
Estimating the Largest Elements of a Matrix

Higham, Nicholas J. and Relton, Samuel D.

2015

MIMS EPrint: 2015.116

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

ESTIMATING THE LARGEST ELEMENTS OF A MATRIX∗

NICHOLAS J. HIGHAM† AND SAMUEL D. RELTON∗

Abstract. We derive an algorithm for estimating the largest p ≥ 1 values aij or |aij | for an
m×n matrix A, along with their locations in the matrix. The matrix is accessed using only matrix–
vector or matrix–matrix products. For p = 1 the algorithm estimates the norm ‖A‖M := maxi,j |aij |
or maxi,j aij . The algorithm is based on a power method for mixed subordinate matrix norms and
iterates on n × t matrices, where t ≥ p is a parameter. For p = t = 1 we show that the algorithm
is essentially equivalent to rook pivoting in Gaussian elimination; we also obtain a bound for the
expected number of matrix–vector products for random matrices and give a class of counter-examples.
Our numerical experiments show that for p = 1 the algorithm usually converges in just two iterations,
requiring the equivalent of 4t matrix–vector products, and for t = 2 the algorithm already provides
excellent estimates that are usually within a factor 2 of the largest element and frequently exact.
For p > 1 we incorporate deflation to improve the performance of the algorithm. Experiments on
real-life datasets show that the algorithm is highly effective in practice.

Key words. matrix norm estimation, largest elements, power method, mixed subordinate norm,
condition number estimation

AMS subject classifications. 65F35

1. Introduction. We are interested in estimating the matrix norm

(1.1) ‖A‖M := max
i,j
|aij |,

for A ∈ Rm×n. Note that the M -norm is not a consistent norm, that is, ‖AB‖M ≤
‖A‖M‖B‖M does not hold for all A and B for which the product is defined. However,
‖A‖ = n‖A‖M is consistent.

Calculating ‖A‖M from its definition has O(mn) cost, since each element of A
must be inspected once. In the applications we have in mind the matrix A is known
only implicitly. For example, the matrix could be given as a product A = BC, an
inverse A = B−1, or more generally as a function A = f(B), possibly with sparse B
and C, and forming A explicitly can be prohibitively expensive. We wish to estimate
‖A‖M at the cost of a few matrix–vector products, each of which we assume can be
computed cheaply. A particular application is estimation of condition numbers of
various types [19], [20].

While ‖A‖M measures the overall size of A, there are many situations in which we
may wish to find the p > 1 largest entries of A. For instance, let A be the adjacency
matrix of a graph representing interactions between entities in a system. The (i, j)
entry of the matrix exponential eA is called the communicability between nodes i and
j [8], [9] and the larger the communicability is, the stronger the link between nodes
i and j. To determine the p > 1 strongest links in the graph we wish to compute
the p largest entries of eA without computing the entire matrix exponential, which is
typically dense when A is sparse. Here we can exploit available methods for computing
eAv using only matrix–vector products with A (and possibly A∗), such as those of

∗Version of December 18, 2015. This work was supported by European Research Council Ad-
vanced Grant MATFUN (267526) and Engineering and Physical Sciences Research Council grant
EP/I01912X/1.
†School of Mathematics, The University of Manchester, Manchester, M13 9PL,

UK (nick.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/˜higham,
samuel.relton@manchester.ac.uk, http://www.maths.manchester.ac.uk/˜srelton).

1

Al-Mohy and Higham [1], Caliari, Kandolf, Ostermann, and Rainer [5], or Frommer,
Güttel, and Schweitzer [13].

The problem of finding the largest entries of a matrix product arises in a variety
of data mining and information retrieval tasks. For example, the use of factor models
in recommender systems leads to matrix products BTC with B,C ∈ Rm×n, m � n,
and n very large [27]. Another application is link prediction in graphs [24].

Recently Ballard, Kolda, Pinar, and Seshadhri [3] have developed a graph-based
sampling method for a problem called the MAD (Maximum All-pairs Dot-product)
search. In this application one must find (or approximate) the largest inner product
|bTi cj | between sets of vectors { bi : i = 1: m } and { cj : j = 1: p } where bi, cj ∈ Rn.
This is equivalent to approximating ‖BTC‖M where bi and cj form the columns of B
and C, respectively.

Another application is to measure the sensitivity of matrix functions. The sen-
sitivity of an element of f(B) to perturbations in an element of B ∈ Rn×n is given

by the absolute value of a particular element of the Kronecker matrix K ∈ Rn2×n2

associated with the Fréchet derivative of f [20, sec. 3.2]. Therefore to determine the
p greatest sensitivities we need to find the p largest elements in modulus of K. While
it is not practical to form K for large n, we can form matrix–vector products, which
are equivalent to evaluations of the Fréchet derivative of f .

The goal of this work is to develop an algorithm to estimate the p largest elements
in absolute value of A using only a few matrix–vector products with A and its conju-
gate transpose. We derive the basic algorithm (p = 1), which is a special case of the
power method for mixed subordinate norms, and analyze its convergence properties.
We extend it to a block algorithm that iterates with n× t matrices instead of vectors,
and then extend it further so that it estimates the p elements of largest absolute value
for any p ≥ 1. It turns out that with minor modifications the algorithms estimate the
largest elements aij instead of their absolute values.

The basic algorithm (p = t = 1) has been stated previously by Gu and Mira-
nian [14, Alg. 4] for a specific A of the form A = B−TCT , where it is derived as
an adaptation of an algorithm of Hager [15]. It is used in [14] in the computation
of a strong rank-revealing Cholesky decomposition. However, the behavior of the
algorithm is not analyzed.

We organize our work as follows. In section 2 we derive the basic algorithm for
computing ‖ · ‖M and in section 3 we analyze its convergence. We show that the
algorithm is essentially equivalent to rook pivoting in Gaussian elimination, obtain a
bound for the expected number of matrix–vector products for random matrices, give
a class of counter-examples, and identify a class of matrices for which the algorithm
requires n − 1 iterations to converge. In section 4 we design a practical, block im-
plementation of the algorithm. In section 5 we extend the block algorithm to find
the p ≥ 1 largest elements in modulus and introduce a deflation strategy to improve
the performance. In section 6 we perform a battery of numerical experiments to test
the speed and reliability of our algorithm before giving some concluding remarks in
section 7.

2. Algorithm derivation. The derivation of our algorithm exploits the fact
that the norm ‖ · ‖M can be expressed as a mixed subordinate norm

(2.1) ‖A‖α,β = max
x6=0

‖Ax‖β
‖x‖α

,

2

where ‖ · ‖α and ‖ · ‖β are vector norms. In fact, it is easy to see that

(2.2) ‖A‖M = ‖A‖1,∞ = max
x 6=0

‖Ax‖∞
‖x‖1

.

