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School of Mathematics
The University of Manchester

Manchester M13 9PL

jeff.paris@manchester.ac.uk, alena.vencovska@manchester.ac.uk

October 24, 2016

Abstract

We investigate the status within Unary Pure Inductive Logic of a fam-
ily of analogy principles suggested by the so called Indian Schema from
Gotama’s Nyāyasūtra showing that they all follow from the symme-
try principle of Atom Exchangeability. Their status under the weaker
assumptions of Constant and Predicate Exchangeability and Strong
Negation are also investigated.
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Introduction

In the Nyāyasūtra of Gotama1, the founding Indian logic text from c.200BCE-
150CE, the author aims to delineate in five terse aphorisms (Sūtras 3.1.32,3.1.34-
37) a scheme for right reasoning. Subsequently numerous commentators, most

∗Supported by a UK Engineering and Physical Sciences Research Council Research
Grant.

1Aka Gautama, Aks.apāda.
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notably Vātsyāyana (c.375CE-450CE), Uddyotakara (6th century CE), Gaṅgeśa
(12th century CE), added their own explanations and developments, as well as in-
corporating revisions from other Indian Schools of Philosophy. When H.T.Colebrooke
first introduced this Nyāya system of philosophy to the Victorian public in 1824
the pattern of reasoning he called the Hindu Syllogism, subsequently dubbed the
Indian Schema, was exemplified by a handful of examples,2 most prominently the
Smoke-Fire example:3

(a) Where there is smoke there is fire, like in the kitchen.

(b) There is smoke on the hill.

(c) Therefore there is fire on the hill.

How exactly such examples should be understood, in their classical Sanskrit con-
text or within the framework of contemporary notions of reasoning (e.g. deductive,
default, case based, etc.) has been the subject of much debate, see [3] for a sample.
In particular it is a moot point why the instance ‘like in the kitchen’ is present
at all since the earlier ‘Where there is smoke there is fire’ would seem to render
it redundant. Certainly its featuring there was taken by some Victorians to dis-
miss the Indian Schema as simply invalid analogical reasoning, from particular to
particular.
In a previous paper, [11], we mentioned possible grounds for supposing that Go-
tama’s original intention for line (a) (the udāharan. a) was just to cite an instance
of smoke in a kitchen being the result of a fire and that the later explicit intro-
duction of the universal by the Buddhist logician Dharmak̄ırti, see Oetke’s [10],
or possibly his predecessor Dignāga (c.480CE-540CE), see Ganeri’s [5, page 38],4

represented a shift from analogical to deductive reasoning. Viewed in this way
then the Indian Schema becomes:

(a) When there was smoke in the kitchen there was fire.

(b) There is smoke on the hill.

(c) Therefore there is fire on the hill. (?)

Whether or not this was Gotama’s original intention, we continued in [11] to argue
that nevertheless, and not withstanding the Victorians’ rebuke, the ‘reasoning’
in this version can be justified as rational within the context of Pure Inductive

2For a quick introduction see J.Ganeri’s [4].
3This is the (last) three line form meant for reasoning for oneself, see [13].
4Ganeri also points out in this paper that Vātsyāyana (c.375CE-450CE) had already

made a significant step in this direction.
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Logic (hereafter PIL) – see [12]. Our interest in this paper is to investigate more
fully some of the analogical principles of probability assignment resulting from
various possible formalizations of (?). Before doing so we need to briefly recall the
framework of PIL as presented, for example, in [12].

The Pure Inductive Logic Context

Pure Inductive Logic as described in [12] is conventionally set within a predicate
language L with a finite set of relation symbols and countably many constant
symbols a1, a2, a3, . . . and no function symbols nor equality. Let SL denote the set
of sentences of Lq and let QFSL denote the quantifier free sentences in L.

A probability function on L is a function w : SL→ [0, 1] such that for θ, φ, ∃xψ(x) ∈
SL,

(i) If |= θ then w(θ) = 1.

(ii) If θ |= ¬φ then w(θ ∨ φ) = w(θ) + w(φ).

(iii) w(∃xψ(x)) = lim
n→∞

w

(
n∨
i=1

ψ(ai)

)
.

From these all the expected properties of probability follow (see [12, Proposition
3.1]), in particular if θ |= φ then w(θ) ≤ w(φ).

Given such a w we set the conditional probability function w(· | ·) : SL×SL→ [0, 1]
to be a function such that for θ, φ ∈ SL with w(φ) > 0,

w(θ |φ) =
w(θ ∧ φ)

w(φ)
.

In practice it will be convenient to identify

w(θ |φ) = c with w(θ ∧ φ) = cw(φ)

since this avoids separating the cases when w(φ) is zero and non-zero.

In PIL we are at this stage of its development primarily interested in elucidating
‘rationality constraints’ on w in the case when the symbols of L are entirely un-
interpreted. So if w is to represent a ‘rational’ assignment of probabilities to the
sentences of L in the absence of any particular meaning of, and information about,
the constants and the predicates what properties in addition to (i)-(iii) should w
satisfy?

Numerous such constraints, usually in the form of principles that w should obey,
have been proposed based on various intuitions of what ‘rational’ might mean but
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the most forceful, going back to Johnson [7] and Carnap [1] (or see Carnap’s Ax-
ioms for Inductive Logic at [14, p973]), are those based on symmetry, the idea
being that it would be irrational of w to break existing symmetries in the lan-
guage. At its simplest level this has been understood as saying that if we have
an isomorphism of the symbols of a language then the probability assigned to
a sentence should be the same as that assigned to its symbol-wise image under
that isomorphism, because the isomorphism provides, or witnesses, a symmetry
between sentences and their images.

The most obvious example of such a symmetry is when the isomorphism simply
permutes the constant symbols and leaves the relation symbols fixed. In this case
the requirement of preserving symmetries, that is of assigning the same probability
to a sentence as to its isomorphic image, amounts to:

The Constant Exchangeability Principle, Ex

If θ ∈ SL and the constant symbol aj does not appear in θ then w(θ) = w(θ′) where
θ′ is the result of replacing each occurrence of ai in θ by aj.

