remain close to aij, which

corresponds to the notion that aij is know accurately and hence we do not wish
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it to change much, while a small value of hij is assigned to the values of aij which

are known relatively inaccurately or it is not important that they stay close to

the original values. The W -norm does not allow for individual weighting but it

is easier to work with. In practice, a diagonal W is the usual choice.

For both weighted Frobenius norms the solution to the nearest correlation matrix

problem is unique [56, p. 330].

In terms of the solution methods for the above problem variants, the alternating

projections method of Higham [56] was initially derived for the W -norm, of which the

Frobenius norm is a special case. It can easily incorporate the fixed elements constraint

to solve (1.2), which was analyzed by Lucas [76] and Borsdorf [17, Chap. 7], as well

as solve the positive definite nearest correlation matrix problem (1.4); we provide the

details in Chapter 5. As discussed in [56, p. 337], alternating projections method

cannot be used in the H-norm case since a closed formula for the projection of a

matrix to the positive semidefinite cone in this norm is not known and we cannot

efficiently compute it.

Qi and Sun show that their Newton method [92] for the original nearest correlation

matrix problem can easily use the W -norm [92, Sec. 4.1] and also compute the positive

definite nearest correlation matrix [92, Sec. 4.2]. For the H-norm problem variant

they derive a new Newton method in [94] and also note that it could be used to fix

elements, but no details are provided for the latter. Moreover, the documentation

for the NAG [83] code g02aj/nag_nearest_correlation_h_weight which solves the

H-weighted nearest correlation matrix problem notes that the algorithm might not

converge if the weights vary by several orders of magnitude. Hence, for the fixed

elements case, only the alternating projections method is guaranteed to compute the

solution, if it indeed exists.

1.2 Lagrangian subspaces

An n-dimensional subspace U of C2n is called Lagrangian if u∗Jnv = 0 for every

u, v ∈ U , where

Jn =

 0 In

−In 0

 .
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A matrix U ∈ C2n×n of full column rank is a basis for a Lagrangian subspace if and

only if U∗JnU = 0. For U, V ∈ C2n×n of full column rank we write U ∼ V if U = VM

for a square invertible M ∈ Cn×n. Note that this implies that U and V have the same

column space, i.e. Im(U) = Im(V ).

Lagrangian subspaces are an essential structure in control theory applications (see,

for example, [1], [38], [69], [78]). In computational practice, a subspace U is typically

represented through a matrix U whose columns span it. A key quantity is its condition

number κ(U) = σmax(U)/σmin(U), where σmax and σmin are the largest and smallest

singular values, respectively. The sensitivity of U = Im(U) as a function of U depends

on κ(U) [107, p. 154], as well as the numerical stability properties of several linear

algebra operations associated to it, for instance, QR factorization [55, Chap. 19] and

least-squares problems [55, Chap. 20]. Hence, in most applications the natural choice

for a basis is a matrix U with orthonormal columns, which ensures κ(U) = 1. However,

if a matrix U is partitioned as

U =

U1

U2

 ∈ C2n×n, U1, U2 ∈ Cn×n,

then it spans a Lagrangian subspace if and only if U∗1U2 = U∗2U1, which is a property

very difficult to preserve in finite arithmetic. If the matrix U1 is invertible, we can

write

U =

In
X

U1, X = U2U
−1
1 , (1.5)

and hence obtain a different matrix V =
[
In
X

]
whose columns span the same subspace.

Matrices of the form

G(X) =

In
X

 , X ∈ Cn×n (1.6)

are called graph matrices , since their form resembles the definition of the graph of a

function as the set of pairs (x, f(x)), or Riccati matrices , since they are related to the

algebraic Riccati equations [69]. Additional details are provided in Chapter 6, as they

are the motivation for studying the special Lagrangian subspaces introduced there.

We use the name Riccati matrix for G(X), since it is less likely to induce confusion

with graphs as mathematical objects with nodes and edges. From (1.5), since U1 is

nonsingular it follows that

U ∼ G(U2U
−1
1 ), (1.7)
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and it is easy to see from the definition that ImG(X) is Lagrangian if and only if

X = X∗, a condition which is trivial to ensure in numerical computation. Hence, if

the object of interest is the Lagrangian subspace ImU , we can associate it with the

Hermitian matrix X and use only this matrix to store and work on the subspace. The

potential difficulties with this approach come from computing X = U2U
−1
1 because U1

could be ill-conditioned or even singular.

Mehrmann and Poloni [79] consider a slightly more general form instead. For each

subset I ⊆ {1, 2, . . . , n}, the symplectic swap matrix associated with I is defined as

ΠI =

In −D D

−D In −D

 ∈ R2n×2n, (1.8)

where D is the diagonal matrix such that

Dii =

1, i ∈ I,

0, i 6∈ I.

The matrices ΠI are symplectic (ΠT
IJnΠI = Jn) and orthogonal (ΠT

IΠI = I2n), and

the multiplication with ΠI permutes (up to a sign change) the elements of a 2n-length

vector, with the limitation that the ith entry can only be exchanged with the (n+i)th,

for each i = 1, 2, . . . , n.

Example 1.2.1. When n = 2, the four symplectic swap matrices are

Π∅ = I4, Π{1} =


0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

, Π{2} =


1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0

, Π{1,2} = J2.

Given a full column rank matrix U ∈ C2n×n such that ImU is Lagrangian and a

set I ⊆ {1, 2, . . . , n}, define the symplectic swap ΠI as in (1.8) and partition

ΠIU =

U1

U2

 , U1, U2 ∈ Cn×n. (1.9)

If the top n× n block U1 is invertible then

U ∼ GI(U2U
−1
1 ), (1.10)
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where

GI(X) = ΠT
I

In
X

 , X ∈ Cn×n. (1.11)

Note that (1.11) generalizes the notion of a Riccati matrix (1.6) by not requiring that

the identity matrix is contained in the top block but that it can be pieced together

(modulo signs) from a subset of rows of the matrix GI(X). Clearly, the pair (I, X),

with X = U2U
−1
1 , identifies ImU uniquely.

The representation (1.10) is called the permuted Lagrangian graph representation

in [79] and it generalizes the representation (1.7), while keeping the property that

ImGI(X) is Lagrangian if and only if X is Hermitian. We use the name permuted

Riccati representation (or basis) here.

Theorem 1.2.2 ([79, Sec. 3]). Let U ∈ C2n×n. The following properties are equivalent.

1. ImU is Lagrangian.

2. For a particular choice of I ⊆ {1, 2, . . . , n} we have U ∼ GI(X) and it holds that

X = X∗.

3. For all choices of I ⊆ {1, 2, . . . , n} such that U ∼ GI(X), it holds that X = X∗.

Moreover, for each U satisfying the above properties there exists at least one Iopt ⊆

{1, 2, . . . , n} such that U ∼ GIopt(Xopt) and Xopt = X∗opt satisfies

|(Xopt)ij| ≤

1, if i = j,

√
2, otherwise.

(1.12)

As with the Riccati matrix representation, we can use any of the matrices X such

that U ∼ GI(X) to store the Lagrangian subspace ImU on a computer and operate

on it, since the property that X must be Hermitian can be easily enforced. The choice

with Iopt is particularly convenient from a numerical point of view: using (1.12), we

can prove that κ(GI(X)) cannot be too large [79, Thm. 8.2]. Moreover, using the

matrix Xopt improves numerical stability in several contexts, see [88].

Example 1.2.3. For the matrix

U =

1 2 5 8

1 1 3 5

T ,
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whose column space ImU is Lagrangian we have

U∼G∅

1 2

2 3

, U∼G{1}

−1 2

2 −1

,

U∼G{2}

−1/3 2/3

2/3 −1/3

, U∼G{1,2}

 3 −2

−2 1

.

All the matrices X in GI(X) are Hermitian. For Iopt = {2}, the condition (1.12)

is satisfied.

Example 1.2.4. For the matrix

U =

1 2 6 6

1 1 4 4

T ,
whose column space ImU is Lagrangian we have

U ∼ G∅

2 2

2 2

 ,

and for both

U ∼ G{1}

−1/2 1

1 0

 and U ∼ G{2}

0 1

1 −1/2


the condition (1.12) is satisfied. The top 2× 2 block of Π{1,2}U is singular, hence the

permuted Riccati representation (1.10) does not exist for I = {1, 2}.

Converting between two different permuted Riccati representations is achieved via

the symmetric principal pivot transform (PPT). The symmetric PPT of a matrix

X ∈ Cn×n with respect to an index set K ⊆ {1, 2, . . . , n} is defined as the matrix Y

such that

YKK=−X−1KK, YKKc=X
−1
KKXKKc ,

YKcK=XKcKX
−1
KK, YKcKc=XKcKc −XKcKX

−1
KKXKKc ,

(1.13)

where XIJ denotes a submatrix of X with rows and columns indexed by the sets I

and J , respectively (the order of the indices does not matter as long as it is chosen

consistently), and Kc is the complement of K in {1, 2, . . . , n}.
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For instance, if K = {1, 2, . . . , k} is the set of indices corresponding to the leading

block of X, then

X =


k n−k

k X11 X12

n−k X21 X22

, Y =


k n−k

k −X−111 X−111 X12

n−k X21X
−1
11 X22 −X21X

−1
11 X12

.
Note the peculiar structure of this transformation: a principal submatrix XKK of X is

replaced by the negative of its inverse, and its complement is overwritten by the Schur

complement XKcKc −XKcKX
−1
KKXKKc of XKK in X.

The map X 7→ Y defined in (1.13) is a symmetric variant of the principal pivot

transform (PPT), which appears across various fields under different names. In statis-

tics it is known as partial inversion in the context of linear graphical chain models [126],

or as the sweep operator when it is used to solve least-squares regression problems [45].

Duffin, Hazony, and Morrison analyze network synthesis [32] and call it gyration. In

numerical linear algebra the PPT is often called the exchange operator and it is of

interest since it relates computations in one structured class of matrices to another.

Stewart and Stewart [109] use the exchange operator to generate J-orthogonal ma-

trices (matrices Q ∈ Rn×n such that QTJQ = J , where J = diag(±1) is a signature

matrix) from hyperbolic Householder transformations. Higham [57] further shows how

to obtain a hyperbolic CS decomposition of a J-orthogonal matrix directly from the

standard CS decomposition via the exchange operator. Moreover, certain important

classes of matrices are invariant under this operation. Tucker [115] shows that the

principal pivot transform of a P -matrix (a matrix whose principal minors are all posi-

tive) is again a P -matrix when the matrix is real. This result was extended to complex

P -matrices by Tsatsomeros in [114], where further details of the history and properties

of the PPT can be found. An overview by Higham [57, Sec. 2] provides additional

references.

The following result shows how to use the symmetric PPT (1.13) to convert between

permuted Riccati representations of a Lagrangian subspace. This is the crucial step in

the optimization algorithm [79, Alg. 2] by Mehrmann and Poloni that computes the

bounded representation (Iopt, Xopt) from (1.12).

Lemma 1.2.5 ([79, Lem. 5.1]). Let I,J ⊆ {1, 2, . . . , n}, and let U ∈ C2n×n be a

matrix whose column space is Lagrangian and such that U ∼ GI(X). Let K be the
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symmetric difference set

K = {i ∈ {1, 2, . . . , n} : i is contained in exactly one among I and J }.

Then, U ∼ GJ (X ′) if and only if XKK is invertible, and in this case X ′ = DYD,

where Y is the symmetric PPT of X defined in (1.13) for the index set K, and D is

the diagonal matrix such that

Dii =

−1, i ∈ I \ J ,

1, otherwise.

Informally speaking, when we wish to transform the matrixX such that U ∼ GI(X)

into the matrix X ′ so that U ∼ GJ (X ′) for a new set J , we have to perform a

symmetric PPT (1.13) with respect to the indices that we wish to add to or remove

from I, and then flip the signs in the rows and columns with the indices that we

remove from I.

Example 1.2.6. Take I = {1} and the matrix U from Example 1.2.3 so that U ∼

G{1}(X) with

X =

−1 2

2 −1

 .
Applying Lemma 1.2.5 transforms between the remaining three representations as

follows. For J = ∅ Lemma 1.2.5 defines K = {1} and D = diag(−1, 1). Applying

(1.13) to X gives

Y =

 1 −2

−2 3

 , X ′ = DYD =

1 2

2 3

 .
Therefore, U ∼ G∅(X ′) holds. For J = {2} we have K = {1, 2} and D = diag(−1, 1).

In this case

Y = −

 1 −2

−2 3

−1 =

−1/3 −2/3

−2/3 −1/3

 , X ′ = DYD =

−1/3 2/3

2/3 −1/3

 ,
leading to the representation U ∼ G{2}(X ′). Finally, for J = {1, 2} we have K = {2}

and D = I2. It follows that U ∼ G{1,2}(X ′) for

X ′ = Y =

 3 −2

−2 1

 .
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1.3 Thesis outline and research contributions

Chapter 2 introduces definitions and standard results in numerical linear algebra that

are of relevance to the main chapters of the thesis.

In Chapter 3 we develop a new way of restoring positive semidefiniteness of an

indefinite matrix called shrinking. For an indefinite matrix M0 we construct a convex

linear combination S(α) = αM1 + (1− α)M0 of M0 and a positive semidefinite target

matrix M1, and define the optimal shrinking parameter as α∗ = min{α ∈ [0, 1] :

S(α) is positive semidefinite}. We describe three algorithms for computing α∗: one

algorithm is based on the bisection method, with the use of Cholesky factorization to

test definiteness, a second employs Newton’s method, and a third finds the smallest

eigenvalue of a symmetric definite generalized eigenvalue problem. We also show that

weights that reflect confidence in the individual entries of M0 can be used to construct

a natural choice of the target matrix M1 with no changes needed to the computation

methods. We treat in detail a practically important problem variant in which a positive

semidefinite leading principal submatrix of an indefinite approximation to a correlation

matrix remains fixed, showing how the fixed block can be exploited to reduce the cost of

the bisection and generalized eigenvalue methods. Furthermore, we demonstrate that

incorporating the lower bound on the smallest eigenvalue presents only a trivial change

to the methods. The aim of this work was to develop an alternative to computing

the nearest correlation matrix and numerical experiments show that when applied to

indefinite approximations of correlation matrices shrinking can be at least an order of

magnitude faster. An implementation of the bisection algorithm is included in Mark 25

of the NAG Library (2015) as the routine g02anf [83], and a bisection method that

uses weights to define the target matrix is currently being implemented.

While methods for computing the nearest correlation matrix to a given symmetric

matrix A are well developed, little attention has been given to estimating the distance

dcorr(A) = ‖A−ncm(A)‖F without computing the nearest correlation matrix ncm(A).

Importantly, the iterates produced by the Newton and alternating projections meth-

ods are not themselves correlation matrices, so no upper bound on dcorr(A) is available

during the iterations. Our goal in Chapter 4 is to obtain bounds on dcorr(A) that are

inexpensive to compute and are of the correct order of magnitude. Indeed bounds
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correct to within a small constant factor are entirely adequate for practical applica-

tions. We first present an overview of known bounds on the nearest correlation matrix

distance and then derive a variety of new upper bounds for dcorr(A). The bounds are

of two main classes: those based on the eigensystem and those based on a modified

Cholesky factorization. For unit diagonal A with |aij| ≤ 1 for all i 6= j the eigensystem

bounds are shown to overestimate the distance by a factor at most 1 +n
√
n. We show

that for a collection of matrices from the literature and from practical applications

the eigensystem-based bounds are often good order of magnitude estimates of the ac-

tual distance; indeed the best upper bound is never more than a factor 5 larger than

a related lower bound. The modified Cholesky bounds are less sharp but also less

expensive, and they provide an efficient way to test for definiteness of the putative

correlation matrix. Both classes of bounds enable a user to identify an invalid corre-

lation matrix relatively cheaply and to decide whether to revisit its construction or to

compute a replacement, such as the nearest correlation matrix.

Although a globally quadratically convergent Newton algorithm has been developed

to solve the nearest correlation matrix problem, the alternating projections method

still remains very widely used. The rate of convergence of this method is at best linear,

and it can require a large number of iterations to converge to within a given tolerance.

In Chapter 5 we show that Anderson acceleration [3], a technique for accelerating

the convergence of fixed-point iterations, can be applied to the alternating projections

method and that in practice it brings a significant reduction in both the number of

iterations and the computation time. We also show that Anderson acceleration remains

effective, and indeed can provide even greater improvements, when it is applied to the

variants of the nearest correlation matrix problem in which specified elements are fixed

or a lower bound is imposed on the smallest eigenvalue. This is particularly significant

for the nearest correlation matrix problem with fixed elements because no Newton

method is available for it. Alternating projections is a general method for finding a

point in the intersection of several sets and ours appears to be the first demonstration

that this class of methods can benefit from Anderson acceleration.

In Chapter 6 we introduce a class of semidefinite Lagrangian subspaces and show

that they can be represented by a subset I ⊆ {1, 2, . . . , n} and a Hermitian matrix

X ∈ Cn×n with the property that the submatrix XII is negative semidefinite and the
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submatrix XIcIc is positive semidefinite. A matrix X with these definiteness prop-

erties is a generalization of a quasidefinite matrix; we call it I-semidefinite. Under

mild hypotheses which hold true in most applications, the Lagrangian subspace asso-

ciated to the stabilizing solution of an algebraic Riccati equation is semidefinite. It

is well-known that the solutions to the algebraic Riccati equations can be obtained

by computing deflating subspaces of certain Hamiltonian and symplectic pencils. We

show that there is a bijection between these pencils and semidefinite Lagrangian sub-

spaces; hence this structure is ubiquitous in control theory. The symmetric PPT con-

verts between different representations of Lagrangian subspaces. For a semidefinite

Lagrangian subspace, we prove that the symmetric PPT of an I-semidefinite matrix

X is a J -semidefinite matrix X ′, and we derive an implementation of the transforma-

tion X 7→ X ′ that both makes use of the definiteness properties of X and guarantees

the definiteness of the submatrices of X ′ in finite arithmetic. We use the resulting

formulae to obtain a semidefiniteness-preserving version of an optimization algorithm

introduced by Mehrmann and Poloni [79, Alg. 2] to compute a pair (Iopt, Xopt) with

M = maxi,j|(Xopt)ij| as small as possible, and show that using semidefiniteness allows

us to obtain a stronger inequality on M with respect to the general case.

Finally, Chapter 7 summarizes our findings.

1.4 Computing environment, software, and test

matrices

Numerical experiments reported in this thesis were carried out in MATLAB R2014a on

a Linux machine with an Intel Core i7-4910MQ 2.90GHz processor and 16GB RAM.

The NAG library routines are from the NAG Toolbox for MATLAB Mark 24 [82].

The MATLAB codes developed for the shrinking algorithms from Chapter 3 are

available at https://github.com/higham/shrinking, and Python implementations,

which do not require access to the NAG Library, are available at https://github.

com/vsego/shrinking.

For the modified Cholesky algorithms used in Chapter 4, the MATLAB implemen-

tation of the Cheng and Higham algorithm [24] is available from https://github.

com/higham/modified-cholesky. We are grateful to Hawren Fang for providing us

https://github.com/higham/shrinking
https://github.com/vsego/shrinking
https://github.com/vsego/shrinking
https://github.com/higham/modified-cholesky
https://github.com/higham/modified-cholesky
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with the implementation of the modified Cholesky algorithm of Schnabel and Es-

kow [103] that we have used in our experiments.

The code for the alternating projections method for the nearest correlation matrix

used in Chapter 5 is based on that of Higham [59], and the Anderson acceleration

implementation is adapted from Walker [121]. MATLAB implementations of the al-

gorithms can be found at https://github.com/higham/anderson-accel-ncm.

Chapters 3, 4, and 5 use the following indefinite symmetric matrices with unit

diagonal as test matrices. The matrices are taken from the literature and from appli-

cations, and they can can be downloaded in MATLAB form from https://github.

com/higham/matrices-correlation-invalid, with the exception of the RiskMetrics

matrices, which we do not have permission to distribute.

high02 A matrix of order 3 from Higham [56, p. 334].

tec03 A matrix of order 4 from Turkay, Epperlein, and Christofides [116, Ω̂ on p. 86,].

bhwi01 A matrix of order 5 from Bhansali and Wise [12, Sec. 2, second matrix].

mmb13 A matrix of order 6 constructed from foreign exchange trading data supplied

by the Royal Bank of Scotland [80, p. 36].

fing97 A matrix of order 7 from Finger [39, Table 4].

tyda99R1–tyda99R3 The matrices R1, R2, and R3 of order 8 from Tyagi and

Das [117, Table 1]. Although thought by those authors to be correlation matri-

ces, as pointed out by Xu and Evers [129] they have some negative eigenvalues.

usgs13 A matrix of order 94 corresponding to carbon dioxide storage assessment units

for the Rocky Mountains region of the United States that was generated during

the national assessment of carbon dioxide storage resources [118], kindly provided

by Madalyn Blondes of the U.S. Geological Survey. Due to the aggregation

methodology construction, the matrix has a natural block structure. Its twelve

diagonal blocks, with respective sizes 12, 5, 1, 14, 12, 1, 10, 4, 5, 9, 13, and 8,

correspond to individual basins in the region and are all positive definite. The

block structure can be clearly seen in Figure 1.1.

https://github.com/higham/anderson-accel-ncm
https://github.com/higham/matrices-correlation-invalid
https://github.com/higham/matrices-correlation-invalid
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Figure 1.2: The matrix cov90.

RiskMetrics1–RiskMetrics6 Six matrices from the RiskMetrics database. The

documentation says that the underlying data sets “contain consistently calcu-

lated volatilities and correlation forecasts for use in estimating market risk. The

asset classes covered are government bonds, money markets, swaps, foreign ex-

change and equity indices (where applicable) for 31 currencies, and commodi-

ties.” Each matrix has dimension 387.

cor1399, cor3210 Two large matrices constructed from stock data: the first of order

1399 is highly rank-deficient and the second of order 3120 is of full rank. The

matrices were provided by the investment company Orbis.

In Chapter 5 we also use cov90, an indefinite symmetric block 9 × 9 matrix with

each block of order 10, kindly provided by George Mylnikov of Fischer Francis Trees

& Watts, Inc. The diagonal blocks are full, the remaining blocks in the first block-row

and block-column are diagonal matrices, and all other elements of the matrix are zero,

as can be seen from Figure 1.2.

The MATLAB code used for the experiments in Chapter 6 is based on the pack-

age PGDoubling by Poloni, and it can be found at https://bitbucket.org/fph/

pgdoubling-quad. Test matrices in this chapter are from the benchmark test set [25]

that contains 33 problems taken from the standard carex test suite [10] for the numer-

ical solution of the continuous-time algebraic Riccati equation, and in addition some

examples use different parameters chosen to make the problems more challenging.

Additional details of the experiments are provided in the relevant sections.

https://bitbucket.org/fph/pgdoubling
https://bitbucket.org/fph/pgdoubling-quad
https://bitbucket.org/fph/pgdoubling-quad


Chapter 2

Background Material

Linear algebra is a big part of the small intersection of

all general mathematical areas.

—Roger Horn

The material presented here is compiled from the fundamental references for nu-

merical linear algebra: “Matrix Analysis” by Horn and Johnson [62], “Matrix Com-

putations” by Golub and Van Loan [44], and “The Matrix Eigenvalue Problem” by

Watkins [125].

2.1 Standard and generalized eigenvalue problems

Let A ∈ Cn×n. If a scalar λ ∈ C and a vector x ∈ Cn, x 6= 0 satisfy the equation

Ax = λx, (2.1)

then λ is called an eigenvalue of A and x an eigenvector of A associated with λ. Since

(2.1) is equivalent to

(A− λI)x = 0, x 6= 0,

λ is an eigenvalue of A if and only if the matrix A−λI is singular, i.e., rank-deficient.

A matrix of order n has n (not necessarily distinct) eigenvalues, and they are the zeros

of its characteristic polynomial det(A− λI) = 0.

Two matrices A,B ∈ Cn×n are similar if there exists a nonsingular matrix S ∈

Cn×n such that B = S−1AS. Similar matrices have the same eigenvalues. Similarity

via a unitary matrix has superior stability properties in numerical computations com-

pared to a general similarity; the canonical form of a matrix under a unitary similarity

is given in the following theorem.

32
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Theorem 2.1.1 (Schur decomposition; [125, Thm. 2.2.4]). Let A ∈ Cn×n. Then there

exist a unitary matrix U and an upper triangular matrix T such that

T = U−1AU = U∗AU.

The Schur decomposition A = UTU∗ is not unique as the eigenvalues of A can be

made to appear in any order on the diagonal of T .

Real matrices may have complex eigenvalues but since they always appear in com-

plex conjugate pairs, if we treat each pair as a unit we can avoid complex arithmetic.

A matrix T ∈ Rn×n is called upper quasi-triangular if it is block upper triangular

with the main diagonal blocks all 1 × 1 or 2 × 2, and each 2 × 2 block has complex

eigenvalues. This leads to the real version of Schur’s theorem, also known as the

Wintner–Murnaghan theorem.

Theorem 2.1.2 (Real Schur decomposition; [125, Thm. 2.2.6]). Let A ∈ Rn×n. Then

there exist an orthogonal matrix U and an upper quasi-triangular matrix T such that

T = U−1AU = UTAU.

Diagonal blocks in T can again appear in any order.

We can generalize the eigenvalue problem for one matrix in the following way. Let

A,B ∈ Cn×n. The set of all matrices of the form A− λB for λ ∈ C is called a matrix

pencil . The eigenvalues of the pencil are the elements of a set

Λ(A,B) = {z ∈ C : det(A− zB) = 0}.

If λ is an eigenvalue of the pencil and

Ax = λBx, x 6= 0 (2.2)

then x is called an eigenvector. When B = I the equation (2.2) reduces to the

standard eigenvalue equation (2.1). As such the eigenvalues of a pencil are usually

called generalized eigenvalues and the problem (2.2) is called the generalized eigenvalue

problem.

If the matrix B is nonsingular than Ax = λBx is equivalent to standard eigenvalue

problems AB−1x = λx and B−1Ax = λx, and there are n finite generalized eigenvalues.

If B is rank-deficient then either there are k < n finite generalized eigenvalues and
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n − k infinite eigenvalues, or every complex number λ is an eigenvalue. In the latter

case det(A− λB) is identically a zero polynomial and we say that the pencil A− λB

is singular.

The role of a similarity transformation in the generalized eigenvalue problem con-

text is taken by an equivalence transformation. Matrix pencils A1−λB1 and A2−λB2

are equivalent if there exist nonsingular matrices U and V such that

A1 − λB1 = U(A2 − λB2)V.

Equivalent matrix pencils have the same eigenvalues.

The analog to the Schur decomposition in a generalized eigenvalue problem setting

is the following.

Theorem 2.1.3 (Generalized Schur decomposition; [44, Thm. 7.7.1]). If A and B

are in Cn×n, then there exist unitary Q and Z such that Q∗AZ = T and Q∗BZ = S

are upper triangular. If for some k, tkk and skk are both zero, then Λ(A,B) = C.

Otherwise, Λ(A,B) = {tii/sii : sii 6= 0}.

