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1. Introduction

This course is about piecewise smooth (PWS) maps. If the phase space
(typically Rn) is partitioned into N disjoint open regions such that the union
of the closures of these regions is the whole space, then a PWS map is a map
on this partition which is defined by a different smooth function on each region.
Note that a PWS map may be discontinuous across boundaries, or it may be
continuous but the Jacobian matrix is discontinuous. Other classes exist, but
these two form the basis for most studies. The decision about how to define
dynamics on the boundaries of the regions can be a bit awkward and will involve
us in some little technical issues later.

Given this description you may think that these maps are really rather spe-
cial and uninteresting, so the first question you should ask about the study of
piecewise smooth maps is: why bother?

1.1. PWS maps are interesting. PWS maps are interesting. So interesting
that the ideas, examples and techniques involved in their study have been redis-
covered by different groups at different times. This is in some sense irritating
(it is hard to know what has been done, and the same phenomenon is called
by a different name in different groups making comparisons hard), but it also
emphasises how central PWS systems are in the study of dynamics. Despite the
range of modern applications the area is still seen from the outside as quite a
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narrow interest group. On the other hand, as Mike Field says, engineers (both
mechanical and electronic) have spent the last 50 years working with systems
containing jumps, whilst the dynamical systems community has spent the last
50 years perfecting the theory of smooth dynamical systems. It is time for a
change!

The list below gives an idea of the groups that have been interested in PWS
systems. It is neither complete, nor accurate (and I apologise in advance to
those who think I have put them in the wrong group), but it gives an impression
of the diversity of approaches and interests in the area.

• (Mechanics, 1990s) Budd, di Bernardo, Champneys, Dankowitz, Nord-
mark, Hogan (from 1980s!).

• (Electronics, applied dynamical systems, 1990s) Banerjee, Grebogi, Nusse,
Ott, Yorke.

• (Ergodic Theory, 1980s and 2000s) Young, Misieurewicz; Buzzi, Keller,
Saussol, Tsujii.

• (Classification of flows on manifolds and rational billiards, 1960s) Viana
• (Non-invertible maps, 1980s) Avrutin, Gardini, Lozi, Mira, Schanz,
Shushko.

• (Homoclinic bifurcations, 1970s) Gambaudo, Glendinning, Holmes, Lorenz,
Procaccia, Tresser.

• (Structure Theorems, 1970s) Alseda, Guckenheimer, Llibre, Milnor, Mi-
siurewicz, Rand, Thurston, Williams.

• (Rotations, 1980s) Herman, Kadanoff, Keener, Lanford, Rhodes, Thomp-
son.

• (Modern Nonsmooth, 2000s) Colombo, Granados, Jeffrey, Simpson.

I could go on, but you get the point.

1.2. Motivating examples. There are a number of standard examples that
give a sense of the many models that can be described via PWS systems. Here
are a few.

A bouncing ball
Suppose a ball is dropped and starts bouncing. Let vn be the speed (upwards)

immediately after the nth bounce at time tn. It will rise to height hn with
2ghn = v2n after time vn/g and then return to the ground at time tn+1 = tn +
2vn/g with the same speed vn. The collision with the ground instantaneously
reverses the direction of the the velocity and reduces its magnitude by a factor
r ∈ (0, 1), so vn+1 = rvn.

This impacting system therefore has a jump in the velocity at each collision
but the equations describing the change over each bounce are

vn+1 = rvn, tn+1 = tn + 2vn/g, 0 < r < 1.

Thus although the dynamics is piecewise smooth with jumps in phase space,
the modelling map is smooth and is not of the sort that will concern us here.
Indeed, they can be solved:

(1)
vn = rnv0,

tn = t0 +
2v0
g (1 + r + r2 + · · ·+ rn−1) = t0 +

2v0(1−rn

g(1−r) .
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As n → ∞, tn − t0 → 2v0
g(1−r) , i.e. there are an infinite number of bounces in

finite time for this model system.

A grazing bifurcation
Consider a differential equation in the plane defined so that in x < 0 the

system (extended into x > 0) has a circular stable periodic orbit of radius a
bit larger than 1 enclosing an unstable focus at (−1, 0), whilst in x > 0 the
system is defined by a differential equation having trajectories that are locally
parabolic about of the form x = c − (y − ϵ)2 for some small ϵ > 0 and with
the direction of time chosen so that ẏ > 0. These systems are ‘glued’ together
across the discontinuity (switching) line x = 0. For example, this is the case
for the differential equations

(2)
ẋ = (1 + a)(x+ 1)− y − (x+ 1)((x+ 1)2 + y2)
ẏ = x+ 1 + (1 + a)y − y((x+ 1)2 + y2) if x < 0

and

(3)
ẋ = 2(y − ϵ)
ẏ = 1 if x > 0.

Geometrically, an important point on the switching line is the grazing point
at which ẋ = 0. An elementary calculation shows that this is y∗ ≈ a when a
is small. Choose a return section y = y∗ near the origin. Solutions in x < 0
simply move up (increasing x) until they strike the y-axis with y ≤ y∗ at which
time they switch to the parabolic flow, striking y = y∗ at some point in x > 0
and then pass back into x < 0 with y > y∗ and then travel again round a loop
in x < 0. This generates a return map on x = 0 but with an interesting feature.

Let (x0, y∗), x0 < 0, denote the initial condition such that the next intersec-
tion of the trajectory through (x0, y∗) with y = y∗ is at the grazing point (0, y∗).
A solution with an initial condition a little to the left of (x0, y∗) on y = y∗ will
next intersect the return line just to the left of x = 0 without entering x > 0
and do a further loop close to the grazing orbit in x < 0 before striking x = 0
an using the parabolic flow to intersect the y = y∗ at some point x1.

However, a solution with an initial condition a little to the right of (x0, y∗)
on y = y∗ will strike x = 0 just below (0, y∗) and then the parabolic flow will
lead to an intersection with y = y∗ at some point x2. For appropriate choices of
parameter x2 < x1 and, assuming sufficient contraction near the periodic orbit
of the x < 0 system, the return map will have slope less than on (attraction)
and a jump at x = 0 reflecting the two possible images of the grazing point.

In this case the return map derived on y = y∗ has a discontinuity at the due
to the geometry of the two flows that make up the nonsmooth flow defined in
(2,3).

The Lorenz semiflow
The Lorenz equations provide one of the early examples of differential equa-

tions with chaotic attractors (although the proof that the attractor really is
chaotic is relatively recent). Guckenheimer and Williams [32, 51] developed
mathematical abstractions of the equations, assuming that the flow lies on the
branched manifold of Figure 1a. In this case the chaos is due to solutions falling
one one or other side of the stable manifold of a saddle and being swept round a
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(a) (b)

Figure 1. Lorenz semiflow and the associated one-dimensional
map, from [51].

loop to the left or to the right. The return map of the model flow takes the form
shown in Figure 1b. It has a discontinuity at the origin (the stable manifold of
the saddle) and the slope goes to infinity like |x|α, 0 < α < 1 at the point of
discontinuity. We will return to maps like these in later sections.

1.3. Phenomenology. In many cases the interest is not in a particular map,
but in a family of maps. Thus many results aim to describe the structure of
dynamics as a function of parameter, i.e. the bifurcation theory of these maps.
One feature that stands out in PWS systems because it is not present in smooth
systems is period-adding. In period-adding bifurcations there is usually a se-
quence of bifurcations in which a constant is added to the period of the orbit at
each bifurcation. An example is shown in Figure 2. Sometimes the bifurcations
are clean, in the sense that there are no intermediary bifurcations, and some-
times more complicated, with bands of chaos separating the added orbits. This
diagram shows solutions of Nordmark’s square root map asa function of the
parameter µ. The map is continuous but non-differentiable at a single point:

(4) xn+1 =

{
µ+ axn if x < 0

µ− b
√
xn if x ≥ 0

with a = 0.5 and b = 2 We will look at another way such sequences can be
generated in section 4b.

In many circumstances more than one parameter is present, and the sensi-
tivity to changes in the parameter can be mind-boggling. Figure 3 shows the
result of a numerical simulation by Avrutin et al [3] showing very complicated
regions of dynamics in a two parameter example. This level of complexity make
it hard to decide what feature is worth concentrating upon in any analysis.

These two examples bring out an important feature of the non-smooth world.
The number of possible behaviours seems to be huge, and the complexity of the
bifurcation diagrams and their sensitivity to changes in other parameters ca be
quite bewildering. For the mathematician used to tidy classifications this can
be a problem. One of the recurring themes of this lecture series is that ‘less
is more’. In a world of extraordinary complexity it may not be either useful
or possible to obtain a complete list of theoretical possibilities, and that a less
complete description may be more useful.
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Figure 2. Period adding cascade with chaotic bands, from [40].

Figure 3. Bifurcation curves in a two parameter piecewise
smooth map of the interval, from [3].
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1.4. Less is more. Figure 3 and the results of e.g. [29] suggest that the level
of complexity of bifurcations in even quite simple PWS systems is much greater
than that for smooth flows. In the theory of smooth systems it is standard
to give quite general bifurcation theorems which reflect the important local
features of the dynamics. It seems likely that there is a proliferation of cases
for PWS systems which means that detailed bifurcation theorems are much less
useful, and it is then a matter of judgement about how much detail should be
given.

These lectures reflect this attitude. I will use some standard examples to
illustrate techniques rather than attempt to provide a detailed description of
every bifurcation in the literature. This might make the use of a small number
of examples appear unbalanced, but (I hope) that the techniques described here
can be applied to many of the examples that might be met in applications. For
more detail of ‘less is more’ see [27, 28].

1.5. Smooth Theory. By definition a PWS system is smooth in regions, so
any dynamics that does not interact with a boundary can be described using
smooth theory. This includes the existence and stability of fixed points and
periodic orbits in smooth regions and their bifurcations (in section 2.4 we will
look at some elementary new bifurcations involving the boundary).

A fixed point of a smooth map f : Rn → Rn is a solution of

(5) x = f(x)

and it is stable (or more accurately, linearly stable) if all the eigenvalues of the
Jacobian matrix

(6) Df(x) =


∂f1
∂x1

∂f1
∂x2

. . . . . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . . . . ∂f2
∂xn

...
...

...
...

...
∂fn
∂x1

∂fn
∂x2

. . . . . . ∂fn
∂xn


evaluated at the fixed point lie inside the unit circle (i.e. have modulus less
than one).

A point is periodic of period p if

(7) x = fp(x)

where fp(x) = f(fp−1(x)), i.e. it denotes the pth iterate of f ,

fp = f ◦ f ◦ · · · ◦ f (p times),

and not the pth power of f(x) which we will denote by [f(x)]p or similar. If x
is a point of period p then the periodic orbit containing x is

{x, f(x), . . . , fp−1(x)}

and if all the points are distinct then it is sometimes worth emphasising that p
is the minimal possible period of the orbit (though usually this is left unstated).
Note that if x has period p then it also has period mp for all m > 1.
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Since a periodic point can be viewed as a fixed point of fp, the linear stability
of a periodic orbit is determined by the eigenvalues of the Jacobian matrix

Dfp(x) = Df(fp−1(x))Df(fp−2(x)) . . . Df(x).

Bifurcations occur is an eigenvalue passes through the unit circle, so there
are three generic cases: a simple eigenvalue of +1, a simple eigenvalue of +1,
or a pair of simple eigenvalues e±iθ, θ ̸= mπ, m ∈ Z.

The Centre Manifold Theorem implies that these cases can be classified in
the same way regardless of the dimension of the phase space, a feature that
is not true of PWS bifurcations). An eigenvalue of +1 implies that for small
changes of parameter there is typically a saddle-node bifurcation in which as a
parameter is varied a pair of fixed points come together at the bifurcation pa-
rameter and do not exist thereafter. Symmetries or the non-generic vanishing of
some derivatives of the Taylor expansion of the map can imply that a saddlen-
ode bifurcation does not happen and there may be a transcritical bifurcation
(exchange of stability) or a pitchfork bifurcation.

An eigenvalue of −1 leads to a period-doubling bifurcation: as parameters
vary a fixed point changes stability at the bifurcation value and an orbit of
period two is created. If this period two orbit is stable it is called a supercritical
period-doubling bifurcation.

A pair of eigenvalues e±iθ, θ ̸= mπ, m ∈ Z leads to a Hopf, or Niemark-Sacker
bifurcation. The fixed point changes stability and an invariant curve bifurcates
on which there can be other attractors (e.g. periodic orbits) near resonances
when θ is a rational multiple of 2π.

1.6. Markov partitions and chaos. There are a number of results which
make the analysis of one-dimensional systems significantly easier than higher
dimensional dynamics. The first result describes the dynamics of monotonic
maps.

Lemma 1. Suppose f : R → R is a continuous map. If f is increasing then
every bounded orbit is either a fixed point or tends to a fixed point. If f is
decreasing then every bounded orbit is either a fixed point or a point of period
two or tends to a fixed point or a point of period two.

Proof: Suppose that f is increasing, i.e. x < y implies that f(x) ≤ f(y).
Take x ∈ R. Then either

f(x) = x, or f(x) > x, or f(x) < x.

In the first case x is a fixed point. In the second case x < f(x) implies that
f(x) ≤ f2(x) using the increasing property, and hence by induction (fk(x)) is
an increasing sequence. It is therefore either unbounded or bounded above. If
it is bounded above then the sequence tends to a limit, ℓ, and hence (fk+1(x))
tends to f(ℓ). But the two sequences are the same (by continuity of f) and
hence ℓ = f(ℓ), i.e. ℓ is a fixed point. In the third case f(x) < x implies that
f2(x) ≤ f(x) and so (fk(x)) is a decreasing sequence. It is therefore unbounded
or bounded below, in which case by the same argument as in the second case
the limit is a fixed point.
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If f is decreasing then x < y implies that f(x) ≥ f(y) and hence f2(x) ≤
f2(y). Hence f2 is increasing and since fixed points of f2 are either fixed points
or points of period two for f the second part of the lemma holds.

�
Lemma 1 describes simple behaviour – we now describe how to treat some

chaotic dynamics. The first idea is the transition matrix. Throughout this
section f will be a continuous map f : R → R.

Definition 2. If J and K are is a closed intervals then J f -covers K if K ⊆
f(J).

Lemma 3. If J f -covers itself then J contains a fixed point of f .

