
Computing Fundamental matrix decompositions
accurately via the matrix sign function in two
iterations: The power of Zolotarev’s functions

Nakatsukasa, Yuji and Freund, Roland W.

2015

MIMS EPrint: 2015.106

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

COMPUTING FUNDAMENTAL MATRIX DECOMPOSITIONS
ACCURATELY VIA THE MATRIX SIGN FUNCTION IN TWO
ITERATIONS: THE POWER OF ZOLOTAREV’S FUNCTIONS

YUJI NAKATSUKASA∗ AND ROLAND W. FREUND†

Abstract. The symmetric eigenvalue decomposition and the singular value decomposition
(SVD) are fundamental matrix decompositions with many applications. Conventional algorithms
for computing these decompositions are suboptimal in view of recent trends in computer architec-
tures, which require minimizing communication together with arithmetic costs. Spectral divide-
and-conquer algorithms, which recursively decouple the problem into two smaller subproblems, can
achieve both requirements. Such algorithms can be constructed with the polar decomposition playing
two key roles: it forms a bridge between the symmetric eigendecomposition and the SVD, and its
connection to the matrix sign function naturally leads to spectral-decoupling. For computing the
polar decomposition, the scaled Newton and QDWH iterations are two of the most popular algo-
rithms, as they are backward stable and converge in at most nine and six iterations, respectively.
Following this framework, we develop a higher-order variant of the QDWH iteration for the polar
decomposition. The key idea of this algorithm comes from approximation theory: we use the best
rational approximant for the scalar sign function due to Zolotarev in 1877. The algorithm exploits
the extraordinary property enjoyed by the sign function that a high-degree Zolotarev function (best
rational approximant) can be obtained by appropriately composing low-degree Zolotarev functions.
This lets the algorithm converge in just two iterations in double-precision arithmetic, with the whop-
ping rate of convergence seventeen. The resulting algorithms for the symmetric eigendecompositions
and the SVD have higher arithmetic costs than the QDWH-based algorithms, but are better-suited
for parallel computing and exhibit excellent numerical backward stability.

Key words. Zolotarev function, rational approximation of the sign function, symmetric eigen-
value problem, singular value decomposition, polar decomposition, minimizing communication

AMS subject classifications. 15A23, 65F15, 65F30, 65G50

1. Introduction. Every matrix A ∈ Cm×n with m ≥ n can be written in the
form

(1.1) A = UΣV ∗,

where U ∈ Cm×n and V ∈ Cn×n are matrices with orthonormal columns, i.e.,
U∗U = In and V ∗V = In, and Σ ∈ Rn×n is a diagonal matrix with nonnegative
diagonal entries. Here and throughout the paper, the superscript “∗” denotes the
complex conjugate. The factorization (1.1) is called the singular value decomposition
(SVD) and the diagonal entries of Σ the singular values of A; see, e.g., [22, § 2.4]. The
SVD is the most versatile decomposition of a general matrix. We note that the factor-
ization (1.1) is sometimes called the thin SVD to distinguish it from the factorization
of the same form (1.1), but with U ∈ Cm×m and Σ ∈ Rm×n.

One of the many applications of the SVD is the polar decomposition. Every
matrix A ∈ Cm×n with m ≥ n can be written in the form

(1.2) A = UpH,

∗Department of Mathematical Informatics, University of Tokyo, Tokyo 113-8656, Japan (e-mail:
nakatsukasa@mist.i.u-tokyo.ac.jp). Supported by JSPS Grants-in-Aid for Scientific Research No.
26870149. Part of this work was done while this author was a postdoc at the University of Manchester
and supported by EPSRC grant EP/I005293/1.
†Department of Mathematics, University of California at Davis, One Shields Avenue, Davis, CA

95616 (e-mail: freund@math.ucdavis.edu)

1

2 YUJI NAKATSUKASA and ROLAND W. FREUND

where Up ∈ Cm×n has orthonormal columns and H ∈ Cn×n is Hermitian positive
semidefinite. The factorization (1.2) is called the polar decomposition, and Up and H
the unitary (or orthogonal if A is real) and Hermitian polar factors of A, respectively.
The existence of the polar decomposition (1.2) easily follows by writing the SVD of A
as A = UΣV ∗ = (UV ∗)(V ΣV ∗) = UpH where Up = UV ∗ and H = V ΣV ∗. We note
that the Hermitian polar factor H is unique for any A. Furthermore, if A ∈ Cm×n has
full column rank n, then the unitary polar factor Up is also unique and H is positive
definite.

The polar decomposition (1.2) is used in various situations, such as projection
onto the Stiefel manifold [38], the orthogonal Procrustes problem [16, 24], and re-
orthogonalization of inexact solutions [44]; see [31, § 2.6] for more applications. In
this paper, we are particularly motivated by the use of the polar decomposition in
spectral divide-and-conquer algorithms for computing the SVD A = UΣV ∗ of gen-
eral matrices and the eigenvalue decomposition A = V ΛV ∗ of Hermitian (and real
symmetric) matrices A = A∗. Here, V is a unitary matrix and Λ is a diagonal matrix
with the eigenvalues of A as its diagonal entries, which are all real.

The standard algorithm for computing the symmetric eigendecomposition of dense
matrices [22, Ch. 8],[50, Ch. 7,8] proceeds by first reducing the matrix into tridiagonal
form, then computing a tridiagonal eigenvalue decomposition. At the end of this
introduction we give pictorial descriptions of this algorithm, along with the standard
SVD algorithms and algorithms based on spectral divide-and-conquer.

There has been much recent progress on designing algorithms that reduce com-
munication in addition to the arithmetic cost [8], so that they are well-suited for
parallel computing. Unfortunately, the standard eigendecomposition algorithm for
does not minimize communication in a naive implementation, with the initial reduc-
tion being a bottleneck [7]. Recent attempts [9] modify the reduction stage for the
symmetric eigendecomposition to reduce communication, but its implementation de-
tails are unavailable, and involve a significant amount of tuning that depends on the
architecture.

A different approach based on spectral divide-and-conquer using the polar de-
composition is pursued in [45, § 3,4], [48]. An advantage of this approach is that
they can be implemented in a communication-minimizing manner using only widely
available and highly optimized matrix operations, such as matrix multiplication, QR
factorization, and Cholesky decomposition.

Much of the discussion carries over to the SVD. Standard SVD algorithms [22,
§ 8.6] (again for dense matrices; for approximating the SVD of large sparse matrices,
see e.g. [5, 29]) first reduces the matrix A ∈ Cm×n to bidiagonal form.

In a spectral divide-and-conquer approach, we first compute (again) the polar de-
composition A = UpH, and then obtain the symmetric (positive semidefinite) eigen-
decomposition H = V ΣV ∗ by spectral divide-and-conquer. Then A = (UpV)ΣV ∗ =
UΣV ∗ is the SVD. Here the polar decomposition is used to reduce computing the
SVD to computing the symmetric eigendecomposition.

We stress the fundamental role played by the computation of the polar decomposi-
tion A = UpH in a spectral divide-and-conquer method, both for the symmetric eigen-
decomposition and the SVD. As shown in [45], the arithmetic cost for the symmetric
eigendecomposition is about 4/3 times that of computing A = UpH, and about 7/3
for the SVD. Furthermore, the backward stability of the computed symmetric eigen-
decomposition and the SVD rests crucially on that of the polar decompositions [48].

Many iterations are known for computing the polar decomposition. The classical

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 3

scaled Newton iteration [31, § 8.6], Xk+1 = 1
2 (µkXk + µ−1k X−1k) with X0 = A, is

still a practical method for square nonsingular matrices, with several effective scaling
strategies for choosing µk proposed [14, 33]. Other methods exist such as Newton-
Schulz and the Padé family of methods; see [31, Ch. 8],[33] for details.

The approach in [45, 48] for computing the polar decomposition is to use the
QDWH (QR-based dynamically weighted Halley) iteration developed in [46]. QDWH
has the advantage over scaled Newton that QDWH is inverse-free and typically more
accurate for large matrices, and requires a smaller number of iterations; in Section 3.7,
we give a unified view of the two iterations. The analysis in [47] establishes backward
stability of QDWH. This in turn implies the resulting algorithms for the eigendecom-
position (QDWH-eig) and the SVD (QDWH-SVD) are numerically backward stable,
and in fact they typically give better backward errors than standard algorithms [48].
Since QDWH uses only matrix multiplication, QR factorization, and Cholesky de-
composition as building blocks, the resulting algorithms can be implemented in a
communication-minimizing manner in the asymptotic sense [8]. The dominant cost
of one QDWH iteration is in performing the QR factorization of matrices of the form[
X
ckI

]
for a scalar ck. QDWH requires at most six iterations to converge for any prac-

tical matrix satisfying κ2(X) < u−1, where u ≈ 1.1 × 10−16 is the unit roundoff in
IEEE double-precision arithmetic [46]. The arithmetic operation costs for the result-
ing spectral divide-and-conquer algorithms QDWH-eig and QDWH-SVD are within
a factor 3 of those for the standard algorithms [48].

However, the experiments in [48] indicate that the QDWH-based algorithms are
still considerably slower on a sequential machine (by a factor between 2 and 4) than
the fastest standard algorithm. Although the relative performance is expected to be
better on parallel systems, and indeed a recent report [55] suggests QDWH-SVD can
outperform standard methods on multicore-GPU systems, further improvements to
the algorithm itself are therefore much desired. Since the spectral divide-and-conquer
algorithms use the polar decomposition as fundamental building blocks, the design of
an improved algorithm for computing A = UpH directly leads to improved spectral
divide-and-conquer algorithms for the symmetric eigendecomposition and the SVD.

The main contribution of this paper is the design of Zolo-pd, an algorithm for
the polar decomposition that requires just two iterations1 for convergence in double-
precision for any matrix A with κ2(A) ≤ 1016. The crucial observation is that the
mapping function for the singular values used by the QDWH iteration is exactly the
type-(3, 2) best rational approximation of the scalar sign function. Then a natural idea
is to consider its higher-order variant, i.e., type-(2r + 1, 2r) best rational approxima-
tions for general r ≥ 1. The explicit solution of this rational approximation problem
was given by Zolotarev in 1877. We show that the type-((2r+1)k, (2r+1)k−1) best ap-
proximation can be expressed as a composition of the form Rk(· · · (R1(x)) · · ·), where
each Ri is a rational function of type (2r+1, 2r). This observation yields an algorithm
that requires only k matrix iterations to apply the type-((2r+ 1)k, (2r+ 1)k− 1) best
approximation to the singular values. The high-order rational approximations to the
sign function sign(x) are so powerful that a type-(m+ 1,m) best approximant on the
interval [10−15, 1] with m ≥ 280 has accuracy O(u). Since taking r = 8 yields a type
(289, 288) approximant with k = 2, this means just two iterations is enough to obtain

1The two-step convergence of Zolo-pd suggests that perhaps it should be regarded as a direct
rather than an iterative algorithm: even though it is known [20, 21] that Abel’s impossibility theorem
implies that the exact polar decomposition cannot be computed in a finite number of arithmetic
operations, an approximation correct to O(10−16) can be obtained.

4 YUJI NAKATSUKASA and ROLAND W. FREUND

O(u) accuracy on [10−15, 1]. This is the rational function used by Zolo-pd, which
therefore converges in two matrix iterations. The algorithm is still iterative (it has to
be [20]), and the rate of convergence is as high as seventeen, which means one iteration
reduces the error from ε to O(ε17). This is a significantly higher rate of convergence
than for any other practical numerical algorithm that the authors are aware of. For
example, the widely used Newton’s method typically converges quadratically, i.e., its
convergence rate is two, and cubically convergent methods with rate three are often
regarded as very fast; examples include the QR algorithm for symmetric tridiagonal
matrices [50] and QDWH.

It is often believed (and sometimes true) that higher-order iterations can cause
numerical instability. However, with the help of a QR-based implementation, Zolo-pd
exhibits excellent numerical stability comparable to that of QDWH, leading to stable
algorithms also for computing the symmetric eigendecomposition (Zolo-eig) and the
SVD (Zolo-SVD). Their experimental backward stability and orthogonality measure
are comparable to QDWH-eig and QDWH-SVD, and are notably better than those
of standard algorithms.

Using the partial fraction form of the type (2r + 1, 2r) rational function, each
iteration of Zolo-pd involves computing the QR factorization

[
X
cjI

]
= QR for distinct

values of cj , j = 1, . . . , r(≤ 8). Just like the QDWH-based algorithms, the Zolo-based
algorithms require only matrix multiplications and QR and Cholesky factorizations,
and thus minimize communication. The arithmetic cost of the Zolo-based algorithms
is higher than the QDWH-based ones (by a factor < 3), so on a serial implementation
Zolo-pd is slower than QDWH; this is reflected in our Matlab experiments. Fortu-
nately, the r QR factorizations can be performed independently, in which case the
runtime per iteration is expected to be roughly the same as QDWH. Then, due to the
faster convergence, Zolo-pd can be faster than QDWH by a factor up to 3. Indeed,
in a parallel implementation, the arithmetic cost of Zolo-SVD along the critical path
is comparable to that of the standard algorithms based on reduction to bidiagonal
form. Zolo-based algorithms therefore have ideal properties for parallel computing,
and our preliminary Matlab experiments suggest that if properly parallelized, our
algorithms can outperform standard algorithms in both speed and accuracy. This
paper focuses on the mathematical foundations of the algorithm, and optimizing the
performance on massively parallel systems is left as future work.

The structure of this paper is as follows. In the remainder of this section we review
the matrix sign function and give pictorial descriptions of the algorithms. In Section
2, we revisit the QDWH iteration from the viewpoint of approximation theory. In
Section 3 we develop its higher-order variant, in which we show that an appropriately
composed Zolotarev function is another Zolotarev function. Section 4 discusses de-
tailed algorithmic implementation issues such as a stable and parallelizable evaluation
of the iteration. We then summarize the Zolo-based algorithms and compare them
with other standard algorithms in Section 5. Numerical experiments with a sequential
implementation are presented in Section 6.

