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Abstract: The analysis of piecewise smooth bifurcations reveals an alarming prolif-
eration of cases as the dimension of phase space increases. This suggests that a different
approach needs to be taken when trying to describe bifurcations. In particular, it may
not be helpful to analyze particular bifurcations at the level of detail that is standard
for smooth systems.

1 Introduction

“Can you do addition?” the White Queen asked. “What’s one and one
and one and one and one and one and one and one and one and one?”
“I don’t know,” said Alice. “I lost count.” [2] chapter 9.

With the analysis of more bifurcations of piecewise smooth (PWS) systems it is becoming
clear that there is a proliferation of cases as the dimension of the ambient phase space
increases. In smooth dynamical systems the centre manifold theorem implies that the
range of typical local bifurcations is severely restricted and independent of the phase space
dimension. Indeed, only the saddle-node bifurcation and Hopf bifurcation are generic,
though the addition of symmetry or other special features can add complications. The
global bifurcations of typical smooth systems are also constrained, although features such
as Shilnikov’s Theorems for homoclinic orbits, and the possibility of bifurcations being
dense in parameter space mean that it may be impossible to give a complete description.
Nonetheless, there are robust features common to all these bifurcations that can be
described sensibly.

The situation for PWS systems appears significantly harder to deal with. Whereas
typical smooth systems have a manageable number of fundamental bifurcations, the
number of cases for PWS systems increases with the dimension of the phase space in
such a way that a complete classification would require the enumeration of an infinite
set of possibilities. This may be good for the production of academic papers, but it does
not necessarily help us to understand potential applications.

These observations suggest that the attitude to bifurcations of PWS systems needs
to be somewhat different from that applied to smooth systems. In particular, it may
be more useful to develop weaker results which apply quite generally rather than give
a complete picture of the bifurcations that can occur (a list that might take forever).
Such results might provide a rather less detailed description of possibilities, or the devel-
opment of techniques that would allow a more detailed description if the occasion (i.e.
the application) arose, but would not attempt to apply these methods to all possible
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2 Less is More I

situations without further motivation. This is the ‘Less is More’ philosophy of the title,
described in greater detail in [10].

In the remainder of this note we give examples of the proliferation described above.

2 Transitions to chaos in PWS maps

For smooth maps of the interval, for example the quadratic map, the transition to chaos
is very easy to characterize. Let P be the set of periods for the map, i.e. if the map is
f then p ∈ P if and only if f has a periodic orbit of least period p. It follows from the
proof of Sharkovskii’s Theorem that for any continuous non-chaotic map of the interval

P = {2n, 0 ≤ n ≤ N}

for some N ∈ {0, 1, 2, . . . } ∪ {∞}. To some extent this explains why period-doubling
cascades are so ubiquitous, though it also holds for Nordmark’s continuous square root
map where the stable periodic orbits form a period-adding sequence.

For PWS maps with discontinuities the situation is more complicated. If we con-
sider maps with a single discontinuity and with two increasing continuous branches then
Gambaudo et al [5] show that the only infinite sets of periods that can occur on the
boundary of chaos are arbitrary period multiplying

(1) P = {pn | pn+1 = anpn an ∈ N, an ≥ 2}

though these correspond to points on a one-parameter boundary of chaos in a two-
parameter space; typically the transition to chaos occurs after a finite number of periods
are created.

In the more general case of PWS maps with a single discontinuity and two continuous
monotonic branches at least one of which is decreasing there is a new robust route to
chaos involving creation of infinitely many periodic orbits: the anharmonic route [6]. In
the case of one increasing and one decreasing branch this generates periods

P = {pn | pn+1 = 2pn + (−1)n}

and more general forms are also possible involving higher iterates of the map or maps
with two decreasing branches.

Furthermore, if we consider all possible sets of periodic orbits for non-chaotic maps
then the set of infinite possible periods on the boundary of chaos, ignoring the multi-
plying of (1), is given by a subshift of finite type corresponding to different sequences of
renormalizations or induced maps [7].

These results show that even though the continuous case is constrained, the set
of things that can happen in the discontinuous case is complicated by a proliferation
from essentially one to uncountably many possibilities. Moreover, whilst these can be
characterized it is not clear which are relevant for the examples that arise in PWS
dynamics (which possibilities occur in expanding maps, or in piecewise linear maps?).
The theory that makes this analysis possible was developed in the late 1970s [12] and
these ideas are worth revisiting.