If there is a k such that tkk = skk = 0 so that a pencil A−λB is singular we might

hope that the ratios of other diagonal elements still have some meaning. Interestingly,

this is not true, as shown by Wilkinson in [127], where the following example can be

found. Consider the two triangular matrices

A =


a11 a12 a13 a14

0 a23 a24

a33 a34

a44

 , B =


b11 b12 b13 b14

0 b23 b24

b33 b34

b44

 ,

where the other elements in the upper triangles are nonzero. Then aii/bii, i = 1, 3, 4

have no meaningful relationship with the problem Ax = λBx, which can be shown as

follows. Let R12 be a rotation in the (1, 2) plane [44, Sec. 5.1.8]. In the regular case,

since the matrix pencil A − λB is equivalent to AR12 − λBR12, their eigenvalues are

the same, and in particular the ratios of the corresponding diagonal elements are the
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same. Here, the matrices AR12 and BR12 are of the form
a′11 a′12 a13 a14

0 a23 a24

a33 a34

a44

 and


b′11 b′12 b13 b14

0 b23 b24

b33 b34

b44

 ,

where

a′11 = a11c− a12s, a′12 = a11s+ a12c,

b′11 = b11c− b12s, b′12 = b11s+ b12c,

in which s and c are the sine and cosine defining the rotation. Then

a′11
b′11

=
a11c− a12s
b11c− b12s

, (2.3)

so unless a11/a12 = b11/b12, the right-hand side in (2.3) can take any value by suitable

choice of s and c, in particular, it can be made zero or infinity, and certainly, it can

be made different from a11/b11.

If A and B are real, then the following decomposition corresponds to the real Schur

decomposition.

Theorem 2.1.4 (Generalized real Schur decomposition; [44, Thm. 7.7.2]). If A and

B are in Rn×n, then there exist orthogonal Q and Z such that QTAZ is upper quasi-

triangular and QTBZ is upper triangular.

As in the standard Schur decomposition, the diagonal (blocks) elements in the

(quasi)-triangular matrices can be made to appear in any order we specify. The re-

ordering of the diagonal elements (blocks) is quite an interesting problem both in the

standard and the generalized Schur decompositions [21], [65].

2.2 Definiteness and the Cholesky factorization

A Hermitian matrix A ∈ Cn×n is

• positive semidefinite if x∗Ax ≥ 0 for every x ∈ Cn.

• positive definite if x∗Ax > 0 for every 0 6= x ∈ Cn.
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• negative semidefinite if x∗Ax ≤ 0 for every x ∈ Cn.

• negative definite if x∗Ax < 0 for every 0 6= x ∈ Cn.

• indefinite if there exist x, y ∈ Cn such that (x∗Ax)(y∗Ay) < 0.

The class of positive semidefinite matrices provides one generalization to matrices

of the notion of a nonnegative real number. There are several characterizations of

positive (semi)definiteness and we shall make frequent use of the following.

Theorem 2.2.1 ([62, Thm. 7.2.1]). A Hermitian matrix is positive semidefinite if and

only if all of its eigenvalues are nonnegative. It is positive definite if and only if all of

its eigenvalues are positive.

A key property linked to positive definite matrices is the Cholesky factorization.

Theorem 2.2.2 (Cholesky factorization; [125, Thm. 1.4.1]). Let A ∈ Cn×n be Hermi-

tian positive definite matrix. Then there exists a unique upper triangular R ∈ Cn×n

such that the diagonal entries of R are real and positive and A = R∗R. If A is real,

then R is real.

For a positive semidefinite matrix, the situation is more subtle.

Theorem 2.2.3 ([55, Thm. 10.9]). Let A ∈ Cn×n be positive semidefinite of rank r.

(a) There exists at least one upper triangular R with nonnegative diagonal elements

such that A = R∗R.

(b) There is a permutation Π such that ΠTAΠ has a unique Cholesky factorization,

which takes the form

ΠTAΠ = R∗R, R =

R11 R12

0 0

 , (2.4)

where R11 is r × r upper triangular with positive diagonal elements.

The uniqueness in Theorem 2.2.3(b) refers to the (1,1) diagonal block R11 of the

Cholesky factor R in (2.4), as for a permutation matrix P = diag(Ir, P̂ ), where P̂ is

any permutation matrix of order n− r, we have that (ΠP )TA(ΠP ) = R̂∗R̂, with

R̂ =

R11 R̂12

0 0

 =

R11 R12P̂

0 0

 .
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The notion of definiteness extends to matrix pencils where it also implies signifi-

cant theoretical and computational benefits. For A,B ∈ Cn×n Hermitian, the pencil

A−λB is called definite if there exists a value µ for which the matrix A−µB is positive

definite. The matrices A and B that define a definite pencil are simultaneously diag-

onalizable: there exists a nonsingular matrix X such that X∗AX = diag(a1, . . . , an)

and X∗BX = diag(b1, . . . , bn), and moreover the generalized eigenvalues ai/bi are all

real [44, Cor. 8.7.2].

Definite pencils can be transformed into pencils in which one of the matrices is

positive definite, and there are algorithms for attempting to find such a transfor-

mation [26], [47]. The reason for this is that we can then transform the generalized

eigenvalue problem stably to a standard Hermitian eigenvalue problem by means of the

Cholesky factorization, see, for example, [28], for which there are efficient, structure

exploiting algorithms available.

The Cholesky factorization and definite pencils play a crucial role in Chapter 3.

2.2.1 Testing for definiteness in finite arithmetic

In various practical applications a key question is to determine whether a given Hermi-

tian matrix A is positive (semi)definite or not. As argued in [52, Sec. 5], an arbitrarily

small perturbation can make a singular positive semidefinite matrix become positive

definite and hence in finite precision arithmetic testing for positive semidefiniteness is

equivalent to testing for positive definiteness.

Cholesky factorization eliminates the need for an (expensive) computation of any

of the eigenvalues: to check if A is positive definite we attempt to compute its Cholesky

factorization and declare the matrix positive definite if the process succeeds. Although

it might seem numerically dangerous to apply Cholesky factorization to a potentially

indefinite matrix, this approach is numerically stable [52, Sec. 5].

The success or failure of the standard Cholesky factorization for a singular positive

semidefinite matrix A is unpredictable and instead we need to use the Cholesky factor-

ization with complete pivoting. If the factorization runs to completion with positive

pivots we declare the matrix positive semidefinite. If the factorization terminates with

a nonpositive pivot, we declare the matrix positive semidefinite if the norm of the

remaining block Sk (the Schur complement) satisfies ‖Sk‖ ≤ cnu‖A‖, where cn is a
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constant and u is the unit roundoff, and indefinite otherwise. A weakness of this ap-

proach is that cn could potentially have to be of order 4n−1 in order to not misdiagnose

a positive semidefinite matrix as indefinite [54], [55, Sec. 10.3.2].

2.2.2 Modified Cholesky factorizations

While invalid correlation matrices are usually encountered in statistics and data analy-

sis applications, a problem of having an indefinite matrix in place of a positive semidef-

inite one is well known in optimization, where modified Cholesky algorithms are used

to deal with, for example, indefinite Hessians. Given a symmetric, possibly indefinite

matrix A these algorithms construct a factorization

P T (A+ E)P = LDLT ,

where P is a permutation matrix, L is unit lower triangular, and A + E is positive

semidefinite. The algorithms of Gill, Murray, and Wright [42, Sec. 4.4.2.2] and Eskow

and Schnabel [102], [103] produce a diagonal D and a diagonal E, while the algorithm

of Cheng and Higham [24] produces a block diagonal D with diagonal blocks of order

1 or 2 and an E that is generally full.

In Chapter 4 we shall make use of the above four modified Cholesky algorithms.

The review paper by Fang and O’Leary [36] provides an overview and a comparison

of the modified Cholesky methods.

2.3 The least-squares problem

For a given matrix A ∈ Cm×n, m ≥ n and a vector b ∈ Cm the linear least-squares

problem is

min
x∈Cn
‖Ax− b‖2. (2.5)

Two fundamental matrix decompositions appear in the solution methods for (2.5).

They are the QR factorization and the singular value decomposition (SVD).

Theorem 2.3.1 (QR factorization; [62, Thm. 2.1.14]). Let A ∈ Cm×n be given, m ≥ n.

Then A = QR, where Q ∈ Cm×m is unitary and R ∈ Cm×n is upper trapezoidal, that
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is

R =

R1

0

 ,
with R1 ∈ Cn×n upper triangular with nonnegative diagonal elements. Partitioning

Q =
[
Q1 Q2

]
conformably to R we have A = Q1R1, which is called a reduced QR

factorization.

If A is of full rank then the factors Q1 and R1 are uniquely determined and the

diagonal elements of R1 are all positive.

If A is real, Q and R are real.

Theorem 2.3.2 (SVD; [62, Thm. 2.6.3]). Let A ∈ Cm×n. There exist unitary matrices

U ∈ Cm×m and V ∈ Cn×n such that

A = UΣV ∗, Σ = diag(σ1, σ2, . . . , σmin(m,n)) ∈ Rm×n

and σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0.

If A is real, then U and V are also real.

The nonnegative real numbers σ1, σ2, . . . , σmin(m,n) are the singular values of A and

the columns of U and V are the left and right singular vectors of A, respectively. If we

take the SVD of A, A = UΣV ∗ it follows that A∗A = V Σ∗ΣV ∗, which is the spectral

decomposition of A∗A. Hence, singular values are the nonnegative square roots of the

min(m,n) largest eigenvalues of A∗A.

The SVD allows for the definition of a matrix inverse to be generalized to singular

and even rectangular matrices. The Moore–Penrose generalized inverse of a matrix

A ∈ Cm×n, whose SVD is A = UΣV ∗, is a matrix A† ∈ Cn×m defined as

A† = V Σ†U∗,

where Σ† is obtained from Σ by replacing each positive singular value with its inverse

and then transposing the matrix.

We next summarize the properties of the solution set of the least-squares problem

(2.5), using the results in [44, Sec. 5.3 and Sec. 5.5].

Theorem 2.3.3. Let X = {x ∈ Cn : ‖Ax− b‖2 = min} be the set of the least-squares

solutions to Ax = b.
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1. x ∈ X if and only if x satisfies the normal equations A∗Ax = A∗b.

2. X is convex.

3. There is a unique xLS ∈ X having minimum 2-norm.

4. X = {xLS} if and only if A is of full rank.

5. xLS = A†b.

Solving least-squares problems is required in Chapter 5. The oldest method to

compute xLS when the matrix A is of full rank is to form and solve the normal equa-

tions A∗Ax = A∗b. Since the matrix A∗A is positive definite in this case, we can use its

Cholesky factorization to solve the normal equations by two triangular linear system

solves. In finite arithmetic this method might suffer from numerical instability result-

ing from explicitly computing the Gram matrix A∗A [55, Sec. 20.4]. Development of

the structured version of the symmetric PPT in Chapter 6 that avoids forming certain

Gram matrices is motivated by this fact.

A backward stable method to solve the full rank least-squares problem uses the

QR decomposition [55, Sec. 20.2]. When A is rank-deficient, of the infinitely many

solution to the least-squares problem it is of interest to compute xLS, which is now the

unique minimal 2-norm solution. This is achieved via the SVD. An excellent reference

for the least-squares problem is the book by Björk [15].



Chapter 3

Restoring Definiteness via Shrinking

It is better to solve one problem five ways than to solve

five problems the same way.

—George Pólya

3.1 Introduction

Covariance matrices and correlation matrices constructed from discrete sets of empir-

ical data play a key role in many applications. These matrices are symmetric positive

semidefinite, with a correlation matrix also having unit diagonal. In this chapter we

develop a new method to repair invalid covariance and correlation matrices inspired

by an idea from statistics called shrinking, which has a long history going back to the

work of Stein beginning in the 1950s, and is widely used in statistical estimation; see,

for example, [27], [71], [72], [101], [128] and the references therein. A basic idea of

shrinking is to form a convex linear combination αM1 + (1− α)M0 of two correlation

or covariance matrices, where α ∈ [0, 1] is chosen based on statistical considerations

in order to obtain an estimator that has better properties than the extremes M0 and

M1.

Our use of shrinking differs from this standard usage in two respects.

1. For us, M0 is indefinite, not positive semidefinite, so it is not a covariance matrix

or a correlation matrix.

2. We make no statistical assumptions about M0 or M1 and choose α so that

αM1 + (1 − α)M0 is positive semidefinite based solely on information in the

matrices M0 and M1.

The possibility of using shrinking for restoring definiteness was mentioned by De-

vlin, Gnanadesikan, and Kettenring [31, Sec. 4.4] and also by Kupiec [66, Sec. 5], who

41



42 CHAPTER 3. RESTORING DEFINITENESS VIA SHRINKING

suggests a “trial and error” way of choosing the shrinking parameter α. Rebonato and

Jäckel [97] criticize Kupiec’s suggestion on the grounds that it is expensive, since each

trial requires a full eigenvalue decomposition, that a target matrix must be chosen, and

that “there is no way of determining to what extent the resulting matrix is optimal in

any easily quantifiable sense.”

Our analysis overcomes the drawbacks pointed out by Rebonato and Jäckel. We

define an optimal shrinking parameter that produces a minimal elementwise pertur-

bation to M0 in the direction of the difference between the target matrix M1 and the

initial approximation M0, and propose three algorithms for computing the optimal

parameter, none of which requires repeated full eigenvalue decompositions.

This rest of this chapter is organized as follows. In the next section we define the

shrinking problem, characterize the solution, and discuss the choice of a target matrix.

We present three methods to compute the optimal shrinking parameter in section 3.3:

one based on the bisection method, a second based on Newton’s method, and a third

that solves a symmetric definite generalized eigenvalue problem. Since shrinking is

proposed as an alternative to computing the nearest correlation matrix we therefore

also address the additional requirements that appear in the nearest correlation matrix

problem. In section 3.4 we explain how elementwise weighting can be incorporated

into the choice of a target matrix. In section 3.5 we focus on restoring definiteness of a

correlation matrix while preserving a specified positive semidefinite leading principal

submatrix. We show how the bisection and generalized eigenvalue methods can be

adapted to exploit the problem structure, explain how the case of a singular fixed

block can be reduced to the nonsingular case, show how a lower bound on the small-

est eigenvalue can be incorporated, and describe how multiple fixed diagonal blocks

can be treated. Numerical experiments are presented in section 3.6, which include a

comparison of shrinking with the solution of the nearest correlation matrix problem.

3.2 The shrinking problem

Given a real symmetric indefinite matrix M0 of order N our task is to modify M0 to

make it positive semidefinite by computing a convex linear combination of M0 and a
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chosen positive semidefinite target matrix M1. Hence we consider the matrix

S(α) = αM1 + (1− α)M0, α ∈ [0, 1]. (3.1)

Clearly, S(α) is symmetric for every α, S(0) = M0 is indefinite, and S(1) = M1 is

positive semidefinite. We define the optimal shrinking parameter as

α∗ = min{α ∈ [0, 1] : S(α) is positive semidefinite }. (3.2)

Since S(α) = M0+α(M1−M0), it is clear that we are seeking the elementwise minimal

change to M0 in the direction M1 −M0.

For another interpretation, note that M0−S(α) = α(M0−M1), so ‖M0−S(α)‖ =

α‖M0 −M1‖. Since M0 −M1 is fixed, this means that S(α∗) is the nearest positive

semidefinite matrix to M0 of the form S(α), in any norm.

We now characterize the optimal shrinking parameter α∗. The following results

form the basis for the bisection and Newton methods for computing α∗ proposed in

sections 3.3.1 and 3.3.2.

Since a symmetric matrix is positive semidefinite if and only if its smallest eigen-

value is nonnegative, we focus on the function f : R→ R defined by

f(α) = λmin (S(α)) , (3.3)

where λmin denotes the smallest eigenvalue of a symmetric matrix. Note that f is a

continuous function, since the eigenvalues of a matrix are continuous functions of its

elements [125, Thm. 2.7.1]. Hence α∗ is characterized as

α∗ = min{α ∈ [0, 1] : f(α) ≥ 0 }.

Recall that a function g : R→ R is concave if for every α1, α2 ∈ R and t ∈ [0, 1],

g
(
tα1 + (1− t)α2

)
≥ tg(α1) + (1− t)g(α2).

In the following lemma we show that the function f defined in (3.3) is concave. In the

proof below we will use the characterization [62, Thm. 4.2.2] for symmetric C of order

N ,

λmin(C) = min{xTCx : x ∈ RN , xTx = 1 }. (3.4)

Lemma 3.2.1. The function f in (3.3) is concave on R.
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Figure 3.1: Plot of the function f(α) = λmin (S(α)) for S(α) in (3.1) for M1 positive
definite.

Proof. Let α1, α2 ∈ R and t ∈ [0, 1] be arbitrary and note that S(α) is an affine

function of α. Then we have

f(tα1 + (1− t)α2) = λmin

(
S(tα1 + (1− t)α2)

)
= λmin

(
tS(α1) + (1− t)S(α2)

)
≥ λmin

(
tS(α1)

)
+ λmin

(
(1− t)S(α2)

)
by (3.4)

= tλmin

(
S(α1)

)
+ (1− t)λmin

(
S(α2)

)
= tf(α1) + (1− t)f(α2).

Since f(0) < 0, f(1) = λmin (S(1)) = λmin (M1), and f is concave and continuous,

it follows that α∗ is the unique zero of f in (0, 1) if the matrix M1 is positive definite.

In principle we need to allow M1 to be positive semidefinite and singular, as can

happen in our correlation matrix application discussed in section 3.5, but as we show

in section 3.5.4 in that case the problem can be reduced to the case in which M1

is positive definite. A typical f for an indefinite M0 and a positive definite M1 is

illustrated in Figure 3.1.

When the only goal is to repair the indefiniteness of the matrix M0, the target

matrix M1 can be chosen as any positive semidefinite matrix. When M0 is an invalid

correlation matrix and we want S(α∗) to be a valid correlation matrix, then from (3.1)
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it follows that the target matrix needs to be a correlation matrix, so that the unit

diagonal is preserved. Hence the simplest target in this case is the identity matrix.

3.3 Computing the optimal shrinking parameter

We present three methods to compute the optimal shrinking parameter α∗ when M0

is symmetric indefinite and the target matrix M1 is positive definite. Recall that in

this case α∗ is the unique zero in (0, 1) of f in (3.3).

3.3.1 Bisection method

The simplest iterative method to find a zero of a function on a given interval is the

bisection method, which yields the following algorithm for our problem.

Algorithm 3.3.1 (Bisection method). Given the indefinite matrix M0 ∈ RN×N , a

positive definite target matrix M1 ∈ RN×N , and a convergence tolerance tol this algo-

rithm uses the bisection method to compute the optimal shrinking parameter α∗ defined

by (3.2).

1 α` = 0, αr = 1

2 while αr − α` > tol

3 αm = (α` + αr)/2

4 if S(αm) is not positive semidefinite

5 α` = αm

6 else

7 αr = αm

8 end

9 end

10 α∗ = αr.

In the last line of the algorithm we have set α∗ to αr rather than to the generally

more accurate value (α` +αr)/2 in order to ensure that S(α∗) is positive semidefinite.

The main computational task in Algorithm 3.3.1 is testing for positive semidef-

initeness. As argued in section 2.2.1, this is done by attempting to compute the
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Cholesky factorization of S(αm). Hence, we replace step 4 in Algorithm 3.3.1 with “if

the Cholesky factorization of S(αm) breaks down”.

The number of steps needed by Algorithm 3.3.1 is d| log2 tol|e, where the ceiling

function dαe denotes the smallest integer greater than or equal to α, reflecting the

linear convergence of the bisection method. However, in practical applications the data

is often accurate only to three or four significant digits, in which case the tolerance tol

will be of order 10−4 or larger and bisection will need less than 15 iterations. The cost

per step of Algorithm 3.3.1 depends on the number of successful elimination stages in

the Cholesky factorization of S(αm) and is at most N3/3 flops.

In case M1 is positive definite we can narrow the interval [0,1] down to [0, αW ]

with αW < 1 by using Weyl’s inequality [62, Cor 4.3.15]. The lower bound in Weyl’s

theorem is

λi(S(α)) = λi (αM1 + (1− α)M0) ≥ λi((1− α)M0) + λmin(αM1).

Then for the smallest eigenvalue, because α ∈ [0, 1], it follows that

λmin(S(α)) ≥ (1− α)λmin(M0) + αλmin(M1). (3.5)

Therefore, if the right-hand side in (3.5) is nonnegative then S(α) is positive semidef-

inite. Taking into account that λmin(M0) < 0 and λmin(M1) > 0 it follows that for

α ≥ −λmin(M0)/(λmin(M1)−λmin(M0)) = αW , the matrix S(α) is positive semidefinite

and we can replace the right edge of the interval with αW .

In our experiments there was no significant difference for the bisection algorithm

applied on [0, αW ] instead of [0, 1] so the additional expense of computing αW does

not seem justified.

3.3.2 Newton’s method

For a method with faster convergence than the bisection method it is natural to turn

to Newton’s method, defined by αk+1 = αk − f(αk)/f
′(αk). If λmin (S(α)) is a simple

eigenvalue then f in (3.3) is differentiable and [44, Sec. 7.2.2]

f ′(α) = x(α)TS ′(α)x(α), (3.6)

where x(α) is a unit norm eigenvector for λmin (S(α)) and, from (3.1), S ′(α) = M1−M0.

Note that S ′(α) is independent of α.
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Lemma 3.3.2. The Newton iteration for finding the zero of f(α) = λmin (S(α)), where

S(α) is defined in (3.1), can be written as

αk+1 =
x(αk)

TM0x(αk)

x(αk)
T (M0 −M1)x(αk)

, (3.7)

where x(αk) is a unit norm eigenvector for λmin (S(αk)) and it is assumed that λmin(S(αk))

is simple for each k.

Proof. Dropping the index k for simplicity, let us look at the quotient f(α)/f ′(α).

We have, from (3.1),

f(α) = λmin (S(α)) = x(α)TS(α)x(α) = x(α)T (M0 + α(M1 −M0))x(α)

and, from (3.6),

f ′(α) = x(α)TS ′(α)x(α) = x(α)T (M1 −M0)x(α).

Hence

αk+1 = αk − f(αk)/f
′(αk) = αk − αk −

x(αk)
TM0x(αk)

x(αk)
T (M1 −M0)x(αk)

,

which yields the result.

Recall that we are looking for α∗ ∈ (0, 1) such that f(α∗) = 0, where f is continuous

and concave with f(0) < 0 and f(1) > 0. The function f is monotone increasing

on an interval [0, β] ⊆ [0, 1] that contains α∗, but β is not necessarily equal to 1

(and it is possible that f decreases on [β, 1], see Figure 3.1). Moreover, f might

not be differentiable for all α ∈ (0, 1). However, from considering the geometrical

interpretation of the Newton method it follows that for any α0 < α∗ the Newton

iterates converge monotonically to α∗ and hence we expect that the Newton method

for our problem is globally and quadratically convergent, although precise convergence

results require some additional assumptions on the smoothness of the function, see [43,

Chap. 5.2]. In practice, we can set α0 = 0. Taking all of this into consideration, we

have the following algorithm.

Algorithm 3.3.3 (Newton method). Given the indefinite matrix M0 ∈ RN×N , a pos-

itive definite target matrix M1 ∈ RN×N , and a convergence tolerance tol this algorithm

uses Newton’s method to compute the optimal shrinking parameter α∗ defined by (3.2).
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1 α0 = 0, k = 0

2 while not converged to within tolerance tol

3 Compute x(αk), a unit norm eigenvector for λmin (S(αk))

by tridiagonalization followed by bisection and inverse iteration.

4 Compute the new iterate αk+1 by (3.7).

5 k = k + 1

6 end

7 α∗ = αk.

A possible stopping test is |αk+1 − αk| ≤ tol, which corresponds to the bisection

stopping criterion.

The main computational work in the algorithm is computing a unit norm eigenvec-

tor for the smallest eigenvalue at each step, and of the many methods that compute

one or a few of the (extremal) eigenvalues and their corresponding eigenvectors we have

chosen tridiagonalization followed by the bisection method and inverse iteration [30,

Sec. 5.3.4]. Other possibilities include the power method [44, Sec. 8.2.1], orthogonal

iteration [44, Sec. 8.2.4], and the Lanczos method [44, Sec. 10.1].

Note that there is no guarantee that the computed α∗ from Algorithm 3.3.3 will in

fact define a positive semidefinite S(α∗) since the iterates stay to the left of α∗.

We do not consider the secant method. While its convergence rate is lower than

for the Newton’s method it has the general advantage that it avoids the need for

derivatives. However, for Newton’s method the cost of computing λmin (S(αk)) and

x(αk) is dominated by the cost of the tridiagonalization, so avoiding the computation

of x(αk) produces no significant saving.

3.3.3 Generalized eigenvalue problem

The third method for computing the optimal shrinking parameter is essentially differ-

ent from the root-finding methods presented above and it provides the most elegant

description of α∗. Recall that we are looking for the smallest α ∈ (0, 1) for which the

matrix

S(α) = αM1 + (1− α)M0 = E − αF (3.8)
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is positive semidefinite. The matrix S(α) is a symmetric matrix for every α, which

means that it has real eigenvalues. Then α 7→ λ1 (S(α)) , . . . , α 7→ λN (S(α)) is a

continuous parametrization of the N eigenvalue functions λ1 ≥ · · · ≥ λN , and in this

notation, λN = f in (3.3).

If α is such that λk (S(α)) = 0 for some k then the matrix S(α) is singular which

means, by definition, that α is a generalized eigenvalue of the pencil E−αF . It follows

that α∗, the zero of λN , is a generalized eigenvalue of the matrix pencil E − αF , and

among all generalized eigenvalues in (0, 1), α∗ is the rightmost one.

The matrices E = M0 and F = M0 −M1 are symmetric but the QZ algorithm

for computing the generalized eigenvalues of E − αF cannot exploit the symmetry.

However, in our case, it is trivial to obtain a definite pencil. We write

S(α) = (1− α)

(
α

1− α
M1 +M0

)
and, since α∗ < 1, S(α) is singular precisely at the generalized eigenvalues of the

definite pencil M0−µM1, where µ = α/(α−1). We find α∗ by computing the smallest

generalized eigenvalue of this pencil. To do so we transform it to a standard symmetric

eigenvalue problem C − µI, where C = R−TM0R
−1 and M1 = RTR is the Cholesky

factorization of M1; see, for example, [28]. To compute the smallest eigenvalue of the

matrix C we use tridiagonalization followed by the bisection method.

The algorithm can be summarized as follows.

Algorithm 3.3.4 (Generalized eigenvalue method). Given the indefinite matrix M0 ∈

RN×N and a positive definite target matrix M1 ∈ RN×N , this algorithm uses the gener-

alized eigenvalue interpretation to compute the optimal shrinking parameter α∗ defined

by (3.2).

1 Compute the Cholesky factorization M1 = RTR.

2 Form C = R−TM0R
−1 by multiple right-hand side triangular solves.

3 Find µ∗, the smallest eigenvalue of C, by tridiagonalization followed by

bisection.

4 α∗ = µ∗/(µ∗ − 1).
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3.3.4 Comparison

Unless explicitly stated otherwise, we use [58, Table C-1] and errata at http://

www.maths.manchester.ac.uk/~higham/fm/errors.html to compute the approxi-

mate cost in flops for the three algorithms, summarized in Table 3.1.

For Algorithm 3.3.1 the cost per step is N3/3 flops, the cost of the Cholesky

factorization of a matrix of size N . For Algorithm 3.3.3 we can break down the cost

per iteration as follows.

1. Tridiagonalization of a matrix of size N , with Q stored in factored form and not

explicitly formed: 4N3/3 flops.

2. Bisection to compute the smallest eigenvalue of a tridiagonal matrix of size N

followed by inverse iteration to compute the eigenvector y: O(N) flops [8, p. 50].

3. Computing the required eigenvector of M0 as x = Qy (applying Q in factored

form): O(N2) flops1 [44, Sec. 5.1.6].

4. Computing αk+1: O(N2) flops.

Hence, the dominant cost per step of Algorithm 3.3.3 is 4N3/3 flops for the tridiago-

nalization of the matrix S(αk). Finally, for Algorithm 3.3.4 we have

1. The Cholesky factorization of a matrix of size N : N3/3 flops.

2. Forming C by 2 triangular multiple-right-hand side system solves of size N :

N3 +N3/3 flops, since we have X = M0R
−1 and C = R−TX, with C symmetric.

