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Abstract: The analysis of piecewise smooth bifurcations reveals an alarming pro-
liferation of cases as the dimension of phase space increases. Rather than attempt the
derivation of exhaustive lists of possibilities we describe ways of giving less detailed, but
possibly more useful, results.

1 Introduction

“Take some more tea,” the March Hare said to Alice, very earnestly.
“I’ve had nothing yet,” Alice replied in an offended tone, “so I can’t
take more.”
“You mean you can’t take less,” said the Hatter: “it’s very easy to take
more than nothing.” [2] chapter 7.

Mathematicians often aim to produce classification theorems, and normally these attempt
to be as complete as possible. However, as argued in [4], the number of bifurcations in
piecewise smooth (PWS) systems increases alarmingly with the dimension of the am-
bient phase space or the complexity of the system, and this may mean that complete
descriptions, in the same spirit as would be given for smooth systems, become infeasi-
ble and certainly become unwieldy. This creates a problem for mathematicians with a
background in smooth bifurcation theory: there are many potentially beautiful problems
such as the existence of Shilnikov homoclinic bifurcations with sliding segments in local
bifurcations of stationary points of PWS systems [4], but if the general result is that for
the boundary equilibrium bifurcation in Rn then the local dynamics can contain ana-
logues of any bifurcation of smooth systems in Rn, as may well be the case, then it is
unclear how to proceed.

This dilemma suggests that mathematicians should find coarser, but generally useful,
statements about the local bifurcation structure of PWS system and provide a general
framework or set of techniques which researchers interested in applications can use on
particular examples. Thus the theoretician might need to rein in his or her natural
inclination towards a detailed classification and provide instead descriptions that are less
complete but easier to follow and interpret. Or again describe some things that cannot
happen (as so much can). In this paper we give some examples of results that fit into
this ‘less is more’ way of seeing the dynamics of PWS systems.
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2 Less is More II

2 PWS maps of the interval

There are a number of results describing the dynamics of PWS maps based on the ideas
of Milnor and Thurston [5], which was circulating in preprint form from 1977. However,
these results depend on a knowledge of kneading theory, an algebraic version of symbolic
dynamics, and this means the proofs may seem abstruse, and a great deal of information
is implicit in an algebraic invariant (the kneading invariant) which characterizes the non-
wandering set of a map. (A point x is wandering if there exists an open neighbourhood
U of x such that fn(U) ∩ U = ∅ for all n > 0, and a point is non-wandering if it is
not wandering.) A weaker version of their theorems can be proved without recourse to
new formalism. This simplified version is an example of the ‘less is more’ approach:
the result is general, but for any example more work would be needed to add greater
precision to statements. As is standard in the theory of maps of the interval there is
an issue about the existence of homtervals. These are open intervals J on which fn|J
is a homeomorphism for all n = 0, 1, 2, . . . . The basin of attraction of a stable periodic
orbit may contain homtervals, and homtervals that are not in the basin of attraction of
a periodic orbit are called wandering intervals.

The dynamics is described in terms of Markov partitions and Markov graphs. A
Markov partition is a union of closed sets that are permuted by the map and hence the
images of elements in their complement, (Li), are either disjoint, f(Li) ∩ Lj = ∅, or
Lj ⊆ f(Li). This means that a Markov graph can be defined with vertices labelling the
connected elements of the complement and a directed edge from i to j if Lj ⊆ f(Li).
Given any (finite or infinite) path allowed by this graph then there exists a point that
passes through the sets in the order described by the path.

Theorem 1 Suppose that f : I → I is a PWS map with two continuous monotonic
branches and a single critical point or point of discontinuity. Then there exists 0 ≤ n ≤ ∞
such that the nonwandering set can be written as a union (disjoint except possibly Tn−1

and An)

An ∪
(
∪n−1

0 Tk
)

where dynamics in Tk is determined by a finite Markov graph (possibly zero entropy) and
An is (up to homtervals) a union of periodic orbits or a union of intervals if n < ∞ or
a Cantor set if n =∞.

We will sketch a proof in the case that the map is differentiable and expanding away
from the critical point or the point of discontinuity, which will be denoted by c. This is
Lemma 2 below. The proof relies on the idea of induced maps and renormalization. If
c ∈ J write J = J0 ∪ {c} ∪ J1 where J0 = J ∩ {x < c} and J1 = J ∩ {x > c}.

A map f is renormalizable if there exists J with c ∈ J and positive n0 and n1 with
n0 + n1 > 2 such that fnk |Jk, k = 0, 1, is a homeomorphism and

fn0(J0) ∪ fn1(J1) ⊆ J.

If f is renormalizable then the induced map F : J → J defined by F (x) = fnk(x) if
x ∈ Jk, k = 0, 1 is again a map with a single discontinuity or critical point.

Finally, f : I → I is transitive if for all open J ∈ I there exists n such that I =
∪n0c`(fk(J)).