Recall the Hölder inequality on Rn,

(2.3) |zT y| ≤ ‖z‖q‖y‖p, p−1 + q−1 = 1,

where ‖x‖p = (
∑n
i=1 |xi|p)1/p. We say the vector z is dual to y in the p-norm if it has

unit q-norm and

(2.4) zT y = ‖y‖p;

thus z is a unit q-norm vector that achieves equality in (2.3). We write z = dualp(y)
to denote such a vector.

To estimate ‖A‖M we will use an iteration for ‖A‖α,β . The iteration was originally
proposed in 1974 by Boyd [4] for ‖ · ‖α and ‖ · ‖β (possibly different) Hölder p-norms
with p ∈ (1,∞) and, independently, by Tao in 1975 for ‖·‖α and ‖·‖β arbitrary vector
norms; see [26] and the references therein. We will derive the iteration for ‖A‖1,∞
from first principles, as the derivation provides some insight. Our problem is

maxF (x) := ‖Ax‖∞ subject to x ∈ S := {x : ‖x‖1 ≤ 1 }.

Since F is a convex function and S is a convex set, for any u ∈ S there is at least one
vector g that

(2.5) F (v) ≥ F (u) + gT (v − u) for all v ∈ S.

Such vectors g are called subgradients of F , the set of which is denoted by ∂F ; see,
for example, [10, p. 364], [25, sec. 3.3]. In view of (2.5), we will choose a subgradient
g and move from u to a point v∗ ∈ S that maximizes gT (v− u), that is, a vector that
maximizes gT v subject to ‖v‖1 ≤ 1. Clearly all such vectors v can be written as v ∈
dual∞(g). When ‖g‖∞ = |gj | is the unique largest element of g then v = sign(gj)ej ,
where ej is the jth unit vector and

sign(x) =

{
1, x ≥ 0,

−1, x < 0.

However, if ‖g‖∞ = |gi| = |gj | for i 6= j then dual∞(g) contains other vectors too. For
example, if g = [1, 1]T then we also have v = [0.5, 0.5]T ∈ dual∞(g). We therefore
know that

dual∞(g) ⊇ { sign(gj)ej : |gj | = ‖g‖∞ }.

It is straightforward to show that

(2.6) ∂F = ∂‖Ax‖∞ ⊇ ATdual∞(Ax).

Indeed, let w ∈ ATdual∞(Ax) so that w = AT d for d ∈ dual∞(Ax) with dTAx =
‖Ax‖∞ and ‖d‖1 = 1, by definition. Then for all y we have

‖Ax‖∞ + wT (y − x) = ‖Ax‖∞ + dTAy − dTAx
= dTAy,

≤ ‖d‖1‖Ay‖∞
= ‖Ay‖∞.

3

Hence we have shown that w ∈ ∂‖Ax‖∞. This means that in order to maximize F (x)
we can iteratively select a subgradient g ∈ AT dual∞(Ax) and a point x ∈ dual∞(g).

We therefore obtain the following algorithm, which is a special case of the algo-
rithm of Tao, but with added convergence tests. Let e = [1, 1, . . . , 1]T .

Algorithm 2.1 (power method). Given A ∈ Rm×n this algorithm computes γ
and x such that γ ≤ ‖A‖M and ‖Ax‖∞ = γ‖x‖1.

1 x = n−1e
2 for k = 1, 2, . . .
3 y = Ax
4 if k > 1
5 if ‖y‖∞ ≤ ‖g‖∞, γ = ‖g‖∞, quit, end
6 end
7 g = AT ei, where |yi| = ‖y‖∞ (smallest such i)
8 if ‖g‖∞ ≤ ‖y‖∞, γ = ‖y‖∞, quit, end
9 x = ej , where |gj | = ‖g‖∞ (smallest such j)

10 end
The cost of the algorithm is 2k − 1 or 2k matrix–vector products, where k is the

number of iterations.
We mention two important extensions of the algorithm that apply throughout

the rest of this work. First, in some applications it is the maximum of the aij that
is required rather than the maximum of the absolute values (of course these are
equivalent if A is nonnegative, as in the graph application mentioned in Section 1).
To estimate maxi,j aij all we need to do is to replace all occurrences of ‖·‖∞ ≡ max | · |
by max (·) in Algorithm 2.1.

Second, we have not yet mentioned how to deal with complex matrices A ∈ Cm×n.
Just as for the 1-norm estimators in [17] and [21], we simply replace g = AT ei in line 7
with g = A∗ei where A∗ denotes the conjugate transpose.

3. Convergence properties. Now we analyze the convergence properties of
Algorithm 2.1. The following lemma provides insight into the behaviour of the algo-
rithm. We denote by xk, yk, and gk the vectors on the kth iteration in lines 1–8, with
xk+1 assigned on line 9.

Theorem 3.1. In Algorithm 2.1, the vectors from the kth iteration satisfy

(a) gk
T
xk = ‖yk‖∞, and

(b) ‖yk‖∞ ≤ ‖gk‖∞ ≤ ‖yk+1‖∞ ≤ ‖A‖M .

Proof. We have, for some i = ik, gk
T
xk = eTi Ax

k = eTi y
k = ±‖yk‖∞. It

therefore follows that

‖yk‖∞ = |gkTxk|

≤ ‖gk‖∞‖xk‖1 = ‖gk‖∞ =
∣∣gkTxk+1

∣∣ =
∣∣eTi Axk+1

∣∣
≤ ‖Axk+1‖∞ = ‖yk+1‖∞
≤ ‖A‖M .

Theorem 3.1 shows that the algorithm generates a non-decreasing sequence of
lower bounds ‖y1‖∞, ‖g1‖∞, ‖y2‖∞, . . . for ‖A‖M , which implies that the algorithm
terminates as soon as the sequence fails to increase. The algorithm converges in at
most min(m,n) + 1 iterations, because it samples a different column on line 3 (for

4

k > 1) and row on line 7 on each iteration, so if iteration number min(m,n) + 1 is
reached then after line 3 the whole matrix has been sampled columnwise (if m ≥ n)
or row-wise (if m ≤ n). The same conclusions hold for the variants of Algorithm 2.1
mentioned in the previous section for complex A and for estimating maxi,j aij , for
which analogs of Theorem 3.1 are easily obtained.

The kth iteration of Algorithm 2.1 can be rewritten as

ik = min{ i : |ai,jk−1
| = max1≤p≤m |ap,jk−1

| }
if |aik,jk−1

| = |aik−1,jk−1
|, γ = |aik,jk−1

|, quit, end

}
for k ≥ 2

jk = min{ j : |aik,j | = max1≤p≤n |aik,p| }
if |aik,jk | = |aik,jk−1

|, γ = |aik,jk |, quit, end

This representation of the algorithm makes it clear that from the first invocation of
line 7 onwards it alternately searches rows and columns until an element is found that
is the largest in modulus in both its row and its column. These are precisely the
steps that rook pivoting takes in Gaussian elimination! There are three differences,
however, one practical and two conceptual.