3. Tridiagonalization of a matrix of size N where only T is needed: 4N3/3 flops.

4. Bisection to find the smallest eigenvalue of a tridiagonal matrix of size N : O(N)

flops.

This gives 3N3 as the dominant cost per step of Algorithm 3.3.4.

Which method is the cheapest depends on the desired accuracy, with relatively large

values of tol (corresponding to low precision data) favoring the bisection algorithm.

1The errata web page http://www.cs.cornell.edu/cv/GVL4/Errata.htm for the fourth edition
of [44] notes that the book incorrectly omits the leading 2 on page 238 from this operation count.

http://www.maths.manchester.ac.uk/~higham/fm/errors.html
http://www.maths.manchester.ac.uk/~higham/fm/errors.html
http://www.cs.cornell.edu/cv/GVL4/Errata.htm
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Table 3.1: Approximate costs, in flops, of k1 iterations of the bisection algorithm
(Algorithm 3.3.1 with Cholesky factorization), k2 iterations of Newton’s method (Al-
gorithm 3.3.3), and the generalized eigenvalue-based algorithm (Algorithm 3.3.4), all
for M0 of size N .

Bisection Newton Generalized eigenvalue

k1N
3

3

4k2N
3

3
3N3

The bisection algorithm also has the advantage of being the easiest to implement and

it guarantees a positive semidefinite solution.

Note that when M1 = I, the first two lines of Algorithm 3.3.4 are empty and the

cost reduces to 4N3/3 flops.

3.4 Introducing weights

In this section we explain how weights can be incorporated into the choice of a target

matrix if different elements of M0 are known to vary in reliability. This can be reflected

by introducing a symmetric matrix W ∈ RN×N of nonnegative weights wij ∈ [0, 1] and

defining the target matrix as M1 = W ◦M0, where ◦ is the Hadamard (elementwise)

product. Then

S(α)ij =
(
1 + α(wij − 1)

)
(M0)ij.

Therefore a weight wij = 1 signifies that the (i, j) element of M0 must not be changed,

while a weight wij = 0 allows that element to be changed as much as necessary.

Intermediate values wij ∈ (0, 1) put a greater restriction (for larger wij) or lesser

restriction (for smaller wij) on the relative amount by which the (i, j) elements of M0

can change. The unit diagonal in correlation problems poses no difficulties as it is

simply obtained for W with a unit diagonal.

Weighting provides a natural answer to the question of how to choose the target

matrix: it is based on the original information in M0 and the trust that can be put

in each individual entry. However, there is no guarantee that M1 obtained this way

is positive semidefinite, which is a requirement for a target matrix in the shrinking

method. If the target matrix turns out to be indefinite then the weights are too

restrictive and W should be modified.
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Since weighting is reflected entirely in the target matrix M1, all the methods from

section 3.3 apply without change. This is in contrast to the H-weighted nearest cor-

relation matrix problem, as discussed in section 1.1.

3.5 Correlation matrix with fixed block

We now consider an important special case of weighting in which the given matrix

M0 is an invalid correlation matrix and has a positive semidefinite leading principal

submatrix that must remain fixed. As explained in section 1.1, this problem arises

when a correlation matrix is formed from incomplete data sets or through stress test-

ing, and the alternating projections method can be modified to compute the nearest

correlation matrix with these elements fixed but the convergence is at best linear and

so it can potentially be slow (this is illustrated by several experiments in Chapter 5).

Moreover, since each iteration requires a full eigenvalue decomposition, this approach

is very expensive.

We propose an alternative replacement matrix based on shrinking. In this case we

have an indefinite M0 partitioned as

M0 =


m n

m A Y

n Y T B

 ∈ RN×N , A a correlation matrix, bii = 1, i = 1: n, (3.9)

and we wish for A and the unit diagonal of B to remain unchanged. Hence the (1, 1)

block of the target matrix M1 must equal A and the (2, 2) block must have a unit

diagonal. The target matrix

M1 = diag(A, I) (3.10)

is the simplest matrix that satisfies these conditions. We are looking for

α∗ = min{α ∈ [0, 1] : f(α) ≥ 0 }, (3.11)

with f(α) = λmin (S(α)) and

S(α) = αM1 + (1− α)M0 =

 A (1− α)Y

(1− α)Y T αI + (1− α)B

 . (3.12)

In addition to the interpretation mentioned in section 3.2 that the resulting matrix

S(α∗) is the elementwise minimal change of M0 in the direction M1 −M0, here we
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0 1
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α

λmin

(a) A positive definite

0 1

0

α

λmin

(b) A positive definite

0 1

0

α

λmin

(c) A singular

0 1

0

α

λmin

(d) A singular

Figure 3.2: Plots of the function f(α) = λmin (S(α)) for S(α) in (3.12) for A positive
definite in (a) and (b), and positive semidefinite and singular in (c) and (d).

also have that α∗ is the minimal relative change applied uniformly to all the unfixed

elements of M0.

A desirable property is that if the rows and columns ofA and ofB are symmetrically

permuted then S(α∗) is permuted in the same way. It is easy to show that this is the

case, using the formulae in section 3.5.4.

We first assume that A is positive definite, so that we have a positive definite

target matrix. The matrix S(α) has special structure: its leading positive definite

block A does not change with α; this can be very efficiently exploited in the bisection

method (Algorithm 3.3.1) and the generalized eigenvalue approach (Algorithm 3.3.4)

to compute α∗, as we show in the next two sections.

Having the fixed block A singular leads to significant changes to both the problem

and the proposed methods for computing the optimal shrinking parameter, as discussed

further in section 3.5.4 and illustrated by the differing plots in Figure 3.2.

We now show how to modify the bisection and generalized eigenvalue methods to

exploit the fixed block.
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3.5.1 Bisection method

Let us look more closely at the Cholesky-based test for definiteness in the case where

S(α) is given by (3.12). If R =
[
R11 R12
0 R22

]
is the Cholesky factor of S(α) then

1. R11 is the Cholesky factor of the fixed block A.

2. R12 is the solution of the multiple right-hand side triangular system RT
11R12 =

(1− α)Y .

3. R22 is the Cholesky factor of αI + (1− α)B −RT
12R12.

Note that R11 is independent of α and so needs to be computed only once. Also,

since R12 = (1− α)R−T11 Y , once we have computed the solution X of RT
11X = Y then

for each α we do not need to solve a linear system for R12, but can instead set R12 =

(1−α)X. Hence, to determine if the matrix S(α) is positive definite or not for a given

α we attempt to compute the Cholesky factor of the matrix αI+(1−α)B−(1−α)2XTX

(which of course is the Schur complement of A in S(α)).

Taking all this into account, our optimized bisection algorithm for the case when

A is positive definite is as follows.

Algorithm 3.5.1 (Bisection method). Given the indefinite matrix M0 in (3.9) with

positive definite (1, 1) block A and a convergence tolerance tol, this algorithm uses

the bisection method with Cholesky factorization to compute the optimal shrinking

parameter α∗ defined by (3.11) for the target matrix (3.10).

1 α` = 0, αr = 1

2 Compute R11, the Cholesky factor of A.

3 Compute the solution X of RT
11X = Y and form Z = XTX.

4 while αr − α` > tol

5 αm = (α` + αr)/2

6 T = αmI + (1− αm)B − (1− αm)2Z

7 if the Cholesky factorization of T breaks down

8 α` = αm

9 else

10 αr = αm
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11 end

12 end

13 α∗ = αr.

To estimate the cost of the algorithm, note that for the overhead (steps 2 and 3)

we have

1. Cholesky factorization of a matrix of size m: m3/3 flops.

2. Computing X is equivalent to n triangular linear system solves of size m: nm2

flops.

3. For Z = XTX, since X is m×n, we are computing (n2+n)/2 elements (diagonal

and one of the strict triangles), where each is an inner product of vectors of size

m, giving in total (2m− 1)(n2 + n)/2 flops. The dominant term is mn2.

We add to that the cost of one Cholesky decomposition of a matrix of size n per

iteration, which for a given tolerance tol is in total n3d| log2 tol|e/3. Hence, the cost

of Algorithm 3.5.1 is at most m3/3 +m2n+ n2m+ n3d| log2 tol|e/3 flops.

3.5.2 Generalized eigenvalue problem

Recall from section 3.3.3 that we are looking for the smallest generalized eigenvalue

of the definite pencil M0 − µM1, with M0 and M1 now given by (3.9) and (3.10). If

A = RT
11R11 is the Cholesky factorization then

M0−µM1 =

A− µA Y

Y T B − µI

 =

RT
11 0

0 I

 I R−T11 Y

Y TR−111 B

− µI
R11 0

0 I

 .
Hence we obtain a standard symmetric eigenvalue problem for the matrix

C =

 I R−T11 Y

Y TR−111 B

 , (3.13)

at the cost of one Cholesky factorization and one multiple right-hand side triangular

system solve.

In summary, we have the following algorithm.
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Algorithm 3.5.2 (Generalized eigenvalue method). Given the indefinite matrix M0 in

(3.9) with positive definite (1, 1) block A this algorithm uses the generalized eigenvalue

interpretation to compute the optimal shrinking parameter α∗ defined by (3.11) for the

target matrix (3.10).

1 Compute R11, the Cholesky factor of A.

2 Compute the solution X of RT
11X = Y and form C from (3.13).

3 Find µ∗, the smallest eigenvalue of the matrix C, by tridiagonalization

(exploiting the identity block) followed by the bisection method.

4 α∗ = µ∗/(µ∗ − 1).

We break down the cost of Algorithm 3.5.2 as follows.

1. Cholesky factorization of a matrix of size m: m3/3 flops.

2. For X, as before, nm2 flops. No computation is necessary for C.

3. Tridiagonalization of a matrix of size N with only T needed: 4N3/3 flops.

4. Bisection adds O(N) flops.

Therefore, the cost of the complete algorithm is at most m3/3 + m2n + 4(m + n)3/3

flops.

The essential difference between Algorithm 3.3.4 and Algorithm 3.5.2 is that we

need the Cholesky factorization of M1 in the former but only that of A in the latter.

There are two main reasons why we have not treated the Newton method in the

fixed block case. The first is that in our numerical experiments for the general case

presented in section 3.6, Newton’s method performed significantly worse than both

bisection and generalized eigenvalue method, and we expected the same to happen in

the fixed block case. The second reason is that we have not found a way to efficiently

exploit the block structure of the matrix S(α) in the Newton method, as we can for

the other two. Namely, in each step we need the eigenvector corresponding to the

smallest eigenvalue of S(αk). This matrix changes with each step and it needs to be

tridiagonalized but we have not been able to reuse the information from the previous

steps or from some preprocessing of S(α).
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3.5.3 Enforcing a lower bound on the smallest eigenvalue

In applications it may be required that a replacement correlation matrix is strictly

positive definite. When the (1, 1) block A is positive definite we therefore generalize

the problem to

αψ∗ = min{α ∈ [0, 1] : f(α) ≥ ψ = θλmin(A) }, (3.14)

where θ is a parameter. For θ = 0 we have the original problem. To obtain an upper

bound on the possible choices of θ we next show that the function f in the fixed block

case attains its maximum value at α = 1. Note that, since S(1) = diag(A, I) we have

f(1) = λmin (S(1)) = min{λmin(A), 1} = λmin(A), (3.15)

because λmin(A) ≤ 1 by (3.4) for any symmetric matrix with unit diagonal.

Lemma 3.5.3. For S(α) in (3.12) with A positive definite the function f defined by

(3.3) is nondecreasing on [0, 1].

Proof. Since f(0) < 0, f(1) = λmin(A) > 0, and f is concave and continu-

ous, it is sufficient to show that for every α ∈ [0, 1] we have f(α) ≤ f(1), that is,

maxα∈[0,1] f(α) = f(1).

From (3.12), since A is a leading principal submatrix of S(α), for every α we have,

using (3.4), λmin(A) ≥ λmin (S(α)) = f(α). Since f(1) = λmin(A) by (3.15), we have

f(α) ≤ f(1).

From the proof we have f(α) ≤ λmin(A). Therefore θ in (3.14) should be restricted

to [0, 1] and hence ψ ∈ [0, λmin(A)]. Clearly, finding αψ∗ is equivalent to finding the

minimal α such that the matrix

Sψ(α) = S(α)− ψI (3.16)

is positive semidefinite, and since fψ(α) = λmin

(
Sψ(α)

)
= f(α)− ψ it follows that fψ

has all the same properties as f : it is a concave and nondecreasing function on [0, 1].

With Aψ = A− ψI and Bψ = B − ψI, we can write Sψ(α) from (3.16) as

Sψ(α) =

 Aψ (1− α)Y

(1− α)Y T α(1− ψ)I + (1− α)Bψ

 .
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For ψ < λmin(A) the matrix Aψ is positive definite and the methods from sections 3.5.1

and 3.5.2 for computing α∗ in (3.11) can be applied to Sψ(α) to compute αψ∗ in (3.14).

The extreme case, when θ = 1, significantly changes the nature of the problem.

Here we are asking that α∗ is such that λmin(S(α∗)) = λmin(A) and it follows that the

matrix Aψ is singular and positive semidefinite. In this case, α∗ = 1 might be the only

solution or all values on the interval [α∗, 1], with α∗ < 1, might be solutions. These two

cases are illustrated in plots (c) and (d) of Figure 3.2, with A there representing Aψ.

In the next section we discuss the problems, both theoretical and computational,

that arise from the singularity of the leading block in S(α).

3.5.4 Singular A

We now suppose that A in (3.9) is positive semidefinite and singular. For the bisection

method, none of the computational savings discussed in section 3.5.1 are now appli-

cable, since they were derived under the assumption that A is positive definite. We

still have the basic Algorithm 3.3.1, but f may now be zero on an interval [α∗, 1] (see

Figure 3.2(d)). As discussed in section 2.2.1, in this case we need to use the Cholesky

factorization with complete pivoting and even then some difficulties remain.

The Newton method can still be performed in the case of an interval of zeros

but convergence might no longer be quadratic if α∗ has multiplicity greater than one.

However, the method might fail when α = 1 is the only solution and the function f is

slowly increasing near that point, because then the computed iterates might leave the

[0,1] bracket. Therefore the Newton method should be safeguarded.

The most severe problems arise in the generalized eigenvalue method. If A is

singular then M1 is singular and we no longer have a definite pencil; moreover, if f

has infinitely many zeros then the pencil (3.8) is singular, which means that every α

is a generalized eigenvalue and we cannot characterize α∗ as before.

Our preferred way to handle the case of singular A is to employ a deflation method

that reduces the problem to the nonsingular case. As a bonus, this analysis also allows

us to distinguish the case when f has infinitely many zeros in [0, 1] from the case when

its only zero is 1.

Since A is singular and positive semidefinite it has the eigenvalue decomposition

A = QDQT , where Q is orthogonal and D = diag(0, D+), with D+ a nonsingular
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diagonal matrix of size r = rank(A), containing all the positive eigenvalues of A.

Then

S(α) = α

A 0

0 I

+ (1− α)

 A Y

Y T B


=

Q 0

0 I

α
D 0

0 I

+ (1− α)

 D QTY

Y TQ B

Q 0

0 I

T

= diag(Q, I)S̃(α) diag(Q, I)T ,

with

S̃(α) = α


0 0

0 D+

0

0 I

+ (1− α)


0 0

0 D+

QTY

Y TQ B



=


0 0

0 D+

(1− α)QTY

(1− α)Y TQ αI + (1− α)B

 .
A necessary condition for S̃(α) to be positive semidefinite is that the first m− r rows

of (1 − α)QTY are zero. If the first m − r rows of QTY are not zero then α∗ = 1.

Otherwise, α∗ < 1 and α∗ is the smallest α such that

S̃+(α) =

[
D+ (1− α)Z

(1− α)ZT αI + (1− α)B

]

is positive semidefinite, where Z comprises the last r rows of QTY . Since the leading

(1,1) block of this matrix is now positive definite we can find α∗ by either of the

methods from sections 3.5.1 and 3.5.2 with S(α) replaced by S̃+(α).

Note that the condition that the first m− r rows of QTY are zero means that each

column of Y is in the column space of A.

3.5.5 Generalization to multiple fixed blocks

The problem of this section generalizes naturally to applications where a large corre-

lation matrix needs to be constructed from blocks, as in the risk aggregation prob-

lem described in section 1.1. Shrinking can easily be used to solve this problem by

choosing as target the matrix comprising the diagonal blocks of the large matrix:
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M1 = diag(A11, A22, . . . , Akk). As in the case of keeping just one block fixed, α∗ is

characterized as the minimal elementwise relative change in the cross-correlations.

When k = 2 it is easy to show that the optimized bisection algorithm is a simple

modification of Algorithm 3.5.1, where in step 6 the matrix T is now T = A22 − (1−

αm)2Z. For optimal efficiency the matrix should be reordered, if necessary, so that

the larger of the two diagonal blocks is in the (1, 1) position. For the generalized

eigenvalue method, Algorithm 3.3.4 leads to computing the smallest eigenvalue of

C =

 I Z

ZT I

 ,
where Z = R−T11 Y R

−1
22 is formed by solving linear systems with the Cholesky factors

R11 of A11 and R22 of A22. Note that the required smallest eigenvalue of C is equal to

1− σ∗, where σ∗ is the largest singular value of the matrix Z, so instead of computing

the smallest eigenvalue of a matrix of order m+n we can compute the largest singular

value of an m × n matrix. For k > 2, the general algorithms from section 3.3 should

be used.

When some of the diagonal blocks are singular, deflation analogous to that in

section 3.5.4 can be done by employing the eigenvalue decomposition of each singular

diagonal block.

3.6 Numerical experiments

We first compare the performance of our methods on a correlation matrix problem

with a fixed block. We generate M0 in (3.9) and M1 in (3.10) by forming A ∈ Rm×m

using the MATLAB function gallery(’randcorr’,m) and the elements of the blocks

Y ∈ Rm×n and B ∈ Rn×n are taken from the uniform distribution on [−1, 1], with B

symmetric and forced to have unit diagonal. The size N = m + n of M0 varies from

300 to 1500 and the test matrices are split into three groups. In the first group the

matrices A and B (the diagonal blocks of M0) are of the same size, in the second A is

twice the size of B, and in the third B is twice the size of A. Unless specified otherwise,

we use tolerance tol = 10−6, which is small enough for most practical applications.

We use the following algorithms.

1. bisection: Algorithm 3.3.1 with Cholesky factorization.
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2. bisection fb: Algorithm 3.5.1, the optimized bisection algorithm for the fixed

block case.

3. newton: Algorithm 3.3.3. On each iteration the required eigenvector is computed

by tridiagonalization followed by the bisection method (with the same tolerance

as for the Newton iteration itself), using routines from the NAG Toolbox for

MATLAB Mark 24 [82].

4. GEP: Algorithm 3.3.4, the algorithm based on solving a generalized eigenvalue

problem. The tridiagonalization and bisection is again done using the NAG

Toolbox.

5. GEP fb: Algorithm 3.5.2, the optimized generalized eigenvalue problem algorithm

for the fixed block case.

The computation times for the five methods averaged over 10 matrices of each size

are presented in Table 3.2. The average number of steps for newton varies from 7 to

10 and the bisection methods always take 20 steps.

The experiments confirm the merit of using the optimized versions of bisection

and the generalized eigenvalue method in applications where we keep a block fixed.

Newton’s method is the slowest of the three methods. GEP is a little faster than

bisection, while bisection fb is faster than GEP fb for m = n and m = 2n, and of

similar speed for n = 2m.

To illustrate the effect of weighting, we consider an example with M0 and W defined

by

M0 =



1.000 0.900 0.450 0.300 0.225

0.900 1.000 0.900 0.450 0.300

0.450 0.900 1.000 0.900 0.450

0.300 0.450 0.900 1.000 0.900

0.225 0.300 0.450 0.900 1.000


, W =



1 1 0 0 0

1 1 0 0 0

0 0 1 0 1

0 0 0 1 0.5

0 0 1 0.5 1


.

The eigenvalues of M0 are, to the digits shown, −0.18, 0.05, 0.50, 1.27, 3.36, therefore
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Table 3.2: Computation times in seconds for the three general shrinking algorithms
and the two algorithms optimized for the fixed block problem, for invalid correlation
matrices of size m+ n with fixed leading block of size m.

(m,n) bisection bisection fb GEP GEP fb newton

(150,150) 0.0069 0.0028 0.0039 0.0028 0.0194
(300,300) 0.0384 0.0091 0.0224 0.0147 0.1052
(450,450) 0.1029 0.0206 0.0642 0.0399 0.3055
(600,600) 0.2143 0.0435 0.1474 0.0895 0.6242
(750,750) 0.3835 0.0815 0.2913 0.1819 1.4204
(200,100) 0.0075 0.0017 0.0039 0.0031 0.0189
(400,200) 0.0405 0.0058 0.0230 0.0170 0.1215
(600,300) 0.1087 0.0121 0.0679 0.0472 0.3053
(800,400) 0.2381 0.0227 0.1571 0.1093 0.7699
(1000,500) 0.3848 0.0382 0.2744 0.1911 1.5115
(100,200) 0.0067 0.0043 0.0035 0.0025 0.0166
(200,400) 0.0308 0.0138 0.0180 0.0114 0.0827
(300,600) 0.0908 0.0367 0.0528 0.0313 0.2531
(400,800) 0.2068 0.0797 0.1304 0.0727 0.5445
(500,1000) 0.3306 0.1426 0.2667 0.1588 1.1879

M0 is indefinite. We see that

M1 = W ◦M0 =



1.00 0.90 0.00 0.00 0.00

0.90 1.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.45

0.00 0.00 0.00 1.00 0.45

0.00 0.00 0.45 0.45 1.00


,

with eigenvalues 0.10, 0.36, 1.00, 1.64, 1.90. Hence, M1 is a valid target matrix. Using

bisection we obtain α∗ = 0.24 and

S(α∗) =



1.000 0.900 0.343 0.228 0.171

0.900 1.000 0.685 0.343 0.228

0.343 0.685 1.000 0.685 0.450

0.228 0.343 0.685 1.000 0.793

0.171 0.228 0.450 0.793 1.000


,

with eigenvalues 0.00, 0.16, 0.52, 1.37, 2.95. Note that the elements corresponding to

weight wij = 1 (typeset in bold) are unchanged, as required by the interpretation of

weights.
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To explore this example further, denote the elements of M0 and S(α∗) by sij and

s′ij, respectively. Then s34 = 0.9 = s45, but since w34 = 0 and w45 = 0.5 the elements

s′34 and s′45 are not the same. The relative change in the (3, 4) element is

s34 − s′34
s34

= 0.24 = α∗ = α∗(1− w34),

but that in the (4, 5) element is

s45 − s′45
s45

= 0.12 =
α∗
2

= α∗(1− w45),

confirming that each element s′ij in S(α∗) was obtained by multiplying the correspond-

ing element sij in M0 by 1 + α∗(wij − 1).

In our next example, we use two large invalid correlation matrices cor1399 and

cor3120 from our test set described in section 1.4. We also use three further matrices

constructed as block 2×2 matrices with diagonal blocks cor1399 and cor1399, cor1399

and cor3120, and cor3120 and cor3120, with remaining off-diagonal elements from the

random uniform distribution on [−1, 1]. We use the identity matrix as the target in

the shrinking method, thus we are not fixing any off-diagonal elements. We compare

the execution times of bisection and GEP with that for computation of the nearest

correlation matrix (NCM) by NAG code g02aa/nag_correg_corrmat_nearest which

implements a Newton method [18], [92]. Convergence tolerances of both 10−3 and 10−6

are taken for bisection and g02aa, as well as for the bisection part of GEP. The times

are shown in Table 3.3, where N denotes the size of the matrix. The shrinking solution

is computed one to two orders of magnitude faster than the NCM. It is clear that

g02aa and GEP do not benefit significantly from a relaxed tolerance, whereas the time

for bisection is proportional to the logarithm of the tolerance. The table also shows

that the Frobenius norm distances from the original matrix to the shrinking solution

range from being similar to the distance to the NCM to much larger than it.

Our final experiment provides some insight into how the Frobenius norm distance

from the original matrix to the shrinking solution compares with the distance to the

NCM when the smallest eigenvalue varies in size. We take for M0 a random symmetric

indefinite matrix with unit diagonal of size 500, constructed by a diagonal scaling of a

random orthogonal similarity applied to a diagonal matrix D; the diagonal elements of

D are generated from the uniform distribution on [0, 1] and half of them are multiplied
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Table 3.3: Times in seconds to compute shrinking solution by bisection and GEP, and
nearest correlation matrix using g02aa, for tolerances 10−3 and 10−6, and Frobenius
norm distances to original matrix.

Time Distance
N bisection GEP g02aa shrinking NCM

1e-3 1e-6 1e-3 1e-6 1e-3 1e-6
1399 0.17 0.28 0.14 0.13 3.66 4.37 321.03 21.03
3120 1.01 2.22 2.44 2.46 28.08 34.31 178.71 5.44
2798 0.70 1.61 1.69 1.69 44.24 50.88 1221.21 1089.51
4519 2.29 4.99 8.10 8.00 220.88 234.68 1761.50 1631.52
6240 7.13 17.50 21.64 21.84 447.32 449.91 2578.10 2446.80

Table 3.4: Comparison of the distances in the Frobenius norm of the NCM and the
solution computed by shrinking for matrices M0 of size 500 with varying order of
magnitude for the smallest eigenvalue.

Distance
λmin(M0) Avg. α∗ NCM shrinking (max) shrinking (I)
-4.6635e-1 6.0586e-1 5.5041e0 2.3506e1 1.0936e1
-4.2839e-2 9.7077e-2 5.0532e-1 3.5461e0 1.2367e0
-4.2466e-3 1.0144e-2 4.9173e-2 3.5748e-1 1.2255e-1
-4.0378e-4 9.4919e-4 4.6492e-3 3.3126e-2 1.1789e-2
-4.3278e-5 1.0900e-4 5.3498e-4 3.9736e-3 1.2897e-3
-4.0634e-6 1.0014e-5 4.5978e-5 3.4107e-4 1.3969e-4

by −10−p for some p. We generate 10 random target correlation matrices M1 using

MATLAB function gallery(’randcorr’,500) and apply bisection. For each M0,

Table 3.4 shows the average shrinking parameter, the NCM distance, the maximum

distance for the shrinking solution, and the distance for shrinking with M1 = I. We see

that the distance with M1 = I is smaller than the worst-case for the random targets M1

and the shrinking distance is one order of magnitude larger than the NCM distance.

This experiment gives some feel for the trade-off between the speed of shrinking versus

the optimality of the NCM as measured by distance, at least for the case where there

are no fixed elements.

It is clear from the last two experiments that in applications where it is not essential

to compute the nearest correlation matrix, shrinking provides an attractive and much

faster alternative for restoring definiteness.



Chapter 4

Bounds for the Distance to the

Nearest Correlation Matrix

Be approximately right rather than exactly wrong.

—John W. Tukey

4.1 Introduction

Solving a matrix nearness problem defined by a distance function

d(A) = min{ ‖A−X‖ : X has property P }

consists of the following tasks [53].

1. Derive an explicit formula or a practical characterization of d(A).

2. Determine the minimizer Xmin and whether it is unique.

3. Develop efficient algorithms for computing or estimating d(A) and Xmin.

Let A ∈ Rn×n be symmetric. For the nearest correlation matrix problem, an ex-

plicit formula is not known for the optimal distance dcorr(A) = ‖A−ncm(A)‖F nor for

ncm(A). The main reason for this seems to be having a problem defined by both a ba-

sis independent property of positive semidefiniteness and a basis dependent property

of a unit diagonal. A thorough analysis by Higham [56, Sec. 2] gives a characteri-

zation of the unique solution and presents the first globally convergent algorithm for

computing it—the alternating projections method, presented here as Algorithm 5.3.1.

