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Numerical Linear Algebra and
Matrix Analysis†

Nicholas J. Higham

Matrices are ubiquitous in applied mathematics.
Ordinary differential equations (ODEs) and partial dif-
ferential equations (PDEs) are solved numerically by
finite difference or finite element methods, which lead
to systems of linear equations or matrix eigenvalue
problems. Nonlinear equations and optimization prob-
lems are typically solved using linear or quadratic
models, which again lead to linear systems.

Solving linear systems of equations is an ancient task,
undertaken by the Chinese around 1AD, but the study
of matrices per se is relatively recent, originating with
Arthur Cayley’s 1858 “A Memoir on the Theory of Matri-
ces”. Early research on matrices was largely theoret-
ical, with much attention focused on the development
of canonical forms, but in the 20th century the practi-
cal value of matrices started to be appreciated. Heisen-
berg used matrix theory as a tool in the development
of quantum mechanics in the 1920s. Early proponents
of the systematic use of matrices in applied mathemat-
ics included Frazer, Duncan, and Collar, whose 1938
book Elementary Matrices and Some Applications to
Dynamics and Differential Equations emphasized the
important role of matrices in differential equations and
mechanics. The continued growth of matrices in appli-
cations, together with the advent of mechanical and
then digital computing devices, allowing ever larger
problems to be solved, created the need for greater
understanding of all aspects of matrices from theory
to computation.

This article treats two closely related topics: matrix
analysis, which is the theory of matrices with a focus
on aspects relevant to other areas of mathematics, and
numerical linear algebra (also called matrix computa-
tions), which is concerned with the construction and
analysis of algorithms for solving matrix problems as
well as related topics such as problem sensitivity and
rounding error analysis.

Important themes that are discussed in this article
include the matrix factorization paradigm, the use of
unitary transformations for their numerical stability,

†. Author’s final version, before copy editing and cross-referencing,
of: N. J. Higham. Numerical linear algebra and matrix analysis. In N. J.
Higham, M. R. Dennis, P. Glendinning, P. A. Martin, F. Santosa, and
J. Tanner, editors, The Princeton Companion to Applied Mathematics,
pages 263–281. Princeton University Press, Princeton, NJ, USA, 2015.

exploitation of matrix structure (such as sparsity, sym-

metry, and definiteness), and the design of algorithms

to exploit evolving computer architectures.

Throughout the article, uppercase letters are used for

matrices and lower case letters for vectors and scalars.

Matrices and vectors are assumed to be complex, unless

otherwise stated, andA∗ = (aji) denotes the conjugate

transpose of A = (aij). An unsubscripted norm ‖ · ‖
denotes a general vector norm and the corresponding

subordinate matrix norm. Particular norms used here

are the 2-norm ‖ · ‖2 and the Frobenius norm ‖ · ‖F .

The notation “i = 1: n” means that the integer variable

i takes on the values 1,2, . . . , n.

1 Nonsingularity and Conditioning

Nonsingularity of a matrix is a key requirement in many

problems, such as in the solution of n linear equations

inn unknowns. For some classes of matrices, nonsingu-

larity is guaranteed. A good example is the diagonally

dominant matrices. The matrix A ∈ Cn×n is strictly

diagonally dominant by rows if∑
j 6=i
|aij| < |aii|, i = 1: n

and strictly diagonally dominant by columns if A∗ is

strictly diagonally dominant by rows. Any matrix that

is strictly diagonally dominant by rows or columns

is nonsingular (a proof can be obtained by applying

Gershgorin’s theorem in section 5.1).

Since data is often subject to uncertainty we wish

to gauge the sensitivity of problems to perturbations,

which is done using condition numbers. An appropriate

condition number for the matrix inverse is

lim
ε→0

sup
‖∆A‖6ε‖A‖

‖(A+∆A)−1 −A−1‖
ε‖A−1‖ .