Notation: σ1(A) ≥ · · · ≥ σn(A) are the singular values of a rectangular matrix
A ∈ Cm×n with m ≥ n, and σmax(A) = σ1(A) and σmin(A) = σn(A), which is
assumed positive unless otherwise stated. ‖A‖2 = σmax(A) denotes the spectral norm

and ‖A‖F = (
∑
i,j |Aij |2)

1
2 is the Frobenius norm. λi(A) denotes the ith largest

eigenvalue of a symmetric matrix A. κ2(A) = σmax(A)/σmin(A) is the condition
number of A. To avoid confusion between the unitary polar factor and the singular
value decomposition (SVD) of A, we always use subscripts Up to denote the unitary

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 5

polar factor, while U denotes the matrix of left singular vectors. Hence for example
A = UpH = UΣV ∗. We denote by Pr the set of all polynomials P with real coefficients
of degree at most r and by Rr,s the set of all rational functions R = P

Q where P ∈ Pr,
Q(6= 0) ∈ Ps. We say that a rational function R is of type (r, s) if R ∈ Rr,s.

We develop algorithms for complex matrices A ∈ Cm×n, but for A ∈ Rm×n all
the operations can be carried out using real arithmetic only, and for simplicity we
call a matrix A = A∗ symmetric (instead of Hermitian). We assume the use of IEEE
double-precision arithmetic, in which the unit roundoff u = 2−53 ≈ 1.1 × 10−16, but
minor modifications extends the discussion to higher (or lower) precision arithmetic.
The polar decomposition is unique if A has full column rank, which we assume in
most of the paper (see Section 5.3 for the rank-deficient case).

1.1. The matrix sign function. The scalar sign function sign(z) is defined for
all complex numbers z ∈ C off the imaginary axis Re(z) = 0 as follows: sign(z) = 1
if Re(z) > 0 and sign(z) = −1 if Re(z) < 0. The matrix sign function sign(A) is an
extension of sign(z) to square matrices A ∈ Cn×n that have no eigenvalues on the
imaginary axis [42, 53]. Formally, sign(A) can be defined via the Jordan decomposition
A = ZJZ−1, where Z is nonsingular and J is a Jordan canonical form of A. The
eigenvalues of A appear on the diagonal of J , and we can order the rows and columns
of J such that the eigenvalues λ with Re(λ) > 0 appear first. This means that J is of

the form J =
[J+ 0

0 J−

]
with J+ ∈ Cn+×n+ and J− ∈ C(n−n+)×(n−n+) corresponding

to the eigenvalues of A with Re(λ) > 0 and Re(λ) < 0, respectively. The matrix sign
function of A is then given by

(1.3) sign(A) = Z

[
In+ 0
0 −In−n+

]
Z−1.

The matrix sign function is related to the polar decomposition. In particular, for
symmetric matrices A = A∗, the polar factor Up of A is equal to sign(A); see [34].

Of particular relevance to this paper is the role of sign(A) in solving eigenvalue
problems by a spectral divide-and-conquer process, see e.g. [4, 6, 10, 36]. Invariant
subspaces can be computed via sign(A) because 1

2 (sign(A) + I) and 1
2 (sign(A) − I)

are projections onto the invariant subspaces corresponding to the eigenvalues with
Re(λ) > 0 and Re(λ) < 0, respectively; we illustrate this below for A = A∗.

1.2. Description of the standard and spectral divide-and-conquer algo-
rithms. Here we illustrate the four algorithms: (i) standard and (ii) spectral divide-
and-conquer algorithms for (a) the symmetric eigendecomposition, and (b) the SVD.

Standard algorithm for symmetric eigendecomposition. One first reduces the sym-
metric matrix A to tridiagonal form by n − 2 Householder transformations, whose
pictorial description for n = 5 is

A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

H1
→

∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

H2
→

∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

H3
→

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 ≡ T.
Here, Hi indicates an application of a Householder transformation A ← HiAHi,
where Hi = I − 2viv

∗
i , ‖vi‖2 = 1; see, e.g., [22, Ch. 5]. Thus we have A = HTH∗,

where H = Hn−2Hn−3 · · ·H1. Then the eigendecomposition of the tridiagonal matrix
T = QΛQ∗ is computed, for which many efficient algorithms are available, such as
QR [50, Ch. 8], divide-and-conquer [26], and MR3 [17]. Together we obtain the
eigendecomposition A = V ΛV ∗ where V = HQ.

6 YUJI NAKATSUKASA and ROLAND W. FREUND

Spectral divide-and-conquer for symmetric eigendecomposition. Recall that for
symmetric A, we have Up = sign(A). Moreover, the matrix Z =

[
Z+ Z−

]
in (1.3)

can be chosen to be unitary. From (1.3), it then follows that 1
2 (Up + I) = Z+Z

∗
+ is an

orthogonal projection onto the eigenspace corresponding to the positive eigenvalues
of A. Thus by extracting a matrix V+ with orthonormal columns such that V+V

∗
+ =

1
2 (Up+I) and finding its orthogonal complement V−, we obtain a unitary matrix V1 :=[
V+ V−

]
such that V1AV

∗
1 is block diagonalized. The whole matrix is diagonalized

by recursively working with the smaller diagonal blocks; pictorially,

(1.4) A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

V1→

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

V2→

∗
∗ ∗
∗ ∗

∗
∗

V3→

∗
∗
∗
∗
∗

= Λ.

Here, Vi represents the unitary transformation A← V ∗i AVi, where Vi is block diagonal
with up to 2i−1 diagonal blocks; for the example shown above, V2 = diag(V21, V22)
and V3 = diag(1, V32, I2) where V21 ∈ C3×3, V22 ∈ C2×2, V32 ∈ C2×2. Then the
eigendecomposition is A = V ΛV ∗, where V = V1V2 · · ·Vk. Here, k is the recursion
depth, usually ≈ log2 n. Such recursive decoupling into smaller submatrices is called
spectral divide-and-conquer.

Standard SVD algorithm. The first step is to reduce A ∈ Cm×n to bidiagonal
form. For example with m = 5, n = 4,

AHL, 1
→

? ? ? ?

? ? ?
? ? ?
? ? ?
? ? ?

HR, 1
→

? ?

? ? ?
? ? ?
? ? ?
? ? ?

HL, 2
→

? ?

? ? ?
? ?
? ?
? ?

HR, 2
→

? ?

? ?
? ?
? ?
? ?

HL, 3
→

? ?

? ?
? ?

?
?

HL, 4
→ B,

where HL,i indicates a left-multiplication by a Householder reflection, and HR,i a
right-multiplication. Above, HL,4 eliminates the (5, 4) element to complete the bidi-
agonalization. Here we use ? instead of ∗ to indicate that the matrix is non-symmetric.
Thus HL,m−1 · · ·HL,1AHR,1 · · ·HR,n−2(=: HLAHR) = B, and one then invokes a
bidiagonal SVD for the bidiagonal B = UBΣV

∗
B , and obtain the whole SVD as

A = UΣV ∗, where U = H∗LUB and V = HRVB .
Spectral divide-and-conquer for SVD. We first compute the polar decomposition

A = UpH, then obtain the symmetric (positive semidefinite) eigendecomposition H =
V ΣV ∗ by spectral divide-and-conquer. as in (1.4):

A=

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

= Up

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

= UpH, H V1
→

∗ ∗
∗ ∗

∗ ∗
∗ ∗

V2→

∗
∗
∗
∗

= Σ.

Then A = (UpV)ΣV ∗ = UΣV ∗ is the SVD.

2. The QDWH algorithm as a rational approximation to sign(x). The
QDWH algorithm [46] computes the unitary polar factor Up of a full-rank matrix A
as the limit of the sequence Xk defined by

(2.1) Xk+1 = Xk(akI + bkX
∗
kXk)(I + ckX

∗
kXk)−1, X0 = A/α.

Here, α > 0 is an estimate of ‖A‖2 such that α & ‖A‖2. Setting ak = 3, bk = 1, ck = 3
gives the Halley iteration, which is the cubically convergent member of the family of

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 7

principal Padé iterations [31, § 8.5]. The iterates (2.1) preserve the singular vectors
while mapping the singular values by a rational function Rk(· · ·R2(R1(x)) · · ·), i.e.,
Xk = UΣkV

∗, where Σk = Rk(· · ·R2(R1(Σ0)) · · ·) is the diagonal matrix with ith
diagonal Rk(· · ·R2(R1(σi/α)) · · ·); equivalently R(Σ0) denotes the matrix function
in the classical sense [31]. The choice of the rational functions Rk(x) is of crucial

importance in this paper, and in QDWH Rk(x) = xak+bkx
2

1+ckx2 , in which the parameters
ak, bk, ck are chosen dynamically to optimize the convergence. They are computed
by ak = h(`k), bk = (ak − 1)2/4, ck = ak + bk − 1, where h(`) =

√
1 + γ + 1

2

(
8 −

4γ + 8(2 − `2)/(`2
√

1 + γ)
)1/2

, γ =
(
4(1 − `2)/`4

)1/3
. Here, `k is a lower bound

for the smallest singular value of Xk, which is computed from the recurrence `k =
`k−1(ak−1 + bk−1`

2
k−1)/(1 + ck−1`

2
k−1) for k ≥ 1. Note that all the parameters are

available for free (without any matrix computations) for all k ≥ 0 once we have
estimates α & ‖A‖2 and `0 . σmin(X0), obtained for example via a condition number
estimator.

With such parameters, the iteration (2.1) is cubically convergent and needs at
most six iterations for convergence to Up with the tolerance u for any matrix A
with κ2(A) ≤ u−1, i.e., ‖X6 − Up‖2 = O(u). We note that iteration (2.1) has a
mathematically equivalent QR-based implementation [46, § 4], which is numerically
more stable (this is the actual QDWH iteration):

(2.2)

[√
ckXk

I

]
=

[
Q1

Q2

]
R, Xk+1 =

bk
ck
Xk +

1
√
ck

(
ak −

bk
ck

)
Q1Q

∗
2, k ≥ 0.

Once the computed polar factor Ûp is obtained, we compute the symmetric polar

factor Ĥ by Ĥ = 1
2 (Û∗pA+ (Û∗pA)∗) [31, § 8.8].

2.1. QDWH mapping function seen as the best type-(3, 2) approxima-
tion. The QDWH parameters a, b, c in (2.1) are chosen so that the interval [`, 1] (in
which all the singular values of X lie) is mapped as close as possible to the point 1

by the type (3, 2) rational function R(x) = xa+bx
2

1+cx2 ∈ R3,2. In [46] they are obtained
as the solution for the rational max-min optimization problem

(2.3) max
a,b,c

min
`≤x≤1

x
a+ bx2

1 + cx2
,

subject to the constraint xa+bx
2

1+cx2 ≤ 1 on [0, 1]. The solution a, b, c results in the
function that takes exactly one local maximum R(xM) and minimum R(xm) on [`, 1]
such that ` ≤ xM ≤ xm ≤ 1, and R(xM) = R(1) = 1, R(xm) = R(`). The function
R(x) maps the interval [`, 1] to [R(`), 1]. Figure 2.1 is a plot of R(x) for the case
` = 0.01.

Note that defining τ = (R(1)+R(`))/2, the function R(x)−τ exhibits an equioscil-
lation behavior on [`, 1] with four extreme points, which is easily seen to be the largest
possible by counting the number of critical points that an odd function R(x) ∈ R3,2

can have. This is known as the equioscillation property of best rational approxi-

mants [57], and implies optimality of R(x)
τ as an approximation to the sign function

on [−1,−`] ∪ [`, 1]; we give more details in Section 3.3. This means the parameters
in the QDWH iteration can also be obtained by finding the best type-(3, 2) rational
approximation to the sign function in the infinity norm (called a Zolotarev function),
then scaling so that max0≤x≤1R(x) = 1.

8 YUJI NAKATSUKASA and ROLAND W. FREUND

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y = x

y = f(x)

Fig. 2.1. Plot of R(x) for the QDWH iteration when ` = 0.01.

QDWH runs this process iteratively taking `k = min`k−1≤x≤1 x
ak−1+bk−1x

2

1+ck−1x2 , and

the resulting function Rk in the kth iteration maps the interval [`k−1, 1] to [`k, 1] =
Rk([`k−1, 1]) with |1−`k| � |1−`k−1|. Then the next QDWH iteration forms Rk+1(x)
defined by the parameters (ak+1, bk+1, ck+1) 6= (ak, bk, ck), so that

[`k+1, 1] = Rk+1([`k, 1]) = Rk+1(Rk([`k−1, 1])) = Rk+1(Rk ◦ · · ·R1([`0, 1]))

with `k+1 as close as possible to the point 1. The QDWH iteration therefore attempts
to map the interval [`0, 1] = [σmin(X0), 1] as close as possible to 1 by the composed
rational function Gk(x) = Rk(Rk−1(· · ·R2(R1(x)) · · ·). As we shall see below, Gk(x)
is in fact the best rational approximation to sign(x) (i.e., a Zolotarev function) of
type-(3k, 3k − 1) on [−1,−`]∪ [`, 1], which are so powerful as approximants that with
k = 6, G6([`, 1])) ⊆ [1− u, 1] for any ` such that u < ` ≤ 1. Since X6 = UG6(Σ0)V ∗

where X0 = UΣ0V
∗ is the SVD (recall A = X0/α), this means ‖X6 − Up‖2 ≤

maxx∈[`,1] |G6(x)− 1| ≤ u, explaining why QDWH converges in six steps.

3. Zolotarev’s rational approximations of the sign function. In light of
the above observation, a natural idea is to consider approximations R ∈ R2r+1,2r of
the sign function sign(x) for general r ≥ 1, with the goal to map all the singular
values to 1. Since sign(x) is an odd function, the optimal approximant in R2r+1,2r

has the form R(x) ≡ xP (x2)
Q(x2) , where P,Q ∈ Pr. As in the QDWH case (2.3), one way

to obtain P and Q is to solve the max-min problem

(3.1) max
P,Q∈Pr

min
`≤x≤1

x
P (x2)

Q(x2)

subject to the constraint xP (x2)
Q(x2) ≤ 1 on [0, 1]. However, solving (3.1) via extending

the approach in [46] for r = 1 to r ≥ 2 seems highly nontrivial.