This method is at best linearly convergent and requires an eigenvalue decomposition

of a symmetric matrix on each iteration, so it costs at least 10n3/3 flops per iteration.

The Newton algorithm developed by Qi and Sun [92] and improved by Borsdorf and

65
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Higham [18] also requires an eigendecomposition of a symmetric matrix on each itera-

tion and typically needs about 7 iterations. Hence, the total cost to compute ncm(A)

by the Newton algorithm is at least 70n3/3 flops, which is computationally relatively

expensive.

In view of efficient methods for computing ncm(A) being available, estimating the

distance dcorr(A) without computing ncm(A) has largely been overlooked. We first note

that the iterates produced by the alternating projections method are not themselves

correlation matrices as (with P denoting projection) the matrix PUn(PSn(X)) might

be indefinite and the matrix PSn(PUn(X)) might not have an exactly unit diagonal.

For the Newton method, the iterates do not satisfy the constraint of having a unit

diagonal, as discussed in [18, Sec. 3.4]. Hence for both methods the iterates do not

provide upper bounds on dcorr(A). As the Newton method solves the dual problem of

(1.1) [92], on each iteration the value of the dual function provides a lower bound for

dcorr [77]. Second, for practical purposes, determining the correct order of magnitude

of dcorr(A) is sufficient.

In this chapter we summarize the few existing bounds for dcorr(A) and derive several

new upper bounds. While the best bounds have a computational cost of O(n3) flops

they are significantly less expensive to compute than ncm(A) itself.

Bounds on dcorr(A) that can be easily evaluated using standard computational

tools will certainly be of interest to practitioners, as illustrated by the discovery by Xu

and Evers [129] that several matrices thought to be correlation matrices in the work

of Tyagi and Das [117] actually had some negative eigenvalues. While attempting

to compute the Cholesky factorization is sufficient to determine whether a matrix is

positive semidefinite, we propose using a modified Cholesky factorization instead. The

standard and modified Cholesky factorizations have the same computational cost, but

for an indefinite matrix modified Cholesky factorization provides additional informa-

tion that can be used to construct an upper bound on dcorr(A); this bound can help the

user to decide whether to revisit the construction of the matrix, perhaps by acquiring

more data or by refining the statistical analysis. In our experiments, the best modified

Cholesky bound is at most two orders of magnitude larger than dcorr(A).

Sharper bounds are available based on spectral information. We present several

bounds based only on the knowledge of the eigenvalues of A, but the best bound in this
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class, which in our experiments is at most one order of magnitude larger than dcorr(A),

uses the nearest positive semidefinite matrix to A and so a knowledge of eigenvectors

is also required.

The chapter is organized as follows. In section 4.2 we summarize existing upper

and lower bounds on the distance to the nearest correlation matrix. In section 4.3

we derive our new upper bounds and give a result bounding the overestimation by a

factor that does not exceed 1+n
√
n. We present one result for the weighted Frobenius

norm in section 4.4. We analyze the computational cost of the bounds in section 4.5.

In section 4.6 we illustrate the quality of the bounds on our invalid correlation matrix

test set listed in section 1.4.

4.2 Existing bounds

We first summarize currently available bounds for the distance to the nearest corre-

lation matrix. We will need the following result on the nearest positive semidefinite

matrix [52, Thm. 2.1].

Lemma 4.2.1 (Higham). Let A ∈ Rn×n be symmetric with spectral decomposition

A = QΛQT , where Q = [q1, . . . , qn] is orthogonal and Λ = diag(λi). Then the unique

solution to min{ ‖A−X‖F : X is symmetric positive semidefinite } is

A+ = Q diag(max(λi, 0))QT . (4.1)

We shall use A− = A− A+ = Q diag(min(λi, 0))QT .

The next result is [56, Lem. 1.1].

Lemma 4.2.2 (Higham). For symmetric A ∈ Rn×n with eigenvalues λi,

max{α1, α2} ≤ dcorr(A) ≤ min{β1, β2, β3},
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where

α2
1 =

n∑
i=1

(aii − 1)2 +
∑
|aij |>1

i6=j

(1− |aij|)2, (4.2)

α2 = ‖A− A+‖F =

∑
λi<0

λ2i

1/2

, (4.3)

β1 = ‖A− I‖F , (4.4)

β2 = min{ ‖A− zzT‖F : zi = ±1, i = 1: n }, (4.5)

β3 = min
−1≤ρ≤1

‖A− T (ρ)‖F , where (T (ρ))ij = ρ|i−j|. (4.6)

The lower bound α1 follows from the fact that the elements of a correlation matrix

are bounded in modulus by 1. The equivalence of the two formulae for α2 is shown

by Lemma 4.2.1. The upper bounds in Lemma 4.2.2 are obtained as the distance to

certain classes of correlation matrices. In particular, β3 arises from the matrices with

(i, j) element ρ|i−j|, known as Kac-Murdock-Szegő Toeplitz matrices [113], which are

positive semidefinite for −1 ≤ ρ ≤ 1.

Travaglia [112, Prop. 3.1] obtained a further lower bound on dcorr(A) using the

circulant mean Ac, defined as the circulant matrix with first row (c0, c1, . . . , cn−1),

where

c0 =
1

n
trace(A),

ck =
1

n

(
n−k∑
i=1

ai,i+k +
k∑
i=1

ai,i+n−k

)
, k = 1, 2, . . . , n− 1.

This lower bound and a trivial upper bound are combined in the next result.

Lemma 4.2.3 (Travaglia). For symmetric A ∈ Rn×n,

dcorr(Ac) ≤ dcorr(A) ≤ dcorr(Ac) + ‖A− Ac‖F . (4.7)

4.3 New bounds

In this section we derive new upper bounds on the distance to the nearest correlation

matrix that do not require the solution to a minimization problem, unlike the bounds

β2 and β3 from Lemma 4.2.2, and the upper bound in Lemma 4.2.3. Our first bound
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is the distance to the correlation matrix obtained by scaling A+ from (4.1) to have

unit diagonal.

Theorem 4.3.1. Let A ∈ Rn×n be symmetric with positive diagonal elements. Then

‖A− A+‖F ≤ dcorr(A) ≤ ‖A− Ã+‖F , (4.8)

where Ã+ = D−1/2A+D
−1/2, with D = diag((A+)ii).

Proof. The lower bound is α2 in (4.3). The upper bound is immediate if we can

show that Ã+ is a correlation matrix. The only question is whether it is defined, that

is, whether the positive semidefinite matrix A+ has positive diagonal elements, so that

D is nonsingular and positive definite. From Lemma 4.2.1 we see that A+−A = −A−
is positive semidefinite and it follows that the diagonal elements of A+ are at least as

large as the corresponding diagonal elements of A, and hence they are positive.

In the next result we obtain an alternative upper bound that, while weaker than

that in (4.8), is less expensive to compute, as we explain in section 4.5. Note that the

theorem is valid for t = n, that is, for a positive semidefinite matrix A.

Theorem 4.3.2. Let A ∈ Rn×n be symmetric with positive diagonal elements and

eigenvalues λ1 ≥ · · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λn. Then(
n∑

i=t+1

λ2i

)1/2

≤ dcorr(A) ≤

(
n∑

i=t+1

λ2i

)1/2

+ θ

(
t∑
i=1

λ2i

)1/2

, (4.9)

where

θ = max

{∣∣∣∣1− 1

maxi aii −min(λn, 0)

∣∣∣∣ , ∣∣∣∣1− 1

mini aii

∣∣∣∣} .
Proof. The lower bound is (4.3).

By Theorem 4.3.1 and the triangle inequality we have

dcorr(A) ≤ ‖A− Ỹ ‖F ≤ ‖A− Y ‖F + ‖Y − Ỹ ‖F , (4.10)

where Y = A+ in (4.1) is positive semidefinite and Ỹ = D−1/2Y D−1/2 is a correlation

matrix, with D = diag(di) and di = yii > 0 for all i. We now bound |yij − ỹij|.

Let m = mini aii and M = maxi aii. With ei the ith unit vector and Λ− =

diag(min(λi, 0)), we have

di = eTi Y ei = eTi (A−QΛ−Q
T )ei = aii − eTi QΛ−Q

T ei = aii − δi,
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with δi = eTi QΛ−Q
T ei, and so

m− δi ≤ di ≤M − δi.

With y = QT ei, we have ‖y‖2 = 1, δi = yTΛ−y ≤ 0, and

min(λn, 0) = min
x 6=0

xTΛ−x

xTx
≤ yTΛ−y

yTy
= yTΛ−y = δi.

Note that we must have min(λn, 0) for the first equality in the previous line to hold,

since λn could be positive. It follows that m ≤ di ≤M −min(λn, 0) for every i and so(
1

M −min(λn, 0)

)1/2

≤ d
−1/2
i ≤ m−1/2.

Since ỹij = d
−1/2
i d

−1/2
j yij we have

|yij − ỹij| =
∣∣(1− d−1/2i d

−1/2
j )yij

∣∣ =
∣∣1− d−1/2i d

−1/2
j

∣∣∣∣yij∣∣.
Finally, from

1− 1

m
≤ 1− d−1/2i d

−1/2
j ≤ 1− 1

M −min(λn, 0)

we have |yij − ỹij| ≤ θ|yij| and therefore ‖Y − Ỹ ‖F ≤ θ‖Y ‖F . The upper bound in

(4.9) then follows from (4.10).

For t = n, Theorem 4.3.2 yields the following corollary, which quantifies the ef-

fect on the distance dcorr(A) of the departure of the diagonal elements of a positive

semidefinite matrix A from 1.

Corollary 4.3.3. Let A ∈ Rn×n be symmetric positive semidefinite with positive di-

agonal elements. Then

dcorr(A) ≤ max

{∣∣∣∣1− 1

maxi aii

∣∣∣∣ , ∣∣∣∣1− 1

mini aii

∣∣∣∣} ‖A‖F . (4.11)

If all the diagonal elements of a positive semidefinite matrix A are at most 1 then

ncm(A) is easy to compute directly as it is obtained from A by replacing each diagonal

element by 1. However, (4.11) applies more generally.

In many applications the invalid approximation to a correlation matrix has unit

diagonal and at least one negative eigenvalue. In this case Theorem 4.3.2 simplifies as

follows.



4.3. NEW BOUNDS 71

Corollary 4.3.4. Let A ∈ Rn×n be symmetric with unit diagonal and eigenvalues

λ1 ≥ · · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λn, where λn < 0. Then(
n∑

i=t+1

λ2i

)1/2

≤ dcorr(A) ≤

(
n∑

i=t+1

λ2i

)1/2

+
|λn|

1 + |λn|

(
t∑
i=1

λ2i

)1/2

. (4.12)

The next result gives a sharper bound than (4.12). The proof uses the idea of

shrinking from Chapter 3.

Theorem 4.3.5. Let A ∈ Rn×n be symmetric with unit diagonal and smallest eigen-

value λn < 0. Then

dcorr(A) ≤ |λn|
1 + |λn|

‖A− I‖F , (4.13)

and this bound is no larger than the upper bound in (4.12).

Proof. Let S(α) = αI + (1 − α)A, which has unit diagonal. We have dcorr(A) ≤

‖A − S(α∗)‖F , where α∗ = min{α ∈ [0, 1] : S(α) is positive semidefinite}. It is easy

to see that α∗ = −λn/(1− λn) and A− S(α∗) = α∗(A− I), which gives (4.13).

Now we compare the bound with (4.12). The triangle inequality gives

‖A− I‖F ≤ ‖A− A+‖F + ‖A+ − I‖F , (4.14)

where A+ from (4.1) is the nearest positive semidefinite matrix to A. For the second

term, we have

‖A+ − I‖2F = trace
(
(A+ − I)T (A+ − I)

)
= ‖A+‖2F − 2 trace(A+) + n. (4.15)

We noted in the proof of Theorem 4.3.1 that A+−A is positive semidefinite, and since

A has unit diagonal it follows that trace(A+) ≥ n. Therefore, −2 trace(A+) + n ≤

−n < 0 and so ‖A+ − I‖2F ≤ ‖A+‖2F . Then from (4.14) it follows that ‖A − I‖F ≤

‖A− A+‖F + ‖A+‖F , so, since α∗ ≤ 1,

α∗‖A− I‖F ≤ α∗‖A− A+‖F + α∗‖A+‖F ≤ ‖A− A+‖F + α∗‖A+‖F .

This completes the proof, since the right-hand side of the latter inequality is the upper

bound in (4.12).

Note that the bound (4.13) is also sharper than β1 given in (4.4).

We now have several upper bounds and a natural question is “how sharp are they?”

For the most practically important case of A with unit diagonal, the next result gives

a limit on the overestimation for the upper bound of Theorem 4.3.1.
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Theorem 4.3.6. Let A ∈ Rn×n be symmetric with unit diagonal, t nonnegative eigen-

values, largest eigenvalue λ1, and smallest eigenvalue λn < 0. Then, in the notation

of Theorem 4.3.1,

‖A− Ã+‖F
‖A− A+‖F

≤ 1 +

√
t λ1

1 + |λn|
. (4.16)

If, in addition, |aij| ≤ 1 for i 6= j, then

‖A− Ã+‖F
‖A− A+‖F

≤ 1 + n
√
t. (4.17)

Proof. Using the triangle inequality and the relation A = A+ + A− we have

‖A− Ã+‖F
‖A− A+‖F

=
‖A− + A+ − Ã+‖F

‖A−‖F
≤ 1 +

‖A+ − Ã+‖F
‖A−‖F

.

As in the proof of Theorem 4.3.2, we have ‖A+−Ã+‖F ≤ θ‖A+‖F , where θ = |λn|/(1+

|λn|), since A has unit diagonal and λn < 0. Therefore

‖A− Ã+‖F
‖A− A+‖F

≤ 1 +
|λn|

1 + |λn|
‖A+‖F
‖A−‖F

. (4.18)

Since ‖A+‖2F =
∑t

i=1 λ
2
i ≤ tλ21 and ‖A−‖F ≥ ‖A−‖2 = |λn|, it follows that (noting

that the assumptions of the theorem imply λ1 > 0)

‖A+‖F
‖A−‖F

≤
√
t λ1
|λn|

.

Substituting this bound into (4.18) yields (4.16). The bound (4.17) follows because

λ1 ≤ n for any matrix with elements bounded in modulus by 1.

It is easy to see that the upper bound (4.16) also holds for the ratio of the upper

and lower bounds from Corollary 4.3.4, and hence also for the ratio of the shrinking

bound (4.13) and (4.3), by Theorem 4.3.5. Moreover, we have ‖A−A+‖F ≤ dcorr(A) ≤

ψ‖A− A+‖F , where ψ = 1 +
√
tλ1/(1 + |λn|).

Another way to obtain an upper bound on the distance to the nearest correlation

matrix is to modify Theorem 4.3.1 by replacing the nearest positive semidefinite ma-

trix A+ by a more cheaply computable approximation to A+. To construct such an

approximation we will use modified Cholesky factorizations, described in section 2.2.2.

Recall that they compute

P T (A+ E)P = LDLT , (4.19)

where P is a permutation matrix, L is unit lower triangular, and A + E is positive

semidefinite. The cost of these algorithms is the same as the cost of computing the
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Cholesky factorization to highest order terms, which is substantially less than the cost

of computing A+. Note that bounds based on modified Cholesky factorizations provide

an efficient way to determine whether the matrix is positive semidefinite to start with,

as in this case E = 0.

Theorem 4.3.7. Let A ∈ Rn×n be symmetric with positive diagonal elements. Then

dcorr(A) ≤ ‖A− Ãmc‖F , (4.20)

where Ãmc = D−1/2AmcD
−1/2 with Amc = A+ E from (4.19) and D = diag(Amc).

As a final new upper bound on dcorr(A) we make use of one of the rare explicitly

known solutions to the nearest correlation matrix problem, for the so-called one pa-

rameter model. Here, a matrix C(w) ∈ Rn×n is defined for a real parameter w as a

unit diagonal matrix with all off-diagonal elements equal to w:

C(w) = (1− w)I + weeT = I + w(eeT − I),

where e = [1, 1, . . . , 1]T . As shown in [19, Lem. 2.1] the matrix C(w) is a correlation

matrix if and only if −1/(n− 1) ≤ w ≤ 1.

Theorem 4.3.8. For A ∈ Rn×n symmetric with n ≥ 2,

dcorr(A) ≤ min{ ‖A− C(w)‖F : C(w) is a correlation matrix }

= ‖A− C(wopt)‖F , (4.21)

where wopt is the projection of w =
(
eTAe− trace(A)

)
/(n2 − n) onto the interval

[−1/(n− 1), 1].

Proof. The equality (4.21) is from [19, Thm. 2.2].

4.4 Weighted Frobenius norm

In practical applications data is usually known with different levels of confidence which

should be reflected in the replacement matrix—correlations in which we have more

confidence should change less. This can be achieved to a certain extent by using the

W -norm; recall that ‖A‖W = ‖W 1/2AW 1/2‖F , where W is symmetric positive definite

and W 1/2 its unique positive definite square root.
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When W is diagonal, and A has a unit diagonal and λn < 0, which is the most

common practical case, we can prove the equivalent of Corollary 4.3.4. We shall need

the following result.

Theorem 4.4.1 ([56, Thm. 3.2]). For the W -norm and symmetric matrix A,

argmin{ ‖A−X‖W : X is symmetric positive semidefinite }

= W−1/2
(
W 1/2AW 1/2

)
+
W−1/2,

(4.22)

where M+ denotes the nearest positive semidefinite matrix to M in the Frobenius norm

and is given by (4.1).

We can now prove the weighted version of Corollary 4.3.4.

Theorem 4.4.2. Let A ∈ Rn×n be symmetric with unit diagonal and eigenvalues λ1 ≥

· · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λn, where λn < 0, let W be a diagonal positive definite

matrix with the smallest eigenvalue λmin(W ), and let W 1/2AW 1/2 have eigenvalues

µ1 ≥ · · · ≥ µt ≥ 0 > µt+1 ≥ · · · ≥ µn. Then

‖A− Y ‖W ≤ min{ ‖A−X‖W : X is a correlation matrix }

≤ ‖A− Y ‖W +
|µn|

λmin(W ) + |µn|
‖Y ‖W ,

where Y is the nearest positive semidefinite matrix to A in the W -norm defined in

(4.22).

Proof. Since the distance to the nearest correlation matrix is at least as large as

the distance to the nearest positive semidefinite matrix, the lower bound holds.

For the upper bound, we first transform Y into a correlation matrix Ỹ by a diagonal

scaling, i.e.

Ỹ = D−1/2Y D−1/2,

where D = diag(di) and di = yii. Since min{ ‖A−X‖W : X is a correlation matrix } ≤

‖A − Ỹ ‖W and ‖A − Ỹ ‖W ≤ ‖A − Y ‖W + ‖Y − Ỹ ‖W , our goal is to show that

‖Y − Ỹ ‖W ≤ θ‖Y ‖W , for θ = |µn|/
(
λmin(W ) + |µn|

)
.

Note that

A− Y = W−1/2
(
W 1/2AW 1/2 − (W 1/2AW 1/2)+

)
W−1/2

= W−1/2
(
W 1/2AW 1/2

)
−
W−1/2 (4.23)
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is negative semidefinite. From (4.23) we have Y = A−W−1/2
(
W 1/2AW 1/2

)
−
W−1/2

and, since A has unit diagonal, with ei the ith unit vector,

di = aii − eTi W−1/2
(
W 1/2AW 1/2

)
−
W−1/2ei = 1− δi.

Since δi is a diagonal element of a negative semidefinite matrix (4.23), δi ≤ 0. We next

show that µn/λmin(W ) ≤ δi by proving that the matrixW−1/2
(
W 1/2AW 1/2

)
−
W−1/2−

(µn/λmin(W ))I is positive semidefinite, and so its diagonal elements are nonnegative.

The ith eigenvalue of this matrix is

λi

(
W−1/2

(
W 1/2AW 1/2

)
−
W−1/2

)
− µn/λmin(W ).

By Ostrowski’s theorem [62, Thm. 4.5.9],

λi

(
W−1/2

(
W 1/2AW 1/2

)
−
W−1/2

)
= tiλi

((
W 1/2AW 1/2

)
−

)
,

where ti ∈ [λmin(W−1), λmax(W
−1)].

By the definition of
(
W 1/2AW 1/2

)
−

, the smallest eigenvalue of this matrix is µn

and so

λi

(
W−1/2

(
W 1/2AW 1/2

)
−
W−1/2

)
− µn/λmin(W ) =

= tiλi

((
W 1/2AW 1/2

)
−

)
− µn/λmin(W )

≥ tiµn − µn/λmin(W )

= (ti − 1/λmin(W ))µn.

Since λmax(W
−1) = 1/λmin(W ) we have ti − 1/λmin(W ) ≤ 0, which together with

µn < 0 shows that all eigenvalues of the matrix W−1/2
(
W 1/2AW 1/2

)
−
W−1/2 −

(µn/λmin(W ))I are nonnegative and hence it is a positive semidefinite matrix. There-

fore, µn/λmin(W ) ≤ δi ≤ 0.

We now have

1 ≤ di ≤ 1 +
|µn|

λmin(W )
=
λmin(W ) + |µn|

λmin(W )
,

and so (
λmin(W )

λmin(W ) + |µn|

)1/2

≤ d
−1/2
i ≤ 1. (4.24)
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From (4.22) and the definition of Ỹ it follows that

‖Y − Ỹ ‖W = ‖Y −D−1/2Y D−1/2‖W

=
∥∥∥W−1/2

(
W 1/2AW 1/2

)
+
W−1/2−

−W−1/2D−1/2
(
W 1/2AW 1/2

)
+
D−1/2W−1/2

∥∥∥
W

=
∥∥∥(W 1/2AW 1/2)+ −D−1/2

(
W 1/2AW 1/2

)
+
D−1/2

∥∥∥
F

= ‖Z −D−1/2ZD−1/2‖F ,

were we have used the fact that diagonal matrices commute in the second step.

Now,

‖Z −D−1/2ZD−1/2‖2F =
∑
i,j

(zij − d
−1/2
i d

−1/2
j zij)

2

=
∑
i,j

(1− d−1/2i d
−1/2
j )2z2ij.

By (4.24),

(1− d−1/2i d
−1/2
j )2 ≤

(
1− λmin(W )

λmin(W ) + |µn|

)2

= θ2,

and so we have shown that

‖Y − Ỹ ‖2W ≤ θ2
∑
i,j

z2ij = θ2‖Z‖2F .

Finally,

‖Z‖2F = ‖(W 1/2AW 1/2)+‖2F =
∥∥∥W−1/2

(
W 1/2AW 1/2

)
+
W−1/2

∥∥∥2
W

= ‖Y ‖2W ,

which completes the proof of the theorem.

4.5 Computing the bounds

The main criteria for judging a bound are its cost and its accuracy. In this section we

discuss the cost of the bounds presented above and in the next section we carry out

numerical experiments to test their accuracy.

Table 4.1 summarizes the bounds, their applicability, and their cost. We will

comment only on the nontrivial entries in the table.
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We can evaluate the lower bound α2 in (4.3) and the upper bounds in (4.9) and

(4.12) without computing A+ explicitly, but rather by computing all the positive

eigenvalues or all the negative eigenvalues—whichever are fewer in number—and then

using
∑t

i=1 λ
2
i +
∑n

i=t+1 λ
2
i = ‖A‖2F . We can assume t ≥ n/2 without loss of generality

and therefore we compute the n− t negative eigenvalues by tridiagonalizing A at the

cost of 4n3/3 flops [44, p. 459] and then computing the n − t negative eigenvalues of

the tridiagonal matrix by the bisection method at a cost of O(n(n− t)) flops [8, p. 50],

which makes the total cost for the bounds α2, (4.9), and (4.12) at most 4n3/3 flops.

The cost of (4.13) is the same.

As noted in [56], computing the upper bound β2 from Lemma 4.2.2 is equivalent

to maximizing zTAz over all vectors z with elements ±1, which is an NP-hard prob-

lem [98]. For a matrix A of size n there are 2n positive semidefinite matrices zzT for

such z, which makes an exhaustive search algorithm unfeasible unless n is very small.

A formula for the distance dcorr(Ac) in Lemma 4.2.3 is given in [112, Thm. 4.1].

However, it requires not only all the eigenvalues but also their multiplicities, which

are not reliably computable in floating point arithmetic. We therefore have to regard

dcorr(Ac) as no more easily computable in general than dcorr(A), and so the bounds of

Lemma 4.2.3 are of limited interest.

Next we turn to the bound (4.8), which requires Ã+, and hence A+. Recall that

we order the eigenvalues λ1 ≥ · · · ≥ λt ≥ 0 > λt+1 ≥ · · · ≥ λn, and assume with-

out loss of generality that t ≥ n/2 so that the majority of eigenvalues are nonneg-

ative. We first compute the tridiagonalization A = QTQT and do not form Q ex-

plicitly but keep it in factored form. By applying bisection and inverse iteration to

the tridiagonal matrix T we compute λt+1, . . . , λn and the corresponding eigenvec-

tors, which are placed in the columns of Z = [zt+1, . . . , zn]. We then compute the

matrix W = Z diag(|λt+1|, . . . , |λn|)1/2 ∈ Rn×(n−t) and apply Q to get B = QW .

Finally, A+ = A + BBT . The total cost is 4n3/3 flops for T , O(n2) flops to com-

pute λt+1, . . . , λn and form Z and W , 2n2(n − t) flops1 to form B [44, Sec. 5.1.6],

and n2(n − t) flops to form A+, exploiting symmetry throughout. The total cost is

therefore 4n3/3 + 3n2(n− t) ≤ 4n3/3 + 3n3/2 = 17n3/6 flops.

1The errata web page http://www.cs.cornell.edu/cv/GVL4/Errata.htm for the fourth edition
of [44] notes that the book incorrectly omits the leading 2 on page 238 from this operation count.

http://www.cs.cornell.edu/cv/GVL4/Errata.htm
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Table 4.1: Approximate cost in flops of the bounds for a symmetric A ∈ Rn×n. For
the bound α1, k is the number of elements |aij| > 1, i 6= j. For the bound (4.11),
m = mini aii and M = maxi aii.

Definition Cost (flops) Restrictions
Lower bounds

α1 (4.2) 3(n+ k)

α2 = ‖A− A+‖F (4.3) 4n3/3
dcorr(Ac) (4.7) As dcorr(A)

Upper bounds

β1 = ‖A− I‖F (4.4) n2

β2 = min{ ‖A− zzT‖F : zi = ±1 } (4.5) O(n22n)

β3 = min−1≤ρ≤1 ‖A− T (ρ)‖F (4.6) O(n2)
dcorr(Ac) + ‖A− Ac‖F (4.7) As dcorr(A)

‖A− Ã+‖F (4.8) 17n3/6 aii > 0

‖A− A+‖F + θ‖A+‖F (4.9) 4n3/3 aii > 0

max{ |1− 1/M |, |1− 1/m| }‖A‖F (4.11) n2 aii > 0, λn ≥ 0

‖A− A+‖F + ‖A+‖F |λn|/(1 + |λn|) (4.12) 4n3/3 λn < 0, aii ≡ 1

‖A− I‖F |λn|/(1 + |λn|) (4.13) 4n3/3 λn < 0, aii ≡ 1

‖A− Ãmc‖F (4.20) 2n3/3 aii > 0

‖A− C(wopt)‖F (4.21) 2n2

Three different bounds are obtained from (4.20), corresponding to the three dif-

ferent modified Cholesky algorithms. While E in (4.19) is explicitly produced by the

algorithms of Gill, Murray, and Wright, and Eskow and Schnabel, the algorithm of

Cheng and Higham does not explicitly produce E, so this algorithm requires an extra

matrix multiplication L ·DLT . The cost stated in Table 4.1 includes the latter step.