This expression turns out to equal κ(A) = ‖A‖‖A−1‖,
which is called the condition number of A with respect

to inversion. This condition number occurs in many

contexts. For example, suppose A is contaminated

by errors and we perform a similarity transformation

X−1(A + E)X = X−1AX + F . Then ‖F‖ = ‖X−1EX‖ 6
κ(X)‖E‖ and this bound is attainable for some E. Hence

the errors can be multiplied by a factor as large as

κ(X). We therefore prefer to carry out similarity and

other transformations with matrices that are well con-

ditioned , that is, ones for which κ(X) is close to its

lower bound of 1. By contrast, a matrix for which κ is

large is called ill conditioned. For any unitary matrix X,

http://www.ma.man.ac.uk/~higham/pcam/index.php
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κ2(X) = 1, so in numerical linear algebra transforma-
tions by unitary or orthogonal matrices are preferred
and usually lead to numerically stable algorithms.

In practice we often need an estimate of the matrix
condition number number κ(A) but do not wish to go
to the expense of computing A−1 in order to obtain
it. Fortunately, there are algorithms that can cheaply
produce a reliable estimate of κ(A) once a factorization
of A has been computed.

Note that the determinant, det(A), is rarely com-
puted in numerical linear algebra. Its magnitude gives
no useful information about the conditioning of A, not
least because of its extreme behavior under scaling:
det(αA) = αn det(A).

2 Matrix Factorizations

The method of Gaussian elimination (GE) for solving
a nonsingular linear system Ax = b of n equations
in n unknowns reduces the matrix A to upper trian-
gular form and then solves for x by substitution. GE
is typically described by writing down the equations
a(k+1)
ij = a(k)ij − a

(k)
ik a

(k)
kj /a

(k)
kk (and similarly for b) that

describe how the starting matrix A = A(1) = (a(1)ij )
changes on each of the n − 1 steps of the elimina-
tion in its progress towards upper triangular form U .
Working at the element level in this way leads to a pro-
fusion of symbols, superscripts, and subscripts that
tend to obscure the mathematical structure and hin-
der insights being drawn into the underlying process.
One of the key developments in the last century was
the recognition that it is much more profitable to work
at the matrix level. Thus the basic equation above is
written as A(k+1) = MkA(k), where Mk agrees with the
identity matrix except below the diagonal in the kth
column, where its (i, k) element is mik = −a(k)ik /a

(k)
kk ,

i = k + 1: n. Recurring the matrix equation gives
U := A(n) = Mn−1 . . .M1A. Taking theMk matrices over
to the left-hand side leads, after some calculations, to
the equation A = LU , where L is unit lower triangular,
with (i, k) elementmik. The prefix “unit” means that L
has ones on the diagonal.

GE is therefore equivalent to factorizing the matrix
A as the product of a lower triangular matrix and an
upper triangular matrix—something that is not at all
obvious from the element-level equations. Solving the
linear systemAx = b now reduces to the task of solving
the two triangular systems Ly = b and Ux = y .

Interpreting GE as LU factorization separates the
computation of the factors from the solution of the tri-

angular systems. It is then clear how to solve efficiently
several systems Axi = bi, i = 1: r , with different right-
hand sides but the same coefficient matrix A: compute
the LU factors once and then re-use them to solve for
each xi in turn.

This matrix factorization1 viewpoint dates from
around the 1940s and has been extremely successful
in matrix computations. In general, a factorization is a
representation of a matrix as a product of “simpler”
matrices. Factorization is a tool that can be used to
solve a variety of problems, as we will see below.

Two particular benefits of factorizations are unity
and modularity. GE, for example, can be organized
in several different ways, corresponding to different
orderings of the three nested loops that it comprises,
as well as the use of different blockings of the matrix
elements. Yet all of them compute the same LU factor-
ization, carrying out the same mathematical operations
in a different order. Without the unifying concept of a
factorization, reasoning about these GE variants would
be difficult.