3.1. Zolotarev functions. Fortunately, the max-min problem (3.1) is equiva-
lent to one of the classical rational approximation problems that Zolotarev [63] solved
explicitly in 1877 in terms of Jacobi elliptic functions. Zolotarev showed [3, Ch. 9],

[51, Ch. 4] that up to a scalar scaling, the solution R(x) ≡ xP (x2)
Q(x2) of (3.1) is identical

to the solution of the min-max problem

(3.2) min
R∈R2r+1,2r

max
x∈[−1,−`]∪[`,1]

|sign(x)−R(x)| .

For any 0 < ` < 1 and integer r ≥ 0, problem (3.2) has a unique solution, which we
denote by Z2r+1(x; `) ∈ R2r+1,2r. We call Z2r+1(x; `) the type (2r + 1, 2r) Zolotarev

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 9

function2 corresponding to `. As shown by Zolotarev [63] (see, e.g., [2, Ch. 9] or [3,
Add. E]), the solution of (3.2) is given by

(3.3) Z2r+1(x; `) := Mx

r∏
j=1

x2 + c2j
x2 + c2j−1

.

Here, the constant M > 0 is uniquely determined by the condition

1− Z2r+1(1; `) = −
(
1− Z2r+1(`; `)

)
,

and the coefficients c1, c2, . . . , c2r are given by

(3.4) ci = `2
sn2
(
iK′

2r+1 ; `′
)

cn2
(
iK′

2r+1 ; `′
) , i = 1, 2, . . . , 2r,

where sn(u; `′) and cn(u; `′) are the Jacobi elliptic functions (see, e.g., [1, Ch. 17] or

[2, Ch. 5]). Here `′ =
√

1− `2 and K ′ =
∫ π/2
0

dθ√
1−(`′)2 sin2 θ

. ` is called the modulus,

`′ the complementary modulus, and K ′ the complete elliptic integral of the first kind
for the complementary modulus. For later use, we note that as shown in [3, Add. E],
the maximum

‖sign(·)− Z2r+1(· ; `)‖∞ := max
x∈[−1,−`]∪[`,1]

|sign(x)− Z2r+1(x; `)|

is attained at exactly 2r + 2 points x1 := ` < x2 < · · · < x2r+1 < x2r+2 := 1 in the
interval [`, 1] and also at exactly 2r + 2 points x−j := −xj , j = 1, 2, . . . , 2r + 2, in
the interval [−1,−`]. Furthermore, the function sign(x) − Z2r+1(x; `) equioscillates
between the xj ’s, in particular,

(3.5) 1− Z2r+1(xj ; `) = (−1)j+1 ‖sign(·)− Z2r+1(· ; `)‖∞ , j = 1, 2, . . . , 2r + 2.

3.1.1. Quality of Z2r+1(x; `) as approximants to sign(x). To illustrate the
power of Zolotarev functions as approximants to sign(x), for r = 1, 2, . . . , 6 and ` =
10−3, in Figure 3.1 we plot Z2r+1(x; `) for 0 ≤ x ≤ 1; this suffices for an illustration
as Z2r+1(x; `) is an odd function. Observe that as r increases, the Zolotarev function
quickly becomes a very good approximation to the sign function.

The quality of Zolotarev functions as approximants to sign(x) is known to improve
exponentially with the degree n = 2r + 1 [51, § 4.3]:

(3.6) ‖sign(·)− Zn(· ; `)‖∞ ≈ C exp (−cn)

for some C, c > 0 that depend on `. This can also be understood via the exponen-
tial convergence of the trapezoidal rule, combined with a change of variables by a
conformal map; see [28, § 5],[58]. More quantitative estimates for the error (3.6) are
available in [23, eq. (32)]:

(3.7)
2

ρn + 1
≤ ‖sign(·)− Zn(· ; `)‖∞ ≤

2

ρn − 1
, ρ = ρ(`) > 1,

2The index “2r + 1”, rather than “r”, for the Zolotarev function Z2r+1 is used to facilitate the
statement of the composition property of Zolotarev functions derived below.

10 YUJI NAKATSUKASA and ROLAND W. FREUND

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Type (3,2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Type (9,8)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Type (5,4)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Type (11,10)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Type (7,6)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Type (13,12)

Fig. 3.1. Zolotarev functions Z2r+1(x; `) of type (2r + 1, 2r) for r = 1, 2, . . . , 6 and ` = 10−3.

where ρ(`) = exp
(
πK(µ′)
4K(µ)

)
, µ = 1−

√
`

1+
√
`
, µ′ =

√
1− µ2, and K(µ) =

∫ π/2
0

dθ
1−µ2 sin2 θ

denotes the complete elliptic integral of the first kind for modulus µ. Taking n = 2r+1,
we conclude that the Zolotarev function Z2r+1 has error

(3.8) ‖sign(·)− Z2r+1(· ; `)‖∞ = C2r+1ρ
−2r+1

with 1 ≤ 2
1+ρ−(2r+1) ≤ C2r+1 ≤ 2

1−ρ−(2r+1) ≤ 2
1−ρ−1 .

3.2. Rational function for Zolo-pd. For the following, it will be convenient
to use the scaled Zolotarev function

(3.9) Ẑ2r+1(x; `) :=
Z2r+1(x; `)

Z2r+1(1; `)
= M̂x

r∏
j=1

x2 + c2j
x2 + c2j−1

,

where M̂ =
∏r
j=1(1+c2j−1)/(1+c2j). We remark that Ẑ2r+1(1; `) = 1, and Ẑ2r+1(x; `)

maps the set [−1,−`] ∪ [`, 1] onto [−1,−˜̀] ∪ [˜̀, 1], where ˜̀ := minx∈[`,1] Ẑ2r+1(x; `) =

Ẑ2r+1(`; `). Note that we clearly have 0 < ` < ˜̀< 1.
Combining the iterative process used in QDWH and the scaled Zolotarev func-

tions just described, we arrive at an algorithm that approximates the sign function by
composing Zolotarev functions: starting with an interval [`, 1] with 0 < ` < 1 that con-
tains all the singular values of X0 = A/α, we set `0 := ` and form R1 := Ẑ2r+1(x; `0),
the scaled r-th Zolotarev function corresponding to `0, which maps [−1,−`0] ∪ [`0, 1]
onto [−1,−`1] ∪ [`1, 1]. Here, `1 := R1(`0) with `1 > `0, typically |1− `1| � |1− `0|.
Then we form the r-th scaled Zolotarev function R2 := Ẑ2r+1(x; `1) corresponding
to `1, which maps [−1,−`1] ∪ [`1, 1] onto [−1,−`2] ∪ [`2, 1], where `2 := R2(`1) and
`2 > `1. The composed function R2(R1(x)) maps the original set [−1,−`]∪ [`, 1] onto
[−1,−`2] ∪ [`2, 1]. Repeating this process k times we obtain [`k, 1] = Rk([`k−1, 1])
with |1− `k| � |1− `k−1|; our algorithm Zolo-pd actually needs only k = 2 iterations.

3.3. Composed Zolotarev functions are again Zolotarev functions. The
algorithm just described employs a composed rational function

(3.10) R(x) := Ẑ2r+1

(
Ẑ2r+1(x; `); `1

)

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 11

that approximates the sign function on the interval [−1,−`] ∪ [`, 1], in which both
components are scaled Zolotarev functions, but corresponding to the different values
` and `1. The composed function R is clearly a rational function in R(2r+1)2,(2r+1)2−1,

and thus we have ‘squared’ the degree of Ẑ2r+1(x; `).
In this subsection, we show that R(x) as in (3.10) satisfies

(3.11) R(x) = Ẑ(2r+1)2(x; `),

that is, R is in fact the scaled Zolotarev function of squared type ((2r+1)2, (2r+1)2−1)
corresponding to the original value of `. Similarly, we can compose k Zolotarev func-
tions to obtain Rk(· · ·R2(R1(x)) · · ·) = Ẑ(2r+1)k(x; `), in which each Ri ∈ R2r+1,2r is
the scaled Zolotarev function of type (2r + 1, 2r) corresponding to `i−1, where

`i := min
x∈[`i−1,1]

Ẑ2r+1(x; `i−1) = Ẑ2r+1(`i−1; `i−1).

We emphasize that the fact that a high-degree best rational approximant is obtained as
the composition of low-degree rational approximants is a remarkable special property
enjoyed by the sign function, since k odd rational functions R1, R2, . . . , Rk ∈ R2r+1,2r

altogether have only k(2r + 1) parameters, whereas general rational functions in
R(2r+1)k,(2r+1)k−1 have 2(2r + 1)k degrees of freedom.

3.3.1. Best rational approximation on union of two intervals. To prove
the statement (3.11) for any ` ∈ (0, 1) and integer r, we need a classical result on
the characterization of best rational approximants called equioscillation [51, 52, 57].
Consider the problem of approximating a given continuous function F : [a, b] 7→ R on
a real interval [a, b] by a rational function R ∈ Rm,n (in this subsection only, m,n
denote the degrees, not the matrix size):

min
R∈Rm,n

‖F −R‖∞ , where ‖F −R‖∞ := max
x∈[a,b]

|F (x)−R(x)| .

We say that the error F − R equioscillates between k extreme points if there exist
a ≤ x1 < x2 < · · · < xk ≤ b such that

(3.12) F (xj)−R(xj) = ρ(−1)j‖F −R‖∞ j = 1, 2, . . . , k,

where ρ is either 1 or −1. The defect of a rational function R = P
Q ∈ Rm,n in Rm,n

where P,Q are relatively prime polynomials is defined as d(R) := min{m−degP, n−
degQ} if R 6≡ 0 and d(R) = 0 if R ≡ 0. The classical characterization of best rational
approximant [52, Thm. 7.2], [57, Thm. 10.1] can be stated as follows (originally due
to Poncelet (1835) and Chebyshev; see [57, Ch. 10] for more on its history).

Lemma 3.1. Let F : [a, b] 7→ R be a continuous function. Then, R ∈ Rm,n is the
unique best rational approximant of F in Rm,n if, and only if, F − R equioscillates
between at least m+n+ 2−d(R) extreme points, where d is the defect of R in Rm,n.

In what follows, all the rational functions we consider have maximum possible
numerator and denominator degree in Rm,n so that the defect d(R) = 0. Regardless
of d(R), Lemma 3.1 shows that equioscillation of F −R at m+ n+ 2 extreme points
is a sufficient condition for optimality. For our specific problem of approximating the
sign function, we work with a union of two intervals [−1,−`]∪ [`, 1], and in particular
we use the following sufficient condition for optimality (see also [51, Thm 4.4]). For
a union [a, c]∪ [d, b], where a < c < d < b, we still say F −R equioscillates between k
extreme points if (3.12) holds for k distinct increasing points xj ∈ [a, c] ∪ [d, b].

12 YUJI NAKATSUKASA and ROLAND W. FREUND

Lemma 3.2. Let F : [a, c]∪[d, b] 7→ R be a continuous function and a < c < d < b.
Then, R ∈ Rm,n is the unique best rational approximant of F in Rm,n if F − R
equioscillates between at least m+ n+ 3 extreme points.

Note that the number of extreme points m+n+3 is one larger than in Lemma 3.1
for the case of a single interval [a, b], and the lemma gives a sufficient condition for
optimality, which may not be a necessary condition.

Proof. Suppose F −R equioscillates between m+n+ 3 extreme points satisfying
(3.12) for {xj}m+n+3

j=1 , and suppose there exists a better approximation R̃ ∈ Rm,n
such that ‖F − R̃‖∞ < ‖F − R‖∞. Then R − R̃ must take alternating signs at the
points xj , which means it must be 0 in at least m + n + 3 − 2 = m + n + 1 distinct
points3, each in [xj , xj+1], possibly except for the one that contains c+d

2 . However,

since R− R̃ ∈ Rm+n,2n, it cannot have more than m+ n zeros unless R− R̃ = 0.
Applying Lemma 3.2 to the case F = sign(x) on [−1,−`]∪ [`, 1] shows that given

a rational function R ∈ R2r+1,2r, we can test its optimality by counting the number of
equioscillation points and by checking if this number is at least 2r+1+2r+3 = 4r+4.
For example, in view of (3.5), Zolotarev functions Z2r+1(x; `) ∈ R2r+1,2r satisfy this
property. Observe that each Zolotarev function in Figure 3.1 has exactly 2r + 2
equioscillation points in [`, 1] (the fact that F is the sign function makes counting
the equioscillation points straightforward), and by the symmetry about the origin,
in total there are 4r + 4 equioscillation points, verifying its optimality as the best
rational approximant.

3.3.2. Equioscillation of composed Zolotarev functions. We now show
that the composed scaled Zolotarev function Ẑ2r+1

(
Ẑ2r+1(x; `); `1

)
is indeed a scaled

Zolotarev function of higher type. We actually prove a slightly more general statement
in which the two Zolotarev functions are allowed to be of different types.

Theorem 3.3. Let Ẑ2r1+1(x; `) ∈ R2r1+1,2r1 be the scaled Zolotarev function

corresponding to ` ∈ (0, 1), and let Ẑ2r2+1(x; `1) ∈ R2r2+1,2r2 be the scaled Zolotarev

function corresponding to `1 := Ẑ2r1+1(`; `). Then

(3.13) Ẑ2r2+1

(
Ẑ2r1+1(x; `); `1

)
= Ẑ(2r1+1)(2r2+1)(x; `).

Proof. The function Ẑ2r2+1

(
Ẑ2r1+1(x; `); `1

)
is clearly a rational function of type

((2r1+1)(2r2+1), (2r1+1)(2r2+1)−1). Thus, by Lemma 3.2, it suffices to prove that
M̃2 sign(x) − Ẑ2r2+1(Ẑ2r1+1(x; `); `1) equioscillates between at least (2r1 + 1)(2r2 +
1)+(2r1+1)(2r2+1)−1+3 = 2(2r1+1)(2r2+1)+2 extreme points in [−1,−`]∪ [`, 1]
for some M̃2 > 0; indeed M̃2 = (`2 + 1)/2 with `2 = Ẑ2r2+1(`1; `1). By symmetry
it suffices to show that M̃2 − Ẑ2r2+1(Ẑ2r1+1(x; `); `1) equioscillates between at least
(2r1 + 1)(2r2 + 1) + 1 extreme points in the positive interval [`, 1].