Lemma 2 If f : I → I with I smallest such interval and |f ′(x)| ≥ a > 1 if x 6= c, then
either f is renormalizable or f is transitive.
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Where does this get us? If f is transitive then the non-wandering set is I. If f is
renormalizable then the components of the set

K =

(
n0−1⋃
k=0

fk(J0)

)
∪

(
n1−1⋃
r=0

f r(J1)

)
are permuted by the map so the complement I\K is a union of closed intervals (possibly
trivial or even empty) Lk such that either f(Li) ∩ Lj = ∅ or Lj ⊆ f(Li) – the condition
for a Markov graph. So the dynamics is divided into the dynamics in the sets Lk which
is determined by a finite Markov graph and the dynamics induced by the renormalized
map (again a two monotonic branch map) in K.

Sketch proof of Lemma 2: Intervals expand under iteration so images of any open
interval V must eventually intersect c. Call this image V0. V0 is divided into two by
c and each component will also return for the first time. Either these returns are are
inside V0 (so f is renormalizable) or define V1 to be the union of V0 and its first returns.
Repeat and note that each return is after the same or a shorter number of iterations
and hence either f is renormalizable or a larger interval V2 can be constructed from
V1 and its returns. If f is not renormalizable then for every interval the process never
stops and the return times tend to a limit and the sets tend to a limit, V∞. If the
sum of the limiting return times is greater than one then f is renormalizable on V∞ (a
contradiction), otherwise return times are 1 (and this is achieved in finite time) and since
I was minimal V∞ = I and the map is transitive.

�

This is a simple way of describing the dynamics of all piecewise monotonic maps
with a single discontinuity. It has some detail (finite Markov graphs) but leaves a lot
unsaid, so it does not require sophisticated arguments: less is more.

3 The border collision normal form: Young’s Theorem

Let x = (x1, x2)T , then the border collision normal form is a piecewise affine map of the
plane:

xn+1 =

{
A0xn + m if (x1)n ≤ 0

A1xn + m if (x1)n ≥ 0
, with Ak =

(
tk 1
−dk 0

)
, k = 0, 1,

and m = µ(1, 0)T .
The parameter µ is considered to be the bifurcation parameter and some results for

these maps are described in [4]. Banerjee et al. [1] show that the border collision normal
form has parameters with (a) a trapping region; and (b) transverse intersections of stable
and unstable manifolds and hence quasi-one-dimensional attractors: this has been called
robust chaos. Young provided the tools to make these statements more precise [6].

Let R = [0, 1] × [0, 1] and let S = {a1, . . . , ak} × [0, 1] be a set of vertical switching
surfaces with 0 < a1 < · · · < ak < 1. Then f : R→ R is a Young map if f is continuous,
f and its inverse are C2 on R\S and f = (f1, f2)T satisfies the expansion properties
(H1)-(H3) below on R\S.

(H1) inf

{(∣∣∣∂f1

∂x

∣∣∣− ∣∣∣∂f1

∂y

∣∣∣)− (∣∣∣∂f2

∂x

∣∣∣− ∣∣∣∂f2

∂y

∣∣∣)} ≥ 0,
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(H2) inf

(∣∣∣∂f1

∂x

∣∣∣− ∣∣∣∂f1

∂y

∣∣∣) = u > 1, and

(H3) sup

{(∣∣∣∂f1

∂y

∣∣∣+
∣∣∣∂f2

∂y

∣∣∣)(∣∣∣∂f1

∂x

∣∣∣− ∣∣∣∂f1

∂y

∣∣∣)−2
}
< 1.

Let Jac(f) denote the Jacobian matrix of f and recall that u is defined in (H2).

Theorem 3 (Young’s Theorem [6]) If f is a Young map, |Jac(f)| < 1 for x ∈ R\S, and
there exists N ≥ 1 s.t. uN > 2 and if N > 1 then fk(S)∩ S = ∅, 1 ≤ k < N , then f has
an invariant probability measure that has ‘absolutely continuous conditional measures on
unstable manifolds’.

The technical conclusion in quotation marks means that the invariant measure projects
nicely onto one-dimensional horizontal lines.
Remark 1: The theorem holds for C2 functions so provided perturbations of the normal
form are C2 in phase space and C1 close in parameters then conditions for the theorem
will still hold (if they hold in the first place) and so behaviour is robust.
Remark 2: The theorem as actually stated in [6] has uN > 2 and fk(S) ∩ S = ∅,
1 ≤ k ≤ N . However, no extra conditions on images of S are required if N = 1 and if
N > 1 then the requirement is that fN has similar geometry on vertical strips, which only
requires non-intersection up to the (N −1)th iterate, so we are confident that Theorem 3
is what was intended [3].

The criteria for the theorem to hold are easy to verify numerically making it possible
to determine regions on which Young’s Theorem holds and compare these with theoretical
bounds in [1], see [3] for details. The point about this result is that one could be tempted
to provide further details such as the Hausdorff dimension of the support of the measure
(the attractor), but that the statement that there is an attractor with an invariant
measure having a nice one-dimensional projection gives the essential picture without
overcomplicating the story: less is more.

4 Conclusion

The two results described here meet what I consider to be the ‘less is more’ criterion.
They hold for a good range of models, they are informative, but there is much extra detail
that they do not provide and they do not attempt a complete topological classifications.
Given the hazards created by the proliferation of bifurcations in PWS systems outlined
in [4], we consider the existence of these results a cause for optimism, and they provide
a template for the expression of further descriptions of PWS dynamics.
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