Modularity refers to the way that a factorization
breaks a problem down into separate tasks, which can
be analyzed or programmed independently. To carry
out a rounding error analysis of GE we can analyze the
LU factorization and the solution of the triangular sys-
tems by substitution separately and then put the analy-
ses together. The rounding error analysis of substitu-
tion can be re-used in the many other contexts in which
triangular systems arise.

An important example of the use of LU factoriza-
tion is in iterative refinement. Suppose we have used
GE to obtain a computed solution x̂ to Ax = b in
floating-point arithmetic. If we form r = b − Ax̂ and
solve Ae = r , then in exact arithmetic y = x̂ + e is
the true solution. In computing e we can reuse the LU
factors of A, so obtaining y from x̂ is inexpensive. In
practice, the computation of r , e, and y is subject to
rounding errors so the computed ŷ is not equal to x.
But under suitable assumptions ŷ will be an improved
approximation and we can iterate this refinement pro-
cess. Iterative refinement is particularly effective if r
can be computed using extra precision.

Two other key factorizations are:

• Cholesky factorization: for Hermitian positive def-
inite A ∈ Cn×n, A = R∗R, where R is upper tri-
angular with positive diagonal elements, and this
factorization is unique.

1. Or decomposition—the two terms are essentially synonymous.
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• QR factorization: for A ∈ Cm×n with m > n, A =
QR where Q ∈ Cm×m is unitary (Q∗Q = Im) and
R ∈ Cm×n is upper trapezoidal, that is, R =

[
R1
0

]
with R1 ∈ Cn×n upper triangular.

These two factorizations are related: if A ∈ Cm×n with
m > n has full rank and A = QR is a QR factorization,
in which without loss of generality we can assume that
R has positive diagonal, then A∗A = R∗R, so R is the
Cholesky factor of A∗A.

The Cholesky factorization can be computed by what
is essentially a symmetric and scaled version of GE. The
QR factorization can be computed in three main ways,
one of which is the classical Gram–Schmidt orthogonal-
ization. The most widely used method constructs Q as
a product of Householder reflectors, which are unitary
matrices of the formH = I−2vv∗/(v∗v), where v is a
nonzero vector. Note that H is a rank 1 perturbation of
the identity and since it is Hermitian and unitary it is its
own inverse, that is, it is involutory . The third approach
buildsQ as a product of Givens rotations, each of which
is a 2 × 2 matrix

[ c s
−s c

]
embedded into two rows and

columns of anm×m identity matrix, where (in the real
case) c2 + s2 = 1.

The Cholesky factorization helps us to make the
most of the very desirable property of positive definite-
ness. For example, supposeA is Hermitian positive def-
inite and we wish to evaluate the scalar α = x∗A−1x.
We can rewrite it as x∗(R∗R)−1x = (x∗R−1)(R−∗x) =
z∗z, where z = R−∗x. So once the Cholesky factoriza-
tion has been computed we need just one triangular
solve to compute α, and of course there is no need to
explicitly invert the matrix A.

A matrix factorization might involve a larger num-
ber of factors: A = N1N2 . . . Nk, say. It is immediate
that AT = NTkN

T
k−1 . . . N

T
1 . This factorization of the

transpose may have deep consequences in a particu-
lar application. For example, the discrete Fourier trans-
form is the matrix–vector product y = Fnx, where
the n × n matrix Fn has (p, q) element exp(−2π i(p −
1)(q − 1)/n); Fn is a complex, symmetric matrix. The
fast Fourier transform (FFT) is a way of evaluating y in
O(n log2n) operations, as opposed to the O(n2) oper-
ations that are required by a standard matrix–vector
multiplication. Many variants of the FFT have been pro-
posed since the original 1965 paper by Cooley and
Tukey. It turns out that different FFT variants corre-
spond to different factorizations of Fn with k = log2n
sparse factors. Some of these methods correspond sim-
ply to transposing the factorization in another method

(recall that FTn = Fn), though this was not realized
when the methods were developed. Transposition also
plays an important role in automatic differentiation:
the so-called reverse or adjoint mode can be obtained
by transposing a matrix factorization representation of
the forward mode.