In view of (3.5), the function M̃1 − Ẑ2r1+1(x; `) where M̃1 = (`1 + 1)/2 equioscil-
lates between the 2r+2 points ` = x1 < x2 < · · · < x2r1+2 = 1. Consider the intervals
[xj , xj+1] for j = 1, 2, . . . , 2r1 + 1. The function Ẑ2r1+1(x; `) is continuous and maps

each [xj , xj+1] onto the interval [`1, 1], which is then mapped by Ẑ2r2+1(x; `1), in

such a way that M̃2 − Ẑ2r2+1

(
Ẑ2r1+1(x; `); `1

)
has 2r2 + 2 equioscillation points on

[xj , xj+1], including those precisely at xj , xj+1. Hence summing up the equioscilla-
tion points on [`, 1] gives (2r1 + 1)(2r2 + 2) − 2r1 points, in which the subtraction

3This number would be m + n + 2 if we have only a single interval instead of a union of two
intervals.

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 13

of 2r1 accounts for the double-counted points xj for j = 2, 3, . . . , 2r1 + 1. Since
(2r1 + 1)(2r2 + 2)− 2r1 = (2r1 + 1)(2r2 + 2) + 1, we thus have the required number
of equioscillation points.

Figure 3.2 gives an illustration for r := r1 = r2 = 1, k = 2 and ` = 1
500 . The red

points are the equioscillation points xj of M̃1− Ẑ2r+1(x; `), with each [xj , xj+1] being

mapped to [`1, 1] with `1 ≈ 0.31. The black points are equioscillation points of M̃2 −
Ẑ2r+1(x; `1), which generate equioscillation points at the x-values of the blue points.
Shown in solid green is the composed Zolotarev function Ẑ2r+1(Ẑ2r+1(x; `); `1) =
Ẑ(2r+1)2(x; `).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ẑ3(x; `)

Ẑ3(x; `1)

Ẑ3

1
Ẑ3(x; `); `1

2

Fig. 3.2. Zolotarev functions Ẑ3(x; `), Ẑ3(x; `1), their composition Ẑ3

(
Ẑ3(x; `); `1

)
= Ẑ9(x; `),

and their equioscillation points for ` = 1
500

.

By applying Theorem 3.3 k times, one readily obtains the following result.
Corollary 3.4. Let r1, r2, . . . , rk ≥ 0 be integers. Under the assumptions of

Theorem 3.3, define `i iteratively by `0 = ` and `i+1 := Ẑ2ri+1+1(`i; `i). Then,

(3.14) Ẑ2rk+1(· · · Ẑ2r2+1(Ẑ2r1+1(x; `); `1); · · · ; `k−1) = Ẑ∏k
i=1(2ri+1)(x; `)

is the scaled Zolotarev function of type (
∏k
i=1(2ri + 1),

∏k
i=1(2ri + 1)k − 1).

In what follows we shall take ri to be the same which we simply write r, so we
employ Zolotarev functions of type ((2r + 1)k, (2r + 1)k − 1).

3.4. Benefits of computing Ẑ(2r+1)k(x, `) by composition. There are two

ways to compute Ẑ(2r+1)k(x; `), eventually at a matrix argument x = X0 = A/α.

1. Directly by (3.9) as MX0

∏ (2r+1)k−1
2

j=1 (X∗0X0 + c2jI)(X∗0X0 + c2j−1I)−1.

2. Compute k Zolotarev functions Ẑ2r+1(x; `), Ẑ2r+1(x; `1), . . . , Ẑ2r+1(x; `k−1)
and then form Ẑ2r+1(· · · Ẑ2r+1(Ẑ2r+1(X0; `); `1) · · ·); `k−1).

We argue that the second approach by composition is significantly better, both
in speed and numerical stability.

Regarding the speed, let us compare the evaluations Z = Ẑ(2r+1)k(X0; `) and

Ẑ2r+1(· · · (Ẑ2r+1(X0; `); · · ·); `k−1) at a matrix X0. Using the partial fraction repre-
sentation (discussed in Section 4.1) the direct evaluation of Ẑ(2r+1)k(X0; `) requires
(2r+1)k−1

2 matrix operations (QR factorizations and matrix multiplications). By con-

14 YUJI NAKATSUKASA and ROLAND W. FREUND

trast, consider computing Ẑ2r+1(· · · (Ẑ2r+1(X0; `); · · ·); `k−1), which we do sequen-
tially as follows: Y1 = Ẑ2r+1(X0; `), Yi+1 = Ẑ2r+1(Yi; `i) for i = 1, 2, . . . , k − 1, and
Z = Yk−1. Since forming Yi needs just one matrix operation for each i, this evaluation

uses rk matrix operations. Clearly (2r+1)k−1
2 � rk for k > 1 with difference growing

exponentially with k, so evaluation by composition is much more efficient. Essentially
the same argument holds when the input X0 is a scalar.

Concerning stability, Figure 3.3 shows the error
∥∥sign(·)− Z(2r+1)2(· ; `)

∥∥
∞ of

the computed Zolotarev functions. We take various values of ` := 1/κ, in which κ
represents the matrix condition number in Zolo-pd, since [`, 1] contains the singular
values of X0 = A/α: recall that ` = 1/κ2(A) when exact estimates α = ‖A‖2 and
` = σmin(X0) are used. The blue plots are from direct computation. Composition-
based computation takes isolated values: the red circles show r = 1, so they take
degrees (3k, 3k − 1), and the black triangles are r = 7. The red dashed lines illustrate
the theoretical asymptotic convergence.

degree
50 100 150 200 250 300

10-15

10-10

10-5

100

` = 10!1

` = 10!2

` = 10!5

` = 10!10

` = 10!15

Fig. 3.3. Zolotarev functions computed directly (blue) and via composition (red circle for r = 1,
blue triangles for r = 7). The horizontal axis is the degree of the numerator polynomial of the
Zolotarev function. Note that these plots are for scalars (not matrices).

Observe that the blue plots stagnate at some threshold, showing that computing
high-degree Zolotarev functions directly is unstable for high degree (this is with the
“robust” way of computing the elliptic functions as discussed in Section 4.3). Indeed,
some of the coefficients c2j−1, c2j in (3.3), (3.9) become very small as r grows (when
` = 10−16, mini

√
ci ≈ 10−14 with r = 8), and relative precision is lost when dealing

with terms like x2 + c2j−1, even if c2j−1 was computed very accurately. By contrast,
computation by composition is accurate even when the degree (2r + 1)k is high, as
long as r ≤ 8. This is because each low-degree Zolotarev function Ẑ2r+1(x; `i) is
computed accurately, and hence so is its composition.

3.5. Choice of the integer r. Choosing a larger value of r increases the de-
gree of the Zolotarev functions in R2r+1,2r, leading to an improved approximation to
sign(x) as predicted by (3.8) and illustrated in Figure 3.1. This means the iteration
generally converges in fewer steps by taking r larger. However, the arithmetic cost
per iteration grows with r, and taking r too large can lead to numerical instability as

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 15

we just saw.
The key to the optimal choice of r is to have an accurate estimate of the number

of iterations required for convergence. Specifically, recalling Section 2.1 and the fact
that k iterations of Zolo-pd employs Ẑ(2r+1)k(x; `), the number of iterations required

is essentially the smallest value of k for which Ẑ(2r+1)k([`, 1]; `) ⊆ [1−O(u), 1]. This
argument is much in the same vein as those in the literature for the scaled Newton
iteration [31, p. 206] and the QDWH iteration [46].

Table 3.1 shows the smallest k for which Ẑ(2r+1)k([1
κ2(A) , 1]; `) ⊆ [1 − 10−15, 1]

for varying values of r and ` = 1
κ2(A) . Observe that the Zolotarev approximants with

moderately large r are so powerful that two iterations is enough for convergence for
a wide range of κ2(A).

Table 3.1
Required number of iterations for varying κ2(A) and r, obtained as the smallest k for which

Ẑ(2r+1)k ([`, 1])) ⊆ [1−O(u), 1].

κ2(A) 1.001 1.01 1.1 1.2 1.5 2 10 102 103 105 107 1016

r = 1 (QDWH) 2 2 2 3 3 3 4 4 4 5 5 6
r = 2 1 2 2 2 2 2 3 3 3 3 4 4
r = 3 1 1 2 2 2 2 2 2 3 3 3 3
r = 4 1 1 1 2 2 2 2 2 2 3 3 3
r = 5 1 1 1 1 2 2 2 2 2 2 3 3
r = 6 1 1 1 1 1 2 2 2 2 2 2 3
r = 7 1 1 1 1 1 1 2 2 2 2 2 3
r = 8 1 1 1 1 1 1 2 2 2 2 2 2

The numbers in Table 3.1 reflect the fact that for matrices of practical interest
κ2(A) ≤ u−1, we need a Zolotarev function of type about (281, 280) or higher for
numerical convergence, as can be verified using (3.8). Since two iterations with r = 8
gives a type (289, 288) Zolotarev function, it follows that we can take r ≤ 8 in double-
precision arithmetic to obtain an algorithm that converges in two steps.

In view of Corollary 3.4, it is possible to use different values of ri for the first and
second iterations, and by tuning these, one can slightly reduce the overall arithmetic
cost. However, we do not pursue this here as the effect on the runtime will be marginal
in a parallel implementation.

When κ2(A) happens to be well conditioned so that κ2(A) ≤ 2, one iteration
is enough by taking r to be the value for which the entry is 1 in Table 3.1 (with
a Cholesky-based efficient implementation; see Section 4.2). In the context of the
symmetric eigendecomposition, our primary interest is in κ2(A) ' n because this is
the average-case scenario of the condition number of a shifted matrix A := A − σI
where σ is a scalar parameter that we can choose. For practical values κ2(A) ≤ 5×105,
r ≤ 5 is enough to obtain convergence in two iterations.

3.6. Convergence rate. Although our algorithm converges in two steps, it is
still an iterative method; it has to be, since after all, the polar decomposition is not
finitely computable [20]. Therefore a valid question arises: what is the convergence
rate? The answer is 2r + 1, which can be as high as 17, as we take r to be up to 8.

Verifying this is straightforward. We denote the error after k iterations of com-
posing Zolotarev functions of type (2r + 1, 2r) by

(3.15) errork := max
x∈[−1,−`]∪[`,1]

| sign(x)− Z(2r+1)k(x; `)|,

which is the error of the approximant employed by k iterations of Zolo-pd.

16 YUJI NAKATSUKASA and ROLAND W. FREUND

Theorem 3.5. Let r be an integer and ` ∈ (0, 1). Then the error after k iterations
as in (3.15) converges to 0 with convergence rate 2r + 1, i.e.,

(3.16) errork+1 = Ck,r
(
errork

)2r+1
,

where, using Cn as in (3.8), Ck,r =
C

(2r+1)k+1

C2r+1

(2r+1)k

. We have Ck,r ≈ 1, or more specifically

(3.17) (1− ρ−1)2r+1 ≤ (1− ρ−(2r+1)k)2r+1 ≤ Ck,r ≤
1

1− ρ−(2r+1)k
≤ 1

1− ρ−(2r+1)
.

Proof. Recall that the error of the Zolotarev functions decays exponentially with
the degree as in (3.8), which gives errork = C2r+1ρ

−2r+1. Hence the error after k+ 1
iterations is

errork+1 = max
x∈[−1,−`]∪[`,1]

|Z(2r+1)k+1(x; `)− sign(x)|

= C(2r+1)k+1ρ−(2r+1)k+1

= C(2r+1)k+1(ρ−(2r+1)k)2r+1

=
C(2r+1)k+1

C2r+1
(2r+1)k

(C(2r+1)kρ
−(2r+1)k)2r+1

= Ck,r
(
errork

)2r+1
.

To obtain (3.17) we use the bounds 2
1+ρ−(2r+1) ≤ C2r+1 ≤ 2

1−ρ−2r+1 as in (3.8).

The order 2r + 1 = 17 convergence in Zolo-pd errork+1 = O(errork+1)17 is de-
ceptively fast: once we have errork . 0.1, one more iteration is enough to give con-
vergence to machine precision. Indeed this is a reasonably accurate illustration of
what the algorithm does, as the first iteration maps the interval [−1,−`] ∪ [`, 1] to
[−1,−`1]∪ [`1, 1] with 1−`1 = O(0.1), and the second iteration maps [−1,−`1]∪ [`1, 1]
to [−1,−`2] ∪ [`2, 1] with |`2 − 1| ≈ |`1 − 1|17 . u.

Of course, there is nothing special about the specific number 17; it just happens
to be the smallest value of 2r + 1 for which the error after two iterations is O(u) for
` = u in double-precision arithmetic u ≈ 10−16. For example, in quadruple precision
for which u ≈ 10−32, we will need r = 16 with convergence rate 33 for a two-step
convergent algorithm, and in single precision u ≈ 10−8 it suffices to take r = 4.

3.7. Related studies on Zolotarev functions. Zolotarev’s functions have
a long and rich history. Regarding the result “composed Zolotarev is high-degree
Zolotarev”, a related observation has been made for the square root function originally
by Rutishauser [54] (see also [13, Ch. V.5.D]), and also mentioned by Ninomiya [49]
and Braess [12], in the context of accelerating Heron’s iteration. They observe that
by appropriately scaling Heron’s iteration, which composes type (2, 1) approximants
in each iteration, one can obtain the best rational approximant to the square root

function, in terms of minimizing the relative error ‖
P (·)
Q(·)−

√
·

√
· ‖∞. Recently Becker-

mann [11] revisited this observation in the context of the matrix square root.
As Zolotarev proved [2, Ch. 9] [3, Add. E], the best rational approximants for the

square root on [`, 1] and that for the sign function Z2r+1 are highly related: for the best

rational approximant of type (2r + 1, 2r) for the sign function Z2r+1(x; `) = x Pr(x
2)

Qr(x2) ,

the function Qr(x)
Pr(x)

is the minimizer over P,Q ∈ Pr of maxx∈[`2,1] |(
√
x− P (x)

Q(x))/
√
x|, the

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 17

relative error as an approximant for
√
x. Hence by using the results of Rutishauser,

one can obtain Theorem 3.3 for composing Zolotarev functions of type (2, 1). This
work extends the observation to composing rational approximants of arbitrary degrees,
and revisits the connection between the best rational approximants for the sign and
square root functions.