Analogous to Constant Exchangeability but this time permuting relation symbols
of the same arity gives:

The Predicate Exchangeability Principle, Px

If the relation symbols Q,R of L have the same arity and R does not appear in
θ ∈ SL then w(θ) = w(θ′) where θ′ is the result of replacing each occurrence of Q
in θ by R.

Satisfying these two principles is widely viewed as necessary for w to be considered
rational. A third symmetry condition is based on the idea that since the context
is supposed to be entirely uninterpreted there is symmetry between R and ¬R,5

just in the same way as there is between heads and tails when we toss a coin. This
yields:

The Strong Negation Principle, SN

w(θ) = w(θ′) where θ′ is the result of replacing each occurrence of the relation
symbol R in θ by ¬R.

Until fairly recently Inductive Logic has been almost entirely concerned with unary
languages, that is where all the relation (or predicate) symbols have a single argu-
ment. In this case there is a further widely accepted6 symmetry principle, Atom
Exchangeability. To wit let Lq be the language whose only relation (i.e. predicate)

5Since ¬¬R ≡ R. Again there is an underlying, albeit more complicated, isomorphism.
6Since it holds for the members of Carnap’s Continuum of Inductive methods
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symbols are the unary P1, P2, . . . , Pq and let α1(x), α2(x), . . . , α2q(x) be the atoms
of Lq, that is the formulae of the form

P ε11 (x) ∧ P ε22 (x) ∧ . . . ∧ P εqq (x)

where ε1, ε2, . . . , εq ∈ {0, 1} and P εi = Pi if ε = 1, ¬Pi if ε = 0.

The Atom Exchangeability Principle, Ax

If σ is a permutation of {1, 2, . . . , 2q} then

w

(
n∧
i=1

αhi(ai)

)
= w

(
n∧
i=1

ασ(hi)(ai)

)
(1)

In the case of Ax then the ‘symmetry’ is between possible complete descriptions of
constants – knowing which atom a particular ai satisfies tells us everything there is
to know about ai as such. [For more on the purported ‘rationality’ of this principle
see [12, p87].] Notice that both Px and SN follow from Ax.

In the case of this purely unary language Lq Constant Exchangeability, Ex, has
two consequences which we shall be needing later. The first is de Finetti’s Repre-
sentation Theorem (in the context of this paper). To explain this let

D2q = {〈x1, x2, . . . , x2q〉 |xi ≥ 0,
∑
i

xi = 1}

and for ~x ∈ D2q let

w~x

(
n∧
i=1

αhi(ai)

)
=

n∏
i=1

xhi .

As shown in [12] w~x extends to a probability function on Lq which satisfies Ex.
Indeed every probability function on Lq satisfying Ex is a convex combination of
these w~x:

de Finetti’s Representation Theorem

If w is s probability function on Lq satisfying Ex then there is a countably additive
normalized measure µ on D2q such that for any θ(a1, a2, . . . , an) ∈ SLq,

w(θ(a1, a2, . . . , an)) =

∫
D2q

w~x(θ(a1, a2, . . . , an)) dµ,

and conversely.
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We refer to µ as the de Finetti prior of w. If w additionally satisfies Ax then it may
be assumed that the measure µ is invariant under permutations of the coordinates,
see [12, Chapter 14].

A consequence of this theorem, due to Gaifman, [2] or see [12, p71], which we shall
also need later is:

The Extended Principle of Instantial Relevance, EPIR

For θ(a1, a2, . . . , an), φ(a1) ∈ SLq,

w(φ(an+2) |φ(an+1) ∧ θ(a1, a2, . . . , an)) ≥ w(φ(an+2) | θ(a1, a2, . . . , an)). (2)

Two particular probability functions, c
Lq
∞ and c

Lq
0 , will figure in some of the results

which follow.

Carnap’s c
Lq
∞ (aka m∗) equals w~x when

~x = 〈2−q, 2−q, . . . , 2−q〉 ∈ D2q .

This probability function has the property that for any sentence θ(a1) ∈ SLq and
n ≥ 0,

c
Lq
∞ (θ(an+1) | θ(a1) ∧ θ(a2) ∧ . . . ∧ θ(an)) = c

Lq
∞ (θ(an+1)). (3)

That is, c
Lq
∞ denies any inductive support, the probability it gives to θ(an+1) is

unaffected by the evidence that θ(ai) held for i = 1, 2, . . . , n no matter how large
n may be.

Carnap’s c
Lq
0 equals

2−q
2q∑
i=1

w~ei

where ~ei ∈ D2q is the vector with 1 in the ith coordinate and 0’s elsewhere. This
probability function has the property that for any sentence θ(a1) and n > 0,

c
Lq
0 (θ(an+1) | θ(a1) ∧ θ(a2) ∧ . . . ∧ θ(an)) = c

Lq
0 (θ(an+1) | θ(a1)) = 1.7 (4)

In this case then c
Lq
0 derives the maximal possible inductive support for θ(an+1)

on the basis of a single given θ(a1). So as the notation already hints it is at the

other end of the ‘inductive scale’ from c
Lq
∞ .

On account of the above properties neither c
Lq
∞ nor c

Lq
0 are particularly widely

favoured choices for blank slate probability assignments in the absence of any
intended interpretation.

7Recall the convention regarding zero divisors in conditional probabilities.
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Unary Formalizations

To make the forthcoming results more immediate we will write S, F, h, k for P1, P2, a1, a2.
8

As argued in [11] for w a probability function on L2
9 we might formalize (?) in

one of the forms10,11

w(F (h) | (S(k)→ F (k)) ∧ S(h)) > 1/2, (5)

w(F (h) | (S(k)←→ F (k)) ∧ S(h)) > 1/2, (6)

w(F (h) | S(k) ∧ F (k) ∧ S(h)) > 1/2, (7)

since a probability of more than 1/2 could, in the uninterpreted, ceteris paribus,
context of PIL, be taken as a justification for opting for F (h) in the sense that it
must be more probable than ¬F (h). In [11] we showed that with the exception
of w = cL2

∞ , any w satisfying Ex+Px+SN must also satisfy each of (5), (6) and
(7); for w = cL2

∞ the inequality in each of (5), (6) and (7) becomes equality.12 So
excluding w = cL2

∞ , each of (5), (6) and (7) is at least as rational as Ex+Px+SN.