In [56] an approximation for β3 from Lemma 4.2.2 was computed as the approxi-

mate local minimum obtained with the MATLAB fminbnd minimizer. We propose an

alternative. Note that the function we are minimizing for the bound β3 is a polynomial

in the variable ρ:

f(ρ) = ‖A− T (ρ)‖2F = 2
∑

1≤i<j≤n

(aij − ρj−i)2 +
n∑
i=1

(aii − 1)2.

We compute the stationary points of f , that is, the zeros of the derivative

f ′(ρ) = −4
∑

1≤i<j≤n

[
(j − i)aijρj−i−1 − (j − i)ρ2(j−i)−1

]
,

which has degree 2n − 3. Then we obtain β3 as the minimum value of f over all

stationary points in [−1, 1] along with the endpoints ±1. The dominant cost for
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this bound is computing the stationary points, which are the real eigenvalues of a

companion matrix of order 2n− 3 in [−1, 1]; these can be computed in O(n2) flops [7].

To summarize, we can separate the new upper bounds into three main categories.

The most expensive bound to compute is (4.8) and it uses Ã+; the less expensive

bounds (4.9), (4.12), and (4.13) are based on the knowledge of eigenvalues only; and

the least expensive bound is the modified Cholesky bound (4.20), which has half the

cost of the eigenvalue-only based bounds.

4.6 Numerical experiments

In this section we analyze the accuracy of the bounds on our invalid correlation matrix

test set from section 1.4. The nearest correlation matrix required to determine the

true distance dcorr(A) is computed by the code nag correg corrmat nearest (g02aa)

from the NAG Toolbox for MATLAB Mark 24 [82], which implements the precondi-

tioned Newton algorithm of [18], and we chose tolerance tol = 10−10.

In our first test we analyze the performance of the modified Cholesky algorithms

used for the bound (4.20) for all our test matrices. In Table 4.2 the matrix Ãmc from

(4.20) corresponding to the algorithms of Gill, Murray, and Wright [42, Sec. 4.4.2.2],

Schnabel and Eskow [102] and [103], and Cheng and Higham [24] is denoted by GMW,

SE90, SE99, and CH, respectively. The results show two main features. First, the

four modified Cholesky algorithms provide bounds of similar quality for all but the

RiskMetrics matrices, and these bounds are often of the correct order of magnitude.

Second, for all the RiskMetrics matrices except RiskMetrics4, dcorr(A) is relatively

small and the revised Schnabel and Eskow [103] algorithm and the Cheng and Higham

algorithm provide bounds three or four orders of magnitude smaller than those from

the other two algorithms. Since the Cheng and Higham algorithm gives the best

bounds overall, we use it in the remaining experiments.

We next compute all our bounds. The results are given in Table 4.3 and Table 4.4.

The ordering of the bounds is the same as in Table 4.1, but note that we exclude the

bound (4.12) as for our test matrices it is the same as (4.9). The bound α1 is zero for

all examples where aii ≡ 1 and |aij| ≤ 1. Moreover, the circulant mean Ac of several

of these matrices turns out to be a correlation matrix and so dcorr(Ac) = 0 in (4.7).
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Table 4.2: Upper bound (4.20) from the modified Cholesky algorithms.

Ex. ‖A−GMW‖F ‖A− SE90‖F ‖A− SE99‖F ‖A− CH‖F dcorr(A)
high02 8.45e-1 6.19e-1 6.19e-1 5.86e-1 5.28e-1

tec03 8.17e-2 9.47e-1 6.33e-2 5.19e-2 3.74e-2
bhwi01 6.31e-1 2.50e-1 2.50e-1 4.30e-1 1.51e-1
mmb13 3.13e1 3.14e1 3.14e1 3.04e1 3.03e1

fing97 1.50e-1 7.66e-2 7.90e-2 9.24e-2 4.91e-2
tyda99R1 2.18 2.35 2.17 2.36 1.40
tyda99R2 1.53 2.19 1.57 1.71 7.75e-1
tyda99R3 1.47 1.46 1.49 1.09 6.72e-1

usgs13 9.69e-1 8.02e-1 5.93e-1 1.92 5.51e-2
RiskMetrics1 1.11e2 1.12e1 1.72e-2 8.81e-3 3.88e-5
RiskMetrics2 1.38e2 6.21 1.90e-2 9.71e-3 4.75e-5
RiskMetrics3 9.33e1 3.14 7.10e-3 4.20e-3 1.81e-5
RiskMetrics4 1.27e2 6.66e1 6.62e1 1.22 8.40e-2
RiskMetrics5 1.32e2 1.44 2.01e-2 9.64e-3 4.46e-5
RiskMetrics6 8.53e1 1.30 5.85e-3 2.85e-3 1.59e-5

cor1399 3.59e2 3.57e2 3.57e2 4.52e1 2.10e1
cor3120 7.83e1 4.18e2 4.16e2 4.40e2 5.44

Table 4.3: Small examples.

high02 tec03 bhwi01 mmb13 fing97 tyda99R1 tyda99R2 tyda99R3
Lower bounds

(4.2) 0.00 0.00 0.00 3.01e1 0.00 0.00 0.00 0.00
(4.3) 4.14e-1 2.78e-2 1.28e-1 2.15e1 3.83e-2 1.15 6.24e-1 5.59e-1
(4.7) 0.00 0.00 0.00 1.17e1 0.00 1.60e-1 0.00 0.00

True distance
dcorr(A) 5.28e-1 3.74e-2 1.51e-1 3.03e1 4.91e-2 1.40 7.75e-1 6.72e-1

Upper bounds
(4.4) 2.00 2.35 2.43 3.29e1 3.09 4.02 4.02 3.74
(4.6) 9.15e-1 2.03 2.21 3.04e1 2.32 3.98 2.81 3.73
(4.7) 1.15 2.08 2.35 3.98e1 2.50 3.24 2.11 3.28
(4.8) 5.38e-1 3.93e-2 1.61e-1 3.04e1 5.33e-2 1.45 8.41e-1 7.02e-1
(4.9) 1.18 1.11e-1 5.00e-1 4.54e1 1.88e-1 3.55 2.39 2.11
(4.13) 5.86e-1 6.35e-2 2.75e-1 3.14e1 1.14e-1 2.02 1.46 1.25
(4.20) 5.86e-1 5.19e-2 4.30e-1 3.04e1 9.24e-2 2.36 1.71 1.09
(4.21) 1.15 2.08 2.35 3.04e1 2.60 3.71 2.20 3.70
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Table 4.4: Real-life examples.

usgs13 RiskMetrics1 RiskMetrics2 RiskMetrics3 RiskMetrics4 RiskMetrics5 RiskMetrics6 cor1399 cor3120
Lower bounds

(4.2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.36e-1 1.06e-1
(4.3) 5.02e-2 3.39e-5 3.97e-5 1.63e-5 8.25e-2 3.76e-5 1.46e-5 1.32e1 2.29
(4.7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

True distance
dcorr(A) 5.51e-2 3.88e-5 4.75e-5 1.81e-5 8.40e-2 4.46e-5 1.59e-5 2.10e1 5.44

Upper bounds
(4.4) 2.29e1 1.28e2 1.54e2 1.45e2 1.30e2 1.45e2 1.41e2 3.59e2 4.28e2
(4.6) 2.04e1 1.20e2 1.42e2 1.33e2 1.18e2 1.33e2 1.28e2 3.58e2 4.28e2
(4.7) 6.75 1.10e2 1.33e2 1.23e2 1.04e2 1.22e2 1.15e2 2.05e2 2.92e2
(4.8) 6.55e-2 1.19e-4 1.90e-4 5.88e-5 9.21e-2 1.71e-4 4.83e-5 2.37e1 1.11e1
(4.9) 1.15 1.00e-3 1.27e-3 7.35e-4 1.01e1 1.16e-3 9.98e-4 3.36e2 1.83e2
(4.13) 1.01 9.58e-4 1.22e-3 7.12e-4 9.91 1.11e-3 9.74e-4 3.21e2 1.79e2
(4.20) 1.92 8.81e-3 9.71e-3 4.20e-3 1.22 9.64e-3 2.85e-3 4.52e1 4.40e2
(4.21) 7.64 1.16e2 1.43e2 1.32e2 1.10e2 1.28e2 1.21e2 2.06e2 2.93e2
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Several observations can be made about the results.

1. Of the lower bounds, only (4.3) provides useful information. Moreover, in all

examples this bound is within a factor 2.4 of dcorr (the worst case being cor3120).

2. Of the upper bounds, (4.8)—the most expensive bound to compute—is the most

accurate and is always within a factor 4 of dcorr (the worst case being RiskMet-

rics2).

3. Over all the test matrices, the upper bound (4.8) exceeded the lower bound (4.3)

by at most a factor 4.9 (the worst case being cor3120).

4. Of the other eigenvalue-based upper bounds, the bound from shrinking (4.13)

is better than the bound (4.9), as we already know from Theorem 4.3.5. The

shrinking bound (4.13) is typically an order of magnitude larger than (4.8) on

real-life examples.

5. The upper bounds (4.13) and (4.20) based on shrinking and the modified Cholesky

factorizations, respectively, are of similar quality and they overestimate dcorr at

most by one or two orders of magnitude. The modified Cholesky bound has the

advantage of being computable in half the number of operations as the bound

based on shrinking.

6. The upper bounds (4.4), (4.6), and (4.21), which are computable in O(n2) oper-

ations, are poor in these tests, the more so when the distance is small.



Chapter 5

Anderson Acceleration of the

Alternating Projections Method for

Computing the Nearest Correlation

Matrix

Q: How many numerical mathematicians does it take to

replace a light bulb?

A: 3.9967 (after 9 iterations).

5.1 Introduction

In this chapter we revisit the perhaps most widely used method for computing the

nearest correlation matrix–Higham’s alternating projections method [56]. Major rea-

sons for its popularity are its ease of coding and the availability of implementations

in MATLAB, Python, R, and SAS [59]. As well as being easy to understand and easy

to implement, the alternating projections method has the attractive feature that it is

easily modified to incorporate additional constraints on the matrix, in particular to

fix certain elements or to compute a strictly positive definite solution with a lower

bound on the smallest eigenvalue. Since its rate of convergence is at best linear, the

method can potentially be very slow. The aim of this work is to reduce the number

of iterations required.

We attempt to accelerate the alternating projections method by employing Ander-

son acceleration [3], [84, Sec. 1.1.4] also known as Anderson mixing, which is designed

for fixed-point problems. While fixed-point iteration uses only the current, kth, iterate

to define the next one, Anderson acceleration uses the additional information from the

83
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mk previous iterations and computes the new iterate as a specific linear combination of

these mk + 1 quantities. The selected history length mk is usually small. A discussion

that puts Anderson acceleration in context with other acceleration methods can be

found in [122].

In quantum chemistry Anderson acceleration is known as Pulay mixing or direct

inversion in the iterative subspace (DIIS) [91] and it has been widely used in elec-

tronic structure computations; see [99] and the references therein. Anderson accelera-

tion is related to multisecant methods (extensions of quasi-Newton methods involving

multiple secant conditions); in fact, Eyert [35] proves that it is equivalent to the so-

called “bad” Broyden’s method [23], [68], and a similar analysis is done by Fang and

Saad [37] and Rohwedder and Schneider [99]. For linear systems, if mk = k for each k

then Anderson acceleration is essentially equivalent to the generalized minimal residual

(GMRES) method [100], as shown by Potra and Engler [89], Rohwedder and Schnei-

der [99], and Walker and Ni [122]. For nonlinear problems Rohwedder and Schneider

[99] show that Anderson acceleration is locally linearly convergent under certain con-

ditions. Adding to the above convergence analysis is the recent work by Toth and

Kelley [111] concerning Anderson acceleration with mk = min(m, k), for a fixed m,

applied to contractive mappings.

Even though there are no general guarantees of its convergence, Anderson acceler-

ation has a successful record of use in electronic structure computations. Furthermore,

it significantly improved the performance of several domain decomposition methods

presented in [122] and has proved to be very efficient on various examples in the

above references. Hence Anderson acceleration has great potential for enhancing the

convergence of the alternating projections method for the nearest correlation matrix.

Recently, López and Raydan [75] have proposed a geometrically-based acceleration

scheme for the alternating projections method that builds a new sequence from the

original one by taking linear combinations of successive pairs of iterates. The new

sequence is tested for convergence and the original iteration remains unchanged. We

compare this method with Anderson acceleration in section 5.4 (Experiment 9).

The rest of this chapter is organized as follows. We present the Anderson accel-

eration scheme in section 5.2. In section 5.3 we recall the necessary results on the

alternating projections method with Dykstra’s correction for computing the nearest
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correlation matrix and the problem variants in which some elements remain fixed or

the smallest eigenvalue of the solution must be above a given threshold, and we ex-

plain how to apply Anderson acceleration to these problems. Numerical experiments

presented in section 5.4 show that Anderson acceleration at least halves the number

of iterations required by the alternating projections method for the nearest correla-

tion matrix problem, which results in a significant reduction in computation time for

large problems. The experiments also show that even greater improvements can be

achieved for the problem variants, which is especially important for the fixed elements

constraint since in this case there is no available Newton method.

5.2 Anderson acceleration for fixed-point iteration

A basic method for the solution of the fixed-point problem g(x) = x for g : Rn → Rn

is fixed-point iteration, also known as the (nonlinear) Richardson iteration, Picard

iteration, or the method of successive substitution. It has the form

xk+1 = g(xk), k ≥ 1, x0 ∈ Rn given. (5.1)

To guarantee convergence of (5.1) assumptions must be made on the function g and

the starting vector x0, and in general convergence is at a linear rate [63, Chap. 4.2]. A

method that attempts to encourage or accelerate convergence is Anderson acceleration,

which redefines xk+1 to make use of the information from the mk previous steps. We

first briefly outline the original method derived by Anderson [3].

Algorithm 5.2.1 (Original Anderson acceleration). Given x0 ∈ Rn and an integer

m ≥ 1 this algorithm produces a sequence xk of iterates intended to converge to a fixed

point of the function g : Rn → Rn.

1 x1 = g(x0)

2 for k = 1, 2, . . . until convergence

3 mk = min(m, k)

4 Determine θ(k) = (θ
(k)
1 , . . . , θ(k)mk

)T ∈ Rmk that minimizes ‖uk − vk‖22, where

uk = xk +

mk∑
j=1

θj(xk−j − xk), vk = g(xk) +

mk∑
j=1

θj
(
g(xk−j)− g(xk)

)
.

5 Set xk+1 = vk using the parameters from θ(k).
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6 end

In [3] the final step is xk+1 = uk+βk(vk−uk), where uk and vk are defined from the

computed θ(k), and βk > 0 is empirically determined. The usual choice in the literature

is βk ≡ 1, which we use here. We have also taken the history length parameter mk to

be fixed, at m, once the first m iterations have been taken.

We can give some insight into Algorithm 5.2.1 by writing

uk =

(
1−

mk∑
j=1

θ
(k)
j

)
xk +

mk∑
j=1

θ
(k)
j xk−j =

mk∑
j=0

wjxk−j,

vk =

(
1−

mk∑
j=1

θ
(k)
j

)
g(xk) +

mk∑
j=1

θ
(k)
j g(xk−j) =

mk∑
j=0

wjg(xk−j),

where
∑mk

j=0wj = 1. Algorithm 5.2.1 minimizes ‖uk − vk‖22 subject to
∑mk

j=0wj = 1. If

g is linear then the objective function is ‖uk − g(uk)‖22 and so vk = g(uk) is the vector

from the affine subspace spanned by the current iterate and the previous mk iterates

that minimizes the residual of the fixed-point equation.

We will use an equivalent form of the method that stores in two matrices the dif-

ferences of the successive iterates and their function values. These matrices are related

by simple update formulae that can be exploited for an efficient implementation. This

variant is given by Fang and Saad [37], Plasse [87], Walker [121], and Walker and

Ni [122]. Here, Anderson acceleration is applied to the equivalent problem f(x) = 0,

where f(x) = g(x)− x, instead of the fixed-point problem g(x) = x.

Algorithm 5.2.2 (Anderson acceleration). Given x0 ∈ Rn and an integer m ≥ 1

this algorithm produces a sequence xk of iterates intended to converge to a zero of

the function f : Rn → Rn. The following notation is used: mk = min(m, k), ∆xi =

xi+1 − xi, Xk =
[
∆xk−mk . . . ∆xk−1

]
, fi = f(xi), ∆fi = fi+1 − fi, and Fk =[

∆fk−mk . . . ∆fk−1

]
.

1 x1 = x0 + f(x0)

2 for k = 1, 2, . . . until convergence

3 mk = min(m, k)

4 Compute γ(k) = (γ
(k)
k−mk , . . . , γ

(k)
k−1)

T ∈ Rmk that solves min
γ∈Rmk

‖fk −Fkγ‖22.

5 x̄k = xk −
k−1∑

i=k−mk

γ
(k)
i ∆xi = xk −Xkγ(k)
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6 f̄k = fk −
k−1∑

i=k−mk

γ
(k)
i ∆fi = fk −Fkγ(k)

7 xk+1 = x̄k + f̄k

8 end

Line 4 of Algorithm 5.2.2 consists of the following major computations. We as-

sume that Fk has full rank and that the least-squares problem is solved using a QR

factorization of Fk.

1. Compute fk = f(xk).

2. Obtain a QR factorization of Fk from that of Fk−1. Since Fk is just Fk−1 with

the first column removed (for k > m) and a new last column added this is a QR

factorization updating problem.

3. Solve the least-squares problem using the QR factorization.

Assume that k > m. Since Fk−1 is n×m and its first column is removed in passing

to Fk, to update the R factor we need m2/2 flops and to update Q an additional 6mn

flops [48, p. 28]. Updating the QR factors after the last column has been added to the

matrix costs 4mn + 3n flops [48, Sec. 2.5.1]. Hence the total cost for step 2 above is

at most m2/2 + 10mn+ 3n flops. The cost of step 3 (which forms and solves by back

substitution a triangular system involving R) is 2mn+m2 flops. Therefore, Anderson

acceleration takes an additional 3m2/2 + 12mn+ 3n flops per step compared with the

unaccelerated iteration.

More details of the updating scheme, as well as a strategy that removes more than

one leading column of Fk, if necessary, in order to ensure that the matrix R does not

become too ill-conditioned are given in [121], [122, Sec. 4].

5.3 Accelerating the alternating projections

method for the nearest correlation matrix

We now summarize the method to which we wish to apply Anderson acceleration:

the alternating projections method for computing the nearest correlation matrix in

the Frobenius norm. In its basic form the alternating projections method attempts



88 CHAPTER 5. ANDERSON ACCELERATION

to find a point in the intersection of two closed subspaces that is nearest to a given

point by iteratively projecting onto each subspace. This simple idea is motivated by

the fact that it is often easier to compute the individual projections onto the given

subspaces than the projection onto their intersection. A detailed exposition of the

origins and generalizations of alternating projections methods is given by Escalante

and Raydan [34].

Let A be a given symmetric matrix of order n and define the sets

Sn = {X ∈ Rn×n : X is symmetric positive semidefinite }, (5.2)

Un = {X = XT ∈ Rn×n : xii = 1, i = 1: n }. (5.3)

For the nearest correlation matrix problem, we are looking for the closest matrix

to A that lies in the intersection of Sn and Un. Since these are convex sets rather

than subspaces the alternating projections method has to be used in a modified form

proposed by Dykstra [33], in which each projection incorporates a correction; each

correction can be interpreted as a normal vector to the corresponding convex set.

This correction is not needed for a translate of a subspace [20], so is only required for

the projection onto Sn.

Denote the projections of a symmetric matrix X onto Sn and Un by PSn(X) and

PUn(X), respectively. We have used the projection PSn(X) in Chapter 4; Lemma 4.2.1

shows that it is computed from an eigenvalue decomposition of X (see also Theo-

rem 5.3.4 below). The projection PUn(X) is obtained by setting the diagonal elements

of X to 1.

The use of alternating projections for computing the nearest correlation matrix

was proposed by Higham [56, Alg. 3.3] in the following form.

Algorithm 5.3.1. Given a symmetric matrix A ∈ Rn×n this algorithm computes the

nearest correlation matrix Y to A by alternating projections. It requires a convergence

tolerance tol.

1 ∆S0 = 0, Y0 = A

2 for k = 1, 2, . . .

3 Rk = Yk−1 −∆Sk−1

4 Xk = PSn(Rk) % Project onto Sn.
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5 ∆Sk = Xk −Rk % Dykstra’s correction.

6 Yk = PUn(Xk) % Project onto Un.

7 if ‖Yk −Xk‖F ≤ tol‖Yk‖F , Y = Yk, quit, end

8 end

It is known that Xk and Yk both converge to the nearest correlation matrix as

k →∞, with a convergence rate that is linear at best [56]. The termination criterion

on line 7 is a simplification of the criterion

max

{
‖Xk −Xk−1‖F
‖Xk‖F

,
‖Yk − Yk−1‖F
‖Yk‖F

,
‖Yk −Xk‖F
‖Yk‖F

}
≤ tol (5.4)

used by Higham [56], who notes that the three terms inside the max are usually of

similar size. We use only the last term, since the test on line 7 is equivalent to the

robust stopping criterion for Dykstra’s algorithm proposed by Birgin and Raydan [14]

and this choice works well in all our experiments.

Aitken extrapolation (see, for example, [22]) cannot be used to accelerate Algo-

rithm 5.3.1 because it requires the underlying sequence to be linearly convergent,

which is not guaranteed here. We therefore turn to Anderson acceleration. To use it

we must recast Algorithm 5.3.1 as a fixed-point method, that is, define the function g

for the iteration (5.1). We do this as follows, noting that two matrices are recurred:

Yk and ∆Sk, while Xk is only used for the convergence test.

Algorithm 5.3.2 (Fixed-point form of Algorithm 5.3.1). Given a symmetric matrix

A ∈ Rn×n this algorithm computes the nearest correlation matrix Y to A. It requires

a convergence tolerance tol.

1 ∆S0 = 0, Y0 = A

2 for k = 1, 2, . . .

3 [Xk, Yk, ∆Sk] = g(Yk−1,∆Sk−1)

4 if ‖Yk −Xk‖F ≤ tol‖Yk‖F , Y = Yk, quit, end

5 end

where the computation of [Xk, Yk, ∆Sk] = g(Yk−1,∆Sk−1) is effected by

6 Rk = Yk−1 −∆Sk−1
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7 Xk = PSn(Rk)

8 ∆Sk = Xk −Rk

9 Yk = PUn(Xk)

To apply Anderson acceleration (Algorithm 5.2.2) we write the matrices in terms

of vectors via the vec operator, which stacks the columns of a matrix one on top of

the other. We denote by unvec the inverse operation to vec. The complete algorithm

is then as follows.

Algorithm 5.3.3. Given a symmetric matrix A ∈ Rn×n this algorithm attempts to

compute the nearest correlation matrix Y to A by alternating projections with Anderson

acceleration. It requires a convergence tolerance tol.

1 Run Algorithm 5.2.2 on f :R2n
2

→ R2n
2

given by f(z) = vec(g̃(Z)− Z),

where zk = vec(Zk), Zk = (Yk,∆Sk) ∈ Rn×2n, and [Xk, g̃(Zk)] = g(Zk)

for the function g defined by Algorithm 5.3.2.

Terminate the iteration when ‖Yk −Xk‖2/‖Yk‖2 ≤ tol.

Denote the result by x∗.

2 Y = unvec(x∗)

Note that the convergence criterion in Algorithm 5.3.3 is equivalent to that in Al-

gorithm 5.3.2. Note also that, unlike Algorithms 5.3.1 and 5.3.2, Algorithm 5.3.3 is not

guaranteed to converge, since there are no suitable convergence results for Anderson

acceleration. Whether convergence can be proved under reasonable assumptions is an

open question.

The cost per step of the standard alternating projections method (Algorithm 5.3.1)

is dominated by the cost of computing PSn(Rk), which is 10n3 flops if we compute a full

eigendecomposition, or 17n3/6 flops if we use tridiagonalization followed by bisection

and inverse iteration (computing just the eigenpairs corresponding to the positive

eigenvalues or the negative ones, depending which are fewer in number).

One step of Anderson acceleration applied to the alternating projections method in

the fixed-point form (Algorithm 5.3.2) uses 2n2-sized vectors, so the method takes at

most an additional 3m2/2 + 24mn2 + 6n2 flops per step. Since we find experimentally

(see section 5.4) that taking m ≤ 5 (say) is sufficient, the additional cost of Anderson
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acceleration is O(n2) flops, which is negligible for large n. Anderson acceleration also

incurs an increase in storage of 2n2m elements.

We next consider two modifications of the alternating projections method for com-

puting the nearest correlation matrix. The first is the problem variant in which speci-

fied elements of A have to remain fixed and the second requires the correlation matrix

to have smallest eigenvalue bounded below by a positive tolerance δ.

5.3.1 Fixing elements

The nearest correlation matrix problem with fixed elements was previously investigated

by Borsdorf [17, Chap. 7] and Lucas [76]. Here we are looking for the closest matrix

in the Frobenius norm to a matrix A that lies in the intersection of the set Sn from

(5.2) and

En = {X = XT ∈ Rn×n : xii = 1, i = 1, . . . , n and xij = aij for (i, j) ∈ N },

where N denotes the symmetric index set of the fixed off-diagonal elements. The

intersection Sn ∩ En is nonempty, which is equivalent to the problem having a unique

solution, if N is chosen such that there exists a correlation matrix with the prescribed

fixed elements. This need not be true for every N , as we have seen from the ma-

trix (1.3).

The alternating projections method trivially generalizes to incorporate the fixed

elements constraint: we simply need to replace the projection PUn by the projection

PEn onto the set En. For a symmetric matrix X this projection is given by

PEn(X)ij =


1, i = j,

aij, (i, j) ∈ N ,

xij otherwise.

Since we have assumed that N does not contain any indices corresponding to diag-

onal elements, PEn remains well-defined even if A does not have unit diagonal. Al-

gorithm 5.3.1 can now be used to solve this problem with a trivial modification of

step 6, where PUn is replaced with PEn . The extensive numerical experiments in [17,

Sec. 7] show that having the additional constraint can result in a significant increase

in the number of iterations compared with solving the original problem, so using an
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acceleration method becomes even more appealing. The details of applying Anderson

acceleration are the same as in the original problem.

The possible non-existence of a solution of this variant of the nearest correlation

matrix problem must be reflected in the convergence test. For the matrix (1.3) it is

easy to see that Xk and Yk are both constant for k ≥ 1, so the first two terms in (5.4)

are zero. The last term of (5.4) is, however, of order 1 for all k. The convergence test

on line 7 of Algorithm 5.3.1 is hence suitable both for the original problem and for

variants that may not have a solution.

5.3.2 Imposing a lower bound on the smallest eigenvalue

In order to avoid singularity, a common requirement in practice is to compute the

nearest correlation matrix Y to A with λmin(Y ) ≥ δ, where λmin(Y ) denotes the

smallest eigenvalue of Y and δ ≤ 1 is a given positive tolerance.

We discuss this modification of the alternating projections method because it fur-

ther demonstrates the flexibility of the method, which can easily incorporate both the

fixed elements constraint and the eigenvalue constraint, unlike the existing Newton

methods.

For a given 0 ≤ δ ≤ 1 we define the set

Sδn = {X = XT ∈ Rn×n : λmin(X) ≥ δ }. (5.5)

Clearly, S0
n is the original Sn from (5.2). We are looking for the nearest matrix in the

Frobenius norm to A from the intersection of Sδn and Un, where Un is defined in (5.3).