Van den Eshof and his coauthors [59, § 4.5.2],[60] used Zolotarev’s results to
approximate sign(A)x for a given vector x and symmetric A, for which we recall Up =
sign(A). To compute sign(A)x efficiently, they find the lowest degrees of P and Q such
that the computed result has acceptable error (which they set to ≈ 10−2). A recent
work of Güttel, Polizzi, Tang and Viaud [27] computes partial eigenpairs of large-
sparse matrices using Zolotarev functions: they apply Z2r+1(A; `) to a vector (or a
set of vectors) to obtain a “filter function” that gives a subspace rich in the eigenspace
corresponding to the eigenvalues of A in a specified interval, and repeatedly apply the
filter function to improve the accuracy. Druskin, Güttel, and Knizhnerman [18] use
Zolotarev’s function for the inverse square root function.

The crucial difference from these studies is that we employ a matrix iteration and
compute the entire unitary polar factor Up, instead of its action on a vector. This
permits us to iterate on the computed result, and thus to form composed rational
functions. The difference is exponential: applying the filter function repeatedly k
times gives error C exp(−crk), whereas composing k times gives C exp(−crk). As
a consequence, the accuracy to working precision in double-precision arithmetic is
achievable without involving a very high-degree rational function (we need r = 8 or
smaller, as opposed to r ≥ 140 to get a single-step convergence to the tolerance u).

While some studies use the type (2r−1, 2r) Zolotarev functions, we focus on type
(2r + 1, 2r) functions because this results in a slightly better approximation since
R2r−1,2r ∈ R2r+1,2r, and they require the same computational cost to evaluate at a
matrix argument.

In the conclusion of [37] Iannazzo compares the iteration via Padé approximant
for computing matrix functions (the paper focuses on the geometric mean) with the
best rational approximant and notes that while Padé gives an order of convergence
larger than 1, it requires degree much higher than the best rational approximant,
so it is unclear which is more efficient. This work gives a clear answer for the sign
function, which gets the best of both worlds: we obtain the highest possible order of
convergence while simultaneously using the best rational approximant. Other cases in
which Zolotarev’s rational approximation is used in the context of matrix iterations
include [28, 40, 42].

One may have wondered why we have restricted ourselves to odd rational func-
tions, when the goal is to map the singular values, which are nonnegative num-
bers, to 1: perhaps a non-odd function that focuses on [`, 1] would be more effec-
tive. However, a matrix expressed as Uf(Σ)V ∗ is generally difficult to compute
unless f(Σ) is an odd function; for example computing UΣ2V ∗ without the knowl-
edge of the polar decomposition or SVD is already nontrivial. If f is odd so that

f(x) = xP (x2)
Q(x2) then we can compute Uf(Σ)V ∗ = AP (A∗A)Q(A∗A)−1; we will use its

partial fraction form for its evaluation (see Section 4.1). Moreover, iterations of the
form Xk+1 = Uf(Σ)V ∗ = XkP (X∗kXk)Q(X∗kXk)−1 can be interpreted as an iteration
for the matrix sign function of

[
0 A
A∗ 0

]
[31, Thm. 8.13]. Another explanation is that for

the symmetric eigendecomposition, the goal of computing the polar decomposition of
a shifted symmetric matrix A−σI is to split the spectrum into two distinct groups, so
we need to map both (positive and negative) sides of the spectrum to distinct values,

18 YUJI NAKATSUKASA and ROLAND W. FREUND

a natural choice of which is ±1.
Finally, Theorem 3.3 can be extended, by essentially the same proof, to best

rational approximants to sign(x) of type (2r, 2r − 1). This shows that the scaled

Newton iteration Xk+1 = 1
2 (µkXk+µ−1k X−1k) with the scaling µk+1 =

√
2/(µk + µ−1k)

as in [14] composes k rational functions of type (2, 1) to obtain the type (2k, 2k − 1)
best rational approximant; this also explains why k = 9 iterations is enough, as it
is the smallest integer for which 2k ≥ 280. We thus have a unifying view of scaled
Newton, QDWH, and Zolo-pd that they all employ high-degree Zolotarev functions
obtained by composition.

4. Implementation issues. We now discuss the implementation of Zolo-pd for
computing the polar decomposition of a matrix A ∈ Cm×n.

4.1. Evaluating Ẑ2r+1(x; `) at matrix arguments Ẑ2r+1(A; `). To apply the
Zolotarev functions to the singular values of A, we need an efficient and stable way of
computing R(Xk) = UẐ2r+1(Σk; `)V ∗, where Xk = UΣkV

∗ is the SVD. For stability
and communication efficiency, we look for an inverse-free implementation, i.e., one
that does not explicitly invert matrices or require solutions to linear systems; this was
the original motivation for the QDWH iteration [46].

Crucial to this task is the following result, which was given in [62], [31, p. 219],
and was also used in the QDWH iteration (which is Zolo-pd for the special case r = 1).

Lemma 4.1. Let

[
ηX
I

]
=

[
Q1

Q2

]
R be the QR decomposition of

[
ηX
I

]
, where

X,Q1 ∈ Cm×n and Q2, R ∈ Cn×n. Then

(4.1) Q1Q
∗
2 = ηX(I + η2X∗X)−1.

We now show that by using the partial fraction representation of Z2r+1(x; `) we
can use this lemma for a stable computation of R(X) for any r ≥ 1.

In general, a partial fraction representation expresses a given rational function in
terms of a sum of fractions involving polynomials of low degree. For the Zolotarev
function Ẑ2r+1(x; `) given by (3.9), we obtain the following partial fraction decompo-
sition representation:

Proposition 4.2. The function Ẑ2r+1(x; `) as in (3.9) can be expressed as

(4.2) Ẑ2r+1(x; `) = M̂x

r∏
j=1

x2 + c2j
x2 + c2j−1

= M̂x

1 +

r∑
j=1

aj
x2 + c2j−1

 ,

where

(4.3) aj = −

(
r∏

k=1

(c2j−1 − c2k)

)
·

(
r∏

k=1,k 6=j

(c2j−1 − c2k−1)

)
.

Proof. Any rational function has a partial fraction form [30, Ch. 7], and since the
c2j−1 are distinct an expression as in (4.2) must exist. It remains to establish (4.3);
an easy way to verify it is to multiply (4.2) by x2 + c2j−1 and take x = ic2j−1.

Equation (4.3) provides a simple and stable way to compute the coefficients aj
in (4.2), as it involves only multiplications except for the subtractions in the ci’s,
which are distinct numbers. We have aj > 0 for all j and

aj
c2j−1

= O(1), so aj can be

as large as O(`−1).

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 19

To apply the Zolotarev functions to X0 = A/α, we need to compute Ẑ2r+1(x; `)
at a matrix argument. The next result shows how this is accomplished.

Proposition 4.3. For the function Ẑ2r+1(x; `) as in (3.9), and a matrix X with
SVD X = Udiag(σi)V

∗, the matrix Ẑ2r+1(X; `) := Udiag(Ẑ2r+1(σi; `))V
∗ is equal to

(4.4) Ẑ2r+1(X; `) = M̂X

r∏
j=1

(X∗X + c2jI)

r∏
j=1

(X∗X + c2j−1I)−1,

which in turn can be rewritten in partial fraction form as

(4.5) Ẑ2r+1(X; `) = M̂(X +

r∑
j=1

ajX(X∗X + c2j−1I)−1).

Moreover, Ẑ2r+1(X; `) can be computed in an inverse-free manner as

(4.6)

[

X√
c2j−1I

]
=

[
Qj1
Qj2

]
Rj ,

R(X) = M̂(X +
∑r
j=1

aj√
c2j−1

Qj1Q
∗
j2).

Proof. Plugging X = Udiag(σi)V
∗ into the right-hand side of (4.4) establishes the

first statement. The same process together with Proposition 4.2 yields (4.5). Using
Lemma 4.1 for each term X(X∗X + c2j−1I)−1 in (4.5) we obtain (4.6).

Note that the r QR factorizations and matrix multiplications Qj1Q
∗
j2 in (4.6)

are completely independent of each other, therefore we can easily compute Qj1Q
∗
j2

in a parallel fashion for j = 1, 2, . . . , r and compute R(X) simply by adding up the
matrices. Furthermore, numerically the evaluation (4.6) based on partial fractions is
much more accurate than a direct evaluation.

We note that the use of partial fraction for Padé-type matrix iterations was em-
ployed by Kenney and Laub in [41] for the matrix sign function, and by Higham and
Papadimitriou [32] for the polar decomposition. For the action of a matrix function
on a vector, it was used for example in [18, 60].

Single-iteration algorithm?. Due the the “embarrassing” parallelizability, increas-
ing r further does not pose a serious computational bottleneck in a parallel implemen-
tation. Hence a natural idea is to choose r large enough so that a single iteration is
enough to obtain the unitary polar factor, i.e., Ẑ2r+1([1/κ2(A), 1]; `) ⊆ [1−O(u), 1].
However, the value r needed to achieve this grows rapidly with κ2(A) = 1/`. The
exponential decay of the error (3.6) with the degree means this number grows like
O(log κ2(A)), and it is about 280

2 when κ2(A) ≈ 1016. Besides the obvious increase
in the arithmetic cost, taking r this large entails the serious numerical instability
observed in Figure 3.3.

In Zolo-pd, by allowing for the second iteration we reduce r from O(log κ2(A))
to O(

√
log κ2(A)). This improves the stability dramatically as we saw in Figure 3.3.

Moreover, the overhead in speed of allowing the second iteration is marginal, and in
fact the runtime is much less than doubled. This is because the second iteration can
be executed more efficiently than the first using the Cholesky factorization, as we
discuss next.

20 YUJI NAKATSUKASA and ROLAND W. FREUND

4.2. Using the Cholesky factorization in the second iteration. Recall
that the iterate (4.6) is mathematically equivalent to (4.5), which can be computed
(more directly) via (here Chol denotes the Cholesky factor)

(4.7)

{
Y2j−1 = X∗X + c2j−1I, W2j−1 = Chol(Y2j−1),

R(X) = M̂(X +
∑r
j=1 aj(XW

−1
2j−1)W−∗2j−1).

When X is well-conditioned, it is preferable to execute (4.7) instead of (4.6) for
efficiency as discussed in [48, §5.6] in the context of QDWH. The arithmetic cost of
(4.7) is 3mn2 + n3/3 and that of (4.6) is 5mn2 for each j.

Since the forward error bound for computing the Cholesky factor Chol(Y2j−1) of
Y2j−1 is proportional to the condition number κ2(Y2j−1) = κ2(X∗X+ c2j−1I), in [48]
the iteration switches to the Cholesky-based implementation when κ2(Y2j−1) ≤ 100
is guaranteed, for which κ2(X) ≤ 10 is a sufficient condition.

Fortunately, in practice (for κ2(A) < u−1 in double-precision arithmetic) we al-
ways have κ2(Y2j−1) ≤ 3 for the second iteration in Zolo-pd. This is because the
type (2r+ 1, 2r) rational approximation to sign(x) on [−1,−`]∪ [`, 1] with ` = 10−15

and r = 8 maps the singular values to Ẑ17([10−15, 1]; 10−15) ⊆ [.39, 1]. This can be
seen from (3.8) and also from Table 3.1, which shows that we need κ2(A) . 2 to get
convergence in one step with r ≤ 8; more precisely we need κ2(A) . 2.6. Since the
interval [10−15, 1] is mapped to [1 − 10−15, 1] in two iterations, one iteration must
result in an interval contained in [1

2.6 , 1] ⊇ [.39, 1].
Hence the second iteration can be safely computed via (4.7) using the Cholesky

factorization. In fact, experiments suggest that using (4.7) for the second iteration
improves not only the speed but also slightly the stability. To summarize, the first
iteration of Zolo-pd needs to be executed using QR as in (4.6), and it is recommended
that the second iteration be computed by Cholesky as in (4.7).

We remark that Zolo-pd can be made more efficient for well-conditioned A. Specif-
ically, if κ2(A) (or its estimate) is smaller than 2, then we find from Table 3.1 the
smallest r for which one iteration gives convergence and run (4.7) to obtain X1 = Up.
Similarly, if 2 < κ2(A) ≤ 10 (or a modest number � u−1) then we choose r as usual
from Table 3.1 but run two steps of (4.7), both of which give stable results.

4.3. Computing the Zolotarev coefficients in Matlab. Recall that the
Zolotarev coefficients c1, c2, . . . , c2r are defined by (3.4). In order to obtain the c′is,
we need to first compute the complete elliptic integral K ′ and then compute function
values of the Jacobi elliptic functions sn and cn, all for the complementary modulus
`′ =

√
1− `2. The standard approach for these tasks is based on the arithmetic-

geometric mean (AGM) method; see, e.g., [1, Ch. 16 and 17]. Matlab provides the
functions ellipke (for the computation of complete ellptic integrals) and ellipj (for
the computation of function values of the Jacobi elliptic functions), which are based
on the AGM method. Unfortunately, the functions ellipke and ellipj use the
complementary parameter m′ = (`′)2 as input. Moreover, ellipke gives inaccurate
values for K ′ for values of m′ close to 1.

For our application, we have ` = 1
κ2(A) and thus

m′ = 1− `2 = 1− 1(
κ2(A)

)2 .
This means that, as κ2(A) increases, m′ is indeed close to 1. Even worse, in double-
precision floating-point arithmetic, m′ gets rounded to 1 for κ2(A) & 108. Due to

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 21

these issues, we cannot use the functions ellipke and ellipj in the form provided
in Matlab.