Hence the only way one could argue that while accepting Ex+Px+SN, (?) as
formalised by (5), (6) or (7) was not justified in PIL, would be if one held that cL2

∞
was an acceptable choice. But then since, from (3),

cL2
∞ (F (an+1) |F (a1) ∧ F (a2) ∧ . . . ,∧F (an)) = cL2

∞ (F (an+1)) = 1/2

one would also have to argue that even under the evidence of F (a1), F (a2), . . . , F (an)
the conclusion that F (an+1) was not justified, no matter how large n was.

Buoyed by the apparent success that (5), (6) and (7) follow from Ex+Px+SN (un-
less w = cL2

∞ ) one might naturally raise the question whether the belief that there
is fire on the hill should not be greater the more kitchen fires one has experienced.
In other words should not (5), (6) and (7) for w a probability function on L2 be
enhanced to

8Since we will always have Ex+Px the choices of suffices here are not important.
9We could equally take Lq (q ≥ 2) here in place of L2.

10We shall consider other possibilities later.
11In [11] we employed ≥ rather than > but the strict inequality obviously carries more

weight. Since the equality occurs only in very special cases, as discussed below, we prefer
to adopt the strict inequality here.

12If instead we had taken Lq in place of L2 the exceptions would have been those w
which equal cL2

∞ when restricted to SL2.
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w(F (h) |
n+1∧
i=1

(S(ki)→ F (ki))∧ S(h)) > w(F (h) |
n∧
i=1

(S(ki)→ F (ki))∧ S(h)), (8)

w(F (h) |
n+1∧
i=1

(S(ki)←→ F (ki))∧S(h)) > w(F (h) |
n∧
i=1

(S(ki)←→ F (ki))∧S(h)), (9)

w(F (h) |
n+1∧
i=1

(S(ki) ∧ F (ki)) ∧ S(h)) > w(F (h) |
n∧
i=1

(S(ki) ∧ F (ki)) ∧ S(h)), (10)

for n ≥ 0 ? (These are indeed enhancements since under the assumption of
Ex+Px+SN, w(F (h) |S(h)) = 1/2.)

Our plan now is to relate these particular ‘Indian Schema Principles’ (8), (9) and
(10) to the established symmetry principles stated in the previous section. We
start with Atom Exchangeability Ax.

Assuming Atom Exchangeability

It turns out that (8), (9) and (10) all essentially follow from Ex+Ax. Indeed the
following stronger result holds:

Theorem 1. For w a probability function on Lq satisfying Ex+Ax, θ(a1), φ(a1) ∈
QFSLq,

w(θ(an+2) |φ(an+2) ∧
n+1∧
i=1

θ(ai)) ≥ w(θ(an+1) |φ(an+1) ∧
n∧
i=1

θ(ai)),

with equality just if θ(ai) ∧ φ(ai) is inconsistent or ¬θ(ai) ∧ φ(ai) is inconsistent

or w = c
Lq
∞ or w = c

Lq
0 and n > 0.

Proof. It is straightforward to check that if θ(ai)∧φ(ai) is inconsistent or ¬θ(ai)∧
φ(ai) is inconsistent then the result holds with equality so assume that neither of
these hold. Let the de Finetti representation of w satisfying Ax be

w =

∫
w~x dµ
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where µ is invariant under permutations of the coordinates.

Without loss of generality let

θ(a1) ≡
r∨
i=1

αi(a1), φ(a1) ≡
m∨
i=1

αi(a1) ∨
k∨

i=r+1

αi(a1)

where m ≤ r and by our earlier assumption 0 < m, r < k. Then the required
inequality becomes∫

(
∑m

i=1 xi)(
∑r

i=1 xi)
n+1 dµ∫

(
∑m

i=1 xi)(
∑r

i=1 xi)
n dµ

≥
∫

(
∑m

i=1 xi +
∑k

i=r+1 xi)(
∑r

i=1 xi)
n+1 dµ∫

(
∑m

i=1 xi +
∑k

i=r+1 xi)(
∑r

i=1 xi)
n dµ

,

equivalently∫
(
∑m

i=1 xi)(
∑r

i=1 xi)
n+1 dµ∫

(
∑m

i=1 xi)(
∑r

i=1 xi)
n dµ

≥
∫

(
∑k

i=r+1 xi)(
∑r

i=1 xi)
n+1 dµ∫

(
∑k

i=r+1 xi)(
∑r

i=1 xi)
n dµ

.

By Ax, for 1 ≤ j ≤ r and s ∈ N,

m

∫
xj

(
r∑
i=1

xi

)s
dµ =

∫ ( m∑
i=1

xi

)(
r∑
i=1

xi

)s
dµ

and for r + 1 ≤ j ≤ 2q

(k − r)
∫
xj

(
r∑
i=1

xi

)s
dµ =

∫ ( k∑
i=r+1

xi

)(
r∑
i=1

xi

)s
dµ.

Hence it suffices to show that∫
(
∑r

i=1 xi)(
∑r

i=1 xi)
n+1 dµ∫

(
∑r

i=1 xi)(
∑r

i=1 xi)
n dµ

≥
∫

(
∑2q

i=r+1 xi)(
∑r

i=1 xi)
n+1 dµ∫

(
∑2q

i=r+1 xi)(
∑r

i=1 xi)
n dµ

,

equivalently∫
(
∑r

i=1 xi)
n+2 dµ∫

(
∑r

i=1 xi)
n+1 dµ

≥
∫

(
∑r

i=1 xi)
n+1 dµ−

∫
(
∑r

i=1 xi)
n+2 dµ∫

(
∑r

i=1 xi)
n dµ−

∫
(
∑r

i=1 xi)
n+1 dµ

.