Proof: Let J = [a, b]. Since J f -covers itself there exist y and z in [a, b] such
that f(y) ≤ a and f(z) ≥ b. Let g(x) = f(x)− x which is also continuous and
g(y) ≤ 0 and g(z) ≥ 0. Applying the Intermediate Value Theorem to g on the
interval between x and y there exists u such that g(u) = 0, i.e. u is a fixed
point of f .

�
Definition 4. Let J1, . . . , Jm be closed intervals with disjoint interiors. A
Markov graph of f is a directed graph with vertices 1, . . . ,m and a directed
edge from i to j iff Ji f -covers Jj . The transition matrix associated with this
graph is the m×m matrix T with

Tij =

{
1 if Ji f−covers Jj

0 otherwise.

A path in a directed graph is an ordered sequence of vertices a0a1 . . . ak such
that there is a directed edge from ai to ai+1 for each i = 0, . . . , k−1. The length
of the path is the number of edges traversed (i.e. k in the example). Note that
if there is a path from a0 to ak of length k if and only if T k

a0ak
̸= 0.

Lemma 5. If there is a path of length k from a0 . . . ak in the Markov graph then
there exists a closed interval L ⊂ Ja0 such that fk(L) = Jak and f r(L) ⊆ Jar .

Proof: The proof is by induction on k.
If f(Ja0) ⊆ Ja1 then since f is continuous there exists L ⊆ Ja0 such that

f(L) = Ja1 . (If this is not obvious, look at the interior of Ja1 and note f−1 of
an open interval is a union of open intervals.)

Now suppose that the lemma is true for k = m and consider a path of length
m + 1, a0 . . . am+1. By the induction hypothesis, since a1 . . . am+1 is a path of
length m there exists L′ ⊆ Ja1 such that fm(L′) ⊆ Jam+1 and f r(L′) ⊆ Jar+1 ,
r = 1, . . . ,m.

Since Ja0 f -covers Ja1 , Ja0 f -covers L′ and hence there exists L ⊆ Ja0 such
that f(L) = L′. A quick check confirms that fk+1(L) = fk(L′) and so L has
the desired property.

�
Corollary 6. If a0a1 . . . ap is a path of length p with a0 = ap then f has a
periodic orbit of period p.
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Corollary 7. If a0a1 . . . is an infinite path in the Markov graph then there
exists x ∈ Ja0 such that f r(x) ∈ Jar for all r ≥ 0.

Proof: Take an infinite intersection of nested closed intervals L of Lemma 5
for each finite path a0 . . . ar.

�
This is the basic tool for proving classic theorems such as Sharkovskii’s The-

orem. It also provides a motivation for the definition of a one-dimensional
horseshoe.

Definition 8. f has a horseshoe if there exist closed intervals J0 and J1 with
disjoint interiors such that J0 f -covers both J0 and J1 and J1 f -covers both J0
and J1.

Theorem 9. If f has a horseshoe then for any sequence of 0s and 1s a0a1 . . .
there exists x ∈ Ja0 such that f r(x) ∈ Jar for all r > 0.

This is sometimes described as f having dynamics equivalent to a full shift
on two symbols.

Note that these results only need f to be continuous on the intervals Jk; what
happens between these intervals is immaterial. This means that the methods
are often applicable in PWS systems.

2. PWS maps of the interval

The next four sections describe properties of one-dimensional PWS maps.
In this section we describe some properties and analyse some simple examples.
We need a technical convention about how to work with closed intervals if a
map has a discontinuity.

Let J = [a, b] be a closed interval and suppose that f is continuous on the
interior of J . Then define

f(a) = lim
x↓a

f(x) and f(b) = lim
x↑a

f(x).

Note that when applying this to an iterate of J we may effectively be using two
values of the map at the discontinuity.

2.1. Transitivity and chaos. We start with a generalization of a horseshoe
for PWS maps which we will use as our definition of chaos.

Definition 10. Suppose f : I → I is a PWS map of the interval I. f is chaotic
if there exist closed intervals J0 and J1 with disjoint interiors and n0, n1 > 0
such that fnk |Jk is continuous and Jk fnk -covers J0 and J1.

Two further definitions will be useful.

Definition 11. Suppose f : I → I is a PWS map of the interval I. f is
transitive if for every open interval J ⊆ I there exists N < ∞ such that

I = cℓ ∪N
k=0 f

k(U).
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Note that this implies another definition of transitivity, that for all open
intervals U and V in I there exists k ≥ 0 such that fk(U) ∩ V ̸= ∅. Moreover
it can be used to prove that the non-wandering set of a map is the interval I
itself.

Definition 12. Suppose f : I → I is a PWS map of the interval I. A point is
wandering if there exists an open set u with x ∈ U such that fn(U)∩U = ∅ for
all n ≥ 1. If x is not a wandering point then x is a non-wandering point. The
non-wandering set of f , Ω(f), is the set of all non-wandering points of f .

Lemma 13. Suppose f : I → I is a PWS map of the interval I. If f is
transitive on I then Ω(f) = I.

Proof: If f is transitive then for any interval U there exists N < ∞ such that
I = ∪N

0 f r(U) and hence m ≤ N such that fm(U) ∩ U ̸= ∅; in other words no
point can be wandering.

�
A stronger definition of the expansion of intervals makes all the consequences

easy to establish.

Definition 14. Suppose f : I → I is a PWS map of the interval I with M
continuous, monotonic branches on the open intervals J1, . . . JM .. Then f is
locally eventually onto (LEO) if for every open interval U ⊆ I there exist open
intervals Lk ⊆ U and nk ≥ 0 such that fnk |Lk is monotonic and continuous
and fnk(Lk) = Jk, k = 1, . . . ,M .

Note that the conditions that fnk |Lk are continuous imply that all the stan-
dard smooth dynamical results can be imported to the PWS case.

Lemma 15. Suppose f : I → I is a PWS map of the interval I. If f is LEO
then it is transitive and chaotic.

Proof: Transitivity is obvious as for any open U there exist Lk ⊆ U , k =
1, . . . ,M as in the definition such that ∪M

1 fnk(Lk) = ∪M
1 Jk and by definition

the closure of the union of the monotonic branches is the whole interval.
For chaos (definition 10), take two disjoint open intervals U and V in the

same monotonic branch interval Jc. Then there exis L0 ⊆ U and L1 ⊆ V and
n0, n1 ≥ 1 such that fnk |Lk, k = 0, 1, is continuous and fnk(Lk) = Jc. Since
Lk ⊂ Jc, f is chaotic by using the closed set convention to extend to the closures
of Lk.

�

2.2. Tent maps. An interesting example is provided by the (symmetric) tent
maps. This is a family of continuous PWS maps of the interval Ts : [0, 1] → [0, 1]
defined for s ∈ (1, 2] by

(8) Ts(x) =

{
sx if 0 ≤ x ≤ 1

2

s(1− x) if 1
2 ≤ x ≤ 1.

Let the length of an interval U be denoted by |U |. There are three immediate
remarks worth making to start with:
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(a) There are no stable periodic orbits (the slope of the map has modulus
s > 1).

(b) For every open interval U ⊂ (0, 1) there exists n > 0 such that 1
2 ∈

Tn
s (U) (if not then T s is linear so |Ts(U)| = s|U | and by induction

|Tn
s (U)| = sn|U |; but since the interval must have length less than 1

this is a contradiction).
(c) Let I0 = [T 2

s (
1
2), Ts(

1
2 ], then Ω(f) = {0} ∪ Ω(Ts|I0) (0 is a fixed point

so in Ω(Ts); the interval I0 is invariant and any opn interval outside I0
must map into I0 eventually by (b)).

Lemma 16. If
√
2 < s ≤ 2 and I0 as in (c) above then

Ω(Ts) = {0} ∪ I0.

These sets are disjoint unless s = 2, when 0 is the left end-point of I0.

Proof: We will show that Ts|I0 is LEO and hence that Ω(T |I0) = I0. By
direct calculation I0 = [x1, x2] where

(9) x1 =
s

2
(2− s), x1 =

s

2
.

Note that if s = 2 then I0 = [0, 1] and the last statement of Lemma 16 is shown.
Consider any open interval U ⊂ I0. If 1

2 /∈ U then |Ts(U)| = s|U | and so

(cf. remark (b) above) there exists n0 such that 1
2 ∈ Tn0

s (U). Let Tn0
s (U) =

V0 ∪ {1
2} ∪ V1 with V0 in x < 1

2 and V1 is in x > 1
2 . Then there exists α ∈ (0, 1)

such that
|V0| = α|Tn0

s (U)|, |V1| = (1− α)|Tn0
s (U)|.

Both intervals Ts(Vk) have Ts(
1
2) = x2 as their right end-point and so one

contains the other (or both are equal). Thus

|Tn0+1
s (U)| = max

k
{|Ts(Vk)|} = (max{αs, (1− α)s}) |Tn0

s (U)|.

The maximum of αs and (1− α)s is greater than or equal to 1
2s since if α ̸= 1

2

then one of the two terms α or 1− α is greater than 1
2 . Hence

(10) |Tn0+1
s (U)| ≥ s

2
|Tn0

s (U)|.

Choose U0 ⊆ U such that Vk where Tn0
s (U0) = Vk is the interval with larger

image, so Tn0+1
s |U0 is monotonic and Tn0+1

s (U0) = Tn0+1
s (U). If 1

2 /∈ Tn0+1
s (U0)

then

(11) |Tn0+2
s (U0)| ≥

s2

2
|Tn0

s (U0)| > |Tn0
s (U)|

and so the length continues to expand. This cannot continue indefinitely so
after a finite number of further passages including 1

2 (at which we define smaller

intervals U1, U2, . . . Um in U such that |Tnr+1
s (Ur)| = |Tnr+1

s (U)| and Tnr+1
s |Ur

is monotonic) we arrive at an interval Um such that

1

2
∈ Tnm+1

s (Um) and
1

2
∈ Tnm+2

s (Um).

But the first of these implies that Ts(
1
2) ⊆ Tnm+2

s (Um), so Um contains an open

interval Ũ such that Tnm+2
s |Ũ is monotonic and Tnm+2

s (Ũ) = (12 ,
s
2). Thus



12 PAUL GLENDINNING

10 11

T(½)

T T

Figure 4. s <
√
2: the tent map and its second iterate.

Tnm+3
s |Ũ is monotonic and Tnm+3

s (Ũ) = ( s2(2− s), s2) and so Ts is LEO on I0.
�

The next step is probably the most important in this course: it involves
looking at a higher iterate of Ts on a subinterval of [0, 1]. This is the idea
behind renormalization and induced maps. We will make this explicit in the
next subsection, but for the moment we will see it in action as we extend
Lemma 16 to 1 < s ≤

√
2.

Theorem 17. If
√
2 < s2

n ≤ 2, n ≥ 0, then

Ω(Ts) = {0} ∪ In ∪

(
n∪

k=1

Pk

)
where the right union is empty if n = 0. The set Pk is an unstable periodic
orbit of period 2k, k = 1, 2, . . . n and In is a union of 2n closed intervals. These
intervals are disjoint unless s2

n
= 2 in which case they intersect pairwise on

the periodic orbit Pn.

Proof: If n = 0 the theorem is proved by Lemma 16. If s ≤
√
2 consider the

second iterate of the map, T 2
s which has the form shown in Figure 4. It has

turning points at 1
2 and the two preimages of 1

2 , i.e. c± where sc− = 1
2 and

s(1− c+) =
1
2 , solving gives

c− =
1

2s
, c+ =

2s− 1

2s
.

There is a non-trivial fixed point of Ts in x > 1
2 with at x∗ = s

s+1 and this has

a preimage in x < 1
2 , y−, where sy− = x∗, and this in turn has a preimage in

x > 1
2 , y+, with s(1− y+) = y−. Direct calculation yields

(12) y− =
1

s+ 1
= 1− s

s+ 1
, y+ =

s2 + s− 1

s(s+ 1)
.

Consider T 2
s |[y−, x∗]. This is symmetric about 1

2 and the modulus of the slope

is s2. T 2
s maps the interval [y−, x+] into itself provided T 2

s (
1
2) ≥ y− which is

equivalent to s2 ≤ 2 after some algebra. Thus if s2 ≤ 2 the map T 2
s |[y−, x∗] is

equivalent by an affine change of variable to Ts2 |[0, 1].
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Thus if
√
2 < s2 ≤ 2, Ω(T 2

s |[y−, x∗]) = {x∗} ∪ J0 where J0 is an interval
disjoint from x∗ except in the case s2 = 2 when x∗ is an endpoint of J0. Let
I1 = J0 ∪ Ts(J0) and P1 = {x∗}. Then this establishes

Ω(Ts) = {0} ∪ I1 ∪ P1,
√
2 < s2 ≤ 2,

where I1 is a union of two intervals joined pairwise on P1 if s2 = 2.
To complete the proof use induction on n. If s2 ≤

√
2 then consider the

second iterate of T 2
s on [y−, x∗], which has slopes of modulus s4 = s2

2
and the

same structure provided
√
2 < s4 ≤ 2, and so on. We leave the details to the

reader.
�

2.3. Renormalization and Induced maps. The previous example is our
first sight of a really important idea: renormalization, i.e. the consideration of
induced maps. This will be central to much of the theoretical analysis we do
here.

Definition 18. Suppose f : [0, 1] → [0, 1] is a PWS map and there exists
c ∈ (0, 1) such that f is monotonic and continuous on (0, c) and on (c, 1). f is
renormalizable if there exist positive integers n0 and n1 with n0 + n1 > 2 and
non-trivial intervals J0 = (x1, c) and J1 = (c, x2) such that fnk |Jk is continuous
and monotonic, k = 0, 1 and

(13) fnk(Jk) ⊆ J0 ∪ {c} ∪ J1, k = 0, 1.

In some sense, apart from stable periodic orbits, renormalization is the only
obstruction to transitivity in PWS maps with two monotonic branches.

Theorem 19. Suppose f : [0, 1] → [0, 1] is a PWS map with two monotonic
branches separated by c ∈ (0, 1). If there exists s > 1 such that |f ′(x)| ≥ a
for all x ∈ (0, 1)\{c} then either f is transitive or f is renormalizable. If f is
renormalizable on an interval J containing c then Ω(f) = T ∪ R where T is
described by a Markov graph and R is the nonwandering set of the induced map
on J and its iterates under f .

Proof: Without loss of generality assume that [0, 1] is the smallest interval
mapped into itself by f . Note that f has no stable periodic orbits.