The set Sδn is closed and convex for each δ and since In ∈ Sδn for every 0 ≤ δ ≤ 1,

the closed convex set Sδn ∩Un is nonempty, which implies that this modification of the

nearest correlation matrix problem has a unique solution. A formula for the projection

PSδn of a symmetric matrix onto the set Sδn is given by the following result of Cheng

and Higham [24, Thm. 3.1].

Theorem 5.3.4. Let the symmetric matrix X ∈ Rn×n have the spectral decomposition

X = Q diag(λi)Q
T and let δ ≥ 0. Then for the Frobenius norm the unique matrix
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nearest to X with the smallest eigenvalue at least δ is given by

PSδn(X) = Q diag(τi)Q
T , τi =

λi, λi ≥ δ,

δ, λi < δ.

Hence, to solve this version of the nearest correlation matrix problem we simply

replace the projection PSn in Algorithm 5.3.1 with PSδn . If, in addition, some elements

of A must remain fixed, we replace PUn with PEn as well. However, note that the latter

problem variant does not have a solution for all possible sets N of fixed positions.

Finally, we briefly discuss how the use of the λmin(X) ≥ δ constraint can address

a subtle issue concerning methods for computing the nearest correlation matrix. The

resulting matrix is expected to be a positive semidefinite matrix with unit diagonal

closest to A. The Newton algorithm of [18] computes a positive semidefinite solution,

but to guarantee a unit diagonal the computed matrix is diagonally scaled, which

slightly increases the optimal distance to A. In the alternating projections method

(Algorithm 5.3.1) the diagonal elements of the returned matrix are exactly 1 but this

computed matrix might be indefinite since it is obtained by modifying the diagonal

(as well as any other fixed elements) of the positive semidefinite projection. We could

swap the order of the projections so that the result is a positive semidefinite matrix, up

to roundoff, but then this matrix will not have an exactly unit diagonal. Probably the

best solution to these problems is to impose a lower bound on λmin sufficiently large

that changes of order the convergence tolerance, tol, will not affect the definiteness.

For example, if tol ≈ 10−16 then δ ≈ 10−8 would be adequate.

5.4 Numerical experiments

Now we present experiments that explore the effectiveness of Anderson acceleration at

reducing the number of iterations, and the overall execution time, of the alternating

projections method for computing the nearest correlation matrix. Test matrices are

listed in section 1.4 and we use the following algorithms.

1. nearcorr: the alternating projections method for the nearest correlation matrix,

Algorithm 5.3.1, modified to incorporate both the fixed elements constraint and

the lower bound δ on the smallest eigenvalue by replacing PUn with PEn and PSn
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Table 5.1: Iteration counts for four small examples for nearcorr and nearcorr AA,
for varying m (Experiment 1).

Matrix it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
tec03 39 15 10 9 9 9 9

bhwi01 27 17 14 12 11 10 10
mmb13 801 305 212 117 126 40 31
fing97 33 15 10 10 10 9 9

with PSδn , as described in sections 5.3.1 and 5.3.2. The number of iterations for

nearcorr is denoted by it.

2. nearcorr AA: Algorithm 5.3.3 with QR factorization with updating, as described

in section 5.2, applied to nearcorr. The number of iterations is denoted by itAA.

The convergence tolerance tol is set to nu, where n is the order of the matrix and

u ≈ 1.1× 10−16 is the unit roundoff.

Convergence is guaranteed for the alternating projections algorithm assuming there

are no fixed off-diagonal elements, but could potentially be destroyed by Anderson

acceleration, for which we have no convergence guarantees. However, in every test

Anderson acceleration and the corresponding unaccelerated algorithm produced com-

puted matrices Y with values of ‖A− Y ‖F agreeing to within a small multiple of the

convergence tolerance.

In the first three experiments, we have no fixed elements and set δ = 0, that is, we

are solving the standard nearest correlation matrix problem.

Experiment 1. We start by comparing the number of iterations for the algorithms

nearcorr and nearcorr AA as we vary the parameter m on four small examples of

invalid correlation matrices. The results are given in Table 5.1.

Clearly, using Anderson acceleration leads to a significant decrease in the number of

iterations, even for m = 1, with a 25-fold decrease achieved for the mmb13 matrix with

m = 6. The number of iterations begins to stagnate as m grows, which is consistent

with the reported behaviour of Anderson acceleration in the literature.

Experiment 2. Now we compare the iteration count and the computation time for

nearcorr and nearcorr AA with m = 2 for six RiskMetrics matrices. In Table 5.2

we report the number of iterations along with t, the total run time in seconds for
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Table 5.2: Iteration counts and computation times in seconds for nearcorr and
nearcorr AA with m = 2 for six RiskMetrics matrices of order 387 (Experiment 2).

Matrix nearcorr nearcorr AA

it t itAA t t apm t AA

1 26 0.46 15 0.45 0.26 0.12
2 50 0.83 24 0.73 0.41 0.19
3 24 0.43 13 0.38 0.23 0.09
4 47 0.88 22 0.68 0.40 0.17
5 34 0.56 18 0.53 0.30 0.14
6 20 0.33 12 0.35 0.20 0.09

each algorithm, and t apm and t AA for nearcorr AA, which are the total time taken

in calls to the function g from Algorithm 5.3.2 and in computing the quantities for

the convergence test, and the time taken to solve the least-squares problems, respec-

tively. Anderson acceleration roughly halves the number of iterations and the total

computation time for nearcorr AA is a little less than for nearcorr in the first 5

examples.

The missing time t−t_apm−t_AA for nearcorr AA represents MATLAB overheads,

such as in the vec and unvec conversions of Algorithm 5.3.3. Computing the eigenvalue

decomposition, which is the dominant cost for the alternating projections method,

remains the main contributing factor to the computation time of nearcorr AA, with

the least-squares update and solve taking less than half as much time.

Experiment 3. In the previous experiments our test matrices were small and the

total computation time was not an issue. In order to illustrate the dramatic improve-

ment Anderson acceleration can bring to nearcorr we next compare nearcorr and

nearcorr AA with m = 2 on two large matrices cor1399 and cor3120. The results are

presented in Table 5.3. We again see a very sharp drop in the number of iterations,

with nearcorr AA taking less than a third of the iterations for nearcorr. This results

in a significant reduction in the computation time, with a speedup of as much as 2.9.

Comparing the times for the alternating projections part and the least-squares part of

nearcorr AA we see that the former heavily dominates the latter.

We next focus on the nearest correlation matrix problem variant with some fixed

off-diagonal elements (δ = 0).

Experiment 4. We compare the performance of the methods on the following three
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Table 5.3: Iteration counts and computation times in seconds for nearcorr and
nearcorr AA with m = 2 for cor1399 and cor3120 (Experiment 3).

Matrix
nearcorr nearcorr AA

speedup
it t itAA t t apm t AA

cor1399 476 219.0 124 75.0 49.6 16.0 2.9
cor3120 559 2746.4 174 999.5 778.5 137.7 2.7

Table 5.4: Iteration counts for nearcorr, nearcorr with fixed elements, and Anderson
acceleration of the latter with varying m (Experiment 4).

Matrix it it fe
itAA fe

m = 1 m = 2 m = 3 m = 4 m = 5
fing97 33 34 14 11 10 9 9
cov90 29 169 93 70 55 45 39
usgs13 18 40 15 14 12 12 12

Table 5.5: Computation times in seconds for nearcorr with fixed elements and An-
derson acceleration applied to it, with varying m (Experiment 4).

Matrix time fe
time fe AA

m = 1 m = 2 m = 3 m = 4 m = 5
fing97 3.40e-3 2.51e-3 2.20e-3 2.11e-3 1.20e-3 1.14e-3
cov90 1.71e-1 1.33e-1 1.14e-1 9.06e-2 7.93e-2 8.02e-2
usgs13 5.21e-2 2.06e-2 1.98e-2 1.87e-2 2.54e-2 2.19e-2

examples. The first is the matrix fing97 that we have used in our first experiment.

The original requirement in [39] was to compute the nearest correlation matrix having

the same leading principal 3 × 3 submatrix. The second example is cov90, and we

need to compute the nearest positive semidefinite matrix to it while preserving the

(positive definite) (1,1) block, the (positive) diagonal, and the diagonals in each of the

remaining blocks in the first block-row and block-column (see Figure 1.2). The large

matrix does not have a unit diagonal but this makes no difference to the methods since

these elements are fixed. In our third example we use usgs13, an invalid correlation

matrix of order 94, and we wish to compute nearest correlation matrix to it while

keeping all diagonal blocks unchanged (see Figure 1.1).

Table 5.4 reports the number of iterations for nearcorr with no fixed elements (it),

the number of iterations for nearcorr with the required elements fixed (it fe), and

the number of iterations for Anderson acceleration applied to the latter (itAA fe) with

m varying from 1 to 5 for our three examples. Table 5.5 presents the computation time

in seconds, time fe and time fe AA, for the latter two algorithms. Due to small values,
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Table 5.6: Computation times in seconds for nearcorr and nearcorr AA with varying
m for four examples where the leading n/2× n/2 block of a random matrix of size n
remains fixed (Experiment 5).

n time fe
time fe AA

m = 1 m = 2 m = 3 m = 4 m = 5
200 6.41 4.42 2.77 2.67 2.29 2.45
400 18.53 13.44 9.35 8.10 6.91 7.35
600 59.47 47.51 28.15 32.04 26.25 31.50
800 136.12 82.23 53.76 63.77 47.61 51.35

these results are not very accurate. We include nearcorr with no fixed elements only

to demonstrate the effect on the number of iterations of including this constraint, and

as this method does not solve our problem we do not run Anderson acceleration on it.

The second and third examples show that the constraint of having fixed elements can

significantly increase the number of iterations for the alternating projections method

compared with the standard nearest correlation matrix problem. From the number of

iterations for nearcorr with fixed elements and the accelerated algorithm we see that

using Anderson acceleration reduces the number of iterations by a similar factor as

in the experiments for accelerating the original nearcorr. Hence while the additional

constraint makes the problem harder to solve by alternating projections it does not

affect the speedup of the Anderson acceleration scheme.

Experiment 5. In our second experiment with fixed elements we generate random

invalid correlation matrices of order n, with n equal to 200, 400, 600, and 800 and

compare the computation time of nearcorr and nearcorr AA for varying m, where

for each matrix a leading block of size n/2 is kept fixed in computing the nearest

correlation matrix. We generate the leading block by the MATLAB function call

gallery(’randcorr’,n/2) and embed it into an indefinite unit diagonal matrix of

size n where the off-diagonal elements are taken from the uniform distribution on

[−1, 1]. The results reported in Table 5.6 show that the time decreases for m up to

2, but for m = 4 or 5 we have an increase in the computation time, which further

confirms the merit of keeping m very small. In each example Anderson acceleration

achieves a significant reduction in computation time.

Our third set of experiments concerns the nearest correlation matrix problem with

a lower bound on the smallest eigenvalue and no fixed elements.
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Table 5.7: Iteration counts for four small examples for nearcorr and nearcorr AA,
for varying m and two values of δ. (Experiment 6)

δ = 10−8

Matrix it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
tec03 39 15 10 9 9 9 10

bhwi01 27 17 14 12 11 10 10
mmb13 802 280 177 114 58 39 30
fing97 33 15 10 10 10 9 9

δ = 0.1

Matrix it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
tec03 66 31 19 16 13 14 13

bhwi01 34 23 15 14 12 12 12
mmb13 895 269 216 127 59 48 41
fing97 54 31 24 15 15 14 14

Experiment 6. We first run nearcorr on the four small test matrices already used

in Table 5.1 for δ = 10−8 and δ = 0.1. The results, reported in Table 5.7, show

that for the smaller value of δ = 10−8 the number of iterations is almost identical to

the data in Table 5.1, but here the positive definiteness of the solution is guaranteed.

For the larger value δ = 0.1, the number of iterations is increased compared with

δ = 0. As with the fixed elements constraint, we see that Anderson acceleration again

reduces the iteration number by a similar factor as in the unconstrained case, that is,

its performance is not affected by including the bound on the smallest eigenvalue.

Experiment 7. The benefits of Anderson acceleration in the positive definite case

are even more evident if we reproduce Experiment 2, now using nearcorr with δ = 0.1

and compare the results in Table 5.8 with those in Table 5.2. Computing the positive

definite solution takes between 30 and 90 times more iterations than computing the

semidefinite nearest correlation matrix but Anderson acceleration now reduces the

number of iterations by a factor between 3.6 and 4.6, compared with halving the

iterations in the original experiment, which shows that Anderson acceleration can be

even more effective for constrained nearest correlation matrix problems than for the

original problem. We also see that nearcorr AA requires approximately half the time

of nearcorr.

We now combine the constraints of keeping elements fixed and of positive definite-
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Table 5.8: Iteration counts and computation times in seconds for nearcorr with δ =
0.1 and nearcorr AA withm = 2 for six RiskMetrics matrices of order 387 (Experiment
7).

nearcorr nearcorr AA

Matrix it t itAA t t apm t AA

1 1410 20.50 383 10.77 5.70 3.12
2 2100 33.93 513 15.83 8.52 4.56
3 1900 31.14 414 11.58 5.97 3.54
4 1586 29.06 369 12.83 7.09 3.54
5 1812 31.30 400 12.99 7.16 3.62
6 1794 29.08 393 11.63 6.20 3.40

ness.

Experiment 8. We take the three matrices from Experiment 4 with fixed elements

and run nearcorr and nearcorr AA with δ = 0.1, with varying m. Note that in

this case we have no guarantee of the existence of a feasible point and in fact for

the cov90 matrix the algorithms do not converge within 100,000 iterations for the

default tolerance. Hence we exclude this example and present in Table 5.9 only the

results for the test matrices fing97 and usgs13. We note the increase in the number

of iterations compared with the data in Table 5.4 where we only fixed the elements.

Anderson acceleration (with m = 5) reduces the iterations by a factor of 3.6 for the

smaller matrix and 6.7 for the larger, while in the original experiment the factors were

3.8 and 3.3.
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Table 5.9: Iteration counts and computation times in seconds for nearcorr and nearcorr AA with δ = 0.1 and varying m for two
examples with fixed elements (Experiment 8).

nearcorr nearcorr AA

m = 1 m = 2 m = 3 m = 4 m = 5
Matrix t it t it t it t it t it t it

fing97 2.98e-3 54 4.95e-3 31 4.57e-3 25 2.59e-3 16 2.74e-3 15 2.75e-3 15
usgs13 1.25e-1 128 5.24e-2 36 4.10e-2 25 4.32e-2 24 3.91e-2 20 3.93e-2 19
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Table 5.10: Iteration counts for four small examples for nearcorr, nearcorr AA with
m = 2, and the acceleration scheme from [75] (Experiment 9).

Matrix it itAA it 2

tec03 39 10 39
bhwi01 27 14 27
mmb13 801 212 725
fing97 33 10 33

Experiment 9. As a final experiment we use the four matrices from Experiment 1

to compare Anderson acceleration with the acceleration scheme from [75]. Table 5.10

shows the number of iterations, it 2, for that scheme, in which we set its safeguard

parameter ε to 10−14 and use the same convergence tolerance as in all our experi-

ments. The number of iterations for the acceleration scheme is the same as for the

unaccelerated method in each case except for the mmb13 matrix, and in that case we

see a reduction in the number of iterations by a factor 1.1 versus 3.8 for Anderson

acceleration. In all test cases, after a few initial iterations the mixing parameter αk

needed for the scheme [75] could not be computed because the safeguard was triggered.

We conclude that the acceleration scheme of [75] is not competitive with Anderson

acceleration on this class of problems because it displays the “orthogonality property”

discussed in [75, Rem. 1].

To summarize, in these experiments we have found that Anderson acceleration of

the alternating projections method for the nearest correlation matrix, with an appro-

priate choice of m ∈ [1, 6], results in a reduction in the number of iterations by a

factor of at least 2 for the standard algorithm and a factor at least 3 when additional

constraints are included. The factors can be much larger than these worst-cases, es-

pecially in the experiments with additional constraints, where we saw a reduction in

the number of iterations by a factor 21.8 in Table 5.7. Acceleration therefore tends to

produce the greatest benefits on the problems that alternating projections finds the

hardest. Moreover, the reduction in the number of iterations is generally reflected in

the run times, modulo MATLAB overheads.



Chapter 6

Principal Pivot Transforms of

Quasidefinite Matrices and

Semidefinite Lagrangian Subspaces

Somebody came up to me after a talk I had given, and

said, “You make mathematics seem like fun.” I was in-

spired to reply, “If it isn’t fun, why do it?”

—Ralph P. Boas

6.1 Introduction and preliminaries

Recall from section 1.2 that in a permuted Riccati representation introduced by

Mehrmann and Poloni [79] a Lagrangian subspace is identified with the pair (I, X),

where I ⊆ {1, 2, . . . , n} and X ∈ Cn×n is Hermitian. The symmetric PPT (1.13) is

used to convert between two different representations in an optimization algorithm

[79, Alg. 2] which computes a subset Iopt and an associated Xopt whose elements are

bounded by a small constant.

In this chapter we focus on a class of Lagrangian subspaces whose representation

(I, X) has additional structure. Let the symbol � denote the Löwner ordering: A � B

(A � B) means that A−B is positive (semi)definite. We say that a Hermitian matrix

X = X∗ ∈ Cn×n is I-definite, for I ⊆ {1, 2, . . . , n}, if

XII ≺ 0 and XIcIc � 0. (6.1)

If the previous definition holds with the symbols �,≺ replaced by �,� then X is

I-semidefinite. For I = ∅ an I-definite matrix is simply a positive definite matrix

and for I = {1, 2, . . . , n} an I-definite matrix is negative definite. In all other cases,

102
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an I-definite matrix is a generalization of a quasidefinite matrix, which is I-definite

for I = {1, 2, . . . , k} with some k < n.

Identifying this class of subspaces and exploiting its properties in applications has

several advantages: we can improve a bound on the elements of the matrix Xopt and

preserve this additional structure, which is, for instance, crucial for the existence of a

positive semidefinite solution X of an algebraic Riccati equation.

The rest of the chapter is structured as follows. We introduce a class of La-

grangian (semi)definite subspaces in Section 6.2 and prove that for these subspaces

the Hermitian matrix X in the pair (I, X) which represents the Lagrangian semidef-

inite subspace is I-semidefinite for all possible choices of I. In Section 6.3 we link

Lagrangian semidefinite subspaces to Hamiltonian and symplectic pencils appearing

in control theory. In Section 6.4 we derive an implementation of the symmetric PPT

(1.13) which converts between two different representations (I, X) and (J , X ′) of a

Lagrangian semidefinite subspace. Specifically, we show how an I-semidefinite matrix

X can be converted to a J -semidefinite matrix X ′ for a given index set J by the sym-

metric PPT that both makes use of the definiteness properties of X and guarantees the

definiteness of the blocks of X ′ in finite arithmetic. The symmetric PPT in one case

requires the computation of the inverse of a quasidefinite matrix with factored diago-

nal blocks and we also present an inversion formula which uses unitary factorizations

to directly compute the factors of the diagonal blocks of the quasidefinite inverse. In

Section 6.5 we prove that all elements of an Iopt-semidefinite matrix Xopt associated

with a semidefinite Lagrangian subspace are bounded by 1 in modulus, and present

the optimization algorithm which computes an optimal representation. We test the

performance of the algorithm on several numerical experiments in Section 6.6.

6.2 Semidefinite Lagrangian subspaces

We start by explaining why the name “Riccati matrix” is fitting for G(X) = [ IX ]. A

fundamental result in the analysis of algebraic Riccati equations is that the matrix

X ∈ Ck×k is a solution to a continuous-time algebraic Riccati equation Q + XA +
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A∗X −XGX = 0, where A,G = G∗, Q = Q∗ ∈ Ck×k if and only if

H

Ik
X

 =

Ik
X

 (A−GX), (6.2)

where the associated matrix H is Hamiltonian (JkH = (JkH)∗) and given by

H =

 A −G

−Q −A∗

 .
The equation (6.2) shows that solving a continuous-time algebraic Riccati equation

Q+XA+A∗X−XGX = 0 is equivalent to solving an invariant subspace problem for

the associated Hamiltonian matrix H, if we impose that the subspace is represented

via a Riccati basis G(X). If the matrices Q and G are positive semidefinite, under

standard conditions (see, e.g. [13], [78], [85]) the Riccati equation has a unique positive

semidefinite solution, and this is the solution that is usually of interest. A common

approach to computing it is to determine a basis for the stable invariant subspace of

H, i.e., the one corresponding to the eigenvalues of H in the open left half plane (e.g.

[2], [70], [78]). This subspace is Lagrangian and if U =
[
U1
U2

]
is its basis then the

matrix U1 is invertible and X = U2U
−1
1 is the positive semidefinite solution to the

Riccati equation [85]. Specifically, U ∼ G(X) and the matrix X = X∗ � 0.

In this section we take a closer look at Lagrangian subspaces which have a Riccati

basis with this property. We call a Lagrangian subspace definite if it can be written

as

U = ImG(X), X = X∗ � 0, X ∈ Cn×n,

where G(X) is a Riccati matrix defined in (1.6). The following result relates I-definite

matrices defined by the property (6.1) and definite Lagrangian subspaces.

Theorem 6.2.1. Let U ∈ C2n×n have full column rank. The following properties are

equivalent.

1. U = ImU is Lagrangian definite.

2. For some I ⊆ {1, 2, . . . , n} we have U ∼ GI(X), where X is I-definite and

GI(X) is a permuted Riccati matrix defined in (1.11).

3. For all I ⊆ {1, 2, . . . , n} we have U ∼ GI(X) and X is I-definite.
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Proof. Let U ∼ G(X) and X � 0. From the definition of a symplectic swap matrix

(1.8) it follows that Π∅ = I2n and hence G∅(X) = G(X). Therefore, the definition of

a Lagrangian definite subspace can be reformulated as stating U ∼ GI(X), where X

is I-definite for I = ∅. If this holds, then for each J ⊆ {1, 2, . . . , n} Lemma 1.2.5

defines K = J and D = In. Since X � 0 every principal submatrix XKK is also

positive definite and therefore U ∼ GJ (X ′) for every J , where X ′ is the symmetric

PPT (1.13) of X. It is clear from the formulae (1.13) and the properties of Schur

complements [61, Sec. 12.3] that X ′ is J -definite, as required.

On the other hand, if U ∼ GI(X) and X is I-definite for some I, then X is

Hermitian by definition and hence U spans a Lagrangian subspace. We prove that the

subspace is Lagrangian definite by applying Lemma 1.2.5 with J = ∅ to X. It follows

that K = I and since XKK = XII ≺ 0, we have U ∼ G∅(X ′) = G(X ′), with X ′ = DYD

as in Lemma 1.2.5. Since X ′ is defined via congruence it is sufficient to prove that Y ,

the symmetric PPT of an I-definite matrix with respect to the index set I, is positive

definite. This follows from (1.13) due to the definiteness properties of the blocks of

X: both YKK = −X−1II and its Schur complement YKcKc − YKcKY
−1
KKYKKc = XIcIc are

positive definite, so again by the properties of Schur complements Y is positive definite

and the proof is complete.

More interesting is the corresponding semidefinite case, in which existence of the

permuted Riccati representation is not guaranteed for all I, cf. Example 1.2.4.

Theorem 6.2.2. Let U ∈ C2n×n have full column rank. The following properties are

equivalent.

1. For some I ⊆ {1, 2, . . . , n} we have U ∼ GI(X), where X is I-semidefinite and

GI(X) is a permuted Riccati matrix defined in (1.11).

2. For all I ⊆ {1, 2, . . . , n} such that the permuted Riccati representation exists,

i.e., U ∼ GI(X), the matrix X is I-semidefinite.

When these properties hold, we call the subspace Lagrangian semidefinite.

Proof. Let I be such that U ∼ GI(X) and X is I-semidefinite. Consider the

matrix Y obtained by perturbing the diagonal entries of X so that the blocks XII and
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XIcIc become strictly definite, that is, for some ε > 0,

YII=XII − εI ≺ 0, YIIc=XIIc ,

YIcI=XIcI , YIcIc=XIcIc + εI � 0.

Then the subspace ImUε, with Uε ∼ GI(Y ), is Lagrangian definite, and by Theo-

rem 6.2.1, the permuted Riccati representations Uε ∼ GI(Z) exist for every I with Z

having the required definiteness properties. By passing to the limit ε→ 0, we get the

semidefiniteness of the blocks of Z (whenever the representation exists).

Example 6.2.3. Consider the subspace in Example 1.2.4. We have U ∼ G∅(X) for X

positive semidefinite, so U is Lagrangian semidefinite. Other choices of the index set

for which the permuted Riccati representations exist are I = {1} and I = {2} and

the corresponding matrices X are {1}-semidefinite and {2}-semidefinite, respectively.

6.3 Semidefinite Lagrangian subspaces associated

with control-theory pencils

Section 6 of [79] introduces a method to map regular matrix pencils with special

structures to Lagrangian subspaces. The main reason why this kind of bijection is

used is that changing a basis in the subspace is equivalent to premultiplying the pencil

by a nonsingular matrix, which preserves eigenvalues and right eigenvectors of regular

pencils. This makes it possible to apply several techniques based on PPTs to pencils

as well. Specifically, we write

M1 − xN1 ∼M2 − xN2,

and say that the two pencils are left equivalent, if there exists a nonsingular square

matrix S such that M1 = SM2 and N1 = SN2. It follows that M1 − xN1 ∼M2 − xN2

if and only if
[
M1 N1

]∗
∼
[
M2 N2

]∗
. Hence, if we are interested in the eigenvalues

and right eigenvectors of a regular pencil we may instead work with any regular pencil

left equivalent to it.

We construct here a simple variation of the map from [79] which sends the pencils

appearing in most applications in control theory to semidefinite Lagrangian subspaces.

The map is defined for pencils M − xN without a common left kernel, which means
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that there exists no vector v 6= 0 such that v∗M = v∗N = 0. This is a proper

superset of regular pencils, as a common left kernel implies that det(M − xN) ≡ 0 so

a pencil is singular but the converse does not hold, with M − xN =
[
0 x 1
x 0 0
1 0 0

]
providing

a counterexample.

A Hamiltonian pencil is a matrix pencil M − xN ∈ C2k×2k[x] such that MJkN
∗ +

NJkM
∗ = 0. In several problems in control theory, e.g. [74], [78], one deals with

Hamiltonian pencils in the form A −G

−Q −A∗

− xI2k, A,G,Q ∈ Ck×k, G = G∗ � 0, Q = Q∗ � 0; (6.3)

moreover, factorizations G = BB∗ and Q = C∗C (with B ∈ Ck×t, C ∈ Cr×k, r, t ≤ k)

are known in advance. In the following theorem, we show that this kind of structure is

mapped to a semidefinite Lagrangian subspace by a special bijection between pencils

and 4k × 2k matrices.

Theorem 6.3.1. Let

M − xN =
[
M1 M2

]
− x

[
N1 N2

]
, M1,M2, N1, N2 ∈ C2k×k

be a matrix pencil without a common left kernel. Construct the matrix

U =
[
M1 −N1 −N2 M2

]∗
. (6.4)

Then,

1. M − xN is Hamiltonian if and only if ImU is Lagrangian.

2. If M − xN is in the form (6.3), then ImU is Lagrangian semidefinite.

Proof. The first claim is proved by expanding the relation U∗J2kU = 0 into blocks.

This leads to the expression −M1N
∗
2 − N1M

∗
2 + N2M

∗
1 + M2N

∗
1 = 0, which we can

recombine to get MJkN
∗ +NJkM

∗ = 0.