1. Algorithm 2.1 starts with x = n−1e, whereas rook pivoting always begins by
searching the first column of the matrix for a largest element in modulus.

2. In rook pivoting it is assumed that the elements aij are directly addressable.
We are assuming only that matrix–vector products with A and A∗ can be
computed, so we need to express the algorithm as in Algorithm 2.1.

3. The measure of success of rook pivoting is the growth factor for Gaussian
elimination and not how good an approximation to ‖A‖M is produced.

In view of the connection with rook pivoting we can apply a result of Foster [11],
[12] in order to determine the expected number of matrix–vector products for a class
of random matrices.

Theorem 3.2. Suppose the elements of A ∈ Rm×n are independently and identi-
cally distributed random variables from any continuous probability distribution. Then
the expected number of matrix–vector products in Algorithm 2.1 is less than 1 + e.

Proof. When m = n the result is a direct application of [11, Thm. 5] (see the
penultimate sentence of the proof) to Algorithm 2.1 from line 7 of the first iteration
onwards. For m 6= n we can simply embed A in a p× p matrix where p = max(m,n),
setting the extra rows/columns to zero, since the expected number of matrix–vector
products is independent of the matrix dimension.

The important message of Theorem 3.2 is that for matrices with independent
random elements the expected number of matrix–vector products is a small constant
independent of the matrix dimensions.

In one special case more can be said about convergence. If A = bcT is a rank-1
matrix then convergence is obtained on the first iteration if c = αe for some α and
otherwise on the second iteration at line 5.

A counter-example to a matrix norm estimator is a parametrized matrix for which
the estimate differs from the true norm by a factor that can be made arbitrarily large.
Counter-examples to Algorithm 2.1 can be expected to exist for two reasons: the
derivation allows for convergence to a local rather than a global maximum and the
algorithm samples only a subset of the elements of A. We now identify a class of
counter-examples, using a construction similar to that in [17].

Lemma 3.3. For the matrix A(θ) = I + θC ∈ Rn×n, where θ ∈ R and C is such
that Ce = CT e = 0 and Ce1 = CT e1 = 0, Algorithm 2.1 returns γ = 1.

5

Proof. Stepping through the first iteration, on line 3 of Algorithm 2.1 we have
y = x since Ce = 0 and therefore g = AT e1 = e1 on line 7. This means that we
obtain x = e1 on line 9. On the second iteration we obtain y = e1 on line 3 and the
algorithm terminates with γ = ‖g‖∞ = ‖y‖∞ = 1 on line 5.

Since ‖A(θ)‖M ≈ θ for large θ, assuming ‖C‖M ≈ 1, the estimate γ = 1 returned
by Algorithm 2.1 is about a factor |θ| too small.

A class of examples can be also constructed for which Algorithm 2.1 requires
exactly n− 1 iterations to converge. For the 5× 5 matrix

(3.1) T5(6) =

1 −4 1 1 1
3 −6 1 1 1
1 9 −12 1 1
1 1 15 −18 1
1 1 1 21 −24

it is easy to see that the algorithm searches the rows/columns sequentially from first
to last and the corresponding values of ‖y‖∞ and ‖g‖∞ increase monotonically until
the maximum of 24 is reached. This matrix is T5(6) belonging to the class given in
the next result. This class is analogous to, though completely different from, the class
given by Higham [18] for which the basic 1-norm power method that underlies the
LAPACK norm estimator requires n iterations.

Theorem 3.4. Let Tn(α) ∈ Rn×n, where n ≥ 3 and α ∈ R is nonzero, be defined
by

tii = −α(i− 1), i > 1,

ti+1,i = α(i− 1) + α/2, i ≥ 1,

t12 = −α(n− 1)/(2n− 4),

tij = α/(2n− 4), elsewhere.

Then Algorithm 2.1 converges to ‖Tn(α)‖M in exactly n− 1 steps.
Proof. One can easily check that the sum of each row of Tn(α) is zero, meaning

that in the first iteration of the algorithm we have y = 0, hence i = 1. Therefore
g = AT e1, the first row of the matrix, from which we can clearly see that the largest
element is the second, meaning that j = 2 and x = e2 as we start the second iteration.
This time the largest element of y = Ae2 is the third, so i = 3 and g = AT e3 selects
the third row. The largest element of this row is also the third and so j = 3 and
x = e3 as we start the third iteration. This pattern continues until on the (n − 1)st
iteration y = Ae1 and g = AT en, at which point ‖g‖∞ = ‖y‖∞ and the iteration
terminates, with γ = ‖y‖∞ = ‖A‖M .

Now that we have a better understanding of the theoretical properties of this
algorithm we can design a practical implementation.

4. A block algorithm. We can increase the accuracy and practical efficiency of
Algorithm 2.1 by developing a block version, where the iterates are now n×t matrices
and each iteration updates the t column vectors concurrently. This improves in two
ways upon naively running the algorithm t times with different starting vectors. First,
it permits the use of level-3 BLAS operations, which utilize computational resources
more efficiently. Second, the t different starting vectors can “communicate” within
each iteration, which should lead to better estimates.

6

To obtain the increased performance there are a number of issues to consider
regarding the communication between the t vectors and the careful tracking of their
states. For instance, a situation may occur when one column is assigned a vector
that has already been assigned to another column in a previous iteration, resulting
in redundant computation. We can avoid this, and increase the chance of finding
the global maximum in (2.2), by replacing all such repeated vectors with randomly
generated ones. Since the maximum in (2.2) is attained for some unit vector ek, we
will replace repeated columns with random unit vectors.

Since our starting point x in Algorithm 2.1 is now an n × t matrix, we need to
choose t initial columns. The first will be n−1e, as in Algorithm 2.1. For the second
column we take b ∈ Rn given by

(4.1) bi = (−1)i+1

(
1 +

i− 1

n− 1

)
,

rescaled to have unit 1-norm (‖b‖1 = 3n/2). This vector is suggested by Higham [17]
as being likely to avoid cancellation in the product Ab when large elements of A are
hidden by cancellation in the product Ae. The remaining columns are chosen as
random unit vectors, as above. This is in contrast to Higham and Tisseur [21] who, in
a matrix 1-norm estimator, use random vectors with elements selected from {−1, 1}
with equal probability for all but the first column, which is n−1e. Experiments suggest
that our approach is better for the M -norm, though the difference is small.

We note that when the columns traverse distinct vertices throughout the algo-
rithm (so that none is replaced with a random column) our implementation is deter-
ministic for t = 1 and t = 2. Whether or not this happens in practice depends on the
matrix in question.

The final consideration is the stopping criterion for the algorithm. Since we
are only interested in the single largest element here we can (as for the unblocked
algorithm) terminate the algorithm once the new estimate of ‖A‖M does not exceed
the previous one. We also choose to terminate if all the t columns intended to start
the next iteration have been encountered in a previous iteration.