Take any open interval U . By the expansion argument of (b) above Lemma 16
there exists n0 ≥ 0 such that c ∈ fn0(U) = U0 and follow both branches to
their next intersection with c, i.e. let U0 = V0 ∪ {c} ∪ V1 in the standard way
and choose the smallest mk, k = 0, 1 such that c ∈ fmk(Vk), k = 0, 1 (these
exist by the expansion argument). If fmk(Vk) ⊆ U0 then f is renormalizable.
Otherwise set U1 = fm0(V0) ∪ fm1(V1) ∪ U0 and note U0 ⊂ U1.

Now repeat the argument using U1 and note that the equivalent of the return
times for U1 are less than or equal to the return times mk for U0. Either f is
renormalizable or there exists U2 with U1 ⊆ U2 which is a union of iterates of
subsets of U .

Either there exists m < ∞ such that Um = (0, 1) and so U satisfies the
transitivity condition (but not necessarily all U satisfy the condition) or Un →
U∞ as n → ∞ and by continuity appropriate iterates of f map U∞ into itself.
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Hence once again either f is renormalizable or U∞ = (0, 1). But since the
return times are decreasing, they also tend to a limit, m∞

k , k = 0, 1, and these
are reached in finite steps. Thus if Un ̸= (0, 1) for all n > N0 (transitivity
again) the minimality of (0, 1) implies that Un∪f(Un) = (0, 1) for large enough
n; the transitivity condition again.

Thus for each U either U satisfies the transitivity condition or f is renormal-
izable. Hence either f is renormalizable or f is not renormalizable and every
open U satisfies the transitivity condition and hence f is transitive.

If f is renormalizable let Jk be the intervals as in the definition and choose
the maximal intervals satisfying (13). Let

K = J0 ∪ (∪n0
1 f r(J0)) ∪ {c} ∪ J1 ∪ (∪n1

1 f r(J1))

and let L = I\K. Then L is a (possibly empty) finite union of closed intervals
and since the setsK are mapped to themselves if f(Li)∩Lj ̸= ∅ then Lj ⊆ f(Li),
i.e. Li f -covers Lj and so the dynamics in L can be described by a Markov
graph. Setting T = Ω(f) ∩ L and R = Ω(f) ∩ cℓ(K) produces the stated
descomposition of the non-wandering set.

�

2.4. Boundary Bifurcations. In the previous sections we have been con-
cerned with chaos and expansion. Now we consider how periodic orbits can
be created or destroyed by non-smooth effects. To do bifurcation theory we
need to consider families of maps, and this leads to problems about how to talk
about ‘continuous’ families of discontinuous mappings! In the next section we
will look at some more sophisticated approaches, but for now we are concerned
only with local phenomena and so we will work with locally fixed families.

Definition 20. A family of PWS mappings f(x, µ), f : [0, 1] × R → [0, 1] is
locally fixed if there exists ϵ > 0 such that the set of discontinuities, dk, and
the set of critical points, ck are fixed for all µ ∈ (−ϵ, ϵ) and f is C2 functions
of both variables on the intervals Jk.

Thus for a locally fixed family, there exist fixed intervals bounded by the
discontinuities and critical points on which f is smooth. For most families this
can be achieved locally by a change of coordinates.

Theorem 21. If f : I × (−ϵ, ϵ) → I be a locally fixed family of PWS maps
and suppose that d is a point of discontinuity. If there is a neighbourhood
J = (d, d+ δ), δ > 0, such that f is smooth (C2)

(14) lim
x↓d

f(x, 0) = d, lim
x↓d

|f ′(x, 0)| = a ̸= 1

then there exists δ, η > 0 such and b ∈ {+1,−1} such that if µ is between 0 and
bη then f has a fixed point in (b, b+ δ) and no other locally recurrent dynamics,
whilst if µ is between 0 and −bη then f has no locally recurrent dynamics. The
fixed point is stable if a < 1 and unstable if a > 1.

Thus the effect of a boundary bifurcation is to create or destroy a fixed point.
Of course the same result holds for periodic orbits by replacing f by fp. Global
features of the maps can create more dynamics in the intervals – the theorem
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(a) (b) (c) (d)

Figure 5. The four cases for elementary border bifurcations:
(a) a < −1; (b) −1 < a < 0; (c) 0 < a < 1; (d) a > 1.

only refers to dynamics locally, i.e. that remain in the interval J for all time.
The proof is elementary and is left as an exercise. The four cases are illustrated
in Figure 5.

3. Lorenz maps and rotations

This section is devoted to PWS maps of the interval with a single disconti-
nuity such that both continuous branches are increasing. These include Lorenz
maps and rotations. If f : [0, 1] → [0, 1] is a PWS map with increasing branches
and a single discontinuity at c ∈ (0, 1) with f(c−) = 1 and f(c+) = 0 there are
three separate cases:

• Rotations: f(0) = f(1).
• Gap maps: f(0) > f(1).
• Overlap maps: f(0) < f(1).

Rotations have a distinguished history going back to the classic results of
Julia and Denjoy in the early twentieth century. Gap maps have many similar-
ities and some beautiful general results are due to Keener [34] and Rhodes and
Thompson [43, 44]. Overlap maps allow the possibility of chaos and include the
many studies of Lorenz maps.

3.1. Rotations. A rigid rotation is a map rα : [0, 1) → [0, 1) with α ∈ [0, 1)
defined by

(15) rα(x) = x+ α (mod 1).

The function Rα : R → R defined by Rα(x) = x + α is an example of a lift of
rα, and Rα(x+ 1) = Rα(x) + 1. The dynamics of the map rα can be recovered
from Rα by projecting modulo 1, hence rα has a periodic point of period q iff
there exists x ∈ R such that Rq

α(x) = x+p for some p ∈ Z (so x+p = x mod 1).
But

(16) Rq
α(x) = x+ qα

so x is periodic if and only if qα = p, or α = p
q ∈ Q, and in this case all points

are periodic. If α /∈ Q then the orbit is dense on the circle (see e.g. Devaney).
Thus for rigid rotations there is a simple dichotomy

• α ∈ Q and all points are periodic; or
• α /∈ Q and orbits are dense on the circle.
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Note also that (15) can be seen as a map of the interval with a discontinuity:
given α ∈ (0, 1) define fα : [0, 1] → [0, 1] by

(17) fα(x) =

{
x+ α if 0 ≤ x < 1− α

x+ α− 1 if 1− α < x < 1

with our usual convention about the discontinuity. We will exploit this connec-
tion more in the next section, but first we describe some of the classic results
for homeomorphisms of the circle.

The generalization of α to homeomorphisms is the idea of a rotation number
which describes an average angular velocity around the circle. If fα is a circle
map then Fα

Definition 22. If f is a circle map with lift F then provided the limit exists

(18) ρ(F, x) = lim
n→∞

1
n(F

n(x)− x)

is called the rotation number of x under F .

The following sequence of theorems are the classic results of Julia and Denjoy.
Proofs use simple real analysis and can be found in Devaney.

Theorem 23. If F is the lift of a homeomorphism of the circle f then ρ(F, x)
exists and is independent of x.

It is usual to talk about the rotation number of f in this case, denoted ρ(f)
as ρ(F, x) modulo 1.

Theorem 24. Suppose f is a homeomorphism of the circle.

(a) If ρ(f) ∈ Q then f has at least one periodic orbit.
(b) If ρ(f) /∈ Q then f has no periodic orbits and if f is C2 then every orbit

is dense in the circle.

If f is not C2 then it is possible to create attracting Cantor sets with irrational
rotation numbers, these are the Denjoy counter-examples.

Families of circle maps can be defined via their lifts: a continuous family of
smooth circle maps is a family with lifts Fµ which can be chosen such that such
that

lim
µ→µ0

|Fµ(x)− Fµ0(x)| = 0

for all x ∈ R.

Theorem 25. If (fµ) is a continuous family of continuous circle homeomor-
phisms then ρ(fµ) = ρ(µ) varies continuously. If there exist µ1 < µ2 such that
ρ(µ1) <

p
q < ρ(µ2) then typically ρ(µ) = p

q on an interval of parameter values.

Again, we will not give proofs for the circle maps case – see [12]. The contin-
uous variation of ρ(µ) implies that the irrational rotation numbers do appear
in examples. The interval of values with rational rotation numbers is often
referred to as mode locking. It is easy to see why this occurs typically. If
ρ(µ) = p/q then (Theorem 24a) there exists a periodic point, i.e a solution to
F q(x) = x+ p. If ρ(µ) < p

q then F q(x) < x+ p for all x ∈ R whilst if ρ(µ) > p
q

then F q(x) > x + p for all x ∈ R. Thus (see Figure 6) either there is a range
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(a) (b)

increasingm

Figure 6. Part of the graph of f as µ increases illustrating why
there is (a) persistency of intersections with the diagonal in the
general case; and (b) degeneracy in the slope one case .

of parameters such that the graph of F q(x)− x passes across p, or there is one
parameter at which F q

µ(x) − x ≡ p for all x. But this latter condition is very
unlikely (the qth iterate would be identically linear).

3.2. Rotation renormalization and codings. Suppose f : [0, 1] → [0, 1] is
a rotation-like PWS map, i.e. there exists c ∈ (0, 1) such that f is continuous
and strictly increasing on (0, c) and on (c, 1) with

lim
x↑c

f(x) = 1, lim
x↓c

f(x) = 0, f(0) = f(1).

Then we can associate f with a circle homeomorphism with lift F defined by

(19) F (x) =


f(x) if 0 ≤ x < c

1 if x = c

f(x) + 1 if c < x < 1

and F (x + 1) = F (x) + 1. Thus we can talk about the rotation number of f ,
though F is not necessarily C2 at integer values, so a little care needs to be
taken about bifurcations (this will be considered in the next subsection). The
rotation number can also be thought of as

ρ(f) = lim
n→infty

1
n#{r | f r(x) > c, r = 1, 2, . . . , n}

since the lift moves solutions into the next interval (m,m + 1) if and only if
x > c.

There is a natural renormalization for circle maps that can help describe the
dynamics of examples.

First note that there is a simple trichotomy:

• f(0) = c; or
• f(0) > c; or
• f(0) < c.

If f(0) = c then f((0, c) = (c, 1) and f(c, 1) = (0, c) so ρ(f) = 1
2 .

If f(0) > c then f((0, c)) ⊂ (c, 1) and hence f2|(0, c) is continuous and
monotonic. Either f has a fixed point (and hence rotation number zero or one)
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or consider the induced map

(20) g(x) =

{
f2(x) if 0 ≤ x < c

f(x) if c < x ≤ f(0).

This is has two monotonic continuous branches and the image of the left end
point, 0, is g(0) = f2(0) whilst the image of the left end-point, f(0), is g(f(0)) =
f2(0), so the two end-points map to the same point. Rescaling back to the
interval [0, 1] we obtain the renormalized (induced) map

(21) f1(x) =

{
1
af

2(ax) if 0 ≤ x < c
a

1
af(ax) if c

a < x ≤ 1

where a = f(0).
This new map is in the same class as f and so has a well defined rotation

number. We would now like to relate the rotation number of f1, ρ1, with the
rotation number of f , ρ0.

Consider an orbit of f1 and suppose that in length n it has mn iterations in
x > c1 = c/a (and so n−mn iterates in x < c1. Then

ρ1 = lim
n→∞

mn

n
.

Now that same orbit translates to an orbit of f for which every iterate in x < c1
for f1 is two iterates, one in x < c and one in x > c for f , whilst every iterate
in x > c1 for f1 corresponds to one iterate in x > c1 for f . Hence the first n
iterates under f1 with mn iterates in x > c1 corresponds to and orbit segment
of length 2(n−mn) +mn = 2n−mn of f with n iterates in x > c, giving

ρ0 = lim
n→∞

n

2n−mn
= lim

n→∞

1

2− mn
n

.

Thus if ρ1 is known the rotation number of f can be recovered using the trans-
formation

(22) ρ0 =
1

2− ρ1
.

If f(0) = a > c then f((c, 1)) ⊂ (0, c) and hence f2|(c, 1) is continuous and
monotonic. Either f has a fixed point (and hence rotation number zero or one)
or we define

(23) g(x) =

{
f(x) if a ≤ x < c

f2(x) if c < x ≤ 1.

By the same argument as before this is in the same class as f but on the interval
[a, 1] and so we rescale

(24) f1(x) =

{
1

1−a(f(a+ (1− a)x)− a) if 0 ≤ x < c−a
1−a

1
1−a(f

2(a+ (1− a)x)− a) if c−a
1−a < x ≤ 1

Now if ρ1 = limmn/n as before then each iteration in x > c1 = (c−a)/(1−a)
corresponds to two iterates for f and so the length of the orbit for f is (n −
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mn) + 2mn but there is no change in the number of iterates in x > c and so

ρ0 = lim
n→∞

mn

n+mn

and equating limits gives

(25) ρ0 =
ρ1

1 + ρ1
.

Renormalization has a very natural interpretation in terms of the continued
fraction expansion of the rotation numbers. Any number between 0 and 1 has
a continued fraction expansion

[a0, a1, a2 . . . ] =
1

a0 +
1

a1+
1

a2+...

with ai ∈ N. If a0 = 1 then the number is bigger than 1
2 and if a0 ≥ 2 then the

number is less than 1
2 .

Theorem 26. Suppose ρ(f) = [a0, a1, . . . ]. If a0 = 1 then ρ(f) > 1
2 and the

renormalized map f1 is as defined in (21) and

(26) ρ(f1) =

{
[1, a1 − 1, a2, . . . ] if a1 ≥ 2

[a2 + 1, a3, . . . ] if a1 = 1.

If a0 ≥ 2 then ρ(f) < 1
2 and (24) defines the renormalized map and

(27) ρ(f1) = [a0 − 1, a1, a2, . . . ].

Proof: First note that if x = [a0, a1, . . . ] then x−1 = a0 + [a1, a2, . . . ]. Define
ρ0 = ρ(f) and ρ1 = ρ(f1).

If ρ0 >
1
2 , i.e. a0 = 1 in the continued fraction expansion of ρ0 and

ρ0 = [1, n, a2, . . . ]

and (22) implies

ρ1 = 2− ρ−1
0 .