Fortunately, it turns out that running the AGM method requires only the value
of
√

1−m′, but not the value of m′. Note that

√
1−m′ =

√
1− (`′)2 = `.

We modified both ellipke and ellipj so that they use ` as their input, rather
than m′. Furthermore, employing an asymptotic expansion of K ′ for m′ → 1 (or,
equivalently, `→ 0) given in [15], we fixed the function ellipke so that it computes
K ′ accurately even when ` is close to 0. For our actual computations of the Zolotarev
coefficients c1, c2, . . . , c2r, we employ these modified versions of ellipke and ellipj.

We remark that previous attempts exist to compute the Jacobi elliptic functions
reliably; see [28, 39, 43].

Finally, even with our improved implementation of computing the Zolotarev coef-
ficients, when 1/` and r are large, rounding errors prevent the coefficients from being
computed accurately, resulting in a computed Zolotarev function that does not ap-
proximate the sign function to the desired accuracy. As discussed before, we resolve
this issue by allowing for two steps, which reduce r sufficiently so that the elliptic
functions are computed accurately enough for our purpose. Indeed, if we use the
Matlab functions the blue plots in Figure 3.3 stagnate at a much higher value.

4.4. Stopping criterion. Although in exact arithmetic our algorithm converges
in two steps, it is nontrivial to confirm that the iterate X2 has indeed converged. One
approach is to observe that for an iterate xk whose rate of convergence is r, once
we have ‖xk − xk−1‖/‖xk‖ . ε1/r, we can expect ‖xk+1 − xk‖/‖xk+1‖ . ε, i.e.,
convergence to tolerance ε is achieved at xk. More detailed arguments are available in
[31, § 4.9.2] for a quadratically convergent iterate and in [46] for a cubically convergent
iterate.

Since the iterate we propose converges with rate 2r + 1, this suggests that we
accept X2 as converged if

(4.8)
‖X2 −X1‖F
‖X2‖F

≤ u1/(2r+1).

This can be understood as an order-(2r + 1) variant of the stopping criterion

‖Xk+1 −Xk‖F
‖Xk‖F

≤ cu1/2

(for a constant c) for the quadratically convergent Netwon iteration [31, eqn. 8.31].
In all our experiments (4.8) was always satisfied. Another, more expensive but

perhaps more reliable, way to test convergence is to check that
‖X∗2X2−I‖F√

n
is O(u).

Although (4.8) was satisfied in all our experiments, it may fail to hold in un-
lucky cases, for example when poor estimates of α, `0 are used so that α � ‖A‖2
or `0 � σmin(X0) (as discussed in [48, § 5.8], `0 can be estimated using a condition
number estimator as 1/condest(A); or by using the estimator of [19, 35]. When this
happens we suggest running Zolo-pd again on X2 (not A). Although X2 may not be
a numerically orthogonal matrix its singular values are still mapped to values close
to 1, so κ2(X2) � κ2(A). In particular if κ2(X2) ≤ 2 then Zolo-pd gives single-step
convergence via the Cholesky-based implementation as discussed in Section 4.2.

22 YUJI NAKATSUKASA and ROLAND W. FREUND

5. Algorithms for the polar, symmetric eigenvalue and singular value
decompositions. Thus far we have discussed the fundamentals of our polar decom-
position algorithm Zolo-pd. Moreover, as described in the introduction, a polar de-
composition algorithm can be used as building blocks of algorithms for the symmetric
eigendecomposition (Zolo-eig) and SVD (Zolo-SVD) via spectral divide-and conquer.
We now formulate the algorithms as pseudocodes, and discuss their properties.

5.1. Polar decomposition. Algorithm 5.1 is the pseudocode for Zolo-pd. Note
that it is shown explicitly as a two-step algorithm without iterations. As noted in
Section 4.2, for well-conditioned A (κ2(A) ≤ 2), we can skip the first iteration of (5.1)
and just run (5.2) by choosing a value of r that gives convergence in a single step.
Furthermore, since κ2(A) = O(1), we can safely invoke the Cholesky-based implemen-
tation in Section 4.2, so the algorithm becomes more than twice as fast, compared to
the case κ2(A) > 100.

Algorithm 5.1 Zolo-pd: compute the polar decomposition A = UpH

Input: A ∈ Cm×n with m ≥ n.
Output: Up, H such that A = UpH, where U∗pUp = In and H is positive semidefinite.

1: Estimate α & σmax(A), β . σmin(A), X0 = A/α, ` = β/α.
2: Choose r based on κ = `−1 from Table 3.1. If κ < 2 then X1 = A and skip to

(iv).
3: Compute X1 and X2:

(i). Compute cj = `2 sn2
(
iK′

2r+1 ; `′
)
/ cn2

(
iK′

2r+1 ; `′
)

as in (3.4), and aj =

−
(∏r

k=1(c2j−1 − c2k)
)
·
(∏r

k=1,k 6=j(c2j−1 − c2k−1)
)

as in (4.3).

(ii). Compute X1 by M̂ =
∏r
j=1(1 + c2j−1)/(1 + c2j) and

(5.1)

[

X0√
c2j−1I

]
=

[
Qj1
Qj2

]
Rj , j = 1, 2, . . . , r,

X1 = M̂
(
X0 +

∑r
j=1

aj√
c2j−1

Qj1Q
∗
j2

)
.

(iii). Update ` := M̂`
∏r
j=1(`2 + c2j)/(`

2 + c2j−1) and recompute cj and aj as
in step (i).

(iv). Compute X2 by M̂ =
∏r
j=1(1 + c2j−1)/(1 + c2j) and

(5.2)

{
Z2j−1 = X∗1X1 + c2j−1I, W2j−1 = Chol(Z2j−1),

X2 = M̂
(
X1 +

∑r
j=1 aj(X2W

−1
2j−1)W−∗2j−1

)
.

Verify that ‖X2−X1‖F
‖X2‖F ≤ u1/(2r+1) holds. If not, return to step 1 with

A← X2.
4: Up = X2, H = 1

2 (U∗pA+ (U∗pA)∗).

When high accuracy is desired, we perform a Newton–Schulz postprocessing U :=
3
2 Û −

1
2 Û(Û∗Û) after computing the unitary factors (matrices of singular vectors

and eigenvectors), which improves the orthogonality and backward stability of the
computed results as discussed in [48]. This comes with a nonnegligible cost of 3n3

flops for the eigendecomposition, and 6n3 (for both factors U, V ; they can be done in
parallel) for the SVD.

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 23

5.1.1. Backward stability. A backward stable polar decomposition algorithm
computes Ûp, Ĥ such that Ĥ is symmetric and ‖Û∗p Ûp− I‖F /

√
n, ‖A− ÛpĤ‖F /‖A‖F

are both O(u) [47]. Backward stability analysis for general iterations for the polar
decomposition is given in [47], which shows that the computed polar decomposition is
backward stable if two conditions are satisfied: (i) Each iterate is backward-forward

stable, i.e., the computed approximant Ŷ to Y = f(X) satisfies Ŷ = f(X̃) + ε‖Ŷ ‖2
where X̃ = X̂ + ε‖X̂‖2, where ‖ε‖ = O(u); this means Ŷ is a slightly wrong output
of a slightly wrong input. (ii) The function f(x) lies above y = x.

Of the two conditions, the second is more nonintuitive and indeed gives insights
into some unstable iterations proposed in the literature. QDWH satisfies the two
conditions and hence is backward stable if pivoting (row and column) is used for
computing the QR factorizations.

For Zolo-pd, it is easy to verify that the second condition is satisfied, because the
mapping function f(x) = Ẑ2r+1(x; `i) is the best approximant to the sign function,
and y = x can be regarded as a member of (2r + 1, 2r) rational functions. How-
ever, regarding the first condition, the presence of r QR factorizations seems to make
the discussion nontrivial. Although experiments demonstrate the excellent backward
stability of Zolo-pd, its proof therefore remains an open problem.

5.1.2. Comparison with standard algorithms. Table 5.1 compares Zolo-pd
with QDWH, the scaled Newton iteration [31, Ch. 8], and the SVD-based method
(compute A = UΣV ∗, then obtain Up = UV ∗), the three most practical algorithms
for the polar decomposition of A ∈ Cm×n (we need m = n for the scaled Newton
iteration as it is applicable only to nonsingular matrices). It summarizes the backward
stability, the dominant type of operation, the maximum iteration count and arithmetic
cost in flops required for κ2(A) ≤ 1016; for well-conditioned matrices the flop count
is lower. The arithmetic cost for QDWH is taken from the flop count in [48], and we
can also derive that of Zolo-pd similarly (in which we took r = 8). The parenthesized
entry at the bottom of the table shows the arithmetic cost along the critical path
when the r QR and Cholesky factorizations in (5.1), (5.2) are computed in parallel.
The arithmetic cost of the scaled Newton iteration assumes that matrix inverses are
computed in the standard way based on LU factorization with partial pivoting.

Zolo-pd requires more arithmetic cost than QDWH and scaled Newton, by about
a factor 3. However, along the critical path it requires the fewest flops, so in a parallel
implementation we expect Zolo-pd to be the fastest.

Table 5.1
Comparison of algorithms for the polar decomposition.

Zolo-pd QDWH scaled Newton SVD-based
Backward stability (

√
)

√ √a √

Dominant operation QR QR inversion bidiagonalization
Max. # iterations 2 6 9
Arithmetic costb 64mn2 + 8

3
n3 22mn2 + 4

3
n3 18n3 8mn2 + 20n3

(8mn2 + 1
3
n3)

aTo prove backward stability of scaled Newton [14, 47], matrix inverses need to be com-
puted in a mixed backward-forward stable manner, i.e., fl(X−1) = (X + ∆X)−1 + ∆Y where
‖∆X‖/‖X‖, ‖∆Y ‖/‖fl(X−1)‖ are both O(u). Using the commonly employed LU with partial
pivoting for inversion (when matrix inversion is ever done; scaled Newton is one rare exam-
ple) this condition is not guaranteed. The parenthesized (

√
) means that stability is observed

numerically, but not yet established theoretically; we conjecture that they are stable.
bFor computing Up: an additional 2mn2 flops is needed to compute H = (U∗pA+(U∗pA)∗)/2.

24 YUJI NAKATSUKASA and ROLAND W. FREUND

5.2. Symmetric eigendecomposition. Algorithm 5.1 is the pseudocode of
Zolo-eig for computing the eigendecomposition of a symmetric matrix A = A∗. As
we described in Section 1.2, here the polar decomposition algorithm Zolo-pd is used
to split the positive and negative eigenspaces via the matrix sign function. Mapping
the singular values to 1 in Zolo-pd corresponds to mapping the eigenvalues to ±1.

Algorithm 5.2 Zolo-eig: compute a symmetric eigendecomposition A = V ΛV ∗

Input: A symmetric (or Hermitian) matrix A = A∗.
Output: V,Λ such that A = V ΛV ∗, where V ∗V = In and Λ is diagonal.

1: Initialize V = In.
2: Choose σ, estimate of the median of the eigenvalues of A.
3: Compute polar factor Up of A− σI = UpH by Zolo-pd (Algorithm 5.1).
4: Compute V1 such that 1

2 (Up + I) = V1V
∗
1 via subspace iteration, then form a

unitary matrix [V1 V2] by a full QR decomposition of V1. Update V := V [V1 V2].
5: Compute A1 = V ∗1 AV1 and A2 = V ∗2 AV2.
6: Recursively repeat steps 2–5 with A ← A1, V ← V1 and A ← A2, V ← V2 until
A1, A2 are 1× 1, the eigenvalues Λ.

One run of steps 2-5 in Algorithm 5.2 represents one application of Vi in (1.4).
In an actual implementation of Zolo-eig, one may additionally compute E = V ∗1 AV2
and ensure that it is negligible, i.e., ‖E‖F = O(u‖A‖).

For computing the shifts σ in QDWH-eig we adopted the method in [48] of taking
the median of the diagonal elements. An unlucky choice of σ results in large condi-
tion number, which affects the degree r but not the stability of our Zolotarev-based
algorithms. If after the shift A := A − σI the condition number κ2(A) � n then
we can slightly alter σ until κ2(A) = O(n). Other implementation issues, including
executing subspace iteration and estimating σmax(A) and σmin(A), are the same as in
the QDWH-based algorithms, and we refer to [48] for details. Note that two-step con-
vergence is attained as long as α > σmax(A) and ` < σmin(A/α), so “safe” estimates
that satisfy these are preferred.

5.2.1. Backward stability. As mentioned in the introduction, the backward
stability of Zolo-eig depends crucially on that of Zolo-pd. Specifically, it was shown
in [48] that if the polar decomposition and the orthonormal column space V1 of the
orthogonal projection matrix V1V

∗
1 are obtained in a backward stable manner through-

out the spectral divide-and-conquer process, then the computed eigendecomposition
is backward stable, that is, ‖A−V̂ Λ̂V̂ ∗‖F /‖A‖F and ‖V̂ ∗V̂ −In‖F /

√
n are both O(u).

5.2.2. Comparison with standard algorithms. Table 5.2 compares the spectra-
divide-and-conquer algorithms Zolo-eig, QDWH-eig, IRS (implicit repeated squar-
ing [7]), and ZZY [62], along with the standard algorithm that performs tridiagonal-
ization followed by the symmetric tridiagonal QR algorithm [22, § 8.3],[50, Ch. 8].
The algorithms compute both the eigenvalues and eigenvectors. In addition to the
information shown in Table 5.1, Table 5.2 shows whether the algorithm minimizes
communication in the asymptotic sense.

Following [48], the arithmetic cost of QDWH-eig and Zolo-eig is obtained assum-
ing that the splitting points σ are chosen such that κ2(A − σI) ≤ 105, for which
r = 5 is sufficient as discussed in Section 3.5; we can take a different σ if this does not
hold. Note that the arithmetic cost along the critical path of Zolo-eig in a parallel
implementation is comparable to that of the standard algorithm.

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 25

Table 5.2
Comparison of algorithms for symmetric eigendecomposition.