This amounts to ∫
(
∑r

i=1 xi)
n+2 dµ∫

(
∑r

i=1 xi)
n+1 dµ

≥
∫

(
∑r

i=1 xi)
n+1 dµ∫

(
∑r

i=1 xi)
n dµ

(11)

which holds by EPIR.
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Finally if equality held in the theorem for some n then we would have equality in
(11) for some n, equivalently∫ (( r∑

i=1

xi
)
−
∫

(
∑r

i=1 xi)
n+1 dµ∫

(
∑r

i=1 xi)
n dµ

)2 ( r∑
i=1

xi
)n
dµ = 0. (12)

Let

a =

∫
(
∑r

i=1 xi)
n+1 dµ∫

(
∑r

i=1 xi)
n dµ

.

First consider n = 0. For (12) to hold,
∑r

i=1 xi must be equal to a for µ-almost
all ~x. Since µ is invariant under permutations of coordinates, the same must be
true for the sum of any r of the xi. Consequently, for µ-almost all ~x, the sum of
any r of the xi must be a. Any two coordinates of such an ~x must be equal so µ
is the discrete measure giving all the weight to ~x = 〈2−q, 2−q, . . . , 2−q〉 and hence

w = c
Lq
∞ .

When n 6= 0, for (12) to hold
∑r

i=1 xi must be equal to a or to 0 for µ-almost all
~x. Again, since µ is invariant under permutations of coordinates, the same must
be true for the sum of any r of the xi. Consequently, for µ-almost all ~x, the sum
of any r of the xi must be a or 0. Any two coordinates of such an ~x must be
either equal or differ by a. This is only possible when as before, a = r2−q and
~x = 〈2−q, 2−q, . . . , 2−q〉, or when a = 1 and ~x = 〈0, 0, . . . , 0, 1, 0, . . . , 0, 0〉. Since w

satisfies Ax, it follows that w = cL∞ or w = c
Lq
0 .

We remark that all of (8), (9) and (10) do follow from the theorem: we take S(x)
for φ(x) in both cases and S(x)→ F (x), S(x)←→ F (x) or F (x)∧S(x) respectively
for θ(x) and note that θ(x) ∧ φ(x) is logically equivalent to F (x) ∧ S(x).

Again any argument against the evidence in (8), (9) and (10) providing a justifi-
cation for F (h) would seem to require one to hold the view that cL2

∞ or cL2
0 was an

acceptable choice. With cL2
∞ there is the same counter as there was with Theorem

2 and using (4) a similar one can clearly be formulated for cL2
0 .

Assuming Ex+Px+SN

Despite Johnson and Carnap’s acceptance of Ax it seems that this is quite a step
beyond Ex+Px+SN as far as being self evidently rational. For this reason it
would be good if (8), (9) and (10) followed from just Ex+Px+SN since it would
strengthen any claim as to their ‘rationality’.

Treating (8) first:

10



Theorem 2. Let w satisfy Ex+Px+SN. Then (8) holds for n = 0, 1, indeed

w(F (h) |
2∧
i=1

(S(ki)→ F (ki)) ∧ S(h)) ≥ w(F (h) | (S(k1)→ F (k1)) ∧ S(h)) (13)

≥ w(F (h) |S(h)) = 1/2 (14)

with equality in (13) just if w = cL2
∞ or w = cL2

0 and equality in (14) just if w = cL2
∞ .

Proof. The second inequality above is (5), and the result was proved in [11].

Turning to (13), α1(x) = S(x)∧F (x), α2(x) = S(x)∧¬F (x), α3(x) = ¬S(x)∧F (x),
α4(x) = ¬S(x) ∧ ¬F (x). We need to show that

w(α1(h) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1)) ∧ (α1(k2) ∨ α3(k2) ∨ α4(k2))

w((α1(h) ∨ α2(h)) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1)) ∧ (α1(k2) ∨ α3(k2) ∨ α4(k2))

is greater or equal to

w(α1(h) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1)))

w((α1(h) ∨ α2(h)) ∧ (α1(k1) ∨ α3(k1) ∨ α4(k1)))
.

We can record this economically as

w(α1(α1 + α3 + α4)
2)

w((α1 + α2)(α1 + α3 + α4)2)
≥ w(α1(α1 + α3 + α4))

w((α1 + α2)(α1 + α3 + α4))
;

an equivalent inequality is

w(α1(α1 + α3 + α4)
2)

w(α2(α1 + α3 + α4)2)
≥ w(α1(α1 + α3 + α4))

w(α2(α1 + α3 + α4))
.

Noting that by Ex, for distinct constants ai1 , ai2 , ai3 and s, v, r ∈ {1, 2, 3, 4}

w(αs(ai1) ∧ αv(ai2) ∧ αr(ai3))

depends only on s, v, r, we record this value as w(αsαvαr) or, when for example
s = r as w(α2

sαv) etc. Let p = w(α3
1), y = w(α2

1α2), t = w(α2
1α4), z = w(α1α2α3).

By Px+SN we have furthermore

p = w(α3
2) = w(α3

3) = w(α3
4),

y = w(α2
1α3) = w(α2

4α2) = w(α2
4α3) = w(α2

2α1) = w(α2
2α4) = w(α2

3α1) = w(α2
3α4),

t = w(α2
4α1) = w(α2

2α3) = w(α2
3α2),

z = w(α1α2α4) = w(α1α3α4) = w(α2α3α4)

11



so any w(αiαjαk) is given by one of p, y, t, z.

Consequently for example

w(α1α2) = w(α1α2(α1 + α2 + α3 + α4)) = 2y + 2z,

and
w(α1α4) = 2t+ 2z, w(α2

1) = p+ t+ 2y,

so since we also have w(α1α3) = w(α1α2) = w(α2α4) and w(α1α4) = w(α2α3) the
required inequality becomes

p+ 3t+ 3y + 2z

t+ 2y + 6z
≥ p+ 3t+ 4y + 4z

2t+ 4y + 6z
,

which simplifies to

pt+ 2py + 4y2 + 3t2 + 8yt ≥ 12z2 + 6yz. (15)

We now make two claims which will be proved later:

Claim 1: p ≥ y with equality just when w = cL2
∞ .