Hence using the remark about the continued fraction expansion of x−1 at the
start of this proof

(28) ρ1 = 1− [n, a2, . . . ] = 1− 1

n+ s
=

n− 1 + s

n+ s

where s = [a2, a3, . . . ]. If n = 1 then

ρ1 =
s

s+ 1
=

1

1 + s−1
=

1

1 + a2 + [a3, a4, . . . ]
= [a2 + 1, a3, a4, . . . ]

as required. If n ≥ 2 then (28) implies that the claim of the theorem is that

n− 1 + s

n+ s
= [1, n− 1, a2, a3, . . . ].

The second term is
1

1 + 1
n−1+s

=
1

n+s
n−1+s

=
n− 1 + s

n+ s

establishing the required result.
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If ρ < 1
2 , i.e. a0 = n ≥ 2 in the continued fraction expansion of ρ0 then (25)

implies that

ρ0 =
1

1 + ρ−1
1

and so if ρ1 = [b0, b1, b2, . . . ] then ρ0 = 1
1+b0+[b2,b3,... ]

and so ρ0 = [b0 +

1, b1, b2, . . . ]. Hence b0 = n − 1 and bk = ak if k ≥ 1, establishing the re-
quired relationship.

�
This connection means that knowing the rotation number the set of renor-

malizations is determined and vice versa. This can often be useful when looking
at examples.

Another way of looking at the renormalization maps is that if ρ < 1
2 the

coding of orbits for the induced or renormalized map can be used to obtain the
coding for the original map by the replacement operation

0 → 0, 1 → 10.

In other words, every symbol 1 for the map is followed by a zero. Similarly if
ρ > 1

2 then the replacement operation is

0 → 01, 1 → 1,

i.e. every 0 is followed by a 1. This process continues and the symbol sequences
obtained in this way have many beautiful properties that have been discovered
and rediscovered many times. One particularly nice property is that these
sequences are minimax. Let Σp,q with 0 < p < q denote all the infinite sequences
s of 0s and 1s with period q and which have p 1s in every q symbols, so it has
rotation number p/q. Let σ be the standard shift map. Now define

(29) sp,q = min
s∈Σp,q

(
max
1≤k<q

σks

)
.

Such a sequence is called a minimax sequence of length q.
Then every periodic point with rotation number p/q has a symbolic descrip-

tion that is a shift of the minimax sequence sp,q. These sequences are sometimes
called rotation compatible sequences, and limits as p/q → ω for irrational num-
bers ω can be taken to define rotation compatible sequences with irrational
rotation numbers.

3.3. Gap maps. Consider maps f : [0, 1] → [0, 1] such that there exists c ∈
(0, 1) such that f is continuous and strictly increasing on 90, c) and on (c, 1),
and

(30) lim
x↑c

f(x) = 1, lim
x↓c

f(x) = 1, f(0) < f(1).

The final condition of (30) explains why these maps are called gap maps: there
is an interval (f(0), f(1)) which has no preimages under f . As with circle maps
we can associate f with a lift F as in (19), but this time there is a discontinuity
at integer values of x. (Note that as a map of the interval the discontinuity
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is at x = c, but as a map of the circle it is the gap condition that creates the
discontinuity:

lim
x↑1

F (x) = 1 + f(1) < 1 + f(0) = lim
x↓1

F (x).

However, although the lift of f is discontinuous, the function F is monotonic
increasing regardless of the choice made for the value at x = p between the two
limiting choices determined by continuity. It is therefore natural to ask whether
the results for standard circle maps holds for these discontinuous lifts.

Theorem 27. If F is the lift of a gap map then ρ(F ) exists and is independent
of both x and the choice of F (1) ∈ (1 + f(0), 1 + f(1)).

Note that this result is no longer true for maps with gaps and plateaus
(intervals on which F is constant), but it remains true if F is strictly increasing
and has a countable set of discontinuities.

Definition 28. (fµ) is a continuous family of gap maps for µ ∈ (µ1, µ2) = M
if for all µ0 ∈ M and all x ∈ R

lim
µ→µ0

|Fµ(x)− Fµ0(x)| = 0.

Rhodes and Thompson prove that the bifurcation structure in terms of con-
tinuity of rotation numbers and mode-locking is also retained for continuous
families of gap maps.

Theorem 29. If (fµ) is a continuous family of gap maps then ρ(fµ) = ρ(µ)
varies continuously. If there exist µ1 < µ2 such that ρ(µ1) < p

q < ρ(µ2) then

typically ρ(µ) = p
q on an interval of parameter values.

As before, this implies that if the rotation number varies then non-periodic
(irrational rotation number) behaviour is possible though this will be on a
Cantor set. These can be very hard to observe numerically, and there was at
one stage some confusion as to whether they exist or not.

3.4. Overlap Maps. An overlap map is a map satisfying the conditions for a
gap map but for which the last criterion of (30) is replaced by

(31) f(0) < f(1).

Thus rather than having a gap there is a set of points with two preimages under
f . These maps can be chaotic and the non-wandering set can be described by
kneading theory (e.g. Glendinning and Hall) or the less detailed decomposition
theorem of section 5. In this section we will continue the analogy with circle
maps to provide a different view of the effect of overlap. The analogy is with
continuous non-invertible circle maps. For these maps the idea of a rotation
number is replaced by a rotation interval.

Definition 30. The rotation set of a lift F is the set

ρ(F ) = {α |ρ(x, f) = α for some x ∈ R}.

Theorem 31. If f is an overlap map with lift F then ρ(F ) is a closed interval
(possibly a point).
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Figure 7. Part of the graph of the lift F showing the construc-
tion of the maps F1, Fµ and F1 which differ from F only on the
plateaus.

Proof (sketch): First note that the lift of f jumps down at integers, for
example at x = 1 the jump is from 1 + f(1) to 1 + f(0), so it is no longer
strictly increasing and the previous results cannot be used. However, the graph
is bounded by two continuous monotonic (but not strictly monotonic) lifts:

(32) F0(x) = inf
y>x

F (y), F1(x) = sup
y<x

F (x).

Clearly (see Figure 7) F0(x) ≤ F1(x) and Fk(x) are increasing and continuous.
We will treat the simple case in which there is only one plateau in each period
of the lift. Now, Fk can be seen as the inverses of gap maps, and hence (or
by direct verification) have well-defined rotation numbers with ρ(F0) ≤ ρ(F1).
Moreover,

F0(x) ≤ F (x) ≤ F1(x)

implies that for all x such that ρ(x, F ) exists then ρ(F0) ≤ ρ(x, F ) ≤ ρ(F1)
(indeed we can take limsups and liminfs of 1

n(F
n(x) − x) and these will both

lie between ρ(F0) and ρ(F1)). Thus

ρ(F ) ⊆ [ρ(F0), ρ(F1)].

To finish we need to show that for all y ∈ [ρ(F0), ρ(F1)] there exists x such
that ρ(x, F ) = y. We begin by interpolating between F0 and F1 creating a
continuous family Fµ, 0 ≤ µ ≤ 1 of monotonic circle maps as shown in Figure 7.
Each of these has a unique rotation number ρµ ∈ [ρ(F0), ρ(F1)] and ρµ varies
continuously with µ by Theorem 29. Thus for every r ∈ [ρ(F0), ρ(F1)] there
exists µ ∈ [0, 1] such that ρµ = r. To complete the proof we will show that for
each monotonic circle map fµ with lift Fµ and plateau with open arc P there
exists x ∈ T such that fn

µ (x) /∈ P for all n ≥ 0 and hence, since f(x) = fµ(x) if
x /∈ P then the orbit of x under fµ is the orbit of x under f and since ρ(Fµ) = ρµ
exists and is independent of x, ρ(F, x) = ρµ.

Let
Γn = {x ∈ T | fk(x) /∈ P, k = 0, 1, . . . , n}.
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Then since P is open and fµ and f−1
µ are continuous on T\P , Γn is closed

and Γn+1 ⊆ Γn, hence provided Γn ̸= ∅ for some n, the limit ∩Γn is closed and
non-empty. Points in this countable intersection have precisely the required
property.

So suppose that there exists m > 0 such that Γm = ∅, i.e for all x ∈ T there
exists k ≤ m such that fk(x) ∈ P . Now, fµ(P ) = y is a point, and hence

∪k≥0f
k
µ(P ) = P ∪ C, where C is a countable set of points, and in particular

P∪C ̸= T. But by assumption, for all x ∈ T, fm
µ (x) ∈ P∪C, i.e. fm

µ (T) ⊆ P∪C.
But fµ is a surjecttion, so fm

µ (T) = T, hence we have a contradiction.
�

4. Gluing Bifurcations

Gluing bifurcations describe the dynamics of piecewise monotonic maps near
codimension two points for maps that are locally contracting. There are three
cases determined by the orientation of each continuous branch of the map.
These codimension two bifurcations have been described by various authors,
e.g. [20, 31], in recent years, but as a historical curiosity we will follow the
account of Glendinning [21] from 1985. This was work done with Gambaudo
and Tresser intended to form part of the sequel to [16], but which was never
completed. The analysis was in the context of homoclinic bifurcations related
to the Lorenz semi-flows of section 1.2.

Thus the remainder of this chapter is taken verbatim from [21]. Where there
is reference to work elsewhere in the dissertation, or where the context may be
unclear I have added commentary in italics inside square brackets [thus].

START of excerpt from [21].

In the general case we have two parameters which, as usual, can be thought of
as parameterising the x-coordinate of the first intersection of the two branches
of the unstable manifold of the stationary point with a surface inside a small
neighbourhood of the stationary point. recall that the one dimensional map
used to model the flow is a piecewise monotonic function with a single discon-
tinuity (at x = 0):

(33) x′ =

{
−µ+ axδ x > 0

ν − b(−x)δ x < 0

[the assumption that δ > 1 was part of the chapter introduction; all the results
below depend upon is local monotonicity and contraction.] Note that the signs
of µ and ν have been changed so that the interesting behaviour arises when
the parameters are positive. Once again there are four cases depending on the
signs of the constants a and b, i.,e. whether the global reinjections are orientable
(positive signs) or non-orientable (negative signs). Regardless of the signs of a
and b we can see from the graph of the map that µ < 0, ν < 0 there is a pair of
stable fixed points of the map and so, at least locally, these are the only periodic
orbits of the map. The remainder of the parameter space varies according to
the signs of a and b so the various cases will be treated separately.
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(a) The Orientable case: a > 0, b > 0
The curve in parameter space given by µ = 0 (resp. ν = 0) corresponds to

a line of homoclinic orbits [i.e. border bifurcations as in section 2.4] involving
the positive (resp. negative) branch of the unstable manifold of the origin.
Hence (cf. section 2.1) we know that on crossing this curve a periodic orbit is
generated. From the graph of the model map it is clear that this periodic orbit
corresponds to the fixed point in x > 0 (resp. x < 0) which exists for µ < 0
(resp. ν < 0). Since the slope of the map is always positive and less than one
any orbit that enters x > 0 when µ < 0 (resp. x > 0 when ν < 0) tends directly
to the fixed point. Using the standard coding of orbits, 0 for points in x < 0
and 1 for points in x > 0, these facts imply that the only periodic orbits are

0 and 1 if µ < 0 and ν < 0
0 if µ > 0 and ν < 0
1 if µ < 0 and ν > 0

If µ and ν are both positive then situation is considerably more complicated.
We shall prove the following theorem.

Theorem 32. [Theorem 3.2] For µ > 0 and ν > 0 the periodic orbits of (33
have the following properties:

(i) there is at most one periodic orbit
(ii) periodic orbits have codes which are rotation compatible, i.e. minimax
(iii) the rotation number of periodic orbits varies monotonically with one

parameter when the other is held fixed.

Statements (i) and (ii) are a simple consequence of the theorems of section
3.1 [those of chapter 3 above]. The important new part is (iii). This statement
implies that there are parameter values in a neighbourhood of (0, 0) for which
the system has a periodic orbit with any given minimax code, and also that
there are parameter values at which the rotation number of a periodic orbit is
irrational, i.e. there are aperiodic orbits which are stable (and so not chaotic).
[That could have been phrased better! ] From the geometry of the flow it is
clear that the orbits lie on a torus with a hole. This is precisely the property
of Cherry flows which have been studied by many pure mathematicians (e.g.
Palis and de Melo, 1984 [42]). It is curious that these apparently abstract flows
arise naturally near pairs of homoclinic orbits.

To prove statement (iii) we begin by rescaling the map so that the important
dynamics (and in particular the orbits of 0+ and 0− [the limits as 0 is approached
from above or below respectively ]) is contained in the interval [−1, 1]. The
iterates of 0+ and 0− remain in the interval [−µ, ν] (see Fig. 65 [i.e. Figure 8
here] so we look for a change of coordinates of the form z = p+ qx such that

−1 = p− qµ

and
1 = p+ qν

so that when x = −µ, z = −1 and when x = ν, z = 1. This gives

p = (µ− ν)/(µ+ ν)
q = 2/(µ+ ν)
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(a) (b)

Figure 8. (Fig. 65 of [21].) (a) The return map with µ, ν > 0
showing the region [−µ, ν] in which the orbits of 0+ and 0−

remain. (b) The map gµ,ν for two values of the parameter ν.
The associated lift is monotonic.

i.e.

(34) z = {µ− ν + 2x}/(µ+ ν)

In the new coordinates we have the map gµ,ν : [−1, 1] → [−1, 1] given by

(35)
gµ,ν = −1 + a[(z − µ−ν

µ+ν )/2]
δ if µ−ν

µ+ν < z < 1

= 1− b[(z − µ−ν
µ+ν )/2]

δ if − 1 < z < µ−ν
µ+ν .

This new map has all the properties of fµ,ν and in particular orbits have the
same rotation number. Note that gµ,ν is piecewise increasing with a single
discontinuity and so it can be viewed as a discontinuous map of the circle to
itself. Hence we can associate a lift Gµ,ν : R → R with gµ.ν and so define
a rotation number in the usual way. Viewing gµ,ν as an application [map in
French] of the circle we have, from Theorem 1 of Gambaudo and Tresser (1985)
[18]

− to all x ∈ [−1, 1] there is a unique rotation number ρµ,ν (this follows
from the piecewise monotonicity of the mapping)

− for all ρµ,ν there is a rotation compatible orbit with that rotation number

Given the uniqueness of the rotation number for given values of the parameters
and the existence of a rotation compatible orbit with this rotation number we
obtain (i) and (ii) of the theorem.