Zolo-eig QDWH-eig IRS [7] ZZY [62] standard
Min. communication?

√ √ √
× ×

Backward stability (
√

)
√

conditional (
√

)
√

Max. # iterations 2 6 53 53
Arithmetic cost 54.8n3 27n3 ≈ 720n3 ≈ 370n3 9n3(

15.7n3
)

5.3. SVD. Algorithm 5.3 is the pseudocode of Zolo-SVD.

Algorithm 5.3 Zolo-SVD: compute the SVD of a general matrix A

Input: A ∈ Cm×n with m ≥ n.
Output: U,Σ, V such that A = UΣV ∗, where U∗U = V ∗V = In and Σ is diagonal.

1: Compute the polar decomposition A = UpH via Zolo-pd (Algorithm 5.1).
2: Compute the symmetric eigendecomposition H = V ΣV ∗ via Zolo-eig (Algo-

rithm 5.2), and compute U = UpV .

As is the case with QDWH-SVD, taking an initial QR factorization is recom-
mended for Zolo-SVD when m is much larger than n. Zolo-SVD is also able to
compute the SVD for rank-deficient matrices via a partial isometry instead of the
unitary polar factor in step 1, as described in [48, § 5.5].

5.3.1. Backward stability. Zolo-SVD can be shown to be backward stable
provided that its building components Zolo-pd and Zolo-eig are backward stable, by
the exact same argument as in [48, §4.1]. Thus in addition to being fundamental for
the algorithm derivation, the polar decomposition is key also in the stability analysis.

5.3.2. Comparison with standard algorithms. Table 5.3 compares four SVD
algorithms: Zolo-SVD, QDWH-SVD, IRS, and the standard algorithm that performs
bidiagonalization followed by bidiagonal QR [22, § 8.6]. The arithmetic cost shows
the flop counts for a square n×n matrix A, and since for Zolo-SVD and QDWH-SVD
it depends on the condition number κ2(A), we show the arithmetic cost in the range
κ2(A) = 1.1–1016. The arithmetic cost along the critical path of Zolo-SVD is about
the same as that of the standard algorithm, or less.

Table 5.3
Comparison of algorithms for the SVD.

Zolo-SVD QDWH-SVD IRS standard
Min. communication?

√ √ √
×

Backward stability (
√

)
√

conditional
√

Max. # iterations 2 6 53
Arithmetic cost (m = n) 61.1n3–124n3 35n3–52n3 ≈ 5700n3 26n3

(22n3–27n3)

6. Numerical experiments. We present numerical experiments to examine
the performance of Zolo-pd, Zolo-eig and Zolo-SVD, and to compare them with the
QDWH-based and standard algorithms. The experiments here are all sequential: in
particular, the r QR factorizations are not computed independently, and nor is a
communication-minimizing implementation used. These are left as future work.

26 YUJI NAKATSUKASA and ROLAND W. FREUND

All the experiments were carried out in Matlab version R2013a on a machine
with an Intel Xeon processor with eight cores, sixteen threads, and 64GB RAM, using
IEEE double-precision arithmetic.

6.1. Polar decomposition. We first compare Zolo-pd with the two most practi-
cal iterations among the existing algorithms: QDWH and the scaled Newton iteration
[31, p. 205] with the scaling due to Byers and Xu [14], shown in Table 6.1 as “New-
ton”. We generate n-by-n matrices with n = 20000 by forming A = UΣV ∗, where
U, V ∈ Rn×n are random orthogonal matrices and Σ is a diagonal matrix of singular
values, which form an arithmetic sequence (the distribution of singular values has lit-
tle effect on the performance). Table 6.1 shows the iteration counts “iter”, backward

error ‖ÛpĤ−A‖F /‖A‖F “berr”, orthogonality measure ‖Û∗p Ûp−I‖F /
√
n “orth”, and

the runtime in seconds. The numbers in parentheses for Zolo-pd in the “iter” row
show the degree r of the polynomials P (x), Q(x), and those in “time” are the runtime
of Zolo-pd along the critical path, i.e., assuming the r independent terms in (5.1) and
(5.2) are computed in parallel, it counts only the runtime of the one that took the
longest among the r QR (or Cholesky) factorizations in (5.1) and (5.2).

Table 6.1
Performance comparison of polar decomposition algorithms, A ∈ R20000×20000.

κ2(A) 1.1 1.5 10 105 1010 1015

Zolo-pd 1 (4) 1 (6) 2 (3) 2 (5) 2 (7) 2 (8)
iter QDWH 3 3 4 5 6 6

Newton 4 5 6 8 8 9

Zolo-pd 1.6e-15 2.1e-15 1.5e-15 1.6e-15 1.7e-15 2.1e-15
berr QDWH 1.1e-15 1.2e-15 1.2e-15 1.5e-15 1.4e-15 1.4e-15

Newton 2.4e-13 2.5e-13 2.5e-13 2.5e-13 2.4e-13 2.4e-13

Zolo-pd 1.5e-15 2.0e-15 1.1e-15 1.0e-15 1.1e-15 1.7e-15
orth QDWH 7.7e-16 1.1e-15 8.9e-16 1.1e-15 7.6e-16 1.1e-15

Newton 1.7e-13 1.7e-13 1.7e-13 1.7e-13 1.7e-13 1.7e-13

Zolo-pd 475 (164) 682 (164) 680 (267) 1604 (369) 2249 (373) 2539 (370)
time QDWH 353 355 448 659 877 878

Newton 343 418 483 626 629 706

We observe the following.
• As predicted by the theory, Zolo-pd requires just two iterations for conver-

gence. The number of iterations for the other two methods also accurately
reflect the theory, see [14], [31, p. 206] for scaled Newton and [46] for QDWH.

• For large κ2(A), the runtime of Zolo-pd becomes much longer than those of
the other two methods. This is because r grows, though very gradually like
log log(κ2(A)), and hence more QR factorizations are needed per iteration,
which are computed sequentially here. However, along the critical path, its
runtime is much shorter, and independent of r for κ2(A) ≥ 102 (in which case
the critical path is essentially one QR and Cholesky).

• Zolo-pd and QDWH give excellent backward error and orthogonality measure.
Those of scaled Newton are about two orders of magnitude larger.

6.2. Symmetric eigendecomposition.

6.2.1. Spectral divide-and-conquer algorithms. We first compare spectral
divide-and-conquer algorithms: Zolo-eig, QDWH-eig, the general algorithm applicable
to generalized eigenproblems due to Ballard, Demmel and Dumitriu [7], which we call

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 27

IRS (Implicit Repeated Squaring), and the algorithm QUAD in [62], which we call
ZZY. These methods can be implemented in a communication-minimizing manner.

We set the matrix size to n = 100 and generate symmetric matrices A = V ΛV T ,
where V ∈ Rn×n is a random orthogonal matrix and Λ = diag(1, r, r2, . . . , rn−1) with
r = −κ−1/(n−1), in which κ = κ2(A) is the prescribed condition number, which we
set to 102, 105 and 1015. The eigenvalue of A closest to 0 is κ−1.

Here we consider computing an invariant subspace V1 corresponding to the pos-
itive eigenvalues of A. To do so we apply one recursion of Zolo-eig (steps 1–4 of
Algorithm 5.2) and QDWH-eig on A.

We generated 100 matrices for each case κ = 102, 108, 1015, and show in Table 6.2
the maximum and minimum values of the iteration counts, shown as “iter”, along
with the backward error ‖E‖F /‖A‖F where [V̂1 V̂2]∗A[V̂1 V̂2] =

[
A1 E

∗

E A2

]
, shown as

“berr”. The orthogonality measure ‖V̂ ∗1 V̂1 − Ik‖F /
√
n was O(u) for all the methods.

Table 6.2
Iteration count and residual of spectral divide-and-conquer algorithms.

κ2(A) 102 108 1015

min max min max min max
Zolo-eig 2 (3) 2 (3) 2 (6) 2 (6) 2 (8) 2 (8)

iter QDWH-eig 4 5 5 5 6 6
ZZY 12 12 32 32 55 56
IRS 12 13 32 32 54 55

Zolo-eig 5.6e-16 6.1e-16 5.8e-16 6.5e-16 6.4e-16 7.3e-16
berr QDWH-eig 8.5e-16 9.4e-16 8.5e-16 9.7e-16 8.4e-16 9.8e-16

ZZY 1.6e-15 1.9e-15 2.6e-15 2.9e-15 2.9e-15 4.1e-15
IRS 2.1e-15 2.9e-14 2.4e-13 3.3e-12 3.8e-10 4.0e-8

Observations:
• Zolo-eig always converges in two iterations. QDWH-eig converges within six

iterations, whereas ZZY and IRS need many more iterations, especially in the
difficult cases where κ2(A) is large.

• Zolo-eig and QDWH-eig performed in a backward stable manner throughout.
This illustrates Zolo-eig and QDWH-eig are significantly superior to the other spectral
divide-and-conquer algorithms as predicted also by Table 5.2.

6.2.2. Comparison with conventional algorithms for the full symmetric
eigendecomposition. We now compare algorithms for computing the full eigende-
composition of a symmetric matrix. We compare Zolo-eig, QDWH-eig and Matlab’s
built-in function eig, which is based on reduction to tridiagonal form followed by
the divide-and-conquer algorithm [26]. Here we generated symmetric matrices A as
follows: form a random matrix B by the Matlab function B =randn(n), then let
A = 1

2 (B +B∗). Below we report the average of three runs.

Table 6.3 shows the backward error ‖V̂ Λ̂V̂ T −A‖F /‖A‖F . While all the methods
are backward stable, the backward errors of QDWH-eig and Zolo-eig are smaller than
those of eig, by more than a factor 3.

Table 6.4 shows the orthogonality measure ‖V̂ T V̂ − I‖F /
√
n. We see that those

of Zolo-eig and QDWH-eig are much smaller than eig. This improvement is largely
due to the Newton–Schulz postprocessing.

The above behavior was not peculiar to this class of matrices, and was observed in

28 YUJI NAKATSUKASA and ROLAND W. FREUND

Table 6.3
Backward error ‖A− V̂ Λ̂V̂ T ‖F /‖A‖F .

n 4000 8000 12000 16000 20000
QDWH-eig 2.4e-15 2.8e-15 3.2e-15 3.6e-15 3.8e-15

Zolo-eig 2.4e-15 2.9e-15 3.2e-15 3.6e-15 3.8e-15
Matlab eig 7.6e-15 1.0e-14 1.3e-14 1.4e-14 1.6e-14

Table 6.4
Orthogonality measure of V̂ : ‖V̂ T V̂ − I‖F /

√
n.

n 4000 8000 12000 16000 20000
Zolo-eig 8.0e-16 8.4e-16 8.6e-16 8.8e-16 9.0e-16

QDWH-eig 8.0e-16 8.4e-16 8.6e-16 8.8e-16 9.0e-16
Matlab eig 6.4e-15 8.7e-15 1.1e-14 1.2e-14 1.4e-14

all our experiments. These results suggest that the stability of Zolo-eig is comparable
to QDWH-eig, and is typically better than conventional algorithms. Of course, all
three algorithms are stable and the difference in backward error is a small constant
that is usually insignificant.

4000 8000 12000 16000 20000

101

102

103

Zolo-eig
QDWH-eig (r=1)
Zolo-parallel
MATLAB eig

Fig. 6.1. Eigendecomposition runtime for varying matrix size.

Figure 6.1 shows the SVD runtime. Zolo-parallel shows the runtime of Zolo-
eig along the critical path (as in Zolo-pd, accounting only for the longest of the r
QR factorizations). Observe that while Zolo-eig and Zolo-parallel are slower than
Matlab’s eig, they seem to scale slightly better as n grows.

6.3. SVD algorithms. We now turn to the SVD algorithms Zolo-SVD, QDWH-
SVD and Matlab’s svd (based on bidiagonal reduction and divide-and-conquer [25]).
We generate test matrices by forming n×n matrices A = UΣV ∗, where U, V ∈ Rn×n
are random orthogonal matrices and the singular values are uniformly distributed.

Varying matrix sizes. We set κ2(A) = 105 and varied the matrix size n. Tables

6.5 and 6.6 show the backward error ‖A−ÛΣ̂V̂ T ‖F /‖A‖F and orthogonality measure

max(‖ÛT Û − I‖F /
√
n, ‖V̂ T V̂ − I‖F /

√
n). The same comments as for the symmet-

ric eigendecomposition apply: while all algorithms give acceptably small backward
error and orthogonality measure, those of Zolo-SVD and QDWH-SVD are notably
better than the standard algorithm Matlab svd. The stability behavior is largely
independent of the condition number κ2(A).

Figure 6.2 shows the SVD runtime for varying matrix size, and κ2(A) = {1.5, 105}.

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 29

Table 6.5
Backward error for SVD ‖A− ÛΣ̂V̂ T ‖F /‖A‖F .

n 4000 8000 12000 16000 20000
Zolo-SVD 2.4e-15 2.9e-15 3.2e-15 3.6e-15 3.8e-15

QDWH-SVD 2.4e-15 2.7e-15 3.0e-15 3.3e-15 3.5e-15
Matlab svd 7.9e-15 1.0e-14 1.3e-14 1.4e-14 1.6e-14

Table 6.6
Orthogonality of computed Û , V̂ : max(‖ÛT Û − I‖F /

√
n, ‖V̂ T V̂ − I‖F /

√
n).

n 4000 8000 12000 16000 20000
Zolo-SVD 8.1e-16 8.4e-16 8.6e-16 8.8e-16 9.0e-16

QDWH-SVD 8.1e-16 8.4e-16 8.6e-16 8.8e-16 9.0e-16
Matlab svd 7.4e-15 9.7e-15 1.2e-14 1.4e-14 1.5e-14

As before, Zolo-parallel shows the runtime of Zolo-SVD along the critical path. Zolo-
SVD and Zolo-parallel scale slightly better than Matlab’s svd as n grows, and for n ≥
10000 Zolo-parallel becomes faster when A is well-conditioned, suggesting that Zolo-
SVD can outperform a standard SVD algorithm with an optimized implementation.