Claim 2: y + t ≥ 2z.

Returning to the inequality (15), from Claim 2 we have 3(y + t)2 ≥ 12z2 and
y(y + t) ≥ 2yz so

pt+ 2py + 4y2 + 3t2 + 8yt ≥ pt+ 2py + 12z2 + 2yz + yt.

But by Claims 1 and 2 we also have

pt+ 2py + yt ≥ yt+ 2y2 + yt = 2y(y + t) ≥ 4yz, (16)

so (15) follows.

It remains to show the Claims 1 and 2 and to consider when equality occurs in
(15). Fortunately as the Claims are purely linear we can use the representation
theorem which tells us that any probability function on the language {S, F} sat-
isfying Ex+Px+SN can be expressed as an integral (see [6, Lemma 6], dropping
the redundant AP) using the probability functions

8−1(w〈x1,x2,x3,x4〉 + w〈x1,x3,x2,x4〉 + w〈x4,x2,x3,x1〉 + w〈x4,x3,x2,x1〉

+ w〈x2,x1,x4,x3〉 + w〈x2,x4,x1,x3〉 + w〈x3,x1,x4,x2〉 + w〈x3,x4,x1,x2〉), (17)

12



where the xi are nonnegative real numbers summing to 1 and

w〈xi,xj ,xk,xr〉(α
m1
1 αm2

2 αm3
3 αm4

4 ) = xm1
i xm2

j xm3
k xm4

r

Hence it is enough to show that p ≥ y and y + t ≥ 2z hold for this probability
function. But these amount, respectively, to

2(x31 + x32 + x33 + x34) ≥ x21x2 + x21x3 + x22x1 + x22x4 + x23x1 + x23x4 + x24x2 + x24x3,

⇐⇒
(x1 − x2)2(x1 + x2) + (x1 − x3)2(x1 + x3)

+ (x4 − x2)2(x4 + x2) + (x4 − x3)2(x4 + x3)

}
≥ 0,

with equality just when x1 = x2 = x3 = x4, and

x21(x2 +x3 + 2x4) +x22(x1 +x4 + 2x3) + x23(x1 +x4 + 2x2) +x24(x2 +x3 + 2x1)

≥ 2(2x1x2x3 + 2x2x1x4 + 2x3x1x4 + 2x4x2x3)

⇐⇒

x2(x1 − x3)2 + x2(x4 − x3)2 + x3(x1 − x2)2 + x3(x4 − x2)2

+ x1(x2 − x4)2 + x1(x3 − x4)2 + x4(x2 − x1)2 + x4(x3 − x1)2

}
≥ 0.

with equality just when x1 = x2 = x3 = x4 or one of the xi is 1.

Hence both claims hold and equality in Claim 1 can occur only when w = cL2
∞

whilst in Claim 2 equality occurs just when the mixing measure featuring in the
above mentioned representation of w gives measure 1 to the set of functions (17)
with x1 = x2 = x3 = x4 or with one of the xi equal to 1.

It follows that the first inequality in (16) is strict unless t = y = 0 or w = cL2
∞ . The

former happens just when w = cL2
0 and hence equality in (15) occurs just when w

is one of Carnap’s cL2
0 and cL2

∞ .13

Contrary to expectations however (8) can fail under Ex+Px+SN for n > 2.
A counter-example is provided by a function of the form (17), with suitable
x1, x2, x3, x4. For given x1, x2, x3, x4 (to be specified later) let w̃ be

8−1(w〈x1,x2,x3,x4〉 + w〈x1,x3,x2,x4〉 + w〈x4,x2,x3,x1〉 + w〈x4,x3,x2,x1〉

13see e.g. [12].
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+ w〈x2,x1,x4,x3〉 + w〈x2,x4,x1,x3〉 + w〈x3,x1,x4,x2〉 + w〈x3,x4,x1,x2〉).

and define

R(n) =
w̃(α1(α1 + α3 + α4)

n)

(w̃(α1 + α2)(α1 + α3 + α4)n)

= w̃ (F (h) |
n∧
i=1

(S(ki)→ F (ki)) ∧ S(h)) . (18)

Write A = x1 + x4 and B = x2 + x3. We have

w〈x1,x2,x3,x4〉(α1(α1 + α3 + α4)
n) = x1(A+ x3)

n,

w〈x1,x2,x3,x4〉((α1 + α2)(α1 + α3 + α4)
n) = (x1 + x2)(A+ x3)

n

etc so collecting terms, R(n) is

A(A+ x3)
n +A(A+ x2)

n +B(B + x1)
n +B(B + x4)

n

(A+ 2x2)(A+ x3)n + (A+ 2x3)(A+ x2)n + (B + 2x4)(B + x1)n + (B + 2x1)(B + x4)n
.

Multiplying R(n+1) ≥ R(n) by the denominators and substracting the RHS from
the LHS shows it equivalent to C−D ≥ 0 where C is the sum of products of terms
from these two columns:

A(A+ x3)
n+1 (A+ 2x2)(A+ x3)

n

A(A+ x2)
n+1 (A+ 2x3)(A+ x2)

n

B(B + x1)
n+1 (B + 2x4)(B + x1)

n

B(B + x4)
n+1 (B + 2x1)(B + x4)

n

and D is the sum of products in these two columns:

A(A+ x3)
n (A+ 2x2)(A+ x3)

n+1

A(A+ x2)
n (A+ 2x3)(A+ x2)

n+1

B(B + x1)
n (B + 2x4)(B + x1)

n+1

B(B + x4)
n (B + 2x1)(B + x4)

n+1

This amounts to the sum of the following 12 terms being non-negative:

14



(A+ x3)
n (A+ x2)

n A (A+ 2x3) (x3 − x2)
(A+ x3)

n (B + x4)
n A (B + 2x1) (A+ x3 −B − x4)

(A+ x3)
n (B + x1)

n A (B + 2x4) (A+ x3 −B − x1)
(A+ x2)

n (A+ x3)
n A (A+ 2x2) (x2 − x3)

(A+ x2)
n (B + x1)

n A (B + 2x4) (A+ x2 −B − x1)
(A+ x2)

n (B + x4)
n A (B + 2x1) (A+ x2 −B − x4)