Gambaudo and Tresser (1985) [18] also show that if the lift of a map depend-
ing on a single parameter is increasing with the parameter, then the rotation
number is increasing and continuous with the parameter [for continuous fam-
ilies as shown described in chapter 3; obvious for this family (33) but needs
stating for the more general case]. A direct application of this result gives part
(iii) of the theorem noting that Gµ,ν is increasing with ν (Fig. 65) [Figure 8
here].

Q.E.D.
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Outside the region of validity of this local analysis, outside some neighbour-
hood of the codimension two homoclinic bifurcation, the appearance of chaotic
behaviour can also be studied in a similar way. In the next section we shall
discuss the appearance of chaos and look at a simple example. However, first
we shall complete the local analysis for the remaining two cases.

(b) The Semi-orientable case: a > 0, b < 0.
Here the right hand reinjection (x > 0) is orientable whilst the other is non-

orientable. Using the techniques above we can show from the one-dimensional
map that

− in µ < 0, ν < 0 the only periodic orbits have codes 1 and 0
− in µ < 0, ν > 0 the only periodic orbit has code 1
− in µ > 0, ν < 0 the periodic orbit with code 0 exists throughout the

quadrant, and in ν > bµδ there is also a periodic orbit with code 10.

The final quadrant, with both µ and ν positive is more complicated. We
shall prove the following theorem:

Theorem 33 (Theorem 3.3). For a > 0, b < 0 in (33) and µ, ν > 0, there is a
neighbourhood of (µ, ν) = (0, 0) in which the only periodic orbits are those with
codes 1n0, n ≥ 1 and further more, regions of parameter space in which orbits
with codes 1n0 and 1n+10 coexist, n ≥ 1.

[This statement is seriously ungrammatical: as the proof below shows it is
intended that there are regions with just code 1n0 and regions with the stated
coexistence.]

First note that the periodic orbits must have all their points in [−µ, ν − bµδ]
and that the map is decreasing and positive in x < 0, and increasing in x > 0.
Let N ≥ 2 be the first time that fN (x) < 0 for some x ∈ [−µ, 0) and note that
parameter values can be found such that any given value of N (≥ 2) can be
realised, with N = 2 for µ/ν large and N → ∞ as µ/ν → 0. Now consider the
map

(36) h(x) =

{
f(x) if x > 0

fN (x) if x < 0

Since f ′(x) > 0 in x > 0 and f(x) > 0 for x < 0 we have fN (0−) < fN (x) for
x in [−µ, 0) and, by the definition of N , fN (0−) < 0. Hence h(x) looks like
f(x) (upside down) in the region of parameter space with µ > 0 and ν < 0.
The remarks made above for this quadrant of parameter space hold: there is
a periodic orbit with code 0 and, in some cases, a periodic orbit with code 10,
for h. In terms of f this translates into the existence of a periodic orbit with
code 01N−1 and, in some cases, a periodic orbit with code 01N coexists with
this first orbit. It should be clear that on a line in parameter space with ν
constant both possibilities must be realized, hence the theorem.

Now, the homoclinic orbit associated with a periodic orbit of code 10 occurs
when f(ν) = −µ + aνδ = 0, i.e. µ = aνδ. This gives the bifurcation diagram
in Fig. 66 [Figure 9 here], where the shaded regions indicate the coexistence of
two periodic orbits [note to younger self: you forgot to do any shading ].
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Figure 9. (Fig. 66 of [21].) (µ, ν) parameter for the semi-
orientable case.

Figure 10. (Fig. 53 of [21].) (µ, ν) parameter space showing
the homoclinic curves and the codes of periodic orbits for the
orientable case [of the figure eight configuration].

(c) The Non-orientable Case: a < 0, b < 0.
When both the global reinjections are non-orientable the dynamics of the

local map is relatively simple and we obtain essentially the same diagram as
Fig. 53 [Figure 10 ere] for the orientable figure eight. It follows directly from
the one-dimensional map (33) that

− if µ < 0 and ν < 0 the only periodic orbits have codes 1 and 0
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− if µ > 0 and ν < 0 the periodic orbit with code 0 exists throughout the
region and a periodic orbit with code 01 coexists with it if −µ > aνδ

− if µ < 0 and ν > 0 the periodic orbit with code 1 exists throughout the
region and a periodic orbit with code 10 coexists with it if −ν > bµδ

− if µ > 0 and ν > 0 the periodic orbit with code 01 exists throughout
the region and is the only periodic orbit of the local analysis.

This completes the local bifurcation pictures for the butterfly configuration
of homclinic orbits.

END of excerpt from [21].

The extract above is an early draft and could obviously be improved (it was
written to a deadline). But it does indicate the results we understood at that
time. Further details including diagrams for the orientable case and links with
differential equations can be found in [17] and the cases were described again
in [15].

5. A Decomposition Theorem

Kneading Theory as developed by Milnor and Thurston, [38] which was cir-
culating in preprint form from 1977, can be used to provide a decomposition
of the non-wandering sets of piecewise smooth maps of the interval, and an
early application was the decomposition theorem of Jonker and Rand [33] for
smooth unimodal maps. However, the techniques of kneading theory are less
well-known now, though the potential application to maps of great interest in
the applied community is clear. In this paper we describe how to obtain an
equivalent decomposition for maps with a single discontinuity or turning point
using elementary observations.

These results hold for any map of the interval that has two monotonic con-
tinuous branches. Thus it includes all the maps considered in detail by Avrutin,
Schanz and co-workers. They show just how complicated the detailed descrip-
tion of dynamics in parameter space can be. The philosophy behind the ap-
proach taken here is to avoid the temptation to describe the dynamics in detail
whilst retaining sufficient information to be useful in applications. In partic-
ular it draws out the similarities of the dynamics of these maps rather than
concentrating on differences.

WARNING: This chapter is work in progress. Though the ideas are stan-
dard I have not had time to go through it carefully and check the details (any
comments gratefully received).

5.1. Background and Statement of Results. Let fi : R → R be continuous,
monotonic functions. Fix c ∈ R and suppose that there exists a largest non-
trivial interval I containing c in its interior such that

g(x) =

{
f0(x) if x < c

f1(x) if x > c

maps I into itself. We shall call g : I → I a maximal two branch map. Note
that the boundaries of the interval I are typically subsets of the fixed points
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of g and their preimages, or points of period two. Similarly g is a minimal
two branch map if I is the smallest possible interval containing c in its interior
which g maps to itself. In interesting cases the end points of I wil lbe subsets
of the orbit of c approached from above or below.

Two points are equivalent, x ∼ y if all the images of the open interval (x, y)
are disjoint from c. The interval J = (x, y) is then called a homterval, so
c /∈ fn(J) for all n = 0, 1, 2, . . . . The images of x and y are equivalent in the
sense that coding their orbits via sequences of 0s and 1s according to whether
the nth iterate lies to the left or the right of c cannot distinguish between the
two points. All the classification below is up to orbit equivalence, x ∼ y.

A point is wandering if there exists a neighbourhood U of x such that fn(U)∩
U = ∅, otherwise it is non-wandering (and returns arbitrarily close to itself
infinitely often). An interval J is wandering if fn(J)∩J = ∅ for all n, otherwise
it is a non-wandering interval. The structure theorem we prove concerns the
non-wandering set, Ω(g), of g. An open interval is transitive if for all ϵ > 0 and
all y ∈ I there exists x ∈ U and n(ϵ) ≥ 0 such that |gn(x)− y| < ϵ. The map g
is transitive if for every interval U that is not a homterval, ∪∞

0 fn(U) = int(I).

Theorem 34. If g : I → I is a minimal two branch map then there exists N ,
0 ≤ N ≤ ∞ such that if N = 0 then Ω(g) is either a union of one or two
periodic orbits (up to equivalence), a zero entropy Cantor set, or g is transitive
on I; whilst if 1 ≤ N < ∞ then

Ω(g) = ∪N
0 Ωk

where if k < N then Ωk is either a union of one or two periodic orbits (up to
equivalence) or a set equivalent to the dynamics defined by a finite transition
matrix, and ΩN is either a union of one or two periodic orbits (up to equiva-
lence) or g is transitive on VN ; whilst if N = ∞ then an infinite decomposition
holds with Ωk, k < ∞ as before and Ω∞ may be a chaotic or nonchaotic set on
a Cantor set (up to equivalence).

5.2. Homtervals. An open interval J is a homterval if it contains no preimages
of c, i.e. if fn|J is a homeomorphism for all n ≥ 0. There are two types of
homtervals – wandering intervals and intervals in the basin of attraction of a
stable periodic orbit. It is often useful to consider maximal homtervals, the
largest homterval containing J .

The following lemma is one of the standard theorems of undergraduate course
on dynamical systems (see e.g. [12]).

Lemma 35. If fI → I and f is a homeomorphism then every point is either a
fixed point, or a period two orbit, or in the basin of attraction of a fixed point
or period two orbit.

Homtervals are either wandering or basins of attraction of periodic orbits.

Lemma 36. If J is a homterval then either J contains a union of basins of
attraction of a stable periodic orbit or fn(J) ∩ J = ∅ for all n > 0.

Proof: Supose J is a homterval and fk(J) ∩ J ̸= ∅ for some k > 0 (choose
the smallest such). Then fn|fk(J) and fn|J are homeomorphisms and so J1 =
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fk(J) ∩ J is a homterval and fk(J1) ∩ J1 ̸= ∅. Set

J∞ = ∪∞
n=1f

nk(J).

Then J∞ is a homterval (as it is the union of homtervals) and fk(J∞) ⊆ J∞
(simply apply fk to the definition). Thus cℓ(J∞) contains at least one stable
periodic orbit, and J∞ is a union of periodic orbits and basins of attraction of
periodic orbits.

�
The problem of homtervals from the point of view of structure theorems

is that all points in a homterval have the same symbolic sequence attached
to them, and this means that symbolic descriptions are ambiguous. In some
elementary cases they can be ruled out.

Lemma 37. Suppose g : I → I is a minimal two branch map and each branch
of g is differentiable and there exists ϵ > 0 such that for all x ∈ I, |g′(x)| > 1+ϵ.
Then I contains no homtervals

Proof: If J is a homterval then the derivative condition and the Mean Value
Theorem imply that |gn(J)| ≥ (1+ ϵ)|gn−1(J)| and hence |gn(J)| ≥ (1+ ϵ)n|J |.
Thus for all |J | > 0 there exists n such that |gn(J)| > |I|, an obvious contra-
diction.

�
A huge amount of effort has gone into proving the non-existence of wandering

intervals and multiple (more than two) stable periodic orbits at higher iterates,
see Berry and Mestel and de Melo and van Strien [35]. We will simply live with
the possibility.

5.3. Renormalization and induced maps. If g : I → I is a minimal two
branch map then it is renormalizable if there exists J ⊂ I with c ∈ J and nk,
n0 + n1 > 2, such that c divided J into two intervals Jk and gnk(Jk) ⊆ J ,
c /∈ gr(Jk), r = 1, . . . , nk − 1.

Note that if g is renormalizable then the induced map

g̃(x) =

{
gn0(x) if x ∈ J0

gn1(x) if x ∈ J1

is a two branch map from J to itself.

Lemma 38. If g is a minimal two branch map then Ω(g) = Ω0 ∪ Ω1 where
Ω0 is semi-conjugate to the dynamics of a finite Markov partition and Ω1 is
the non-wandering set of the induced map g̃ and its iterates under g. Either
Ω0 ∩ Ω1 = ∅ or the intersection is a union of one or two periodic orbits.

Proof: Choose J to be the smallest closed interval on which the induced map
is degined, so g̃ is a minimal two branch map. Let ω = Ω(g̃), ω = ω0 ∪ ω1 and
define

K =
(
∪n0−1
0 gk(J0)

)
∪
(
∪n1−1
0 gk(J1)

)
and

L = I\K.
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Then L is a finite union (possibly empty) of open intervals Li on which g is
continuous, and the left and right end-points of each interval map into K; hence
if g(Li) ∩ Lj ̸= ∅ then Lj ⊆ Li, i.e. either g(Li) ∪ Lj ̸= ∅ or Li g-covers Lj .
Thus the partition by K generates a finite Markov partition for the dynamics
of g restricted to L. Let Ω0 = Ω(g) ∩ cℓ(L), so Ω0 is determined by the finite
Markov partition just described.

Finally, Ω1 = Ω(g) ∩K, and note that if ω = ω0 ∪ ω1 be the non-wandering
set of g̃ in J , then

Ω1 =
(
∪n0−1
0 gk(ω0)

)
∪
(
∪n1−1
0 gk(ω1)

)
.

�
5.4. Non-chaotic maps. Suppose that g is a non-chaotic. This case has been
treated in detail in [24]. Either g is not renormalizable, in which case Ω(g) is
a finite union of periodic orbits, or it is renormalizable and Ω(g) = Ω0 ∪ Ω1

as described in Lemma 38, and Ω0 is a finite union of periodic orbits modulo
equivalence. Since g is not chaotic, the induced map g̃ is not chaotic, hence
either it is renormalizable again, or not. If it is not renormalizable then Ω(g̃)
is a finite union of periodic orbits, and if it is renormalizable then we generate
a new set (possibly empty) of periodic orbits and a new induced map.

Either this process stops, in which case Ω(g) is a finite union of periodic
orbits, or every induced map is renormalizable. In this latter case there are
nested intervals J (r) containing c and a countable set of periodic orbits, a finite

set in each set L(r), together with Ω∞ = cℓ ∩ gn(J∞) where J∞ = ∩(r)
J . Note

that J∞ is non-empty as it contains at least c, and Ω∞ is typically a Cantor set
on which the dynamics is non-chaotic.

This establishes the decomposition for the non-chaotic case.
Note that a great deal more detail could be given – there are an uncountable

set of possibilities for Ω∞ and the coexisting periodic orbits have well-defined
sets of periods. See [24] for more detail.

5.5. The chaotic case. In the chaotic case there are uncountably many dif-
ferent symbol sequences. We will say that an interval is an essential interval
if it contains uncountably many symbol sequences, i.e. if the set of dynamical
conjugacy classes uner ∼ is uncountable. This is the natural object to consider,
and we will say that a map is essentially transitive if ∪∞

0 gn(U) = I for every
essential interval U .

Lemma 39. If g is a chaotic minimal two branch map and if g is not renor-
malizable then g is essentially transitive.

Proof: Let U =< a, b > be an essential interval. Then there exists a smallest
n ≥ 0 such that there exists x ∈ U such that gn(x) = c and both c ∈ gn(U)
and both (a, x) and (x, b) are essential. Let Vb ⊆ U be the maximal subset of
U such that gn|Vb is monotonic. Let V = gn(Vb) = V0 ∪ V1 and note that both
V0 and V1 are essential.