For the second claim, take M − xN as in (6.3), and I = {1, 2, . . . , k}. We have

ΠIU =


0 0 Ik 0

0 Ik 0 0

−Ik 0 0 0

0 0 0 Ik




A∗ −Q

−Ik 0

0 −Ik
−G −A

 =


0 −Ik
−Ik 0

−A∗ Q

−G −A

 ∼

Ik 0

0 Ik

−Q A∗

A G

 .
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Hence, U ∼ ΠT
IG(X) = GI(X), with X =

[
−Q A

∗

A G

]
, which is I-semidefinite. Thus, by

Theorem 6.2.2, the subspace ImU is Lagrangian semidefinite.

Equation (6.4) in [79] gives a matrix U in a form similar to (6.4), which satisfies

only the first part of the theorem.

Similarly, a symplectic pencil is a matrix pencil M − xN ∈ C2k×2k[x] such that

MJkM
∗ = NJkN

∗. In several problems in discrete-time control theory, e.g. [38], [74],

[78], one deals with symplectic pencils in the form A 0

−Q Ik

− x
Ik G

0 A∗

 , A,G,Q ∈ Ck×k, G = G∗ � 0, Q = Q∗ � 0; (6.5)

again, factorizations G = BB∗, Q = C∗C as above are often available. Similarly to

the Hamiltonian case, there is a bijection which maps this structure into a semidefinite

Lagrangian subspace.

Theorem 6.3.2. Let

M − xN =
[
M1 M2

]
− x

[
N1 N2

]
, M1,M2, N1, N2 ∈ C2k×k

be a matrix pencil without a common left kernel. Construct the matrix

U =
[
M1 −N1 −M2 −N2

]∗
. (6.6)

Then,

1. M − xN is symplectic if and only if ImU is Lagrangian.

2. If M − xN is in the form (6.5), then ImU is Lagrangian semidefinite.

Proof. The proof of both claims is analogous to the proof of Theorem 6.3.1.

Specifically, the Lagrangian semidefinite subspace spanned by the columns of U from

(6.6) is also associated to the quasidefinite matrix X =
[
−Q A

∗

A G

]
.

Once again, a construction given in Equation (6.2) in [79] provides an analogous

bijection that satisfies only the first part of the theorem. The main use for these

bijections is producing left-equivalent pencils with better numerical properties. We

show it in a simple case.
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Example 6.3.3. Consider k = 1, A = 1, G = 105, Q = 0.1. The Hamiltonian pencilM−

xN obtained as in (6.3) has the condition number κ([MN ]) ≈ 105, that is, a perturbation

of relative magnitude 10−5 can turn it into a pencil with a common kernel. If we

construct the matrix U in (6.4) associated with it and apply Algorithm 6.5.2 described

in Section 6.5 to obtain an equivalent permuted Riccati representation of U with

smaller entries, we get U ∼ GIopt(Xopt) with Iopt = {1, 2} andXopt =
[
−0.1−10−5

10
−5

10
−5 −10−5

]
.

Partitioning the matrix

GIopt(Xopt) =


0.1 + 10−5 −10−5

−10−5 10−5

1 0

0 1

 =


M̂T

1

−N̂T
1

−N̂2

T

M̂T
2


conformably to (6.4), we obtain a left-equivalent pencil

M̂ − xN̂ =
[
M̂1 M̂2

]
− x

[
N̂1 N̂2

]
=

0.1 + 10−5 0

−10−5 1

− x
 10−5 −1

−10−5 0

 ,
with κ

([
M̂
N̂

])
≈ 14, a considerably lower value. The two pencils are Hamiltonian and

have the same eigenvalues and right eigenvectors, so they are completely equivalent

from a numerical perspective.

The optimization algorithm [79, Alg. 2] uses the PPT formulae (1.13) to compute

an optimal permuted Riccati representation of a Lagrangian subspace and it can be

used to normalize pencils [79, Sec. 6]. If a PPT is applied to a Lagrangian semidefinite

subspace ImU , where U is for example given in (6.4) or (6.6), the definiteness prop-

erties of the blocks G and Q are not exploited. Furthermore, due to Theorem 6.2.2,

for the computed optimal representation (Iopt, Xopt) the matrix Xopt must be Iopt-

semidefinite but the definiteness properties of its submatrices are not guaranteed due

to possible numerical errors. Note the structure of the matrix X appearing in the

proof of the second part of Theorem 6.3.1 and Theorem 6.3.2: when the factors B and

C are known for representations (6.3) and (6.5), the quasidefinite matrix X is

X =

−Q A∗

A G

 =

−C∗C A∗

A BB∗

 .
In the next section we describe the structure preserving implementation of the sym-

metric PPT (1.13) for I-semidefinite matrices X in factored form, which resolves the
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issues described above and leads to the structured version of the optimization algo-

rithm presented in section 6.5.

6.4 Applying a PPT to a factored representation

of an I-semidefinite matrix

Let X ∈ Cn×n be I-semidefinite and k = card(I), where card(I) denotes the number

of elements of the set I. Due to the definiteness properties there exist matrices A ∈

C(n−k)×k, B ∈ C(n−k)×t, and C ∈ Cr×k such that

XII=−C∗C ∈ Ck×k, XIIc=A
∗,

XIcI=A, XIcIc=BB
∗ ∈ C(n−k)×(n−k).

(6.7)

Any A, B, and C satisfying (6.7) are called the factors of the I-semidefinite matrix

X. Specifically, B and C do not have to be of full rank. We also introduce the following

compact form of (6.7):

X = CI

C 0

A B

 ,

and say that the map CI converts between any factor representation of the I-semidefinite

matrix X and the real matrix. Clearly, the factors B and C are not unique as for any

unitary matrices H and U of conformal size we have

X = CI

C 0

A B

 = CI

HC 0

A BU

 .

Given an I-semidefinite matrix X in a factored form (6.7) and an index set J ,

our goal in this section is to derive formulae for the symmetric PPT (1.13) needed in

Lemma 1.2.5 to compute a J -semidefinite matrix X ′ so GI(X) ∼ GJ (X ′) where

X ′ = CJ

C ′ 0

A′ B′

 ,

and the factors A′, B′, and C ′ are computed directly from A, B, and C.

We distinguish three cases for the index set J we are converting to:

Case 1: J ⊆ I (the negative semidefinite block shrinks, the positive semidefinite

block expands), in which case K = I \ J ,
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Case 2: J ⊇ I (the negative semidefinite block expands, the positive semidefinite

block shrinks), where K = J \ I, and

Case 3: I \ J 6= ∅ and J \ I 6= ∅, in which case K = (I \ J ) ∪ (J \ I).

We now derive the formulae for A′, B′, and C ′ in each case. For simplicity, so

that we may use a simpler matrix form instead of working with a generic block parti-

tion (6.7), take I = {1, 2 . . . , k} so that X is

X = CI

C 0

A B

 =


k n−k

k −C∗C A∗

n−k A BB∗

. (6.8)

6.4.1 Case 1.

Recall that we have A ∈ C(n−k)×k, B ∈ C(n−k)×t, C ∈ Cr×k as factors of an I-

semidefinite matrix X. Again for simplicity, we take J = {1, 2, . . . , k − l} for some l

with 1 ≤ l ≤ k. Let H be a unitary matrix such that

A =
[ k−l l

n−k A1 A2

]
, HC =


k−l l

r−l C11 0

l C21 C22

. (6.9)

Then the compact factor representation (6.8) of X is

X = CI

 HC 0

A B

 =


−C∗11C11 − C∗21C21 −C∗21C22 A∗1

−C∗22C21 −C∗22C22 A∗2

A1 A2 BB∗

 .
Now we use Lemma 1.2.5 to convert between our two permuted Riccati representations.

The pivot index set is K = {k− l+ 1, . . . , k}. Note that for this PPT to exist it must

hold r ≥ l. For the pivot submatrix XKK = −C∗22C22 to be nonsingular, the square

matrix C22 must be invertible. The diagonal sign change matrix D is the block diagonal

matrix D = diag(Ik−l,−Il, In−k), and applying (1.13) to X to compute Y we get

X ′ = DYD =


−C∗11C11 −C∗21C−∗22 A∗1 − C∗21C−∗22 A

∗
2

− C−122 C21 (C∗22C22)
−1 (C∗22C22)

−1A∗2

A1 − A2C
−1
22 C21 A2(C

∗
22C22)

−1 BB∗ + A2(C
∗
22C22)

−1A∗2

 .
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The matrix X ′ is J -semidefinite (as follows by Theorem 6.2.2) and it is easy to check

that it can be represented as X ′ = CJ

 C ′ 0

A′ B′

 for A′ ∈ C(l+n−k)×(k−l), B′ ∈

C(l+n−k)×(l+t), C ′ ∈ C(r−l)×(k−l) given by

A′ =

 −C−122 C21

A1 − A2C
−1
22 C21

 , B′ =

 C−122 0

A2C
−1
22 B

 , C ′ = C11. (6.10)

6.4.2 Case 2.

Case 2 is very similar to Case 1. We again start from A ∈ C(n−k)×k, B ∈ C(n−k)×t,

C ∈ Cr×k and now take 1 ≤ m ≤ n− k, with m ≤ t, to apply Lemma 1.2.5 to X from

(6.8) for J = {1, 2, . . . , k, k+ 1, . . . , k+m}, for simplicity. Let U be a unitary matrix

such that

A =


k

m A1

n−k−m A2

, BU =


m t−m

m B11 0

n−k−m B21 B22

. (6.11)

The compact factor representation (6.8) expands to

X = CI

 C 0

A BU

 =


−C∗C A∗1 A∗2

A1 B11B
∗
11 B11B

∗
21

A2 B21B
∗
11 B21B

∗
21 +B22B

∗
22

 .
From Lemma 1.2.5 we have K = {k+ 1, . . . , k+m} and D = In. The pivot submatrix

is XKK = B11B
∗
11 and B11 must be invertible for this PPT operation to be defined. If

this is the case, we have

X ′ = DYD =


−C∗C − A∗1(B11B

∗
11)
−1A1 A∗1(B11B

∗
11)
−1 A∗2 − A∗1B−∗11 B

∗
21

(B11B
∗
11)
−1A1 −(B11B

∗
11)
−1 B−∗11 B21

A2 −B21B
−1
11 A1 B21B

−1
11 B22B

∗
22


= CJ

 C ′ 0

A′ B′

 ,

where A′ ∈ C(n−k−m)×(k+m), B′ ∈ C(n−k−m)×(t−m), and C ′ ∈ C(r+m)×(k+m) are given by

A′ =
[
A2 −B21B

−1
11 A1 B21B

−1
11

]
, B′ = B22, C ′ =

 C 0

−B−111 A1 B−111

 . (6.12)
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6.4.3 Case 3.

Case 3 is somewhat more complicated. We start from A ∈ C(n−k)×k, B ∈ C(n−k)×t,

C ∈ Cr×k and take 1 ≤ l ≤ k and 1 ≤ m ≤ n − k, such that l ≤ r and m ≤ t. For

simplicity, we look at J = {1, 2, . . . , k − l} ∪ {k + 1, . . . , k + m}. Let H and U be

unitary matrices such that

BU =


m t−m

m B11 0

n−k−m B21 B22

, HC =


k−l l

r−l C11 0

l C21 C22

,

and A =


k−l l

m A11 A12

n−k−m A21 A22

.
(6.13)

In this case (6.8) is

X = CI

 HC 0

A BU



=


−C∗11C11 − C∗21C21 −C∗21C22 A∗11 A∗21

−C∗22C21 −C∗22C22 A∗12 A∗22

A11 A12 B11B
∗
11 B11B

∗
21

A21 A22 B21B
∗
11 B21B

∗
21 +B22B

∗
22

 .
(6.14)

From Lemma 1.2.5 we have K = {k − l + 1, . . . , k, k + 1, . . . , k + m} and the pivot

submatrix whose inverse is required is the quasidefinite matrix

XKK =

−C∗22C22 A∗12

A12 B11B
∗
11

 . (6.15)

An inversion formula for quasidefinite matrices

It is not difficult to see that whenever a quasidefinite matrix is invertible, its inverse

is quasidefinite, too [119, Thm. 1.1]. Hence, given A,B,C of conformal sizes, we can

write −C∗C A∗

A BB∗

−1 =

−NN∗ K

K∗ L∗L

 (6.16)

for suitable matrices K,L,N . In this section, we describe a method to compute K, L,

N directly from A, B, C. In principle, one can assemble the matrix in (6.16), invert
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it, and then find the Cholesky factors of its diagonal blocks. However, this does not

appear sound from a numerical point of view, since it means forming Gram matrices

BB∗ and C∗C and then factoring the corresponding blocks in the computed inverse

(which may not be semidefinite due to numerical errors). It is a problem similar

to the infamous normal equations for least-squares problems [55, Sec. 20.4]. The only

condition appearing in Lemma 1.2.5 is that the pivot submatrix (6.15) is invertible and

we wish to keep only that assumption for the existence of the PPT. Hence, formulae

which rely on Schur complements [62, Sec. 0.7.3] cannot be used, since BB∗ and C∗C

are not guaranteed to have full rank (consider, e.g. the case A = 1, B = C = 0).

In the following, we present an alternative expression that relies heavily on unitary

factorizations.

Theorem 6.4.1. Let

P =

−C∗22C22 A∗12

A12 B11B
∗
11

 , A12 ∈ Cm×l, B11 ∈ Cm×m, C22 ∈ Cl×l

be an invertible matrix and let Q and H be unitary matrices such that

B∗11
A∗12

 = Q

R∗
0

 , Q =


m l

m Q11 Q12

l Q21 Q22

 (6.17)

and

M =

Im 0

0 C22

Q = H

M11 0

M21 M22

 , H =


m l

m H11 H12

l H21 H22

. (6.18)

Then,

1. R and M22 are invertible.

2. We have

P−1 =

−NN∗ K

K∗ L∗L

 ,
with

N = Q22M
−1
22 , K = (Q21 −Q22M

−1
22 M21)R

−1, L = M11R
−1.
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3. The following relations hold:

C22N = H22, C22K = H21L, (6.19)

LB11 = H∗11, KB11 = −NH∗12. (6.20)

Proof. We use a few manipulations of quasidefinite matrices which are standard in

the context of preconditioners for saddle-point matrices; see for instance [11, Sec. 10.4].

Note that P is the Schur complement of −Im in

T =


−Im 0 B∗11

0 −C∗22C22 A∗12

B11 A12 0

 ,
so by the standard results on Schur complements T is nonsingular and

P−1 =

0 Il 0

0 0 Im

T−1


0 0

Il 0

0 Im

 .
Inserting factors Q̂ = diag(Q, I) and its inverse, we get

P−1 =

0 Il 0

0 0 Im

 Q̂
Q̂∗


−Im 0 B∗11

0 −C∗22C22 A∗12

B11 A12 0

 Q̂

−1

Q̂∗


0 0

Il 0

0 Im



=

Q21 Q22 0

0 0 I



∗ ∗ R∗

∗ ∗ 0

R 0 0


−1 

Q∗21 0

Q∗22 0

0 I

 .
The top–left 2 × 2 block which we have marked with asterisks is −M∗M , with M as

in (6.18), so we can write it also as

P−1 =

Q21 Q22 0

0 0 I



−M∗

11M11 −M∗
21M21 −M∗

21M22 R∗

−M∗
22M21 −M∗

22M22 0

R 0 0


−1 

Q∗21 0

Q∗22 0

0 I

 . (6.21)

The middle matrix in (6.21) is equal to Q̂∗TQ̂, which is invertible. Hence R and M22

must be invertible, too, which proves our first statement. The inverse of this block
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antitriangular matrix can be computed explicitly as

P−1 =

Q21 Q22 0

0 0 I




0 0 R−1

0 −M−1
22 M

−∗
22 −M−1

22 M21R
−1

R−∗ −R−∗M∗
21M

−∗
22 R−∗M∗

11M11R
−1



Q∗21 0

Q∗22 0

0 I


=

 −Q22M
−1
22 M

−∗
22 Q

∗
22 (Q21 −Q22M

−1
22 M21)R

−1

R−∗(Q∗21 −M∗
21M

−∗
22 Q

∗
22) R−∗M∗

11M11R
−1

 =

−NN∗ K

K∗ L∗L

 ,
which proves the second claim.

Expanding the multiplications in the second block column of (6.18), we get C22Q22 =

H22M22 and C22Q21 = H21M11 +H22M21, from which the two equations (6.19) follow

easily. From the first block row of (6.17) we get B∗11 = Q11R
∗, and again from (6.18)

we get

H∗

I 0

0 C22

 =

M11 0

M21 M22

Q∗,
whose first block column reads H∗11 = M11Q

∗
11, H

∗
12 = M21Q

∗
11 + M22Q

∗
12. Putting

together these relations, (6.20) follows.

We now continue computing the factored version of the PPT in Case 3. Assum-

ing that the matrix XKK from (6.15) is nonsingular, the symmetric principal pivot

transform Y of X from (6.14) exists and we partition it as

Y =


Y11 Y ∗21 Y ∗31 Y ∗41

Y21 −Y22 −Y ∗32 Y ∗42

Y31 −Y32 −Y33 Y ∗43

Y41 Y42 Y43 Y44

 . (6.22)

The middle block is −X−1KK and from Theorem 6.4.1 defining K,L,N we have

X−1KK =

−C∗22C22 A∗12

A12 B11B
∗
11

−1 =

−NN∗ K

K∗ L∗L

 =

Y22 Y ∗32

Y32 Y33

 . (6.23)
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Lemma 6.4.2. The remaining blocks of Y from (6.22) are given by

Y11 = −C∗11C11 − C∗21C21 + C∗21C22NN
∗C∗22C21 + A∗11K

∗C∗22C21

+ C∗21C22KA11 − A∗11L∗LA11,

Y21 = NN∗C∗22C21 +KA11,

Y31 = −K∗C∗22C21 + L∗LA11,

Y41 = A21 − A22NN
∗C∗22C21 − A22KA11 +B21B

∗
11K

∗C∗22C21 −B21B
∗
11L
∗LA11,

Y42 = −A22NN
∗ +B21B

∗
11K

∗,

Y43 = A22K +B21B
∗
11L
∗L,

Y44 = B21B
∗
21 +B22B

∗
22 + A22NN

∗A∗22 −B21B
∗
11K

∗A∗22

− A22KB11B
∗
21 −B21B

∗
11L
∗LB11B

∗
21.

Proof. We get the above formulae after some tedious but straightforward algebra

from the PPT formulae (1.13), the expression (6.14) for X, and (6.23).

The sign change matrix D from Lemma 1.2.5 is D = diag(Ik−l,−Il, Im, In−k−m),

and we finally have

X ′ = DYD =


Y11 −Y ∗21 Y ∗31 Y ∗41

− Y21 −Y22 Y ∗32 −Y ∗42
Y31 Y32 −Y33 Y ∗43

Y41 −Y42 Y43 Y44

 ,

where the blocks are defined in (6.23) and Lemma 6.4.2. What remains is to show that

X ′ = CJ
([

C
′

0
A
′
B
′

])
, where J = {1, 2, . . . , k− l}∪{k, k+ 1, . . . , k+m}, by finding the

factors B′ ∈ C(n−k+l−m)×(t−m+l) and C ′ ∈ C(r−l+m)×(k−l+m) such that−Y22 −Y ∗42
−Y42 Y44

 = B′(B′)∗ and

−Y11 −Y ∗31
−Y31 Y33

 = (C ′)∗C ′. (6.24)

The factor A′ ∈ C(n−k+l−m)×(k+m−l) is given by

A′ =

−Y21 Y ∗32

Y41 Y43

 . (6.25)

Lemma 6.4.3. The equalities (6.24) hold with

B′ =

 N 0

B21H12 + A22N B22

 and C ′ =

 C11 0

H∗21C21 − LA11 L

 , (6.26)

where H12, H21, L, and N are defined in Theorem 6.4.1.
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Proof. Define Z = B21H12 + A22N . Then

B′(B′)∗ =

NN∗ NZ∗

ZN∗ ZZ∗ +B22B
∗
22


and we only need to check that these blocks match the blocks specified in (6.24). From

(6.23) we have NN∗ = −Y22 and from (6.20) we get

ZN∗ = B21H12N
∗ + A22NN

∗ = −B21B
∗
11K

∗ + A22NN
∗ = −Y42,

where we have used the formula for Y42 from Lemma 6.4.2 for the last equality. What

remains is to show that

ZZ∗ +B22B
∗
22 = Y44.

Multiplying out the left hand side and using (6.20) we see that the above equality

holds if and only if

B21H12H
∗
12B

∗
21 = B21B

∗
21 −B21H11H

∗
11B

∗
21,

which is true because H from (6.18) is a unitary matrix and so H11H
∗
11 +H12H

∗
12 = I.

The proof involving the matrix C ′ uses (6.19) and is identical to the above.

To summarize the results for Case 3, we have an I-semidefinite matrix X =

CI ([HC 0
A BU ]) for I = {1, . . . , k} and the factors A, BU , and HC as in (6.13), and

we wish to transform it into a J -semidefinite matrix X ′ for J = {1, . . . , k− l} ∪ {k+

1, . . . , k+m}. Providing that the matrix XKK from (6.15) is invertible and its inverse

defined by (6.23), X ′ can be represented as X ′ = CJ
([

C
′

0
A
′
B
′

])
, where the factor A′ is

given by (6.25) and the factors B′ and C ′ are defined in Lemma 6.4.3.

6.4.4 Formulae for arbitrary index sets

Using a suitable permutation, we can reduce the general case (with arbitrary I and J )

to the ones we treated above. For instance, we show how to adapt Case 1 (the other

two are analogous). Let P be the permutation matrix associated to a permutation π

that maps

π(I ∩ J ) = {1, 2, . . . , k − l},

π(I ∩ J c) = {k − l + 1, . . . , k},

π(Ic) = {k + 1, . . . , n},
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where k = card(I), l = card(I ∩ J c). Then the matrix

X̂ = PXP T =

XII XIIc

XIcI XIcIc

 =

−C∗C A∗

A BB∗


is {1, 2, . . . , k}-semidefinite and as in Section 6.4.1 we get A′, B′, and C ′ defined by

(6.10) as the factors of an {1, 2, . . . , k − l}-semidefinite matrix

X̂ ′ =

−(C ′)∗C ′ (A′)∗

A′ B′(B′)∗

 .
Then the J -semidefinite matrix X ′ is obtained as X ′ = P T X̂ ′P .

6.5 PPTs with bounded elements

We now use the factor-based formulae for the PPT derived in Section 6.4 to compute

an optimal permuted Riccati basis for a Lagrangian semidefinite subspace. From [79,

Thm. 3.4], which is here stated as the final part of Theorem 1.2.2, we know that

for a Lagrangian subspace ImU there exists at least one optimal permuted Riccati

representation with Xopt satisfying

|(Xopt)ij| ≤

1, if i = j,

√
2, otherwise.

The above inequality is sharp, as can be seen from the example [79, Sec. 3] where U =[
I2
X

]
, X =

[
1
√
2√

2 1

]
. However, a stronger version can be obtained under the additional

hypothesis that ImU is Lagrangian semidefinite (instead of merely Lagrangian).

Theorem 6.5.1. Let U ∈ C2n×n be such that ImU is Lagrangian semidefinite. Then,

there exists Iopt ⊆ {1, 2, . . . , n} such that U ∼ GIopt(X) and

|xij| ≤ 1 ∀i, j. (6.27)

Proof. Since ImU is Lagrangian, from the proof of [79, Thm. 3.4] it follows that

there exists an index set I defining the symplectic swap ΠI such that U ∼ GI(X),

X ∈ Cn×n is Hermitian, and

|xii| ≤ 1,

∣∣∣∣∣ det

xii xij

xji xjj

 ∣∣∣∣∣ ≤ 1, i, j = 1, 2, . . . , n. (6.28)
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In addition, since ImU is Lagrangian semidefinite, from Theorem 6.2.2 it follows that

X is I-semidefinite. We prove that the choice Iopt = I satisfies (6.27).

For i = j this trivially follows from (6.28). When i 6= j, we distinguish four cases.

Case A: i, j ∈ I The block XII is negative semidefinite so its submatrix (X){i,j}{i,j}

is negative semidefinite, too, and this implies

|xij|
2 = xijxji ≤ |xii||xjj| ≤ 1.

Case B: i, j 6∈ I The proof is analogous to Case A, since XIcIc is positive semidefi-

nite.

Case C: i ∈ I, j 6∈ I By semidefiniteness it follows that −1 ≤ xii ≤ 0 and 0 ≤ xjj ≤

1. Moreover, by the 2× 2 case from (6.28) we get

|xiixjj − |xij|
2| = |xii|xjj + |xij|

2 ≤ 1,

and hence |xij| ≤ 1.

Case D: i 6∈ I, j ∈ I The proof is analogous to Case C by swapping i and j.

6.5.1 The optimization algorithm

Algorithm 6.5.2, which is a modified version of [79, Alg. 2], can be used to compute Iopt
such that (6.27) holds. In each step, the original algorithm performs one symmetric

PPT, where the pivot set consists of either an index of the diagonal element with the

largest modulus, providing that this value is greater than a threshold τ1 ≥ 1 or, if all

diagonal elements are less than τ1 in magnitude, then the pivot set contains indices of

the off-diagonal element of largest modulus, if this is greater than τ2 ≥
√

2.

Note that due to Theorem 6.5.1 we need only one threshold value τ ≥ 1. Our

algorithm is based on the following observations about the location of the element of

the maximum modulus which defines the pivot set for the PPT. Since the blocks XII

and XIcIc of an I-semidefinite matrix X with factors A,B,C are semidefinite, if the

entry of X with maximum modulus occurs on the diagonal of X then
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• either it is in the block XII = −C∗C: then it is the squared norm ‖C:,j‖2 of a

column of C;

• or it is in the block XIcIc = BB∗: then it is the squared norm ‖Bi,:‖2 of a row

of B.

Moreover, if all diagonal elements of X are reduced below τ so that the pivot set is

defined by the indices of some off-diagonal element of X, due to definiteness, all off-

diagonal elements of XII and XIcIc will not exceed τ , and hence in this case we need

only look in the block A for the element of maximum modulus.

Once the maximum modulus of elements of X is determined, when it exceeds τ , in

each of the three cases we can perform a PPT that strictly reduces this maximal entry.

For computational efficiency, the algorithm first attempts to find a pivot index among

the columns of the factor C, when there are no such pivots, it attempts to find a pivot

index among the rows of the factor B, and finally, if no diagonal pivots are found, it

looks for an off-diagonal pivot indices among the elements of |Ai,j|. We repeat this

procedure until all entries are smaller than τ .

Notice the use of the control flow instructions break and continue, defined as in

C or MATLAB: the first exits prematurely from the for loop, the second resumes

execution from its next iteration.

The algorithm terminates since each PPT uses a pivot matrix with the modulus

of the determinant at least τ and hence |detX| is reduced by a factor at least τ at

each step. This argument is similar to, but slightly different from, the one used in [79,

Thm. 5.2], where a determinant argument is applied to U1 in (1.9) rather than X.

Algorithm 6.5.2. Given Iin ⊆ {1, 2, . . . , n}, and factors Ain, Bin, Cin of an Iin-

semidefinite matrix Xin = X∗in ∈ Cn×n as defined by (6.7), and a threshold τ ≥ 1,

this algorithm computes a bounded permuted Riccati basis Iout ⊆ {1, 2, . . . , n}, and

factors Aout, Bout, Cout of an Iout-semidefinite matrix Xout = X∗out ∈ Cn×n such that

GIin(Xin) ∼ GIout(Xout) and |(Xout)ij| ≤ τ for each i, j. The functions gA, gB, gC spec-

ify the mapping between ‘local’ indices in A,B,C and ‘global’ indices in the full matrix

X.