(B + x4)
n (A+ x3)

n B (A+ 2x2) (B + x4 −A− x3)
(B + x4)

n (A+ x2)
n B (A+ 2x3) (B + x4 −A− x2)

(B + x4)
n (B + x1)

n B (B + 2x4) (x4 − x1)
(B + x1)

n (A+ x3)
n B (A+ 2x2) (B + x1 −A− x3)

(B + x1)
n (A+ x2)

n B (A+ 2x3) (B + x1 −A− x2)
(B + x1)

n (B + x4)
n B (B + 2x1) (x1 − x4)

Combining the obvious pairs yields the sum of the following six terms

(A+ x3)
n (A+ x2)

n A 2(x3 − x2)2
(A+ x3)

n (B + x4)
n 2(Ax1 −Bx2) (A+ x3 −B − x4)

(A+ x3)
n (B + x1)

n 2(Ax4 −Bx2) (A+ x3 −B − x1)
(A+ x2)

n (B + x1)
n 2(Ax4 −Bx3) (A+ x2 −B − x1)

(A+ x2)
n (B + x4)

n 2(Ax1 −Bx3) (A+ x2 −B − x4)
(B + x4)

n (B + x1)
n B 2(x4 − x1)2

Rewriting A and B back in terms of the xi, this is the sum of

(1− x2)n (1− x3)n (x1 + x4) 2(x3 − x2)2
(1− x2)n (1− x1)n 2(x21 − x22 + x1x4 − x2x3) (x1 − x2)
(1− x2)n (1− x4)n 2(x24 − x22 + x1x4 − x2x3) (x4 − x2)
(1− x3)n (1− x4)n 2(x24 − x23 + x1x4 − x2x3) (x4 − x3)
(1− x3)n (1− x1)n 2(x21 − x23 + x1x4 − x2x3) (x1 − x3)
(1− x1)n (1− x4)n (x2 + x3) 2(x4 − x1)2

Let ε > 0 and
x1 = 1− 6ε, x2 = 3ε, x3 = 2ε, x4 = ε .

Then 1 − x1 and x2, x3, x4 are of order ε, so the second, fifth and sixth products
are of order εn whilst the first, third and fourth are respectively

(1− 3ε)n (1− 2ε)n (1− 5ε) 2ε2

(1− 3ε)n (1− ε)n 2(ε− 20ε2) (−2ε)

(1− 2ε)n (1− ε)n 2(ε− 15ε2) (−ε)
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so their sum is negative of order ε2. Hence for n > 2 and a sufficiently small ε this
is a counterexample to R(n+ 1) ≥ R(n). We remark that the very same approach
does not work with n = 2 (3 kitchens) because with these x1, . . . , x4 all but the
last product are of the order ε2 (the last one being of order ε3) and their sum for
small ε is positive.

Also, looking again at R(n) with general x1, x2, x3, x4, if x4 is the strictly smallest
of the xi then (B + x1)

n dominates and the limit of R(n) is

B

B + 2x4
=

x2 + x3
x2 + x3 + 2x4

(19)

so not 1 but greater than 1/2, and similarly when it is another xi.

The status of the one remaining case, when n = 2, the ‘3 kitchens problem’, is
open. Given these counter-examples one might wonder if it was possible that
Ex+Px+SN was not enough to even justify jumping to the conclusion F (h) on the
basis of more than 2 kitchen fires. Fortunately that recommendation is still good:

Theorem 3. For w satisfying Ex+Px+SN, and any n ≥ 1

w(F (an+1) |S(an+1) ∧
n∧
i=1

(S(ai)→ F (ai))) ≥ 1/2 = w(F (an+1) |S(an+1)),

with equality just if w = cL2
∞ .

Proof. Using the usual de Finetti Representation Theorem for w a probability
function on L2 satisfying Ex, the required inequality becomes∫

x1(x1 + x3 + x4)
n dµ(~x)∫

(x1 + x2)(x1 + x3 + x4)n dµ(~x)
≥ 1

2
.

Simplifying gives∫
x1(x1 + x3 + x4)

n dµ(~x) ≥
∫
x2(x1 + x3 + x4)

n dµ(~x),

equivalently ∫
(x1 − x2)(1− x2)n dµ(~x) ≥ 0.

By the trick in [12, page 90] we can assume that the measure µ is invariant under
those permutations of coordinates which are ’licensed’ by SN+Px, in particular
the permutation transposing x1, x2 (and x3, x4). Hence∫

(x1 − x2)(1− x2)n dµ(~x) =

∫
(x2 − x1)(1− x1)n dµ(~x)

16



and it is enough to show that∫
(x1 − x2)(1− x2)n + (x2 − x1)(1− x1)n dµ(~x) ≥ 0.

But the polynomial being integrated here is just

(x1 − x2)((1− x2)n − (1− x1)n)

which equals

(x1 − x2)2
n−1∑
i=0

(1− x1)n−1−i(1− x2)i ≥ 0 (20)

so the result clearly holds.

Finally we can only have equality in (20) for all support points of µ if x1 = x2
(and perforce x1 = x3 = x4 by the assumed invariance of µ under permutations
licensed by Px+SN) for all support points so the only possible support point is
〈4−1, 4−1, 4−1, 4−1〉 and w on this sublanguage must be cL2

∞ .

On a more positive note however we can fully answer this question when it comes
to (9):

Theorem 4. For w a probability function on L2 satisfying Ex+Px+SN and n ≥ 0,

w(F (h) |
n+1∧
i=1

(S(ki)←→ F (ki)) ∧ S(h)) ≥ w(F (h) |
n∧
i=1

(S(ki)←→ F (ki)) ∧ S(h)).

(21)

We remark that equality does hold for some special probability functions but they
can be dismissed on similar grounds as cL2

∞ and cL2
0 , see below.