The factorizations described in this section are in
“plain vanilla” form, but all have variants that incor-
porate pivoting. Pivoting refers to row or column inter-
changes carried out at each step of the factorization as
it is computed, introduced either to ensure that the fac-
torization succeeds and is numerically stable or to pro-
duce a factorization with certain desirable properties
usually associated with rank deficiency. For GE, partial
pivoting is normally used: at the start of the kth stage
of the elimination an elementa(k)rk of largest modulus in
the kth column below the diagonal is brought into the
(k, k) (pivot) position by interchanging rows k and r .
Partial pivoting avoids dividing by zero (if a(k)kk = 0 after
the interchange then the pivot column is zero below the
diagonal and the elimination step can be skipped). More
importantly, partial pivoting ensures numerical stabil-
ity; see section 8. The overall effect of GE with partial
pivoting is to produce an LU factorization PA = LU ,
where P is a permutation matrix.

Pivoted variants of Cholesky factorization and QR
factorization take the form PTAP = R∗R and AP =
Q
[
R
0

]
, where P is a permutation matrix and R satisfies

the inequalities

|rkk|2 >
j∑
i=k
|rij|2, j = k+ 1: n, k = 1: n.

If A is rank deficient then R has the form R =
[
R11 R12
0 0

]
with R11 nonsingular, and the rank of A is the dimen-
sion of R11. Equally importantly, when A is nearly rank
deficient this tends to be revealed by a small trailing
diagonal block of R.

A factorization of great importance in a wide vari-
ety of applications is the singular value decomposition
(SVD) of A ∈ Cm×n:

A = UΣV∗, Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n, (1)

where p = min(m,n), U ∈ Cm×m and V ∈ Cn×n are
unitary, and the singular values σi satisfy σ1 > σ2 >
· · · > σp > 0. For a square A (m = n), the 2-norm
condition number is given by κ2(A) = σ1/σn.

The polar decomposition of A ∈ Cm×n with m > n
is a factorization A = UH in which U ∈ Cm×n has
orthonormal columns andH ∈ Cn×n is Hermitian posi-
tive semidefinite. The matrixH is unique and is given by
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(A∗A)1/2, where the exponent 1/2 denotes the princi-
pal square root, whileU is unique ifA has full rank. The
polar decomposition generalizes to matrices the polar
representation z = r eiθ of a complex number. The Her-
mitian polar factor H is also known as the matrix abso-
lute value, |A|, and is much studied in matrix analysis
and functional analysis.

One reason for the importance of the polar decom-
position is that it provides an optimal way to orthogo-
nalize a matrix: a result of Fan and Hoffman (1955) says
that U is the nearest matrix with orthonormal columns
to A in any unitarily invariant norm (a unitarily invari-
ant norm is one with the property that ‖UAV‖ = ‖A‖
for any unitary U and V ; the 2-norm and the Frobe-
nius norm are particular examples). In various appli-
cations a matrix A ∈ Rn×n that should be orthogonal
drifts from orthogonality because of rounding or other
errors; replacing it by the orthogonal polar factor U is
then a good strategy.

The polar decomposition also solves the orthogonal
Procrustes problem, for A,B ∈ Cm×n,

min
{
‖A− BQ‖F : Q ∈ Cn×n, Q∗Q = I

}
,

for which any solution Q is a unitary polar factor of
B∗A. This problem comes from factor analysis and mul-
tidimensional scaling in statistics, where the aim is to
see whether two data sets A and B are the same up to
an orthogonal transformation.

Either of the SVD and the polar decomposition can
be derived, or computed, from the other. Histori-
cally, the SVD came first (Beltrami, in 1873), with the
polar decomposition three decades behind (Autonne,
in 1902).