These considerations lead to the following algorithm. We include a limit itmax
on the number of iterations since, although no more than min(m,n)/t+ 1 iterations
are required, in practice we want to perform no more than a small, constant number
of iterations.

Algorithm 4.1. Given A ∈ Rm×n and integers t > 0 and itmax > 0 this
algorithm computes γ ∈ R and indices i and j such that γ = |aij | ≤ ‖A‖M . The
algorithm uses the function argmax defined by

[µ, ind] = argmax(w)
µ = ‖w‖∞
ind = smallest i for which |wi| = ‖w‖∞

1 γ = 0

2 Let X = [n−1e, (2/(3n))b, X̃] ∈ Rn×t, where b is given by (4.1) and the

t− 2 columns of X̃ are distinct random unit vectors.

3 Set prev ind to contain the locations of the nonzero rows in X̃.
4 for it = 1: itmax
5 Y = AX
6 [µk, indyk] = argmax(Y (: , k)), k = 1: t
7 [ymax, i] = argmax(µ)

7

8 if it = 1 and t > 2

% Find the largest entry of X̃.
9 [γ, i] = argmax(µ(3: t))

10 j = indy2+i

11 elseif it > 1 and ymax > γ
12 γ = ymax

13 Set j to the position of the nonzero in the ith column of X.
14 else
15 quit
16 end
17 Construct W ∈ Rm×t such that the (indyk, k) element equals 1,

for k = 1: t, and all other elements are 0.
18 Z = ATW
19 [ψk, indzk] = argmax(Z(: , k)), k = 1: t
20 zmax = ‖ψ‖∞
21 if it > 1
22 if zmax ≤ ymax, quit, end
23 if indz is a subset of prev ind, quit, end
24 Replace any entries of indz that are present in prev ind by

random integers from {1, . . . , n} \ (indz ∪ prev ind).
25 Add the t indices in indz to prev ind.
26 end
27 Construct X ∈ Rn×t such that the (indzk, k) elements equal 1,

k = 1: t, and all other elements are 0.
28 end

Some further comments on this algorithm are in order. First, it is clear that γk,
the estimate of ‖A‖M on the kth iteration, is a nondecreasing sequence of real numbers
bounded above by ‖A‖M . However, due to the replacement of repeated vectors by
random ones, part (b) of Theorem 3.1 no longer holds. Second, if we set t = 1 and
ignore the random replacement of vectors, and the test for whether it > 1 on line 21,
then Algorithm 2.1 is recovered.

5. Algorithm for p largest elements. In this section we describe how, with
some minor modifications, we can extend Algorithm 4.1 to tackle the problem of
estimating the largest p ≥ 1 entries of A.

To estimate the largest p entries of A we must maintain a list of the largest p
entries discovered and keep in mind that more than one of them may be found in any
one column. Just as it is helpful to use t > 1 columns to find the largest entry of A,
it may be beneficial to use t > p columns to find the largest p entries.

Therefore, we introduce a scaling factor α such that we will work concurrently on
t = ceil(αp) columns within the algorithm. How to choose α is an important question.
Our numerical experiments in section 6 test a variety of choices for α.

Making these changes we arrive at the following algorithm.
Algorithm 5.1. Given A ∈ Rm×n, integers p ≥ 1 and itmax > 0 and a real

number α ≥ 1, this algorithm computes γ ∈ Rp and the distinct pairs of indices
(ik, jk) such that γp ≤ γp−1 ≤ · · · ≤ γ1 ≤ ‖A‖M and |aik,jk | = γk for k = 1: p. This
algorithm uses the function argmax defined by

[µ, ind, colnum] = argmax(W, t)
Let the t largest elements of W be
‖W (:)‖∞ = |wind1,colnum1

| = µ1 ≥ · · · ≥ |windt,colnumt
| = µt,

8

where in the case of ties elements with smaller column indices
than row indices are taken first.

1 γ = 0 ∈ Rp, i = 0 ∈ Rp, j = 0 ∈ Rp
2 t = ceil(αp)

3 Let X = [n−1e, (2/(3n))b, X̃] ∈ Rn×t, where b is given by (4.1) and the

t− 2 columns of X̃ are distinct random unit vectors.

4 Set prev ind to contain the locations of the nonzero rows in X̃.
5 for it = 1: itmax
6 Y = AX
7 [ynorms, indy, colnum] = argmax(Y, t)
8 if it = 1 and t > 2

9 % Find the largest entries of X̃.
10 [γ, i, j] = argmax(Y (: , 3: t), p)
11 elseif it > 1
12 if any element of ynorms is larger than γp and the corresponding

indices in indy and colnum are not in i, j
% ynorms contains at least one previously unseen large element.

13 Set γ equal to the largest p elements from γ ∪ ynorms
(so that γ is sorted in descending order) and update the
indices (ik, jk) to match, for k = 1: p.

14 else
15 quit
16 end
17 end
18 Construct W ∈ Rm×t such that the (indyk, k) element equals 1,

for k = 1: t, and all other elements are 0.
19 Z = ATW
20 [znorms, indz, colnum] = argmax(Z, t)
21 if it > 1
22 if znormsk ≤ ynormsk for all k = 1: t, quit, end
23 if indz is a subset of prev ind, quit, end
24 Replace any entries of indz that are present in prev ind by

random integers from {1, . . . , n} \ (indz ∪ prev ind).
25 Add the t indices in indz to prev ind.
26 end
27 Construct X ∈ Rn×t such that the (indzk, k) elements equal 1,

k = 1: t, and all other elements are 0.
28 end
As with Algorithm 4.1, it is clear that each element of γ forms a nondecreasing

sequence of real numbers bounded above by ‖A‖M as the iteration progresses. Also,
if we set p = 1 then Algorithm 4.1 is recovered, whilst setting p = 1 and α = 1 gives
Algorithm 2.1 when we ignore the random replacement of vectors and the test for
whether it > 1 on line 21.

A weakness of this algorithm is that all t vectors will be attracted to the entry
(or entries) aij for which |aij | = ‖A‖M . This means that the algorithm might fail to
find the next largest entries.

To derive an improved algorithm, suppose that |aij | is the largest entry found so
far. We can deflate this entry and look at the matrix A− aijeieTj , which is a rank-1
update of A. More generally, if (ir, jr), r = 1: p, are the positions of the p largest

9

entries found so far, we can work with the matrix

(5.1) Ap := A−
p∑
r=1

air,jreire
T
jr ,

To perform matrix–vector products with Ak we need the air,jr , but these are available
from the previously computed matrix–vector products with unit vectors.

Our idea is to deflate the top p elements the algorithm has encountered so far
within each matrix–vector product that the algorithm performs, which means that
the matrix can change with each iteration. This deflation strategy is intended to allow
the algorithm to focus on finding the remaining large entries. The modified algorithm
is as follows.

Algorithm 5.2. Given A ∈ Rm×n, integers p ≥ 1 and itmax > 0, and a real
number α ≥ 1, this algorithm computes γ ∈ Rp and distinct pairs of indices (ik, jk)
such that γp ≤ γp−1 ≤ · · · ≤ γ1 ≤ ‖A‖M and |aikjk | = γk for k = 1: p.