Proof. Using the same notation as above, we need to show that for a probability
function w satisfying Ex+Px+SN and n ≥ 0,

w(α1(α1 + α4)
n+1)

w((α1 + α2)(α1 + α4)n+1)
≥ w(α1(α1 + α4)

n)

w((α1 + α2)(α1 + α4)n)
, (22)

equivalently that
w(α1(α1 + α4)

n)

w(α2(α1 + α4)n)

17



is non-decreasing. To this end, it suffices to show that

w(α1(α1 + α4)
n)

w((α1 + α4)n)

is non decreasing and
w(α2(α1 + α4)

n)

w((α1 + α4)n)

is non-increasing. This follows by EPIR since by SN+Px

w(α1(α1 + α4)
n) =

1

2
w((α1 + α4)(α1 + α4)

n)

and

w(α2(α1+α4)
n) =

1

2
w((α2+α3)(α1+α4)

n) =
1

2
(w((α1+α4)

n)−w((α1+α4)(α1+α4)
n))

As in the corresponding proof14 of Theorem 1 if we have equality in (23) for some
n and n+ 1 then either every point in the support of µ must be of one of the form
〈x1, x2, (1/2) − x2, (1/2) − x1〉 or every point in the support of µ must be of the
form 〈0, x2, 1− x2, 0〉 or 〈x1, 0, 0, 1− x1〉 and n > 0.

These conditions are not enough to force w to be one of cL2
∞ or cL2

0 . However a
similar argument can be made to rebuke the probability functions w which do give
equality here. Namely they would have to satisfy

w((α1 + α4) | (α1 + α4)
n) = w((α1 + α4) | (α1 + α4))

for all n > 0.

For (10) we would need to show that for a probability function w satisfying
Ex+Px+SN - albeit possibly with some dismissable exceptions - and for n ≥ 0,

w(αn+2
1 )

w((α1 + α2)α
n+1
1 )

≥ w(αn+1
1 )

w((α1 + α2)αn1 )
, (23)

equivalently that
w(α2 α

n
1 )

w(αn+1
1 )

≥ w(α2 α
n+1
1 )

w(αn+2
1 )

.

It is straightforward to show that this is the case for all the functions of the form
(17) but it is currently not clear if it holds in general. Nevertheless, we do have

14Arguing about the probability function for the language with one predicate R which
we obtain from w upon replacing α1 ∨ α4 by R and α2 ∨ α3 by ¬R.
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Theorem 5. For w a probability function on L2 satisfying Ex+Px+SN, and n ≥ 1

w(F (an+1) |S(an+1) ∧
n∧
i=1

(S(ai) ∧ F (ai))) ≥ 1/2 = w(F (an+1) |S(an+1)),

with equality just if w = cL2
∞ .

Proof. Proceeding as in the proof of Theorem 3, we use the usual de Finetti Repre-
sentation Theorem for w a probability function on L2 satisfying Ex. The required
inequality becomes ∫

xn+1
1 dµ(~x)∫

(x1 + x2)xn1 dµ(~x)
≥ 1

2
,

equivalently ∫
xn+1
1 dµ(~x) ≥

∫
x2 x

n
1 dµ(~x),

that is, ∫
(x1 − x2)xn1 dµ(~x) ≥ 0.

Again since w satisfies also Px we can assume that the measure µ is invariant
under the permutation transposing x1, x2 and x3, x4. Hence∫

(x1 − x2)xn1 dµ(~x) =

∫
(x2 − x1)xn2 dµ(~x)

and it is enough to show that∫
( (x1 − x2)xn1 + (x2 − x1)xn2 ) dµ(~x) ≥ 0.

But the polynomial being integrated here is just

(x1 − x2)(xn1 − xn2 )

which is clearly nonnegative, so the result follows. The last part about cL2
∞ follows

as in Theorem 3.

Mill’s Property

In [9, Vol.7,p186] the Scotish philosopher J.S.Mill suggested (as others have since)
that when we use for example

All men are mortal
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to conclude that the Duke of Wellington is mortal it is not that we already know
all instances of this universal but that we know a sufficient number of them to feel
justified in saving mental storage space by rounding up our knowledge to ‘All men
are mortal’. In other words we are transforming an argument by induction into
a fully deductive argument. From this viewpoint then the reality of the Indian
Schema for one reasoning to oneself might be read as:

(a) In the many cases I have experienced of smoke there has invariably been
fire.

(b) There is smoke on the hill.

(c) Therefore there is fire on the hill.

If such reasoning can be taken to be in some sense ‘rational’ then it suggests we
should investigate the status within PIL of probability functions w on Lq satisfying
the somewhat more general principle:

Mill’s Property, MP

For θ(a1), φ(a1) ∈ QFSLq with w(θ(a1) ∧ φ(a1)) > 0,

limn→∞w

(
θ(an+1) |φ(an+1) ∧

n∧
i=1

θ(ai)

)
= 1 (24)

Theorem 6. Let w be a probability function on Lq satisfying Ax and with de
Finetti prior µ. Then w satisfies MP just if all the points 〈0, 0, . . . , 0, 1, 0, . . . , 0, 0〉
are in the support of µ.

Proof. First suppose that ~x = 〈1, 0, 0, . . . , 0〉 is not in the support of µ, say that
µ(Aδ) = 0 where δ > 0 and

Aδ = {~y ∈ D2q | |~y − ~x| < δ}.

Then

w(α1(an+1) |
n∧
i=1

α1(ai)) =

∫
D2q

xn+1
1 dµ∫

D2q
xn1 dµ

=

∫
D2q−Aδ

xn+1
1 dµ∫

D2q−Aδ
xn1 dµ

≤
∫
D2q−Aδ

(1− δ)xn1 dµ∫
D2q−Aδ

xn1 dµ
< 1,
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so MP fails for this θ and φ = >.

In the other direction suppose that each of these points 〈0, 0, . . . , 0, 1, 0, . . . , 0, 0〉
is in the support of µ and let

θ(a1) ≡
r∨
i=1

αi(a1), φ(a1) ≡
m∨
i=1

αi(a1) ∨
k∨

i=r+1

αi(a1)

where 0 < m ≤ r. We may assume that k ≥ r+1 otherwise the result is immediate.