3 Distance to Singularity and Low-Rank
Perturbations

The question commonly arises of whether a given per-
turbation of a nonsingular matrix A preserves nonsin-
gularity. In a sense, this question is trivial. Recalling
that a square matrix is nonsingular when all its eigen-
values are nonzero, and that the product of two matri-
ces is nonsingular unless one of them is singular, from
A + ∆A = A(I + A−1∆A) we see that A + ∆A is non-
singular as long as A−1∆A has no eigenvalue equal to
−1. However, this is not an easy condition to check,
and in practice we may not know ∆A but only a bound
for its norm. Since any norm of a matrix exceeds the
modulus of every eigenvalue, a sufficient condition for
A + ∆A to be nonsingular is that ‖A−1∆A‖ < 1, which
is certainly true if ‖A−1‖‖∆A‖ < 1. This condition can

be rewritten as the inequality ‖∆A‖/‖A‖ < κ(A)−1,
where κ(A) = ‖A‖‖A−1‖ > 1 is the condition number
introduced in section 1. It turns out that we can always
find a perturbation ∆A such that A + ∆A is singular
and ‖∆A‖/‖A‖ = κ(A)−1. It follows that the relative
distance to singularity

d(A) =min { ‖∆A‖/‖A‖ : A+∆A is singular } (2)

is given by d(A) = κ(A)−1. This reciprocal relation
between problem conditioning and the distance to a
singular problem (one with an infinite condition num-
ber) is common to a variety of problems in linear alge-
bra and control theory, as shown by James Demmel in
the 1980s.

We may want a more refined test for whether A+∆A
is nonsingular. To obtain one we will need to make
some assumptions about the perturbation. Suppose
that ∆A has rank 1: ∆A = xy∗, for some vectors x and
y . From the analysis above we know that A + ∆A will
be nonsingular if A−1∆A = A−1xy∗ has no eigenvalue
equal to−1. Using the fact that the nonzero eigenvalues
of AB are the same as those of BA for any conformable
matrices A and B, we see that the nonzero eigenvalues
of (A−1x)y∗ are the same as those of y∗A−1x. Hence
A+ xy∗ is nonsingular as long as y∗A−1x 6= −1.

Now that we know when A+ xy∗ is nonsingular we
might ask if there is an explicit formula for the inverse.
Since A + xy∗ = A(I + A−1xy∗) we can take A = I
without loss of generality. So we are looking for the
inverse of B = I + xy∗. One way to find it is to guess
that B−1 = I + θxy∗ for some scalar θ and equate the
product with B to I, to obtain θ(1+y∗x)+1 = 0. Thus
(I +xy∗)−1 = I −xy∗/(1+y∗x). The corresponding
formula for (A+ xy∗)−1 is

(A+ xy∗)−1 = A−1 −A−1xy∗A−1/(1+y∗A−1x),

which is known as the Sherman–Morrison formula.
This formula and its generalizations originate in the
1940s and have been rediscovered many times. The
corresponding formula for a rank p perturbation is
the Sherman–Morrison–Woodbury formula: for U,V ∈
Cn×p ,

(A+UV∗)−1 = A−1 −A−1U(I + V∗A−1U)−1V∗A−1.

Important applications of these formulae are in opti-
mization, where rank-1 or rank-2 updates are made to
Hessian approximations in quasi-Newton methods and
to basis matrices in the simplex method. More gener-
ally, the task of updating the solution to a problem after
a coefficient matrix has undergone a low-rank change,
or has had a row or column added or removed, arises in
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many applications, including signal processing, where

new data is continually being received and old data is

discarded.

The minimal distance in the definition (2) of the dis-

tance to singularity d(A) can be shown to be attained

for a rank-1 matrix ∆A. Rank-1 matrices often feature

in the solutions of matrix optimization problems.