1 Run Algorithm 5.1, storing the values of aij along with |aij |
and replacing all matrix–vector products and transpose matrix–vector
products after line 10 in the first iteration of Algorithm 5.1 with
lines 2–5 and 6–9, respectively.
. . . To compute the deflated matrix–vector product b = Apx

2 b = Ax
3 for r = 1: p
4 bir = bir − airjrxjr
5 end

. . . To compute the deflated transpose matrix–vector product z = ATp y
6 z = AT y
7 for r = 1: p
8 zjr = zjr − airjryir
9 end

6. Numerical experiments. We now describe a number of computational ex-
periments designed to identify the strengths and weaknesses of the algorithms. All
the experiments were performed in MATLAB 2014b on a dual-core laptop with Intel
i7-2620M 2.7GHz processor and 8GB of RAM, running Ubuntu 13.10.

Throughout this section we set the iteration limit itmax = 20, in order to show
that in the vast majority of cases only a handful of iterations are required.

Our first set of experiments focuses on approximating ‖A‖M . We examine the
distribution of the underestimation ratio,

(6.1) ψ =
γ

‖A‖M
∈ [0, 1],

and the number of iterations π, which satisfies π ≥ 2, over various types of random
matrices. We present the following statistics for these two quantities:

• ψmin: the minimal value of ψ encountered.
• ψavg: the mean value of ψ encountered.
• % exact: the percentage of cases where ψ = 1.
• πavg: the mean value of π encountered.
• πmax: the maximal value of π encountered.
• % improve: the percentage of cases where the estimate for t improved from

that for t− 1.

10

Our second set of experiments attempts to approximate the p > 1 largest entries
of the test matrices. To compare the ranking of the p > 1 elements estimated by
Algorithm 5.1 to the true values we need to use some techniques from statistics. In
particular we need to compare the list of the exact top p elements against the list of
the estimated top p elements, both of which are partial lists since we do not rank all
entries of the matrix. There are numerous ways to do this, but we have chosen to
use a weighted footrule measure [22, pp. 207–209]. This gives us a similarity function
φ such that φ = 1 means that the lists are identical and φ = 0 means that the
lists are completely disjoint (that is, none of the top p elements were found)1. The
similarity function is weighted so that disagreements between the two lists in the first
few elements are more important than disagreements further down.

We will also measure the mean underestimation ratio between the two lists: denot-
ing the top p elements by `1 ≥ `2 ≥ · · · ≥ `p and our estimates by ̂̀1 ≥ ̂̀2 ≥ · · · ≥ ̂̀p,
the mean underestimation ratio is

(6.2) Ψ =
1

p

p∑
i=1

̂̀(i)
`(i)

.

It is is easy to see that Ψ ≤ 1 and that a value of Ψ = 1 implies that all the top
p elements were estimated correctly. Including both measures is important because
we will see that in some cases, particularly those where the largest elements of the
matrix have very similar magnitude, although φ(`, ̂̀) is small (meaning that not all
of the top p elements were found) we can have high values of Ψ and the estimates are
still close to optimal. Finally we will also measure the number of top p elements that
are estimated exactly, denoted by η.

We test our algorithms on various types of random matrix, similar to those used to
test the block 1-norm estimator [21]. Let N(0, 1) and U(0, 1) denote random variables
distributed normally (with zero mean and unit variance) and uniformly (between 0
and 1 inclusive), respectively. We use four types of random matrix.

1. randn: the matrix with N(0, 1) distributed elements.
2. inv(randn): the inverse of a matrix with N(0, 1) distributed elements.
3. inv(randc): the inverse of a matrix with N(0, 1) + iU(0, 1) distributed ele-

ments, where i is the imaginary unit. For these complex matrices, transpose is
replaced by conjugate transpose in the algorithms, as described in Section 2.

4. randmult: the product of a matrix with N(0, 1) elements with a matrix with
U(0, 1) elements.

One type of matrix used by Higham and Tisseur [21] to test the block 1-norm estimator
has been omitted: the matrix with elements chosen randomly from the set {−1, 0, 1}.
This is because our algorithms would find one of the true maximal elements as soon
as a column containing ±1 is encountered. The randn and randmult matrices both
satisfy the criteria of Theorem 3.2 and should therefore require less than 1 + exp(1)
iterations to converge on average. Indeed, in section 6.1 we will see that the average
number of iterations is between 2.0 and 2.2 when p = 1.

What are considered acceptable values of ψ and Ψ? For norm estimates used in
condition estimation and error bounds an estimate correct to within a factor 3 (say)
is adequate, since only the order of magnitude is required, so ψ ≥ 1/3 and Ψ ≥ 1/3
represent good performance in this context. However, we will see that the algorithms
typically perform much better than this, especially on the real-life problems that we
consider.

1The algorithm in [22, pp. 207–209] actually computes 1− φ.

11

Table 6.1
Statistics for the underestimation ratio ψ and the number of iterations π for Algorithm 4.1, for

1000 matrices of type randn with dimension 100.

t ψmin ψavg % exact πavg πmax % improve
1 0.4767 0.7708 3.1 2.145 4 0
2 0.5529 0.8218 6.0 2.162 5 50.0
3 0.5574 0.8561 9.9 2.149 5 51.7
4 0.5761 0.8884 12.4 2.128 4 51.4
5 0.5833 0.8884 15.9 2.133 4 51.4
6 0.5833 0.9021 18.6 2.122 5 50.8
7 0.5967 0.9102 21.4 2.125 4 53.5
8 0.6711 0.9162 23.7 2.110 4 52.3
9 0.5810 0.9257 27.3 2.135 5 53.0
10 0.5989 0.9301 29.3 2.119 5 55.9

Table 6.2
Statistics for the underestimation ratio ψ and the number of iterations π for Algorithm 4.1, for

1000 matrices of type inv(randn) with dimension 100.

t ψmin ψavg % exact πavg πmax % improve
1 0.1646 0.9625 82.0 2.187 5 0
2 0.5219 0.9902 92.0 2.103 4 92.3
3 0.5288 0.9961 95.4 2.078 4 95.4
4 0.7424 0.9982 97.8 2.043 4 97.8
5 0.8260 0.9992 98.7 2.032 3 98.7
6 0.7265 0.9986 98.2 2.028 3 98.2
7 0.8819 0.9998 99.4 2.021 3 99.4
8 0.5498 0.9992 99.3 2.013 3 99.3
9 0.8928 0.9997 99.4 2.017 4 99.4
10 0.9724 1.0000 99.9 2.008 3 99.9

Our third, and final, set of experiments involve applying Algorithms 4.1 and 5.2 to
matrices taken from some of the applications we discussed in section 1. We show how
effectively our algorithms perform when used to estimate ‖ATB‖M and ‖eA‖M for
large, sparse matrices. The applications and the specific matrices used are described
in more detail in section 6.3.