Hence there exist smallest n0 and n1 such that gnk(Vk) ∩ V ̸= ∅. Moreover,
as g is minimal and not remormalizable then if gnk(Vk) ⊆ V , k − 0, 1 either
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V = I (i.e. g is essentially transitive) or we get a contradiction. Thus if g is
not essentially transitive at least one of the inclusions is not satisfied and

V ⊂ V (1) = gn0(V0) ∩ V ∩ gn1(V1).

Now continue inductively: either g is essentially transitive or there exist V (r+1) ⊆
V (r) such that c ∈ V (r) and V (r) is a union of iterates of V . Taking limits,
V (r) → V∞, and either g is essentially transitive or c ∈ V∞ and there exist m0,
m1 such that gmk(V∞) ⊆ V∞.

(The last inclusion follows because clearly m0 and m1 giving an intersection
exist, and the inclusion follows from the limiting process.) Thus either m0 =
m1 = 1 and V∞ = I as g is a minimal two branch map (and hence g is essentially
transitive), or m0 +m1 > 2 and g is renormalizable (a contradiction).

�

5.6. Proof of the Theorem. In this section we will complete the (sketch)
proof of Theorem 34. We begin with a simple dichotomy.

Either

(a) g is renormalizable; or
(b) g is not renormalizable.

By Lemma 39 if g is not renormalizable then g is essentially transitive and
the non-wandering set is I, thus it is case (a) that needs further thought.

Here there is either a finite number of renormalizations possible, in which
case there exists a minimal interval J containing c for renormalization and the
induced map on this interval is either zero entropy or not renormalizable with
positive entropy (essentially transitive). Iterates of J define a Markov partition
and dynamics outside the union of the iterates of the interval on which the
induced map is defined is conjugate to a subshift of finite type.

If the map is infinitely renormalizable then there is an infinite set of unions
of intervals in which the dynamics is described by a subshift of finite type
(possibly empty as in the case of circle renormalizations) and there is a limiting
set (typically a Cantor set).

�

6. PWS maps of the plane

The results in pervious sections rely heavily on the order property of the real
line, and maps in the plane are much harder to analyze. In many ways this
section is a list of results and techniques without a strong over-arching theory
underpinning it. We will start with some examples and phenomenolgy.

6.1. The Lozi map. The Lozi map is a natural extension of tent maps to the
plane. If the family of tent maps is written in the form

(37) xn+1 = 1− a|xn|, a ∈ (1, 2]

then the Lozi map is the map of the plane defined by

(38)
xn+1 = 1− a|xn|+ yn
yn+1 = bxn.
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Figure 11. Numerically computed attractor of the Lozi map
with a = 1.7 and b = 0.3.

If b → 0 then |yn| → 0 and so the x evolution is the tent map (37). If b ̸= 0 is
small then the attractor looks like a set of folded lines as shown in Figure 11.
The Lozi map has uniform expansion and contraction properties, and this makes
it a good example to test our ability to prove the existence of strange attractors.

6.2. The border collision normal form. The border collision normal form
(BCNF) is a generalization of the Lozi map that describes the local behaviour
of PWS maps for which a fixed point of one of the smooth systems defining the
map hits a boundary on which that system is defined as parameters are varied.
It is usually written as

(39)

(
xn+1

yn+1

)
=

{
f0(xn, yn) if x < 0

f1(xn, yn) if xn > 0

with

(40) fk(x, y) =

(
Tk 1

−Dk 0

)(
xn
yn

)
+

(
µ
0

)
, k = 0, 1.

The constants Tk and Dk are the trace and determinant of the matrix and µ
is the bifurcation parameter. Note that by scaling x and y the parameter µ
can be taken in the set {−1, 0,+1} so the idea that µ varies continuously is
unnecessary.

The BCNF is continuous, but (assuming that T0 ̸= T1 or D0 ̸= D1) the
Jacobians are different. Even so, the number of different phenomena that can
be observed is huge. Figure 12 shows a number of different possible bifurcations.
With all this complexity it can be very difficult to decide what to analyze
mathematically. Rather than attempt a complete classification we will give
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Figure 12. From [4]. Some bifurcations of the BCNF (only
attractors are mentioned): µ is plotted horizontally and the pro-
jection of attractors onto the x-axis vertically. 1(a) no attractor
to fixed point; 1(b) no attractor to chaos; 2 fixed point to chaos;
3 fixed point to fixed point; 4 coexisting fixed point and period 3
to coexisting fixed point and period 4; 5(a) fixed point to period
two; 5(b) fixed point and period 11 to period 2; 6 fixed point to
period 5 and chaotic attractor.

examples of the sort of thing that can be done in each of the three cases:
periodic, one-dimensional and two-dimensional attractors in the next section.

7. Periodic orbits and resonance

Suppose that one fixed point of the border collision normal form exists and
the Jacobian has complex eigenvalues. In that case the motion on one side of
the switching surface is like a rotation, with orbits spiralling in or out of the
fixed point. It is then natural to look for periodic orbits that can be described
by sequences of 1s and 0s (reflecting iterates in x > 0 and x < 0 respectively)
that come from the order of rotations described in section 3. It turns out that
this can be carried out exactly, giving equations determining when these orbits
exist.

7.1. Fixed points and period two. Before considering the more complicated
orbits it clearly makes sense to look at simplest orbits: fixed points and points
of period two. For non-degenerate systems solutions to linear equations are
unique, and so the only period two orbits that we will look for ar those with
one point in x < 0 and one point in x > 0.

A fixed point exists in x > 0 if there is a solution to f1(x, y) = (x, y) with
x > 0, i.e. if

T1x+ y + µ = x, −D1x = y, x > 0.

Solving these simple linear equations gives

(41) x =
µ

1 +D1 − T1
, y = − D1µ

1 +D1 − T1
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and so provided 1 +D1 − T1 ̸= 0 there is a fixed point for an appropriate sign
of µ: µ > 0 if 1 +D1 − T1 > 0 and µ < 0 if 1 +D1 − T1 < 0.

A precisely analogous manipulation shows that there is a fixed point in x < 0
provided µ > 0 if 1 +D0 − T0 < 0 and µ < 0 if 1 +D0 − T0 > 0. Moreover, a
fixed point is stable if the modulus of every eigenvalue of the Jacobian is less
than one. This translates to the conditions |D0| < 1 and |T0| < 1+D0 in x < 0.
This condition can also be written as

0 < 1 +D0 − |T0|.
Precisely analogous conditions hold in x > 0.

Putting the two branches of solutions together we see that if

(42) (1 +D0 − T0)(1 +D1 − T1) > 0

then the two fixed points exist for opposite signs of µ whilst if

(43) (1 +D0 − T0)(1 +D1 − T1) < 0

then the two fixed points exist for the same sign of µ (rather like a smooth
saddle-node bifurcation).

Except in the degenerate case that a Jocobian has an eigenvalue of −1, in
which case there can be a degenerate line of orbits of period two, an orbit of
period two has one point on each side of x = 0. The equations are a little more
messy, but still linear. Going through the detailed calculation period two points
are at (x0, y0) with x0 < 0 and (x1, y1) with x1 > 0 and

(44)
x0 = µ+ y1 + T1x1 y0 = −D1x1
x1 = µ+ y0 + T0x0 y1 = −D0x0

which imply

(45) (xk, yk) =

(
1 + T1−k +D1−k

(1 +D0)(1 +D1)− T0T1
µ,−D1−kx1−k

)
, k = 0, 1.

These lie on the ‘correct’ side of the y-axis for one sign of µ provided

(46) (1 + T0 +D0)(1 + T1 +D1) < 0

and if this inequality does not hold then there are no non-degenerate points of
period two.

Stability is determined by the trace and determinant of the product of the
linear parts of the BCNF:(

T0 1
−D0 0

)(
T1 1

−D1 0

)
=

(
T0T1 −D1 T1

−D0T1 −D0

)
and the period two orbit is stable if the modulus of the trace and the modulus
of the determinant satisfy equivalent conditions as for the fixed points; i.e. it
is stable if

(47) |D0 +D1 − T0T1| < 1 +D0D1, |D0D1| < 1.

So much for the equations – but what combinations of fixed points and pe-
riodic orbits can be involved in bifurcations? This is not obvious from the
equations. We leave this question as an exercise for the moment, and will
return to it in section 10.2.
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7.2. Periodic orbits. Although a great deal was known about periodic orbits
and the regions of parameter space for which they exist (and may coexist) from
the works of Gardini and others [19, 36], the more recent approach of Simpson
and Meiss [48, 45] makes a systematic approach possible.

Let s1, . . . sn be a sequence of 0s and 1s, and suppose we wish to look for a
periodic orbit of period n such that the kth point of the periodic orbit lies in
x < 0 if sk = 0 and in x > 0 if sk = 1. To find such an orbit it is necessary to
solve the fixed point equation for the nth iterate of the map, taking into account
the required sequece (sk), and then to determine whether the fixed point (ia
periodic orbit of f) is real, i.e. its orbit passes through the regions x ≤ 0 and
x ≥ 0 in the prescribed order, or virtual, otherwise, in which case the solution
does not correspond to an orbit of the BCNF.

At each iteration f(x) = Askx+ µe and so by induction

fn(x) = Msx+ µPse

where

Ms = Asn . . . As1 , Ps = I +Asn +AsnAsn−1 + · · ·+Asn . . . As2 .

The point calculated on the orbit of period n in the half plane determined by
s1 is a solution of the fixed point equation x1 = fn(x1), i.e.

(48) x1 = µ(I −Ms)
−1Pse.

Of course, this exists and is unique if I −Ms is non-singular, or eqivalently if
det(I −Ms) ̸= 0.

The same process can be repeated for each point on the orbit: the image of
x1 is x2 which satisfies a similar equation but with s replaced by s1sn . . . s2.
Define the shift σ on these periodic sequences so that

σ(sn . . . s2s1) = s1sn . . . s2

then the n points on the orbit of period n corresponding to s are

(49) xk+1 = µ(I −Mσks)
−1Pσkse, k = 0, 1, . . . , n− 1.

Simpson and Meiss [49] show that the x coordinate of (49) can be written as

(50) xk+1 = µ
detPσks

det(I −Ms)
, k = 0, 1, . . . , n− 1,

where we have used the fact that det(I −Mσks) is independent of k (to see this
simply note that As1(I−Ms)A

−1
s1 = I−Mσs). The remainder of the derivation

is far from trivial and details can be found in [49].
So far, so much manipulation. But is this solution real or virtual? The answer

is very similar to that in the case of the orbit of period two in section 7.1.

Lemma 40. Fix s = s1 . . . sn ∈ {0, 1}n and suppose that det(I −Ms) ̸= 0 and
detPσks ̸= 0, k = 0, 1, . . . , n− 1. If there exists g ∈ {−1, 1} such that

(51)
sign (detPσk−1s) = −g if sk = 0
sign (detPσk−1s) = g if sk = 1

then the periodic orbit corresponding to s exists for µ > 0 if gdet(I −Ms) > 0
and for µ < 0 if gdet(I −Ms) < 0.
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Figure 13. Numerically computed regions of parameter with
different rotation type periodic orbits, from [49].

The proof is straightforward from the definitions and (50). Note that at this
stage we have not used the assumption that the map is two-dimensional.

7.3. Resonance tongues and pinching. Lemma 40 and (50) show that the
ways by which periodic orbits can be created or destroyed as parameters vary
must involve one or other of Ps or I −Ms becoming singular as the parameters
are varied.

One fairly general case of this has some interesting and immediately recog-
nisable features. Figure 13 shows regions in the parameter space of the BCNF
in which the map has periodic orbits of particular rotation type (i.e. they
have rotation numbers and order on a circle reflecting the order described in
section 3.2 above). The parameters are chosen so that

TL = 2rL cos (2πωL) , DL = r2L, TR = 2
sR

cos (2πωR) , DR = 1
s2R

and in the Figure,
rL = 0.2, µ = 1,

and ωR = ωL is the parameter on the horizontal axis, and sR is the parameter
on the vertical axis. The resonant tongues in which the periodic orbits exist
have a ‘sausage’ shaped pinched structure which can be understood using the
methods of the previous section.

The analysis of these bifurcations involves two ingredients. First, the rotation
order of the periodic points implies that the points on the periodic orbit can be
arranged on a circle (with no self-intersections) so that the order on the circle
is x1, . . . ,xn and the effect of the map f is

(52) f(xk) = xk+m

where the index k+m is interpreted modulo n with the convention that 0 ≡ n.
However, this order does not indicate where the switching surface lies, so the
second ingredient specifies the position of the switching surface with respect to
the periodic points. Assume that the switching surface separates the periodic
points into two consecutive sets of points on the circle with ℓ points in x < 0
and n−ℓ in x > 0. The orbit is therefore specified by three positive integers: n,
m and ℓ, and the labelling can be chosen so that x1, . . . ,xn−ℓ lie in x > 0 and
xn−ℓ+1, . . . ,xn lie in x < 0. This information is enough to specify the symbolic
description s of the orbit (note that it is NOT the rotation-compatible sequences
of section 3.2 as the position of the switching surface which determines s is not
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Figure 14. Part of the pinched tongue of rotation number 2/7
showing the different border collision bifurcations. This shows
the orbit with ℓ = 3 interacting with the ℓ = 2 case (upper lobe)
and ℓ = 4 case (lower lobe). From [48].

the same as the coding of the rotations). We shall refer to these orbits as
(n,m, ℓ)-orbits.

If this periodic orbit undergoes a border collision bifurcation itself, then one
point intersects the switching surface and by continuity this must be either x1

or xn or xn−ℓ or xn−ℓ+1.
Suppose that it is x1. Then by the results of section 7.1 the bifurcation will

involve two periodic orbits: one with code s and the other with code 0s, defined
to be s with the initial symbol 1 replaced by 0. In other words, the ‘partner’
orbit has is a (n,m, ℓ+ 1)-orbit. Similarly, if the border collision point is xn−ℓ

then it crosses at the border collision creating another code with one of the 1s
in s replaced by a zero – the partner is again a (n,m, ℓ+ 1)-orbit. It turns out
(see Figure 14) that these are generalized saddle-node orbits, so there is a lobe
in which a (n,m, ℓ)-orbit coexists with a (n,m, ℓ+ 1)-orbit.