3 The border collision normal form

Now consider continuous PWS maps in dimension greater than one. Suppose that phase
space is divided into two regions by a switching surface and smooth maps are defined on
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each side of the surface, and the PWS map is continuous but not differentiable across
the surface. Suppose a fixed point exists at some parameter value in one region, and as
parameters vary it moves to intersect the switching surface. What happens?

Nusse and Yorke [13] show that given some genericity conditions the bifurcation is
described locally by the border collision normal form, with leading order terms

zn+1 = F (zn) =

{
A0zn +m if x1 < 0

A1zn +m if x1 > 0

with A0 =

(
t0 1
−d0 0

)
, A1 =

(
t1 1
−d1 0

)
and m = µ(1, 0)T .

This can be generalized to Rn where the map takes the same form and provided some
simple genericity conditions hold the matrices Ai can be written in observer canonical
form where the first column is arbitrary and the remainder has ones on the upper off-
diagonal and zeroes everywhere else, and m = µ(1, 0, . . . , 0)T [3].

Using some beautiful technical results of Buzzi and Tsujii [1, 14] it is possible to
prove bifurcations from fixed points to n-dimensional attractors in these maps.

Theorem 1 ([8, 9]) Consider the border collision normal form in Rn (n = 2, . . . ).
There exist open regions of parameter space Bn such that for each parameter in Bn if
µ < 0 then the border collision normal form has a stable fixed point; whilst if µ > 0 then
the border collision normal form has at least one attractor with an invariant measure
absolutely continuous with respect to n-dimensional Lebesgue measure. If n = 2 then the
attractor has topological dimension equal to 2. If n > 2 then the attractor has Hausdorff
dimension equal to n and generically has topological dimension equal to n.

What about other transitions: can we go from attractors of any given Hausdorff
dimension to any other Hausdorff dimension? If so, is this the right way of looking at
the problem? If not, how much is the dynamics constrained and how should this be
described?

4 Boundary Equilibrium Bifurcations

Boundary equilibrium bifurcations (BEBs) occur if a stationary point of a PWS system
intersects the boundary of one of the regions on which the smooth components of the
system are defined. Even in planar flows Filippov states that there are 12 cases that need
to be considered [4]. The example below of a flow in R3 shows just how complicated the
bifurcation can become in higher dimensions. This example has a Shilnikov homoclinic
orbit with a sliding section immediately after the bifurcation, and hence all the levels of
complexity of this three-dimensional flow [11].

The example uses two differential equations with switching surface z = 0, so F+

defines the flow if z > 0 and F− defines the flow if z < 0, where

F+(x, ν) =

 −ρ a −ω
0 λ 0
ω b −ρ

 x
y

z − ν

 , F−(x, ν) = (U1, U2, U3)T ,

with U3 > 0 and Uk 6= 0, k = 1, 2. The upper flow F+ has a stationary point at (0, 0, ν)
so there is a BEB if ν = 0. Suppose that the remaining constants have been fixed, except
ω which will be used to explore the sensitivity of the bifurcation to changes in the other
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parameters. Consider the case ν > 0. By scaling we may set ν = 1 and then the final
parameter ω can be used to determine the different dynamics that can occur.

The stationary point (0, 0, 1) has eigenvalues λ and −ρ ± iω which may be chosen
so that ρ

λ < 1. Thus if there is a homoclinic orbit, i.e. an orbit which approaches
(0, 0, 1) in both forwards and backwards time, the classic results of Shilnikov proving the
existence of chaos hold with minor technological modifications to take the sliding section
into account [11]. Numerical simulations [11] show that ω can be chosen so that the
flow includes just such a homoclinic orbit and hence that the dynamics in ν > 0 of this
BEB is determined by a family of differential equations (as the other parameters vary)
which has complicated bifurcation structure itself.

5 Conclusion

A subject comes of age when the extent and scope of the discipline is generally accepted.
It is time to grow up. What features should define a useful bifurcation theory in piecewise
smooth dynamics? An attempt to answer this question is made in [10] – here we have
simply shown that a complete classification can lead to very long lists. Of course there are
many other issues (e.g. noise and nonlinearity) not mentioned here, but the fundamental
problem is: how do we select methods and results to avoid endless lists?
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