6.1. Approximating the single largest element. We begin by investigating
the performance of Algorithm 4.1 for randn matrices, the results for which are sum-
marized in Table 6.1. As expected, we see that the accuracy and reliability of the
algorithm steadily increase with t, as shown by the columns ψmin, ψavg, and % exact.
Meanwhile the number of iterations averages close to 2 for all t (cf. Theorem 3.2) and
does not exceed 5.

In Table 6.2 we look at the behaviour of the algorithm for matrices of type
inv(randn). The algorithm performs extremely well on this type of matrix, with
over 90% of the estimates exact for t ≥ 2. Indeed in the majority of cases the al-
gorithm finds the exact value of ‖A‖M in only 2 iterations. Again, the reliability
improves as t increases. We see that ψ rarely deviates much from the optimal value
of 1 for this type of matrix.

Tables 6.3 and 6.4 show the summary statistics for complex matrices of type

12

Table 6.3
Statistics for the underestimation ratio ψ and the number of iterations π Algorithm 4.1, for

1000 complex matrices of type inv(randc) with dimension 100.

t ψmin ψavg % exact πavg πmax % improve
1 0.5039 0.9709 78.2 2.203 5 0
2 0.6728 0.9911 90.1 2.118 4 90.4
3 0.7073 0.9953 93.9 2.079 4 93.9
4 0.7688 0.9977 97.0 2.055 4 97.0
5 0.7688 0.9981 97.0 2.036 3 97.1
6 0.8305 0.9989 98.0 2.020 3 98
7 0.8185 0.9992 98.8 2.020 3 98.8
8 0.8352 0.9995 99.2 2.018 3 99.2
9 0.9248 0.9996 98.8 2.014 3 98.8
10 0.8305 0.9996 99.3 2.012 3 99.3

Table 6.4
Statistics for the underestimation ratio ψ and the number of iterations π for Algorithm 4.1, for

1000 matrices of type randmult with dimension 500.

t ψmin ψavg % exact πavg πmax % improve
1 0.8043 0.9826 64.0 2.001 3 0
2 0.8249 0.9861 69.0 2.081 4 73.6
3 0.8608 0.9892 74.8 2.096 4 78.3
4 0.8249 0.9912 77.6 2.083 4 79.8
5 0.8249 0.9920 79.8 2.080 4 82.2
6 0.8793 0.9946 84.4 2.080 4 85.6
7 0.8533 0.9943 85.6 2.083 4 86.7
8 0.8822 0.9954 86.9 2.081 6 87.7
9 0.8822 0.9965 90.2 2.084 4 90.4
10 0.8822 0.9967 91.1 2.064 4 91.3

inv(randc) and matrices of type randmult, respectively. The behavior is very similar
to that of Table 6.2 for the inv(randn) matrices in that ψ is close to 1 in all cases
and typically only 2 iterations are required, regardless of t.

6.2. Approximating the p = 5 largest elements. In this subsection we in-
vestigate the behavior of Algorithms 5.1 (no deflation) and 5.2 (with deflation) for
estimating the p = 5 largest matrix entries as α varies between 1 and 10.

Table 6.5 shows the behaviour of Algorithm 5.1 on randn matrices. We see that
the mean underestimation ratio Ψ and the weighted footrule measure φ both increase
with α. The values Ψavg are much better than ψavg in Table 6.1. The number
of iterations is also larger than when searching for the p = 1 largest entry of A,
presumably because many of the elements of A have very similar magnitude.

Table 6.6 shows the summary statistics for finding the p = 5 largest elements of
randmult matrices. In this case the algorithm performs much better than for the
randn matrices: the values of Ψ , φ, and η are significantly higher, whilst π is much
lower and the algorithm typically needs only 2 iterations to converge. The behavior
of Algorithm 5.1 on the other types of matrix is similar.

Next we consider Algorithm 5.2, which incorporates deflation. Table 6.7 shows
the results of applying the algorithm to randmult matrices. We see a significant im-

13

Table 6.5
Statistics for the mean underestimation ratio Ψ , the number of correctly estimated entries η, the

weighted footrule measure φ, and the number of iterations π, for 1000 randn matrices of dimension
500, for Algorithm 5.1 with p = 5. In each case φmin = 0.

α Ψmin Ψavg ηavg φavg φmax πavg πmax

1 0.6960 0.8497 0.3050 0.0827 0.7854 4.4950 14
2 0.7670 0.9009 0.7630 0.1959 0.9397 5.8170 15
3 0.8007 0.9254 1.1890 0.2966 1.0000 6.1810 16
4 0.8147 0.9406 1.6080 0.3874 1.0000 6.3440 14
5 0.8197 0.9502 1.9420 0.4517 1.0000 6.3360 17
6 0.8456 0.9569 2.1510 0.5020 1.0000 6.3430 15
7 0.8103 0.9646 2.5060 0.5763 1.0000 6.1820 15
8 0.8584 0.9683 2.6830 0.6034 1.0000 6.1630 15
9 0.8457 0.9720 2.9050 0.6447 1.0000 6.0830 13
10 0.8772 0.9753 3.1220 0.6797 1.0000 6.0300 14

Table 6.6
Statistics for the mean underestimation ratio Ψ , the number of correctly estimated entries η,

the weighted footrule measure φ, and the number of iterations π, for 1000 randmult matrices of
dimension 500, for Algorithm 5.1 with p = 5. In each case φmax = 1.

α Ψmin Ψavg ηavg φmin φavg πavg πmax

1 0.7008 0.9565 2.9420 0 0.7450 2.2260 6
2 0.8072 0.9805 3.7940 0 0.8893 2.3540 6
3 0.8972 0.9862 4.0260 0.1606 0.9230 2.3120 6
4 0.7922 0.9885 4.1220 0 0.9383 2.2820 6
5 0.8735 0.9916 4.2550 0 0.9503 2.2840 5
6 0.8671 0.9918 4.2370 0 0.9506 2.2350 6
7 0.9221 0.9933 4.3120 0.3762 0.9568 2.2760 5
8 0.9201 0.9934 4.2920 0.6017 0.9571 2.2340 5
9 0.8823 0.9941 4.3350 0 0.9601 2.2280 5
10 0.9026 0.9949 4.3690 0 0.9616 2.1950 5

Table 6.7
Statistics for the mean underestimation ratio Ψ , the number of correctly estimated entries η,

the weighted footrule measure φ, and the number of iterations π, for 1000 randmult of dimension
500, for Algorithm 5.2 with p = 5. In each case φmax = 1.