Bifurcations involving xn or xn−ℓ+1 are similar, except each of these involves
the existence of a (n,m, ℓ− 1)-orbit.

The regions (lobes) are thus defined by orbits whose ℓ description differs by
one. At the shrinking point (for the piecewise affine BCNF) there is a degenerate
invariant circle. This beautiful structure does not persist for typical nonlinear
perturbations of the BCNF: the codimension two pinching point has a natural
unfolding, see [49] for details.

7.4. Infinitely many sinks. The previous section might give the impression
that periodic orbits exist in splendid isolation. However, it has been recognised
for many years that complicated regions of multistability exist in the border
collision normal form [19]. More recently Simpson [45] has shown that there
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Figure 15. Basins of attraction of the lowest period orbits in
an example with infinitely many sinks. From [45].

are parameter values for the BCNF at which there are infinitely many stable
periodic orbits. We will not go into the details here – but Figure 15 show
numerically computed basins of attraction at an approximation of the critical
parameter. Note that a similar example is explored in [13].

8. Robust chaos

The intersection of stable and unstable manifolds of a fixed point (a homo-
clinic tangle) is one of the classic mechanisms to create chaotic solutions in
smooth systems. The mechanism also applies to piecewise smooth systems,
and Banerjee et al (1998) use this idea to show that there are robust chaotic
attractors in the BCNF, a phenomenon they dubbed ‘robust chaos’. Banerjee
et al [5, 4] provide a brief plausibility argument for the proof of the chaotic
attractor, here we will use results of Misieurewicz [37] which provide a more
direct demonstration of the phenomenon.

8.1. The Lozi map and trapping regions. Consider the restricted problem
of the border collision form with

(53) T0 = −T1 = a > 0, D0 = D1 = −b, 0 < b < 1.

Taking µ = 1 (i.e. µ > 0 by scaling) we recover the Lozi map (38). Note that
the map is a homeomorphism and the left half plane maps to the lower half
plane whilst the right half plane maps to the upper half plane. The y-axis,
x = 0, maps to the x-axis, y = 0.

If the constraints of (53) hold and a + b > 1 then the system has two fixed
points,

Y =

(
− 1

b+ a− 1
,− b

b+ a− 1

)
, X =

(
1

1− b+ a
,

b

1− b+ a

)
as shown in Figure 16. Both are saddles; the Jacobian at Y has an stable neg-
ative eigenvalue with an eigenvector of negative slope, and an unstable positive
eigenvalue with an eigenvector of positive slope whilst the Jacobian at X has
an unstable negative eigenvalue with an eigenvector of negative slope, and a
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Figure 16. Schematic view of the bounding region and geom-
etry of iterates for the Lozi map, after [37].

stable positive eigenvalue with an eigenvector of positive slope. The stable and
unstable manifolds of X will be particularly important.

A great deal of the argument used to show the existence of a strange attractor
for the Lozi map (38) relies on brute force calculation. We shall keep this to a
minimum and try to emphasize the conceptual framework being developed.

The eigenvalues of the Jacobian at X are s± = 1
2(−a ±

√
a2 + 4b) with

eigenvalues

(
s±
b

)
, so by a little elementary geometry the stable direction

(with eigenvalue s+) intersects the y-axis at T where

(54) T =

(
0,

2b− a−
√
a2 + 4b

2(1 + a− b)

)
.

Since T is on the y-axis f(T ) is on the x-axis and since T is on the stable
manifold of X, f(T ) will be the intersection of TX with the x-axis.

Similarly, the unstable direction of X intersects the (positive) x-axis at Z
where

(55) Z =

(
2 + a+

√
a2 + 4b

2(1 + a− b)
, 0

)
.

The local unstable manifold of X thus contains the line segment f(Z)Z.
Since f(Z) is in x < 0, f2(Z) lies in the lower half plane. There are thus

two cases depending on whether f2(Z) lies on the left or right of the y-axis.
In what follows below we consider only the case for which f2(Z) is on the left
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of the y-axis; the argument in the other case is a little more complicated (see
[37]), and we leave it to the reader to find the details if they are interested.

So, by assumption (restricting the cases being considered) f2(Z) lies in the
lower half plane with x < 0, and so f3(Z) can be calculated explicitly. This
calculation can be used to show the following lemma from [37].

Lemma 41. Consider the Lozi map (38) with parameters as described above.
If f3(Z) lies in the triangle △ = Zf(Z)f2(Z) then f(△) ⊂ △.

Proof: The geometry is shown in Figure 16. Let S denote the intersection of
f2(Z)Z with the y-axis and note that f(S) is on the x-axis to the left of Z as
S lies below the origin which is below f−1(Z). It is an elementary calculation
to show that the x-coordinate of f2(Z) is larger than that of f(Z) and so the
slope of f(Z)f2(Z) is negative as shown in Fig. 16. Let f2(Z) = (p1, p2) and
S = (0, s2). Then p1 < 0 by assumption and p2 < s2 by construction. The
x-coordinate of f(S) is 1+s2 and the x-coordinate of f3(Z) is 1+p2+ap1 which
is clearly less than 1 + s2 and hence f(S) is to the right of f3(Z) as shown.

△ is composed of two parts:

△1 = f−1(Z)ZS in x ≥ 0 and △2 = f−1(Z)f(Z)f2(Z) in x ≤ 0

(note that △2 is not a triangle!). Thus

f(△1) = Zf(Z)f(S) ⊂ △

and

f(△2) = Zf2(Z)f3(Z)f(S) ⊂ △
and so f(△) ⊂ △ as required.

�
Thus △ is a compact invariant set and hence contains an attractor provided

f3(Z) is contained in △. Brute calculation establishes that this is true provided
a further condition is put on a and b.

Lemma 42. If a > 0, 0 < b < 1, a > b+ 1 and 2a+ b < 4 then f(△) ⊂ △.

8.2. Strange attractors. Banerjee et al [5, 4] provide a plausibility argument
for the existence of strange attractors (albeit at different parameters of the
border collision normal form, though they also discuss the case here) based on
(a) the existence of transverse homoclinic intersections; and (b) the existence
of heteroclinic connections between the unstable manifold of Y and the stable
manifold of X. Misieurewicz [37] takes a more direct route, and whilst this is
more transparent we should say something about the ideas of Banerjee et al
[5, 4] before continuing.

Since X is a saddle it has stable and unstable manifolds. Suppose that
C is curve segment that crosses a part of the stable manifold of X, W s(X),
transversely, then under iteration the intersection point will converge on X and
the part of the remainder of the curve near the intersection point will move
close to X and then expand close to the unstable manifold of X, W u(X).
The Lambda Lemma [1] states that this idea can be stated precisely: in any
neighbourhood of any point in W u(X) there exist a point in the image of C.
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In particular, if C is itself a part of W u(X), so the intersection is a point in
W u(X)∩W s(X), i.e. a transverse homoclinic point, then images of W u(X) lie
arbitrarily close to any point in W u(X), giving a form of recurrence. Similarly,
if there is a transverse intersection between W u(Y ) and W s(X) then images of
W u(Y ) also lie arbitrarily close to any point in W u(X). Banerjee et al [5, 4]
use this, together with the fact that in x < 0 iterates are attracted to W u(Y )
and in x > 0 they are attracted to W u(X) to deduce that the closure of W u(X)
is a chaotic invariant set.

In the case considered here we can have a transverse homoclinic point.

Lemma 43. If S lies above T on the y-axis than the Lozi map has a transverse
homoclinic point.

Proof: If S lies above T then there exists an intersection point P between XT
(part of the stable manifold of X) and f2(Z)Z (part of the unstable manifold
of X).

�
The precise condition is messy and will not be pursued here. Misieurewicz

[37] proves the following.

Theorem 44. Suppose that a > 0, 2a+ b < 4, a
√
2− 2− b > 0 and b < a2−1

2a+1 .

Then the attractor of the Lozi map (38) is the closure of W u(X) and the map
is topologically transitive on this set.

Remark: A subset A of R2 is topologically transitive if for all open Uk k = 0, 1
with Uk ∩ A ̸= ∅ there exists n such that fn(U0) ∩ U1 ̸= ∅.

Sketch Proof: The proof is split into a number of stages which will simply be
sketched here.

Step 1: By Lemma 42 △ contains an attracting invariant set. It is not
conceptually hard (but not an easy calculation) to construct a closed set G
such that △ is contained in the interior of G and such that the attracting set

G̃ = ∩∞
0 fn(G) = ∩∞

0 fn(△) = △̃.

So for any x ∈ △ (and in particular, for any x in the attractor) there is an open
neighbourhood of x in G.

Step 2: Let H0 = XZP and H = ∪∞
0 fn(H0). Then the boundary of H, ∂H

is contained in XP ∪W u(X), f(H) ⊂ H, and H̃ = ∩fn(H) = △̃.

Step 3: That △̃ is the closure of the unstable manifold of X is shown by
using G and G̃ to show that cℓ(W u(X)) ⊆ △̃ and H and H̃ to show that

△̃ ⊆ cℓ(W u(X))△̃.
Step 4: Finally a hyperbolicity argument for expansion on the unstable man-

ifold is used to show that f is topologically mixing on △̃.
�

8.3. Young’s Theorem. Young’s Theorem [52] provides an alternative ap-
proach to the chaotic attractors of border collision normal forms and their
generalizations using invariant measures. This is not the place to give a de-
tailed technical description of the theorem, but it is nonetheless useful to know
that such techniques exist and can be applied to examples.
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A measure µ on a space is essentially a way of assigning size or probability
to subsets (strictly speaking, measureable subsets) of the space. Thus if X is a
compact subset of the plane a (probability) measure is a map from (measure-
able) subsets U of X to the [0, 1] such that

• µ(∅) = 0, µ(X) = 1,
• µ(U ∪ V ) ≤ µ(U) + µ(V ) with equality if U ∩ V = ∅,

and a measure is an invariant measure of a map f : X → X if for all U ⊆ X

µ(f−1(U)) = µ(U).

Invariant measures provide ways of linking spatial and temporal averages: if
g : X → R is a nice (integrable) function then we would like a result of the
form

1

n

n−1∑
0

g(fn(x)) →
∫
X
gdµ

as n → ∞ (for µ almost all x). This is true for ergodic measures: i.e. invari-
ant probability measures with the property that for every invariant set E (i.e.
measureable sets with f−1(E) = E) either µ(E) = 0 or µ(E) = 1.

Young’s Theorem provides a way of proving that nice measures exist for
robust chaos.

Let R = [0, 1] × [0, 1] and let S = {a1, . . . , ak} × [0, 1] be a set of vertical
switching surfaces with 0 < a1 < · · · < ak < 1. Then f : R → R is a Young map
if f is continuous, f and its inverse are C2 on R\S and f = (f1, f2)

T satisfies
the expansion properties (H1)-(H3) below on R\S.

(H1) inf

{(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣)−
(∣∣∣∂f2

∂x

∣∣∣− ∣∣∣∂f2
∂y

∣∣∣)} ≥ 0,

(H2) inf

(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣) = u > 1, and

(H3) sup

{(∣∣∣∂f1
∂y

∣∣∣+ ∣∣∣∂f2
∂y

∣∣∣)(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣)−2
}

< 1.

Young’s Theorem describes measures that project nicely onto one-dimensions.
Technically this is expressed as having absolutely continuous conditional mea-
sures on unstable manifolds. Intuitively this means that the measure projects
nicely onto on dimension.

Let Jac(f) denote the Jacobian matrix of f and recall that u is defined in
(H2).

Theorem 45. [52] If f is a Young map, |Jac(f)| < 1 for x ∈ R\S, and there
exists N ≥ 1 s.t. uN > 2 and if N > 1 then fk(S) ∩ S = ∅, 1 ≤ k < N , then f
has an invariant probability measure that has absolutely continuous conditional
measures on unstable manifolds.

Since the result is for piecewise C2 maps and the conditions only depend on
derivatives this result has the important corollary that results for the piecewise
linear border collision normal form, which should more correctly be called a
truncated normal form, persist when small nonlinear terms are added.
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Figure 17. (a) Schematic view of the Markov partition; (b)
numerical solution for parameters given below.

Historical note: The theorem as actually published [52] has uN > 2 and
fk(S)∩S = ∅, 1 ≤ k ≤ N (note the non-strict inequality in the last expression).
However, no extra conditions on images of S are required if N = 1 and if N > 1
then the requirement is that fN has similar geometry on vertical strips, which
only requires non-intersection up to the (N − 1)th iterate, so we are confident
that Theorem 45 is what was intended.

The criteria for the theorem to hold are easy to verify numerically making
it possible to determine regions on which Young’s Theorem holds and compare
these with theoretical bounds in [5], see [22] for details.

9. Two-dimensional attractors

The BCNF can also have robust two-dimensional attractors. These results
use some beautiful theory for general piecewise linear maps due to Buzzi and
Tsujii. These will be described in the second section – first we describe another
context in which the existence of two-dimensional attractors can be deduced
from first principles. Note that the existence of two-dimensional attractors
implies expansion in all directions, so the only way this can occur is through
folding, i.e. the map must be non-invertible: D0D1 < 0.

9.1. A Markov Partition. In section 1.5 we saw that Markov partitions and
their associated graphs provide a good way to analyze dynamics. The idea in
this section is to construct an example with a two-dimensional Markov partition
and then show that the map (or an iterate of the map) is uniformly expanding
on each region defining the Markov partition.

Consider the BCNF with D0 < 0, D1 > 0 and µ = 1. We shall start by
constructing a simple bounding region and then try to describe the dynamics
in this region. Note that the conditions on Dk, k = 0, 1, imply that the images
of both the left and the right halsf planes map to the lower half plane.

Let O = (0, 0) so P1 = f(0, 0) = (1, 0). Suppose that P2 = f(P1) is in x > 0
and P3 = f(P2) lies on the y-axis. so P4 = f(P3) lies on the x-axis and we
shall assume this can be chosen so that P4 is in the left half plane as shown in
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Fig. 17a. To achieve this will require only one real constraint (that P3 lies the
y-axis), the remainder are open conditions.

Next, choose the parameters such that f(P4) = P2 (two conditions; these will
fix T0 and D0) and finally arrange it so that the straight line P4P2 intersects
the y-axis at V0 = (0,−1), the preimage of O (one real condition). This gives
four real conditions for the four parameters Tk, Dk, k = 0, 1. We will show
that these can be solved below, but before verifying this let us consider the
consequences (see Fig. 17a again).