1 A = Ain, B = Bin, C = Cin, I = Iin
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2 for it = 1, 2, . . . ,max iterations

3 ̂ = arg max ‖C:,j‖2

4 if ‖C:,̂‖2 > τ

5 use the formulae in Case 1 in Section 6.4.1, with J = I \ {gC(̂)},

to update (A,B,C, I)← (A′, B′, C ′,J )

6 continue

7 end

8 ı̂ = arg max ‖Bi,:‖2

9 if ‖Bı̂,:‖2 > τ

10 use the formulae in Case 2 in Section 6.4.2, with J = I ∪ {gB (̂ı)},

to update (A,B,C, I)← (A′, B′, C ′,J )

11 continue

12 end

13 ı̂, ̂ = arg max|Ai,j|

14 if |Aı̂,̂| > τ

15 use the formulae in Case 3 in Section 6.4.3, with J = (I \ {gA(̂)}) ∪ {gA(̂ı)},

to update (A,B,C, I)← (A′, B′, C ′,J )

16 continue

17 end

18 break

19 end

20 Aout = A, Bout = B, Cout = C, Iout = I

6.5.2 Special formulae for the scalar cases l = 1, m = 1

The pivot sets used in the algorithm have at most 2 elements, so some simplifications

can be done to the general formulae (6.10), (6.12), (6.25), and (6.26).

For Case 1, the factor partition (6.9) is (up to the ordering of indices)

A =
[ k−1 1

n−k A1 a
]
, HC =


k−1 1

r−1 C11 0

1 c∗ γ

,
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and the PPT that gives the updated factors in (6.10) for J = {1, . . . , k − 1} is

 HC 0

A B

 =


C11 0 0

c∗ γ 0

A1 a B

 7→


C11 0 0

− γ−1c∗ γ−1 0

A1 − γ−1ac∗ γ−1a B

 =

 C ′ 0

A′ B′

 .

Similarly, for Case 2 the starting factors (6.11) are now partitioned as

A =


k

1 a∗

n−k−1 A2

, BU =


1 t−1

1 β 0

n−k−1 b B22

,
and the updated factors (6.12) for J = {1, . . . , k, k + 1} correspond to the PPT

 C 0

A BU

 =


C 0 0

a∗ β 0

A2 b B22

 7→


C 0 0

−β−1a∗ β−1 0

A2 − β−1ba∗ β−1b B22

 =

 C ′ 0

A′ B′

 .

For Case 3 the initial partition of factors (6.13) is

A =


k−1 1

1 a∗ α

n−k−1 A21 d

, BU =


1 t−1

1 β 0

n−k−1 b B22

, HC =


k−1 1

r−1 C11 0

1 c∗ γ

.
The PPT for the updated factors for J = {1, . . . , k − 1} ∪ {k + 1} has the pivot set

K = {k, k+1} and it requires the inverse of the 2×2 matrix XKK =
[
−|γ|2 α

α |β|2

]
, which

can be computed explicitly as

X−1KK =
1

∆2

−|β|2 α

α |γ|2

 , ∆ =

√
|α|2 + |βγ|2.

Therefore, we can write X−1KK =

−NN∗ K

K∗ L∗L

 for N = β/∆, K = α/∆2 and

L = γ/∆. Lemma 6.4.3 gives

B′ =

 β/∆ 0

(βd− αb)/∆ B22

 and C ′ =

 C11 0

(αc∗ − γa∗)/∆ γ/∆

 .
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Finally, the factor update formula is

 HC 0

A BU

 =


C11 0 0 0

c∗ γ 0 0

a∗ α β 0

A21 d b B22



7→


C11 0 0 0

(αc∗ − γa∗)/∆ γ/∆ 0 0

− Y21 Y ∗32 β/∆ 0

Y41 Y43 (βd− αb)/∆ B22

 =

 C ′ 0

A′ B′

 ,

where

Y21 = (γ|β|2c∗ + αa∗)/∆2,

Y41 = A21 −
1

∆2

[
d b

] γ|β|2 α

−αβγ β|γ|2

c∗
a∗

 ,
Y32 = α/∆2,

Y43 = (αd+ |γ|2βb)/∆2.

6.6 Numerical experiments

In our first experiment with Algorithm 6.5.2 we use randn to generate random factors

C ∈ R14×14, A ∈ R16×14, B ∈ R16×16, and a random index set I with card(I) = 14

defining the I-semidefinite matrix X of order 30. The threshold parameter for the

optimization algorithm is τ = 1.5. In Figure 6.1 we display a color plot of the matrix

|X|, where (|X|)ij = |xij| at the start of the optimization procedure, after 10 and 20

iterations, and the final matrix. The algorithm took 31 iterations and produced the

matrix X with max |xij| = 0.46 and card(Iopt) = 16. The effect of semidefinite blocks

on the reduction can be seen in plots (b) and (c) of Figure 6.1, where the dark red

stripes that appear are due to the fact that whenever a diagonal pivot is chosen (Case

1 or 2), all elements in the corresponding row and column of the matrices −C∗C or

BB∗ are also reduced below τ .

For the same example, Figure 6.2 displays maxi,j |xij| and | detX| during the iter-

ations. The quantity maxi,j |xij| is not guaranteed to decrease with iterations and we
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Figure 6.1: Snapshots of |X| for the starting matrix, iterations 10 and 20, and the
final matrix for Algorithm 6.5.2 applied to a random matrix X of order 30 with the
factors C ∈ R14×14, A ∈ R16×14, and B ∈ R16×16.
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Figure 6.2: The changes in maxi,j |xij| and | detX| for Algorithm 6.5.2 applied to a

random matrix X of order 30 with the factors C ∈ R14×14, A ∈ R16×14, and B ∈ R16×16.
In the figure on the right, a base-10 logarithmic scale is used for the y-axis.

see this behaviour on the left plot but | detX| must decrease with each iteration as we

explained in Section 6.5.1, and this is evident in the log-lin graph on the right.

We next use the matrices from the examples in the benchmark test set [25] de-

tailed in section 1.4 to construct a quasidefinite matrix X to which we then apply

Algorithm 6.5.2 with the threshold τ = 1.5. Each example contains factors (cf. Sec-

tion 6.3) A, G = GT , Q = QT ∈ Rk×k, B ∈ Rk×t, C ∈ Rr×k, R = RT ∈ Rt×t, and
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Q̃ = Q̃T ∈ Rr×r, with r, t ≤ k, which define the Hamiltonian matrix

H =

 A −G

−Q −AT

 =

 A −BR−1BT

−CT Q̃C −AT

 .
From these factors we construct the quasidefinite matrix

X =

−Q AT

A G

 =

−CT
f Cf AT

A BfB
T
f

 ,
where Bf = BR−1R ∈ Rk×t, Cf = RQ̃C ∈ Rr×k, and RR and RQ̃ are the upper

triangular Cholesky factors of the matrices R and Q̃, respectively. Moreover, the

matrix Q̃ = [ 9 6
6 4 ] in Example 2 in [25] is singular positive semidefinite and therefore

we use RQ̃ = [ 3 2
0 0 ] as its Cholesky factor. The pair (I, X), with I = {1, 2, . . . , k},

identifies a Lagrangian subspace of C4k which is associated with the Hamiltonian

pencil (6.3), as described in Section 6.3.

This construction eliminates Examples 3, 4, 17, and 18 from [25] due to the in-

definiteness of the matrix Q̃, and consequently the matrix Q, since we cannot form a

quasidefinite matrix X from these factors.

In Table 6.1, for each of the remaining examples we present the dimensions k, t,

and r defining the factors Cf , A, and Bf of the matrix X, the number of iterations it

the optimization took, the 2-norm condition number κ of the starting matrix GI(X),

the maximum modulus of the elements in X and the computed optimal reduced ma-

trix Xopt, and the subspace distance between GI(X) and GIopt(Xopt) computed by

MATLAB’s subspace.

Small values for the subspaces distance indicate that the algorithm produced a

representation of the same subspace associated with GI(X), which happens in almost

all examples. The largest value for this quantity corresponds to the Example 22 where

the starting representation GI(X) is ill-conditioned. Several examples already had X

with elements bounded in modulus by 1 but we include them for completeness. In

all other examples, the algorithm achieved the goal of reducing the modulus of all

elements in Xopt below the threshold τ and the number of iterations required to do

this was in general not large.

We also note that the factors Bf and Cf could have been formed from the matrices

G and Q, for example by taking their Cholesky factors or semidefinite square roots.
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Table 6.1: Algorithm 6.5.2 applied to the matrices defining the test examples from
[25].

Ex. k t r κ(GI(X)) Subspace dist. max |xij| max |(Xopt)ij| it

1 2 1 2 2.41 4.71e-16 2.000 1.000 2
2 2 1 2 1.62e1 1.31e-15 9.000 9.231e-1 3
5 9 3 9 2.16e2 5.60e-15 1.472e2 7.961e-1 13
6 30 3 5 1.44e8 3.47e-13 1.440e8 1.377 29
7 2 1 1 2.03 7.67e-16 2.000 1.000 2
8 2 1 1 2.72 7.28e-16 2.000 1.000 2
9 2 2 1 1.01e4 1.99e-13 1.000e4 1.000e-1 2
10 2 2 1 1.01e6 4.07e-11 1.000e6 1.000e-1 3
11 2 1 2 1.62 4.71e-16 1.000 1.000 1
12 2 1 2 7.07e5 5.08e-16 1.000e6 1.000 2
13 2 1 2 1.41 4.71e-16 1.000 1.000 1
14 2 2 2 1.91 7.25e-16 2.000 4.000e-1 3
15 2 2 2 2.75 1.04e-15 1.000 1.000 1
16 2 2 2 2.75 1.86e-15 1.000 1.000 1
19 3 3 3 1.91 1.22e-15 2.333 1.486 3
20 3 3 3 3.54 1.12e-15 2.333e6 7.037e-7 7
21 4 1 2 1.91 1.60e-15 1.000 1.000 1
22 4 1 2 1.00e12 1.16e-10 1.000e12 1.000 3
23 4 1 1 4.16 1.09e-15 1.000 1.000 1
24 4 1 1 4.24 9.11e-16 1.000 1.000 1
25 77 39 38 1.00e1 6.44e-15 1.000e1 1.000 39
26 237 119 118 1.00e1 9.88e-15 1.000e1 1.000 119
27 397 199 198 1.00e1 1.31e-14 1.000e1 1.000 199
28 8 8 8 3.00 1.68e-15 2.000 1.400 5
29 64 64 64 3.00 6.11e-15 2.000 1.400 33
30 21 1 1 1.00 6.76e-16 1.000 1.000 1
31 21 1 1 1.00e2 6.76e-16 1.000e2 1.000 2
32 100 1 1 1.22e3 1.84e-13 4.481e2 9.985e-1 200
33 60 2 60 2.41 6.75e-15 1.000 1.000 1

We chose not to do this not only because B and C are readily available, but also since

in most examples G and/or Q are singular, and moreover such Bf and Cf would be

square, while those computed from B and C are rectangular, often with very small

number of columns and rows, respectively.
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Summary

The worst thing you can do to a problem is solve it

completely.

—Daniel Kleitman

The final chapter summarizes the work presented in this thesis and our findings,

and describes a few further research lines.

In Chapter 3 we aimed to develop an alternative to the popular, but relatively

expensive, approach of replacing the given matrix by the nearest positive semidefinite

matrix or nearest correlation matrix. The motivation for this work was the growing

number of applications in which matrices that are supposed to be (semi)definite turn

out to be indefinite. We have shown that shrinking is an attractive way of restoring

definiteness. The method is flexible as it allows the practitioner to choose a target

matrix that best serves the needs of the application; all that is required is to make

sure that the chosen matrix is positive semidefinite or, in the correlation matrix case,

a correlation matrix. We have described how to define a target matrix in the case

of fixed diagonal blocks, as occur in stress testing, for example and have shown that

shrinking can also take advantage of this structure. Weighting is a popular feature of

the nearest correlation matrix methods used in practice and we have shown that with

shrinking weights can be incorporated in the target matrix without any effect on the

solution techniques.

Shrinking can be achieved in at least three different ways, all of which are straight-

forward to implement. Of our three shrinking methods we favor the bisection and

generalized eigenvalue methods. Bisection is perhaps preferable for convergence tol-

erances of 10−6 and larger, whereas the generalized eigenvalue method is preferable

for more stringent tolerances, since its cost is essentially independent of the tolerance.

128
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Bisection also has the advantage that it produces a numerically semidefinite matrix

(one for which the Cholesky factorization succeeds).

The problems for which we believe shrinking is of interest range in size from order

10–100, as arise for example in foreign exchange trading, and which may need to be

solved thousands of times in a simulation, to orders in the thousands or millions, as

for example in bioinformatics [101]. In the case of invalid correlation matrices an

attractive feature of shrinking is that it is at least an order of magnitude faster than

computing the nearest correlation matrix. This is due to the fact that computing

the nearest correlation matrix requires at least several full eigenvalue decompositions,

while we can completely avoid computing any eigenvalues in the bisection method and

need to compute only one for the generalized eigenvalue method.

Our analysis did not assume any special structure for the initial matrix M0, except

in the fixed block case, but in practice there are many structured covariance and

correlation matrix problems [73]; the tridiagonal structure seems to be quite popular

in some areas [105]. It would therefore be of interest to analyze shrinking in structured

cases requiring structured targets, particularly since computing the nearest correlation

matrix in general does not preserve zero patterns or block structure of the matrix.

Chapter 4 is the first thorough treatment of upper and lower bounds for the distance

of a symmetric matrix A to the nearest correlation matrix. For the most common case

in practice, in which A is indefinite with unit diagonal and |aij| ≤ 1 for i 6= j, we

have obtained upper bounds (4.8), (4.12), and (4.13) that differ from the lower bound

(4.3) by a factor at most 1 + n
√
n. For the sharpest bound (4.8) we found the ratio

to be always less than 5 in our experiments with matrices of dimension up to 3120, so

the upper bound was demonstrably of the correct order of magnitude in every case.

The cost of computing the pair (4.3) and (4.8) is 17n3/6 flops, which is substantially

less than the 70n3/3 or more flops required to compute ncm(A) by the preconditioned

Newton algorithm of [18].

The upper bound (4.13) based on shrinking has about half the cost of (4.8) and,

while less sharp than (4.8), it still performed well in our tests.

The modified Cholesky bound (4.20) has the attraction that it provides an inex-

pensive test for definiteness (n3/3 flops) along with an upper bound (costing another

n3/3 flops) that, while sometimes two orders of magnitude larger than (4.8), can still
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provide useful information.

We conclude that our bounds are well suited to gauging the size of dcorr(A). The

information they provide enables a user to identify an invalid correlation matrix rela-

tively cheaply and to decide whether to revisit its construction or proceed to compute

a replacement directly from it. A natural replacement is the nearest correlation matrix

itself; an alternative is to use shrinking [60].

The main contribution of Chapter 5 is to show that Anderson acceleration with

history length m equal to 2 or 3 works remarkably well in conjunction with the widely

used alternating projections method of Higham [56] for computing the nearest corre-

lation matrix, both in its original form and in the forms that allow elements of the

matrix to be fixed or a lower bound to be imposed on the smallest eigenvalue. Since

no Newton method is available for the nearest correlation matrix problem with fixed

elements, Anderson acceleration of the alternating projections method is the method

of choice for this problem variant. Our recommendation for m is based on the balance

between the reduction in both the number of iterations and the computation time:

even though larger values of m in some examples lead to a further decease in the

number of iterations the computation time sometimes increases for m larger than 2

or 3.

Although Anderson acceleration is well established in quantum chemistry appli-

cations and has recently started to attract the attention of numerical analysts, the

method is still not well known in the numerical analysis community. Indeed it has

not, to our knowledge, previously been applied to alternating projections methods.

The success of Anderson acceleration in the nearest correlation matrix context sug-

gests the possibility of using it in conjunction with other projection algorithms, such as

those for feasibility problems, that is, finding a point (not necessarily the nearest one)

in the intersection of several convex sets. Such algorithms include the (uncorrected)

alternating projections method and the Douglas–Rachford method [5]. Gould [46,

p. 10] states that an efficient acceleration scheme is needed for projection methods if

they are to be successfully applied to real-life convex feasibility problems. Our work

suggests that Anderson acceleration could make projection methods competitive in

this context.

The main motivation for the work in Chapter 6 was the fact that the definiteness
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structure possessed by most matrices to which the PPT is applied in [79] is not used or

enforced in general formulae (1.13), which means that it could be lost in computation

due to numerical errors. These matrices of interest, which generalize the quasidefinite

structure, are called I-semidefinite.

We have shown that I-semidefinite matrices define Lagrangian semidefinite sub-

spaces which are associated with the standard form of Hamiltonian and symplectic

pencils appearing in control theory, and this makes I-semidefinite matrices ubiquitous

in the field. We also proved that the elementwise bound on the entries of an opti-

mal permuted Riccati representation can be improved for the case of a Lagrangian

semidefinite subspace.

The central part of the chapter was dedicated to deriving factored versions of the

general PPT formulae used in the optimization algorithm for computing this optimal

representation. These formulae now exploit the structure of an I-semidefinite ma-

trix X by working on the (not necessarily square) factors defining the semidefinite

blocks and guarantee the definiteness properties of the resulting matrix by construc-

tion. Working directly with the factors of X is additionally appealing in view of the

fact that the factors B and C are often available a priori in control theory. Further-

more, in this way we avoid forming the Gram matrices C∗C and BB∗ where a possible

loss of accuracy might occur.

Permuted Riccati matrices proved to be a valuable tool in many applications

(see [88]) since from the stability angle, they can often be used in place of unitary

matrices but are much easier to work with in finite arithmetic. There are plenty of

problems that can be reduced to computing a “good” basis for a subspace, such as

preconditioning least-squares [6] or a null space method for solving saddle-point sys-

tems [11, Sec. 6], and it would be interesting to see how permuted Riccati matrices

perform in this setting (for the least-squares problem some analysis has already been

done in [6]).



Bibliography

day off n. (in Academia)

A day spent doing something related to your project that

can still be considered productive but which requires no

mental effort.

e.g. “I took a day off and sorted my references.”

—PHD Comics, 12/7/2015

[1] Andrei A. Agrachev and Yuri L. Sachkov. Control theory from the geomet-

ric viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences. Springer-

Verlag, Berlin, 2004. xiv+412 pp. Control Theory and Optimization, II. ISBN

3-540-21019-9.

[2] Gregory Ammar and Volker Mehrmann. On Hamiltonian and symplectic Hes-

senberg forms. Linear Algebra Appl., 149:55 – 72, 1991.

[3] Donald G. Anderson. Iterative procedures for nonlinear integral equations. J.

Assoc. Comput. Mach., 12(4):547–560, 1965.

[4] Greg Anderson, Lisa Goldberg, Alec N. Kercheval, Guy Miller, and Kathy Sorge.

On the aggregation of local risk models for global risk management. Journal of

Risk, 8(1):25–40, 2005.

[5] Francisco J. Aragón Artacho, Jonathan M. Borwein, and Matthew K. Tam.

Douglas–Rachford feasibility methods for matrix completion problems. The

ANZIAM Journal, 55:299–326, 2014.

[6] Mario Arioli and Iain S. Duff. Preconditioning linear least-squares problems by

identifying a basis matrix. SIAM J. Sci. Comput., 37(5):S544–S561, 2015.

132

http://dx.doi.org/10.1007/978-3-662-06404-7
http://dx.doi.org/10.1007/978-3-662-06404-7
http://www.sciencedirect.com/science/article/pii/002437959190325Q
http://www.sciencedirect.com/science/article/pii/002437959190325Q
http://doi.acm.org/10.1145/321296.321305
http://dx.doi.org/10.1017/S1446181114000145
http://dx.doi.org/10.1137/140975358
http://dx.doi.org/10.1137/140975358


BIBLIOGRAPHY 133

[7] Jared L. Aurentz, Raf Vandebril, and David S. Watkins. Fast computation of

the zeros of a polynomial via factorization of the companion matrix. SIAM J.

Sci. Comput., 35(1):A255–A269, 2013.

[8] Zhaojun Bai, James W. Demmel, Jack J. Dongarra, Axel Ruhe, and Henk A.

Van der Vorst, editors. Templates for the Solution of Algebraic Eigenvalue

Problems: A Practical Guide. Society for Industrial and Applied Mathemat-

ics, Philadelphia, PA, USA, 2000. xxix+410 pp. ISBN 0-89871-471-0.

[9] R. H. Bartels and G. W. Stewart. Algorithm 432: Solution of the matrix equation

AX +XB = C. Comm. ACM, 15(9):820–826, 1972.

[10] Peter Benner, Alan J. Laub, and Volker Mehrmann. A collection of bench-

mark examples for the numerical solution of algebraic Riccati equations I: the

continuous-time case. Technical Report SPC 95-22, Forschergruppe ‘Scientific

Parallel Computing’, Fakultät für Mathematik, TU Chemnitz-Zwickau, 1995.

Version dated February 28, 1996.

[11] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle

point problems. Acta Numer., 14:1–137, 2005.

[12] Vineer Bhansali and Mark B. Wise. Forecasting portfolio risk in normal and

stressed markets. Journal of Risk, 4(1):91–106, 2001.

[13] Dario A. Bini, Bruno Iannazzo, and Beatrice Meini. Numerical Solution of

Algebraic Riccati Equations. Society for Industrial and Applied Mathematics,

2011.

[14] Ernesto G. Birgin and Marcos Raydan. Robust stopping criteria for Dykstra’s

algorithm. SIAM J. Sci. Comput., 26(4):1405–1414, 2005.
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A+, see matrix, positive semidefinite,

nearest in Frobenius norm

aggregation, 15–16, 30

algebraic Riccati equation

continuous-time, 103

positive semidefinite solution of,

104

alternating projections method

for the nearest correlation matrix

fixed-point version, 89–90

original, 88–89

general, 87

with Dykstra correction, 88

Anderson acceleration

additional cost, 87

for the alternating projections for

computing the nearest

correlation matrix, 90

original, 85–86

practical, 86–87

CI , see matrix, I-semidefinite,

compact form CI
card(I), 110

ceiling function dαe, 46

Cholesky factorization

modified, 38, 72

of a definite matrix, 36

of a semidefinite matrix, 36

to test definiteness, 37–38

concave function, 43

condition number, 21
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converting between permuted Riccati

representations, see symmetric

principal pivot transform

(symmetric PPT), to convert

between permuted Riccati

representations

correlation matrix, see matrix,

correlation, definition

covariance matrix, see matrix,

covariance

dcorr(A), see nearest correlation matrix

problem, optimal distance

definite Lagrangian subspace, see

Lagrangian subspace, definite

definite matrix pencil, see matrix,

pencil, definite

Dykstra’s algorithm, see alternating

projections method, with

Dykstra correction

eigenvalue

definition, 32

generalized, 33

of the pencil, see eigenvalue,

generalized

eigenvalue problem

generalized, 33

standard, 32

eigenvector, 32

equivalence of pencils, 34

factors of I-semidefinite matrix, see

matrix, I-semidefinite, factors

of

fixed-point iteration, 85

Frobenius norm, see norm, Frobenius,

definition

G(X), see matrix, Riccati

GI(X), see matrix, Riccati, permuted

generalized eigenvalue, see eigenvalue,

generalized

generalized eigenvalue problem, see

eigenvalue problem, generalized

generalized inverse, see Moore–Penrose

generalized inverse

Gram matrix, see matrix, Gram

graph matrix, see matrix, graph

Hadamard matrix product, 19, 51

Hamiltonian matrix, see matrix,

Hamiltonian

Hamiltonian pencil, see matrix, pencil,

Hamiltonian

I-(semi)definite matrix, see matrix,

I-(semi)definite

invalid correlation matrix, see matrix,

correlation, invalid

Jn, 20

Lagrangian subspace

basis, 21

definite, 104

definition, 20

Riccati representation

optimal permuted, 23
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permuted, 23

standard, 22

semidefinite, 105

optimal permuted Riccati

representation, 119

optimization algorithm, 120–122

least-squares problem, 38

matrix

I-definite, 102

I-semidefinite, 102

compact form CI , 110

factors of, 110

circulant mean, 68

correlation

definition, 13, 41

invalid, 16

nearest, 16

sample, 14

covariance, 41

Gram, 40, 114

graph, 21

Hamiltonian, 104, 126

indefinite, 36

Kac-Murdock-Szegő Toeplitz, 68

negative definite, 36

negative semidefinite, 36

orthogonal, 22

pencil

definite, 37

definition, 33

equivalent, see equivalence of

pencils

Hamiltonian, 107

left equivalence, 106

singular, 34, 107

symplectic, 108

without a common left kernel,

106

positive definite

definition, 35

testing for, 37

positive semidefinite

definition, 35

nearest in W -norm, 74

nearest in Frobenius norm, 67

quasidefinite, 103, 108, 126

factored inverse, 114

Riccati, 21

permuted, 23

similar, see similarity of matrices

symplectic, 22

symplectic swap, 22

upper quasi-triangular, 33

upper trapezoidal, 38

matrix nearness problem, 65

matrix norm, see norm

matrix pencil, see matrix, pencil,

definition

modified Cholesky factorization, see

Cholesky factorization,

modified

Moore–Penrose generalized inverse, 39

ncm(A), see matrix, correlation,

nearest
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nearest correlation matrix, see matrix,

correlation, nearest

nearest correlation matrix problem

alternating projections method, 16,

20, 65, 83

fixed elements, 18, 91

Newton method, 17, 20, 65

one parameter model, 73

optimal distance, 65

original, 16

positive definite, 19, 92–93

weighted, 19–20

nearest positive semidefinite matrix

problem

W -norm, 74

Frobenius norm, 67

norm

H-norm, 19

W -norm, 19

Frobenius

definition, 16

weighted, 19

optimal permuted Riccati

representation

computation of, see Lagrangian

subspace, semidefinite,

optimization algorithm

of Lagrangian subspace, see

Lagrangian subspace, Riccati

representation, optimal

permuted

of semidefinite Lagrangian

subspace, see Lagrangian

subspace, semidefinite, optimal

permuted Riccati

representation

ΠI , see matrix, symplectic swap

pairwise deletion method, 15, 17

pencil without a common left kernel,

see matrix, pencil, without a

common left kernel

permuted Lagrangian graph

representation, see Lagrangian

subspace, Riccati

representation, permuted

permuted Riccati matrix, see matrix,

Riccati, permuted

permuted Riccati representation

(basis), see Lagrangian

subspace, Riccati

representation, permuted

principal pivot transform (PPT), see

symmetric principal pivot

transform (symmetric PPT),

definition

projection

fixed elements, 91

on positive semidefinite cone, see

matrix, positive semidefinite,

nearest in Frobenius norm

on set of matrices with smallest

eigenvalue δ > 0, 92

on set of matrices with unit
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diagonal, 88

QR factorization

definition, 38

reduced, 39

updating, 87

quasidefinite matrix, see matrix,

quasidefinite

Riccati matrix, see matrix, Riccati

Riccati representation, see Lagrangian

subspace, Riccati

representation

Schur

decomposition

complex, 33

real, 33

uniqueness, 33

generalized decomposition

complex, 34

real, 35

uniqueness, 35

Schur complement, 25, 37, 54, 105,

114, 115

semidefinite Lagrangian subspace, see

Lagrangian subspace,

semidefinite

shrinking

bisection method

fixed block, 54–55

general, 45

comparison of methods, 51

fixed block formulation, 52

deflation for singular case, 58–59

positive definite solution, 57

formulation, 43

generalized eigenvalue method

fixed block, 55–56

general, 49

Newton method, 47–48

optimal parameter, 43

weights in the target matrix, 51

similarity of matrices, 32

singular pencil, see matrix, pencil,

singular

singular value decomposition (SVD),

39

singular values, 39

singular vectors, 39

stress testing, 15, 17–18

symmetric principal pivot transform

(symmetric PPT)

definition, 24

to convert between permuted

Riccati representations, 25–26

symplectic matrix, see matrix,

symplectic

symplectic pencil, see matrix, pencil,

symplectic

symplectic swap, see matrix,

symplectic swap