α Ψmin Ψavg ηavg φmin φavg πavg πmax

1 0.8076 0.9877 3.8380 0 0.8095 3.2700 7
2 0.8425 0.9964 4.5240 0 0.9319 3.5060 6
3 0.7757 0.9982 4.7540 0 0.9652 3.4720 6
4 0.8505 0.9988 4.8360 0 0.9765 3.4520 5
5 0.8794 0.9992 4.8860 0 0.9839 3.4140 5
6 0.9436 0.9995 4.9230 0.5333 0.9883 3.3910 6
7 0.8486 0.9991 4.9030 0 0.9857 3.3590 5
8 0.9724 0.9998 4.9470 0.6017 0.9944 3.3620 6
9 0.8777 0.9994 4.9330 0 0.9903 3.3190 5
10 0.9019 0.9997 4.9560 0.5664 0.9949 3.3330 5

14

Table 6.8
The underestimation ratio and computation time when finding the largest entry of ATA using

Algorithm 4.1 with parameter t = 10. The underestimation ratio ψ is the estimate divided by the
true maximal element.

Time (secs)
Matrix ψ Exact Algorithm 4.1

Sandia/ASIC 680k 1 1.6e4 1.0
SNAP/as-Skitter 0.96 2.4e4 3.6

provement in the values of η and φ between these results and those in Table 6.6, where
deflation was not used, though π is slightly larger on average. For the other types of
test matrix (especially inv(randn) and inv(randc)) Algorithm 5.2 performed very
well with Ψ ≈ 1, η ≈ 5, φ ≈ 1, and πavg ≈ 2.5 for all α ≥ 2.

For randn matrices Algorithm 5.2 performed slightly worse than Algorithm 5.1 in
terms of accuracy, though it converged in fewer iterations. It seems that the relatively
slow convergence of Algorithm 5.1 on this class of matrices brings a benefit by allowing
more time to explore the search space. In all other cases Algorithm 5.2 was observed
to be at least as accurate as Algorithm 5.1, with fewer iterations required, so we
recommend this as the default choice for estimating the largest p > 1 entries of a
matrix.

6.3. Experiments on real datasets. Finally, we consider the application of
Algorithms 4.1 and 5.2 on datasets taken from real applications.

Our first experiment performs a MAD search, an application we described in
section 1. For this experiment we apply Algorithm 4.1 to find the largest entry of
a matrix product. In particular, we test our algorithm on the matrix product ATA
where A is one of the following two matrices from the University of Florida Sparse
Matrix Collection [6], [7]. These matrices were also used to test a recent algorithm
for the MAD problem by Ballard, Kolda, Pinar, and Seshadhri [3].

• Sandia/ASIC 680k: Matrix arising from a circuit simulation problem. The
matrix is nonsymmetric of order n = 682, 862 with 2, 638, 997 nonzero entries.

• SNAP/as-Skitter: An internet topology graph resulting in a binary, symmet-
ric matrix of order n = 1, 696, 415 with 11, 095, 298 nonzero entries.

For comparison, we compute the exact maximal element of both matrix products
by finding ATAei for each unit vector ei and keeping track of the largest element
found so far. To make use of level-3 BLAS operations, we block together 100 such
unit vectors into a matrix E and find ATAE.

The results of this experiment can be seen in Table 6.8. Our new algorithm
performs extremely well on these problems: it finds the exact largest element in the
first case and the second largest in the other, whilst obtaining speedups of around
16000 and 6600, respectively. In the latter case we found that searching for the p = 5
largest elements, using the deflation technique in Algorithm 5.2, returns all of them
correctly. This suggests that when it is imperative that the exact largest element is
found it may be advantageous to estimate the top p elements and take the largest of
them.

Our second experiment is based on network communicability. Recall from the
introduction that, given an adjacency matrix A associated with a graph, the (i, j)
element of eA is the communicability between nodes i and j. In this experiment we
show how our algorithm can be used to find the p = 10 pairs of nodes (i, j) with the
largest communicability without computing the entire matrix exponential. To com-

15

Table 6.9
The number of correctly estimated largest entries, η, and the computation time when finding

the p = 10 largest entries of eA using Algorithm 5.2 with parameter α = 3.

Time (secs)
Matrix η Exact Algorithm 5.2

SNAP/ca-AstroPh 10 237.3 1.7
SNAP/ca-CondMat 10 202.1 1.2

MUFC Twitter 10 5501.7 3.2

pute matrix–vector products eAv we use the algorithm of Al-Mohy and Higham [1],
as implemented in the MATLAB function expmv at http://www.mathworks.com/

matlabcentral/fileexchange/29576-matrix-exponential-times-a-vector.
We test our algorithm on three matrices.
• SNAP/ca-AstroPh: Records research collaborations in the field of astro-

physics on Arxiv until April 2003. It is a symmetric, binary matrix of order
n = 18, 772 with 396, 160 nonzero entries [23].

• SNAP/ca-CondMat: Records research collaborations in the field of condensed
matter physics on Arxiv until April 2003. It is a symmetric, binary matrix
of order n = 23, 133 with 186, 936 nonzero entries [23].

• MUFC Twitter: Records the interaction between members of the social net-
work Twitter on 9th May 2013 between 8am and 8pm when Sir Alex Fer-
guson resigned as the manager of Manchester United Football Club. The
resulting matrix is unsymmetric of order n = 148, 918 with 193, 032 nonzero
entries [16].2

Table 6.9 shows the results for Algorithm 5.2 with α = 3. Since the full matrix
exponential will not always fit in RAM, and in order to make use of level-3 BLAS
operations, we find the exact answer by repeatedly using expmv to compute eAE with
100 unit vectors at a time in the matrix E. We see that Algorithm 5.2 computes all of
the 10 largest elements correctly in each case. For the two smaller matrices from the
SNAP collection we see a speedup of around 150 compared with exact computation.
For the MUFC Twitter matrix our new algorithm offers a speedup of 1720.

7. Conclusions. There is a long history of matrix condition number estimation,
which is summarized in [19, Chap. 15]. Much of the early work was concerned with
estimating ‖A−1‖1 given a factorization of the square, nonsingular matrix A. It later
became apparent that there are benefits to treating the more general problem of
estimating ‖B‖1 given only the ability to form matrix–vector products with B and
B∗, not least because this enables various componentwise condition numbers to be
estimated. The LAPACK library [2] takes this approach. The very general norm
estimation algorithms of Boyd [4] and Tao [26] have this more general form, but the
special case of the M -norm (‖A‖M = maxi,j |aij |) has received almost no attention
prior to this work. However, the applications discussed in section 1 demonstrate a
clear need to estimate the M -norm via matrix–vector products.

We have derived algorithms for estimating ‖A‖M and the largest p elements in
absolute value ofA. For the basic algorithm, in section 3 we gave convergence results, a
bound on the expected number of iterations for random matrices, and examples where
the estimator can be arbitrarily poor or take the maximum number of iterations. We

2 Data provided under a Creative Commons licence by The University of Strathclyde and Bloom
Agency. http://www.mathstat.strath.ac.uk/outreach/twitter/mufc

16

http://www.mathworks.com/matlabcentral/fileexchange/29576-matrix-exponential-times-a-vector
http://www.mathworks.com/matlabcentral/fileexchange/29576-matrix-exponential-times-a-vector
http://www.mathstat.strath.ac.uk/outreach/twitter/mufc

derived a block version of the p = 1 algorithm that, by iterating on matrices with t
columns, provides more accurate estimates and allows for the use of level-3 BLAS.
For general p, we introduced a deflation technique that alleviates the tendency of the
estimates of the p largest elements all to approximate the largest element.