Let V1 be the intersection of P1P3 with V0P2, so its image will lie on the in-
tersection of P2P4 and OP3, i.e. f(V1) = V0. Similarly let V2 be the intersection
of P1P3 and OP2 so f(V2) = V1. The lines connecting the points O, P1, . . . , P4,
V0, V1 and V2 divide the trapping region OP1P2P3P4 into eight sectors

(56)
R1 = OV2P1, R2 = P1V2P2 R3 = P2V1V2 R4 = P2V1P3

R5 = P3V1V0, R6 = OV0V1V2, R7 = P3V0P4 R8 = P4V0O.

These have been chosen so that

(57)
f(R1) = R2 ∪R3, f(R2) = R4, f(R3) = R5,
f(R4) = R4 ∪R7, f(R5) = R8, f(R6) = R1 ∪R6,
f(R7) = R3 ∪R6 ∪R8, f(R8) = R1 ∪R2.

This is therefore a two-dimensional Markov partition and the symbolic descrip-
tion of orbits is easy to describe using a Markov graph in precisely the same
way as in section 1.6. A little more work is required to show that the map is
transitive on the invariant region, see [30] for details.

Let us check that this is possible. By direct calculation

P2 = (T1 + 1,−D1), P3 = (T1(T1 + 1)−D1 + 1,−D1(T1 + 1))

and hence the first constraint is that

(58) D1 = T1(T1 + 1) + 1.

In this case set t = T1 so D1 = t2 + t+ 1 and

P3 = (0,−D1(t
2 + t+ 1)), P4 = (1−D1(t+ 1), 0)

and P4 is in x < 0 provided D1(t + 1) > 1 and note that this is certainly true
if D1 > 1 and t > 0. Now the line P2P4 intersects the y-axis at V2 = (0,−1) if
(by similar triangles)

1

D1(t+ 1)− 1
=

D1

D(t+ 1) + t

and after a little algebra (involving factorization of a quintic in t) this holds if

(59) t3 + t2 + t− 1 = 0, D1 =
1
t .

A simple root finding method shows that this has a positive solution with

T1 = t ≈ 0.543689, D1 ≈ 1.839287

and solving the equations for T0 and D0 gives

T0 = −t2 ≈ −0.295598, D0 = −1.

Figure 17b shows a numerically calculated solution for these parameter values.
Glendinning and Wong [30] show that an expansion condition holds on iterates
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of the map which implies transitivity on the whole regionOP1P2P3P4. They also
derive conditions for a sequence of other parameters having a similar Markov
property.

9.2. Piecewise linear maps. A number of general results were proved in
around 2000 proving the existence of two-dimensional attractors for piecewise
linear maps. These all rely on expansion of each individual map, but the tech-
nical assumptions are more general than the BCNF as continuity across bound-
aries is not assumed. Here we follow Buzzi [11] and Tsujii [50].

Let D be a polygonal region in R2, i.e. a compact connected region whose
boundary is a finite union of straight line segments. Let P be a finite collection
of non-intersecting open polygonal regions {Pi}mi=1 such that the union of the
closures of these polygons is D. Then a map F : ∪Pi → D is a piecewise affine
map if F |Pi is an affine map, i = {1, . . . ,m}. If in addition there exists λ > 1
and a metric d : R2 → R such that for each i ∈ {1, . . . ,m} F |Pi is expanding,
i.e.

d(F (x), F (y)) ≥ λd(x, y) for all x ∈ Pi

i = 1, . . . ,m, then F is a piecewise expanding affine map. The main result that
can be applied to the BCNF shows that there are two-dimensional attractors.
Like Young’s Theorem it uses the idea of invariant measures to describe the
dynamics, but it is the existence of open sets in the attractor which implies
that the attractor has topological dimension two rather than simply Hausdorff
dimension equal to two.

Theorem 46. [10, 11, 50] Suppose F is a piecewise expanding affine map of a
planar polygonal region D. Then there exists an attractor in D such that F has
an absolutely continuous invariant measure on the attractor and the attractor
contains open sets.

Unfortunately, the BCNF is not expanding (at least in the standard Eu-
clidean metric), so a little more work needs to be done in order to apply this
result.

9.3. Robust bifurcations to two-dimensional attractors. The examples
of section 9.1 can be proved to have two-dimensional attractors, but they exist
at special values of the parameters. The results of Buzzi and Tsujii of section 9.2
make it possible to prove the existence of such sets for open sets of parameters.
It is even possible to construct open conditions so that the border collision
bifurcation has a stable fixed point if µ < 0 and a two-dimensional attractor if
µ > 0 [26]. The proof follows the rather easier path of [25]. An example of a
two-dimensional attractor with

TL = −0.1, DL = −8/11, TR = 0.05, DR = 1.99

and µ = 1 is given in Figure 18.

Theorem 47. [26] There exists an open region D ⊂ R4 such that if

(T0, D0, T1, D1) ∈ D
then the BCNF (39,40) has a stable fixed point if µ < 0 and a fully two-
dimensional attractor if µ > 0.
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Figure 18. Numerically calculated attractor for the BCNF
with parameters as given in the text.

Proof: From the results of section 7.1 the choices 1 + D0 − T0 > 0 and
1 +D1 − T1 > 0 imply that there is a fixed point in x < 0 if µ < 0 and a fixed
point in x > 0 if µ > 0. The fixed point in x < 0 is stable (when it exists)
provided the eigenvalues of the Jacobian have modulus less than one, i.e. if

(60) |D0| < 1 and |T0| < 1 +D0.

Now consider µ > 0, so by scaling we can assume that µ = 1. The pattern
will be similar to proofs of chapter 8: we begin by constructing an absorbing
region for well-chosen parameters. Fix ϵ > 0 (to be chosen small enough later)
and suppose that

(61) |Tk| < ϵ, k = 0, 1, −D0 ∈ (
6

11
,
10

11
), D1 ∈ (2− ϵ, 2).

Clearly (60)) is satisfied for small ϵ, so if µ < 0 there is a stable fixed point. If
µ = 1 consider the rectangular region with

(62) −(1 + 0.05− 4ϵ) ≤ x ≤ 1 + 4ϵ, −(2 + 0.05− 2ϵ) ≤ y ≤ 2ϵ.

If (x, y) is in this rectangle then the image is (x′, y′) with x′ = 1+ y+ Tkx and
so taking maximum and minimum values

1− (2 + 0.05− 2ϵ)− ϵ(1 + 0.05− 4ϵ) ≤ x′ ≤ 1 + 2ϵ+ ϵ(1 + 4ϵ)

i.e.

−(1 + 0.05− c1ϵ− 4ϵ2) ≤ x′ ≤ 1 + 3ϵ+ 4ϵ2

and so provided ϵ is sufficiently small x′ satisfies the same rectangle constraint
as x in (62).

Similarly, y′ = −D0x if x < 0, so y′ is is negative in this case and takes a
minimum value of around −10

11 which is small in modulus compared with the
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boundary of the rectangle and so y′ comfortably satisfies the constraints of the
rectangle for ϵ small. If x > 0 then y′ = −D1x and so again y′ is negative and

−2(1 + 4ϵ) ≤ y′.

Hence, provided 0.05− 2ϵ > 8ϵ this will again lie in the region defined by (62).
Thus for small enough ϵ > 0 the region (62) is invariant.

To prove expansion and hence apply results of the preceeding section, sec-
tion 9.2, we need to know a little more about the dynamics in this region.

Suppose (x, y) lies in the rectangle defined by (62) with x < 0. Then the
image point (x′, y′) has y′ = −D0x < 0 and hence the second iterate will have
x-coordinate less than 1−D0x+ ϵ|x′| which is greater than zero for sufficiently
small ϵ as the maximum of x is close to 1.05 so |D0x| ≤ 21

22 up to terms of order

ϵ. Thus if x < 0, the x-coordinate of f2(x, y) is in x > 0.
Note that the linear matrices of the BCNF with |Tk| ≈ 0 have the form(
0 1
α 0

)
, α ∈ {−D0,−D1}, suppose we multiply four of these together with

α1, . . . , α4 as the bottom left coefficients. Straightforward calculation show we
obtain (

α2α4 0
0 α1α3

)
.

Now, the Jacobian of f4, Df4, is just a product of BCNF matrices along the
orbit, so if α1 = −D0 then the second iterate is in x > 0 and so α3 = −D1 and
similarly for α2. Thus the only combinations possible are D2

1 which is close to
4, and D0D1 which is close to −12

11 or larger. Adding in the order ϵ corrections

will not change the fact that thes Jacobian of f4 is expanding and hence f4,
defined on regions on which it is linear, is an expanding piecewise linear map
and has a two-dimensional attractor by Theorem 46. It is straightforward to
show that this implies that f itself has a two-dimensional attractor and the
result is proved.

�

10. Challenges

There are many possible generalizations of th results presented here, and
other directions that could have been taken. Here we mention just a few.

10.1. Other classes of maps. In section 1.3 we mentioned Nordmark’s square
root map [39]. Square root maps appear in many contexts in PWS systems [7]
and so it would be natural to put more attention into the phenomena that
can arise in these cases (e.g. [2]). Once again though, the issue should be to
understand what can be said usefully. It may be that the classes are too large,
or the bifurcation phenomena too complicated, to give complete descriptions
and therefore the skill is to find useful but finite statements: less is more (cf.
section 1.4).

The square root map introduces a particular singularity in the derivative of
the map. But in the PWS world it is always possible (at least in principle) to
introduce more discontinuities. When is this useful? When is it interesting?
What about infinitely many discontinuities? Mathematicians can always think
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of generalizations, but it is probably best (in general) to allow applications to
suggest what is most worthwhile.

The work on the border collision normal form uses the fact that the map is
piecewise linear in a number of ways: it means quite a lot of features can be
computed by brute force (section 7.2 for example) and it means that iterates of
straight lines are straight lines, simplifying geometric arguments considerably
(this is key to Buzzi’s proofs for piecewise expanding maps in section 9.2).
However, apart from Young’s theorem (section 8.3) and the original robust
chaos argument of [5] relatively few results seem to cary over easily. The effect
of nonlinear terms and more generally, higher order terms in normal forms,
seems an important topic for future research.

The final area, and the one which will occupy the remainder of these lectures,
is the effect of higher dimensions. As argued in [29, 27, 28] the number of cases
can multiply hugely as the dimension of the phase space increases, but there
are still examples of results that are either independent of the dimension.

10.2. Higher dimensions: periodic orbits. In section 7.1 it was possible
to compute precise criteria for the existence of fixed point and orbits of period
two for the border collision normal form in two dimensions, and to give criteria
for their stability. This is also possible for the BCNF in Rn, where the normal
form is (39) with constant µ(1, 0, . . . , 0)T and the matrices A0 and A1 are in
observer canonical form [6]

(63) Ak =


rk1 1 0 0 ...
rk2 0 1 0 ...
rk3 0 0 1 ...
: . . . ...

rkn 0 0 ... 0

 , k = 0, 1.

Without going through the details, we will state the result, which depends on
the index of the matrices A0 and A1.

Definition 48. The index σ±
k of the matrix Ak of (63) is defined by σ+

k (resp.

σ−
k is the number of real eigenvalues of Ak greater than 1 (resp. less than 1),

k = 0, 1.

The index gives information about the fixed points and points of period two
[8, 47].

Theorem 49. Consider the BCNF in Rn. Let xk denote a fixed point of the
BCNF in x < 0 if k = 0 and x > 0 if k = 1.

• If σ−
0 +σ−

1 is even and σ+
0 +σ+

1 is even then x0 and x1 exist for different
signs of µ and there are no period two orbits if µ ̸= 0.

• If σ−
0 + σ−

1 is even and σ+
0 + σ+

1 is odd then x0 and x1 exist for the
same sign of µ and there are no period two orbits if µ ̸= 0.

• If σ−
0 +σ−

1 is odd and σ+
0 +σ+

1 is even then x0 and x1 exist for different
signs of µ and an orbit of perioi two orbits exists for one sign of µ.

• If σ−
0 + σ−

1 is odd and σ+
0 + σ+

1 is odd then x0 and x1 and an orbit of
period two orbits exists for one sign of µ.
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If x0 and x1 both exist for the same sign of µ then σ+
0 + σ+

1 is odd and so
at least one of them is non-zero. Hence at least one of the matrices A0 and A1

has an eigenvalue with modulus greater tha one.

Corollary 50. The BCNF cannot have coexisting stable fixed points.

In fact, with a little more work it can be shown that if the period two orbit
if it is stable then the fixed point that coexists with it is unstable [47].

Most of the analysis of section 7.2 was actually independent of the dimension
of phase space, so the analysis can be used to describe periodic orbits, mode
locking and shrinking points in higher dimensional systems. See [47] for details.

10.3. Higher dimensions: n-dimensional attractors. The results of Buzzi
and Tsujii described in section 9.2 hold in Rn, n > 2, but with a slight caveat:
the attractors may not have topological dimension n, i.e. they may not contain
open sets, though they always have Hausdorff dimension n and topological
dimension n on a generic set of parameters. This makes it possible to prove
results analogous to Theorem 47 but with that technical restriction.

Theorem 51. [25] There exists an open set U ⊂ R2n such that if

(r01, . . . , r0n, r11, . . . , r1n) ∈ U

then the border collision normal form in Rn with matrices (63) has a stable
fixed point if µ < 0 and an attractor with Hausdorff dimension equal to n if
µ > 0. This attractor has topological dimension equal to n generically in U .

It appear harder to generalize Young’s results of section 8.3, though a recent
result of Zhang [53] extends her result to R3 with two-dimensional unstable
manifolds. It would be very interesting to see this extended to higher dimension,
and higher dimensional unstable manifolds.
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Université de Nice.

[16] Gambaudo, J.M., Glendinning, P. & Tresser, T. (1986) The gluing bifurcation: I.
symbolic dynamics of the closed curves, Nonlinearity 1 203–214.

[17] Gambaudo, J.M., Glendinning, P. & Tresser, T. (1987) Stable cycles with com-
plicated structure, in Instabilities and Nonequilibrium Structures Eds. Tirapegui, E. &
Villarroel, D., Reidel, Dordrecht.

[18] Gambaudo, J.M. & Tresser, C. (1985) Dynamique regulière ou chaotique. Applications
du cercle ou de l’intervalle ayant une discontinuité, C.R. Acad. Sci. (Paris) Série I 300
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