We need to show that ∫
(
∑k

i=r+1 xi)(
∑r

i=1 xi)
n dµ∫

(
∑m

i=1 xi)(
∑r

i=1 xi)
n dµ

.

tends to zero as n → ∞. Using Ax as in the proof of Theorem 1 it is enough to
show that ∫

(
∑2q

i=r+1 xi)(
∑r

i=1 xi)
n dµ∫

(
∑r

i=1 xi)
n+1 dµ

(25)

tends to zero as n→∞.

Let 0 < δ < ν and

Bδ = {~x ∈ D2q |
r∑
i=1

xi ≥ 1− δ}

and similarly for ν. By the assumption of MP, µ(Bδ) > 0.

We can write (25) as∫
Bν

(
∑2q

i=r+1 xi)(
∑r

i=1 xi)
n dµ+

∫
D2q−Bν

(
∑2q

i=r+1 xi)(
∑r

i=1 xi)
n dµ∫

Bδ
(
∑r

i=1 xi)
n+1 dµ+

∫
Bν−Bδ(

∑r
i=1 xi)

n+1 dµ+
∫
D2q−Bν

(
∑r

i=1 xi)
n+1 dµ

. (26)

Since ∫
Bν

(
∑2q

i=r+1 xi)(
∑r

i=1 xi)
n dµ∫

Bδ
(
∑r

i=1 xi)
n+1 dµ+

∫
Bν−Bδ(

∑r
i=1 xi)

n+1 dµ
≤ ν

1− ν
,

and ∫
D2q−Bν

(
∑2q

i=r+1 xi)(
∑r

i=1 xi)
n dµ∫

Bδ
(
∑r

i=1 xi)
n+1 dµ

≤ (1− ν)n(1− µ(Bν))

(1− δ)n+1µ(Bδ)

it follows that by choosing δ, ν sufficiently small and then n sufficiently large we
can make (26) arbitrarily small, as required.
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This proof has assumed Ax. If we only assume Ex+Px+SN then Mill’s Property
may not hold as is apparent from (18) and (19).

We remark that a corollary of Theorem 6 is that, assuming Ax and regularity (i.e.
w(θ) > 0 whenever θ ∈ QFSLq is consistent), Reichenbach’s Axiom, see [12]
for a formulation in the notation of this paper, implies Mill’s Property since by
Theorem 15.1 of that monograph that axiom is equivalent to every point in D2q

being a support point of µ.

The Lake

The version of the Indian Schema which we have considered here is based on Sūtra
36 which is commonly referred to as a ‘homogeneous example’. We have variously
formalized this as

S(k)→ F (k), S(k)←→ F (k) (27)

or
S(k) ∧ F (k). (28)

However in Sūtra 3715 Gotama describes another sort of example, a heterogeneous
example. According to S.C.Vidyabhusana’s rendering of the Sūtra, [15, p12]:

A heterogeneous (or negative) example is a familiar instance which is
known to be devoid of the property to be established and which implies
that the absence of this property is invariably rejected in the reason
given.16

In our smoke-fire scenario a commonly stated such example is that of the lake
[which is both fire and smoke free] which is combined with the homogeneous ex-
ample of the kitchen to give the schema

(a) Where there is smoke there is fire, like in the kitchen and (un)like on the
lake.

(b) There is smoke on the hill.

15tad-viparyayād vā vipar̄ıtam.
16Translations here from the original Sanskrit are considered notoriously difficult. We

are grateful to one of the referees for suggesting the more literal

Or in the case opposite to that [i.e. the above-mentioned positive example] it
[the udāharan. a] is contrary [to the case at issue].

where the parenthetic comments have been added by him/her for clarification and are not
part of the Sanskrit original.
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(c) Therefore there is fire on the hill.

Exactly how we should formalize the lake (denoted l) example is not clear (to us)
but it would seem that given the formalizations in (27) it should be, respectively:

¬F (l)→ ¬S(l), ¬S(l)←→ ¬F (l),

which are simply covered by the two kitchen version. For (28) it should be

¬F (l) ∧ ¬S(l).

However there are probability functions satisfying Ex+Ax for which the inequality

w(F (h) |S(h) ∧ S(k) ∧ F (k) ∧ ¬S(l) ∧ ¬F (l))

≥ w(F (h) |S(h) ∧ S(k) ∧ F (k)) (29)

does not hold.17 On this evidence then it seems that the appropriateness of cap-
turing the example by a conjunction rather than an implication or bi-implication
is questionable.

Conclusion

In this paper we have limited ourselves to the most natural present day formula-
tions of the Indian Schema, namely treating ‘smoke’, or ‘smoky’, as a predicate
and ‘hill’ as a constant, etc. and have shown how most of these can claim to be
justified as rational, at least if c

Lq
0 , c

Lq
∞ are excluded, on the basis of following from

various symmetry principles in PIL.

Given the arcane complexities of Sanskrit however it is certainly not clear, even
unlikely, that the formalization presented here was how Gotama and the subse-
quent commentators on the Nyāyasūtra would have seen it. For example it has
been suggested that ‘hill’ might have been thought of as a predicate and smoke, or
smokiness, as a constant etc. or that they are both constants and the connection
between them is via a binary relation A of ‘happens at’, see [8]. We plan to inves-
tigate these alternatives in a future paper but for the present we should emphasize

17For w satisfying Ax (29) reduces to 2y2 ≥ xz + yz where x = w(α3
1), y = w(α2

1α2)
and z = w(α1α2α3). This fails in the case of the probability function

4−1(w〈1−3ε,ε,ε,ε〉 + w〈ε,1−3ε,ε,ε〉 + w〈ε,ε,1−3ε,ε〉 + w〈ε,ε,ε,1−3ε〉)

with ε > 0 very small since it does satisfy Ax but gives, up to lowest powers of ε, x = 1/4,
y = ε/4, z = 3ε2/4 so 2y2 < xz.
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that our primary purpose in this paper, and the earlier paper [11] which it extends,
has not been to argue about what Gotama et al could have meant but rather to
justify the rationality of the version of the schema as it seemed many Victorian
(and later) readers dismissively understood it.
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