The numerical experiments on random matrices and on matrices from applications
show that the algorithms produce, within just a few iterations, estimates that have
mean underestimation ratio Ψ almost always greater than 0.5, are frequently exact,
and increase in quality with t. In particular the algorithms can identify the largest
elements of matrices defined implicitly as ATA or eA, for large, sparse matrices A,
thousands of times faster than if these matrices were explicitly formed.

An important feature of our algorithms is that they can be treated as black boxes
that can be applied to many different problems, in contrast to the more specialized
algorithms designed for products of two matrices, such as those in [3], [27]. Since
our algorithms only require the computation of matrix–vector products they are rela-
tively simple to implement and can serve as a benchmark for testing more specialized
algorithms in multiple application areas.

MATLAB implementations of Algorithms 4.1 and 5.2 are available on GitHub at
https://github.com/sdrelton/matrix-est-maxelts.

REFERENCES

[1] Awad H. Al-Mohy and Nicholas J. Higham. Computing the action of the matrix exponential,
with an application to exponential integrators. SIAM J. Sci. Comput., 33(2):488–511,
2011.

[2] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J. Du Croz,
A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’
Guide. Third edition, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1999. xxvi+407 pp. ISBN 0-89871-447-8.

[3] Grey Ballard, Tamara G. Kolda, Ali Pinar, and C. Seshadhri. Diamond sampling for approxi-
mate maximum all-pairs dot-product (MAD) search, 2015. ArXiv preprint 1506.03872v3.

[4] David W. Boyd. The power method for `p norms. Linear Algebra Appl., 9:95–101, 1974.
[5] Marco Caliari, Peter Kandolf, Alexander Ostermann, and Stefan Rainer. Comparison of soft-

ware for computing the action of the matrix exponential. BIT, 54:113–128, 2014.
[6] Timothy A. Davis. University of Florida sparse matrix collection. http://www.cise.ufl.edu/

research/sparse/matrices.
[7] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM

Trans. Math. Software, 38(1):1:1–1:25, 2011.
[8] Ernesto Estrada and Naomichi Hatano. Communicability in complex networks. Physical Review

E, 77:036111, 2008.
[9] Ernesto Estrada and Desmond J. Higham. Network properties revealed through matrix func-

tions. SIAM Rev., 52(4):696–714, 2010.
[10] R. Fletcher. Practical Methods of Optimization. Second edition edition, Wiley, Chichester, UK,

1987. xiv+436 pp. ISBN 0-471-91547-5.
[11] Leslie V. Foster. The growth factor and efficiency of Gaussian elimination with rook pivoting.

J. Comput. Appl. Math, 86:177–194, 1997.
[12] Leslie V. Foster. Corrigendum. The growth factor and efficiency of Gaussian elimination with

rook pivoting. J. Comput. Appl. Math., 98:177, 1998.
[13] Andreas Frommer, Stefan Güttel, and Marcel Schweitzer. Efficient and stable Arnoldi restarts

for matrix functions based on quadrature. SIAM J. Matrix Anal. Appl., 35(2):661–683,
2014.

[14] M. Gu and L. Miranian. Strong rank revealing Cholesky factorization. Electron. Trans. Numer.
Anal., 17:76–92, 2004.

[15] William W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., 5(2):311–316, 1984.
[16] D. J. Higham, P. Grindrod, A. V. Mantzaris, A. Otley, and P. Laflin. Anticipating activity

in social media spikes. Technical Report 5, Department of Mathematics and Statistics,
University of Strathclyde, 2014.

[17] Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or complex matrix,

17

https://github.com/sdrelton/matrix-est-maxelts
http://dx.doi.org/10.1137/100788860
http://dx.doi.org/10.1137/100788860
http://arxiv.org/abs/1506.03872
http://arxiv.org/abs/1506.03872
http://dx.doi.org/10.1016/0024-3795(74)90029-9
http://dx.doi.org/10.1007/s10543-013-0446-0
http://dx.doi.org/10.1007/s10543-013-0446-0
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1103/PhysRevE.77.036111
http://dx.doi.org/10.1137/090761070
http://dx.doi.org/10.1137/090761070
http://dx.doi.org/10.1016/S0377-0427(97)00154-4
http://dx.doi.org/10.1016/S0377-0427(98)00093-4
http://dx.doi.org/10.1016/S0377-0427(98)00093-4
http://dx.doi.org/10.1137/13093491X
http://dx.doi.org/10.1137/13093491X
http://eudml.org/doc/125035
http://dx.doi.org/10.1137/0905023
http://dx.doi.org/10.1145/63522.214391
http://dx.doi.org/10.1145/63522.214391

with applications to condition estimation (Algorithm 674). ACM Trans. Math. Software,
14(4):381–396, 1988.

[18] Nicholas J. Higham. Experience with a matrix norm estimator. SIAM J. Sci. Statist. Comput.,
11(4):804–809, 1990.

[19] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[20] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2008. xx+425 pp. ISBN 978-0-898716-
46-7.

[21] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm estimation,
with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4):1185–
1201, 2000.

[22] Amy N. Langville and Carl D. Meyer. Who’s #1? The Science of Rating and Ranking.
Princeton University Press, Princeton, NJ, USA, 2012. xvi+247 pp. ISBN 978-0-691-
15422-0.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery From Data, 1(1):2:1–2:41, 2007.

[24] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. J.
Amer. Soc. Inf. Sci. Tech., 58(7):1019–1031, 2007.

[25] Juan Peypouquet. Convex Optimization in Normed Spaces: Theory, Methods and Examples.
Springer-Verlag, New York, 2015. xiv+124 pp. ISBN 978-3-319-13709-4.

[26] Pham Dinh Tao. Convergence of a subgradient method for computing the bound norm of
matrices. Linear Algebra Appl., 62:163–182, 1984. In French.

[27] Christina Teflioudi, Rainer Gemulla, and Olga Mykytiuk. LEMP: Fast retrieval of large entries
in a matrix product. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, 2015, pages 107–122.

18

http://dx.doi.org/10.1145/63522.214391
http://dx.doi.org/10.1145/63522.214391
http://dx.doi.org/10.1137/0911047
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1002/asi.20591
http://dx.doi.org/10.1007/978-3-319-13710-0
http://dx.doi.org/10.1016/0024-3795(84)90093-4
http://dx.doi.org/10.1016/0024-3795(84)90093-4
http://dx.doi.org/10.1145/2723372.2747647
http://dx.doi.org/10.1145/2723372.2747647