A big bulk of the runtime of a standard, reduction-based algorithm is consumed
in the reduction step [61] (to tridiagonal or bidiagonal form), which becomes a com-
munication bottleneck in a parallel implementation. Spectral divide-and-conquer al-
gorithms overcome this issue by bypassing the reduction and always working with the
whole matrix.

The above experiments are only with square nonsingular matrices, but all the
algorithms are applicable to rectangular and rank-deficient matrices. Indeed, the
experiments in [48] illustrate that QDWH-eig tends to compute the rank of rank-
deficient matrices or small singular values more accurately, and we observed the same
behavior with Zolo-SVD.

6.4. Summary of numerical experiments. The results of our experiments
can be summarized as follows.

• Zolo-based (r ≥ 1) algorithms have excellent numerical backward stability,
comparable to that of QDWH-based (r = 1).

• Zolo-based and QDWH-based algorithms are generally much faster and more
stable than other spectral divide-and-conquer algorithms.

• On a sequential implementation, the Matlab functions eig and svd em-
ploying divide-and-conquer following reduction to tridiagonal or bidiagonal
were the fastest, for the eigendecomposition and the SVD, respectively. How-
ever, Zolo-eig and Zolo-SVD are predicted to have competitive speed when
implemented in parallel.

On massively parallel computing architectures where the communication cost domi-
nates arithmetic cost, it is expected that the high parallelizability and excellent sta-
bility of Zolo-based algorithms provide an attractive alternative to the standard ones.

7. Summary and discussion. Zolo-pd is a matrix iteration that draws heavily
on rational approximation theory. Rational approximation, in turn, has close con-
nections to numerical contour integration in the complex plane: Hale, Higham and
Trefethen [28] propose an algorithm for computing matrix functions via numerical
contour integration combined with conformal mapping to improve the region of ana-

30 YUJI NAKATSUKASA and ROLAND W. FREUND

4000 8000 12000 16000 20000

102

103

Zolo-SVD
QDWH-SVD (r=1)
Zolo-parallel
MATLAB svd

κ2(A) = 1.5.

4000 8000 12000 16000 20000

102

103

Zolo-SVD
QDWH-SVD (r=1)
Zolo-parallel
MATLAB svd

κ2(A) = 105.

Fig. 6.2. SVD runtime for varying matrix size.

lyticity, and they show that numerical contour integration can be regarded as a ratio-
nal approximation, see also [56]. In particular, when the function is

√
x, their contour

integration algorithm becomes closely related to Zolotarev’s rational approximation

to the square root (obtained by Pr(x)
Qr(x)

≈
√
x, where Z2r+1(x; `) = x Pr(x

2)
Qr(x2) ≈ sign(x)

is the Zolotarev function for the sign function), applicable for computing A1/2 for
a matrix with positive eigenvalues. We can adjust this approach for the sign func-
tion to compute the unitary polar factor Up of A. This results in a type (2r + 1, 2r)
approximant

(7.1) Up ≈ A+

r∑
j=1

ajA(A∗A+ c2j−1I)−1,

where aj , c2j−1 are as in (4.6). This is essentially the first iteration of Zolo-pd.
Compared with this contour integral-based derivation of (7.1), our algorithm

Zolo-pd makes three improvements. First, by using the QR factorization to avoid
matrix inversions for computing matrices of the form X(X∗X+c2i−1I)−1, we improve
the numerical stability significantly: a direct implementation of (7.1) (or one using
Cholesky factorization as in (4.7)) gives poor stability when κ2(A) � 1. Second,
by allowing the algorithm to iterate for two steps, we reduce the arithmetic cost
dramatically (from r > 140 once to r = 8 twice). Finally, Zolo-pd resolves the
numerical instability when r is large, as observed in Section 3.4.

We note that the idea of allowing for the second step is highly nontrivial from the
viewpoint of contour integration (or its relation to rational approximation), whereas
our derivation of Zolo-pd as an iterative algorithm for the polar decomposition makes
it just natural.

Acknowledgments. We would like to thank Stefan Güttel, Nick Higham, Fran-
çoise Tisseur, and Nick Trefethen for their valuable comments. We are grateful to
Ilse Ipsen and the referees for their many constructive suggestions that significantly
improved the presentation of the paper.

REFERENCES

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, NY, 1965.

ZOLOTAREV’S FUNCTIONS FOR MATRIX DECOMPOSITIONS 31

[2] N. I. Akhiezer. Elements of the Theory of Elliptic Functions. AMS, Providence, RI, 1990.
[3] N. I. Akhiezer. Theory of Approximation. Dover, NY, 1992.
[4] Z. Bai and J. Demmel. Using the matrix sign function to compute invariant subspaces. SIAM

J. Matrix Anal. Appl., 19:205–225, 1998.
[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of

Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA, 2000.
[6] Z. Bai, J. Demmel, and M. Gu. An inverse free parallel spectral divide and conquer algorithm

for nonsymmetric eigenproblems. Numer. Math., 76(3):279–308, 1997.
[7] G. Ballard, J. Demmel, and I. Dumitriu. Minimizing communication for eigenproblems and

the singular value decomposition. Technical Report 237, LAPACK Working Note, 2010.
[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numerical

linear algebra. SIAM J. Matrix Anal. Appl., 32(3):866–901, 2011.
[9] G. Ballard, J. Demmel, and N. Knight. Avoiding communication in successive band reduction.

Technical Report UCB/EECS-2013-131, University of California, Berkeley, 2013.
[10] A. N. Beavers, Jr. and E. D. Denman. A computational method for eigenvalues and eigenvectors

of a matrix with real eigenvalues. Numer. Math., 21:389–396, 1973.
[11] B. Beckermann. Optimally scaled Newton iterations for the matrix square root. Talk at

workshop “Advances in Matrix Functions and Matrix Equations”, Manchester, UK, 2013.
[12] D. Braess. On rational approximation of the exponential and the square root function. In P. R.

et al., editor, Rational Approximation and Interpolation, volume 1105 of Lecture Notes in
Mathematics, pages 89–99, Berlin-Heidelberg-New York, 1984. Springer.

[13] D. Braess. Nonlinear Approximation Theory. Springer, Berlin-Heidelberg-New York, 1986.
[14] R. Byers and H. Xu. A new scaling for Newton’s iteration for the polar decomposition and its

backward stability. SIAM J. Matrix Anal. Appl., 30:822–843, 2008.
[15] B. C. Carlson and J. L. Gustafson. Asymptotic expansion of the first elliptic integral. SIAM

J. Math. Anal., 16(5):1072–1092, 1985.
[16] T. F. Cox and M. A. A. Cox. Multidimensional Scaling. CRC Press, FL, 2nd edition, 2000.
[17] I. S. Dhillon and B. N. Parlett. Orthogonal eigenvectors and relative gaps. SIAM J. Matrix

Anal. Appl., 25:858–899, 2004.
[18] V. Druskin, S. Güttel, and L. Knizhnerman. Near-optimal perfectly matched layers for indefinite

Helmholtz problems. MIMS EPrint, The University of Manchester, UK, 2013. To appear
in SIAM Review.

[19] S. W. Gaaf and M. E. Hochstenbach. Probabilistic bounds for the matrix condition number
with extended lanczos bidiagonalization. SIAM J. Sci. Comp. to appear.

[20] A. George and K. Ikramov. Is the polar decomposition finitely computable? SIAM J. Matrix
Anal. Appl., 17:348–354, 1996.

[21] A. George and K. Ikramov. Addendum: Is the polar decomposition finitely computable? SIAM
J. Matrix Anal. Appl., 18:264, 1997.

[22] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, MD, 4th edition, 2013.

[23] A. A. Gončar. Zolotarev problems connected with rational functions. Math. USSR Sb.,
7(4):623–635, 1969.

[24] J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University Press, Oxford,
UK, 2004.

[25] M. Gu and S. C. Eisenstat. A divide-and-conquer algorithm for the bidiagonal SVD. SIAM J.
Matrix Anal. Appl., 16(1):79–92, 1995.

[26] M. Gu and S. C. Eisenstat. A divide-and-conquer algorithm for the symmetrical tridiagonal
eigenproblem. SIAM J. Matrix Anal. Appl., 16(1):172–191, 1995.

[27] S. Güttel, E. Polizzi, P. Tang, and G. Viaud. Zolotarev quadrature rules and load balancing for
the FEAST eigensolver. MIMS EPrint 2014.39, The University of Manchester, UK, 2014.

[28] N. Hale, N. J. Higham, and L. N. Trefethen. Computing Aα, log(A), and related matrix
functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008.

[29] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–
288, 2011.

[30] P. Henrici. Applied and Computational Complex Analysis. Vol. 1, Power Series, Integration,
Conformal Mapping, Location of Zeros. Wiley, 1974.

[31] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, PA, 2008.
[32] N. J. Higham and P. Papadimitriou. A parallel algorithm for computing the polar decomposi-

tion. Parallel Comput., 20:1161–1173, 1994.
[33] N. J. Higham. Computing the polar decomposition-with applications. SIAM J. Sci. Stat.

Comp., 7(4):1160–1174, 1986.

32 YUJI NAKATSUKASA and ROLAND W. FREUND

[34] N. J. Higham. The matrix sign decomposition and its relation to the polar decomposition.
Linear Algebra Appl., 212/213:3–20, 1994.

[35] M. E. Hochstenbach. Eigenvalue Tools. Available via http://www.win.tue.nl/~hochsten/

eigenvaluetools/.
[36] S. Huss-Lederman, E. S. Quintana-Ort́ı, X. Sun, and Y.-J. Y. Wu. Parallel spectral division

using the matrix sign function for the generalized eigenproblem. Int. J. High Speed Com.,
11(01):1–14, 2000.

[37] B. Iannazzo. The geometric mean of two matrices from a computational viewpoint.
arXiv:1201.0101, 2011.

[38] T. Kaneko, S. Fiori, and T. Tanaka. Empirical arithmetic averaging over the compact stiefel
manifold. IEEE Trans. Signal Process., 61(4):883–894, 2013.

[39] A. D. Kennedy. Fast evaluation of Zolotarev coefficients. In Proceedings of the Third Interna-
tional Workshop on Numerical Analysis and Lattice QCD, pages 169–189, 2003.

[40] A. D. Kennedy. Approximation theory for matrices. Nucl. Phys. B–Proc. Sup., 128:107–116,
2004.

[41] C. Kenney and A. Laub. A hyperbolic tangent identity and the geometry of Padé sign function
iterations. Numer. Algorithms, 7:111–128, 1994. 10.1007/BF02140677.

[42] C. Kenney and A. Laub. The matrix sign function. IEEE Trans. Automat. Control, 40(8):1330–
1348, 1995.

[43] B. Laszkiewicz and K. Zietak. Numerical experiments with algorithms for the ADI and
Zolotarev coefficients. Appl. Math. Comput., 206(1):298–312, 2008.

[44] J. Mao. Optimal orthonormalization of the strapdown matrix by using singular value decom-
position. Computers Math. Applic., 12(3):353–362, 1986.

[45] Y. Nakatsukasa. Algorithms and Perturbation Theory for Matrix Eigenvalue Problems and the
Singular Value Decomposition. PhD thesis, University of California, Davis, 2011.

[46] Y. Nakatsukasa, Z. Bai, and F. Gygi. Optimizing Halley’s iteration for computing the matrix
polar decomposition. SIAM J. Matrix Anal. Appl., 31(5):2700–2720, 2010.

[47] Y. Nakatsukasa and N. J. Higham. Backward stability of iterations for computing the polar
decomposition. SIAM J. Matrix Anal. Appl., 33(2):460–479, 2012.

[48] Y. Nakatsukasa and N. J. Higham. Stable and efficient spectral divide and conquer algo-
rithms for the symmetric eigenvalue decomposition and the SVD. SIAM J. Sci. Comp,
35(3):A1325–A1349, 2013.

[49] I. Ninomiya. Best rational starting approximations and improved Newton iteration for the
square root. Math. Comp., 24(110):391–404, 1970.

[50] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, 1998.
[51] P. P. Petrushev and V. A. Popov. Rational Approximation of Real Functions. Cambridge

University Press, Cambridge, United Kingdom, 2011.
[52] M. J. D. Powell. Approximation Theory and Methods. Cambridge University Press, Cambridge,

United Kingdom, 1981.
[53] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of

the sign function. Int. J. Control, 32(4):677–687, 1980.
[54] H. Rutishauser. Betrachtungen zur Quadratwurzeliteration. Monatsh. Math., 67(5):452–464,

1963.
[55] D. E. Sukkari, H. Ltaief, and D. E. Keyes. A high performance QDWH-SVD solver using

hardware accelerators. Technical report, KAUST Repository, April 2015.
[56] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer. Talbot quadratures and rational

approximations. BIT, 46(3):653–670, 2006.
[57] L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM, PA, 2013.
[58] L. N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal rule. SIAM

Rev., 56(3):385–458, 2014.
[59] J. van den Eshof. Nested Iteration Methods for Nonlinear Matrix Problems. PhD thesis,

Proefschrift Universiteit Utrecht, 2003.
[60] J. van den Eshof, T. Lippert, A. Frommer, K. Schilling, and H. van der Vorst. Numerical

methods for the QCD overlap operator: I. sign-function and error bounds. Comput. Phys.
Comm., 146:203–224, 2002.

[61] F. V. Zee, R. van de Geijn, and G. Quintana-Orti. Restructuring the tridiagonal and bidiagonal
QR algorithm for performance. ACM Trans. Math. Soft., 40(3):18:1–18:34, 2014.

[62] Z. Zhang, H. Zha, and W. Ying. Fast parallelizable methods for computing invariant subspaces
of Hermitian matrices. J. Comput. Math., 25(5):583–594, 2007.

[63] E. I. Zolotarev. Application of elliptic functions to questions of functions deviating least and
most from zero. Zap. Imp. Akad. Nauk. St. Petersburg,, 30(5), 1877. Reprinted in his
Collected Works, Vol. II, Izdat. Akad. Nauk SSSR, Moscow, 1932, pp. 1–59. In Russian.