4 Computational Cost

In order to compare competing methods and predict

their practical efficiency we need to know their com-

putational cost. Traditionally, computational cost has

been measured by counting the number of scalar arith-

metic operations and retaining only the highest order

terms in the total. For example, using GE we can solve

a system of n linear equations in n unknowns with

n3/3+O(n2) additions, n3/3+O(n2)multiplications,

and O(n) divisions. This is typically summarized as

2n3/3 flops, where a flop denotes any of the scalar

operations +,−,∗, /. Most standard problems involv-

ing n×nmatrices can be solved with a cost of order n3

flops or less, so the interest is in the exponent (1, 2, or 3)

and the constant of the dominant term. However, the

costs of moving data around a computer’s hierarchi-

cal memory and the costs of communicating between

different processors on a multiprocessor system can

be equally important. Simply counting flops does not

therefore necessarily give a good guide to performance

in practice.

Seemingly trivial problems can offer interesting chal-

lenges as regards minimizing arithmetic costs. For

matrices A, B, and C of any dimensions such that the

product ABC is defined, how should we compute the

product? The associative law for matrix multiplication

tells us that (AB)C = A(BC), but this mathematical

equivalence is not a computational one. To see why,

note that for three vectors a,b, c ∈ Rn we can write

(ab∗)︸ ︷︷ ︸
n×n

c = a(b∗c)︸ ︷︷ ︸
1×1

.

Evaluation of the left-hand side requiresO(n2) flops, as

there is an outer product ab∗ and then a matrix–vector

product to evaluate, while evaluation of the right-hand

side requires just O(n) flops, as it involves only vec-

tor operations: an inner product and a vector scaling.

One should always be alert for opportunities to use the

associative law to save computational effort.

5 Eigenvalue Problems

The eigenvalue problem Ax = λx for a square matrix
A ∈ Cn×n, which seeks an eigenvalue λ ∈ C and an
eigenvector x 6= 0, arises in many forms. Depending on
the application we may want all the eigenvalues or just
a subset, such as the 10 that have the largest real part,
and eigenvectors may or may not be required as well.
Whether the problem is Hermitian or non-Hermitian
changes its character greatly. In particular, while a Her-
mitian matrix has real eigenvalues and a linearly inde-
pendent set of n eigenvectors that can be taken to
be orthonormal, the eigenvalues of a non-Hermitian
matrix can be anywhere in the complex plane and there
may not be a set of eigenvectors that spans Cn.

5.1 Bounds and Localization

One of the first questions to ask is whether we can find
a finite region containing the eigenvalues. The answer
is yes, because Ax = λx implies |λ|‖x‖ = ‖Ax‖ 6
‖A‖‖x‖, and hence |λ| 6 ‖A‖. So all the eigenvalues lie
in a disc of radius ‖A‖ about the origin. More refined
bounds are provided by Gershgorin’s theorem.

Theorem 1 (Gershgorin’s theorem, 1931). The eigen-
values of A ∈ Cn×n lie in the union of the n discs in
the complex plane

Di =
{
z ∈ C : |z − aii| 6

∑
j 6=i
|aij|

}
, i = 1: n.

An extension of the theorem says that if k discs form
a connected region that is isolated from the other discs
then there are precisely k eigenvalues in this region.
The Gershgorin discs for the matrix

−1 1/3 1/3 1/3
3/2 −2 0 0
1/2 0 3 1/4
1 0 −1 6

 (3)

are shown in figure 1. We can conclude that there is
one eigenvalue in the disc centered at 3, one in the disc
centered at 6, and two in the union of the other two
discs.

Gershgorin’s theorem is most useful for matrices
that are close to diagonal, such as those eventually pro-
duced by the Jacobi iterative method for eigenvalues of
Hermitian matrices. Improved estimates can be sought
by applying Gershgorin’s theorem to a matrix D−1AD
similar to A, with the diagonal matrix D chosen in an
attempt to isolate and shrink the discs. Many variants
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−4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−2

−1

0

1

2

• • • •

Figure 1 Gershgorin discs for the matrix in (3); the
eigenvalues are marked as solid dots.

of Gershgorin’s theorem exist with discs replaced by
other shapes.

The spectral radius ρ(A) (the largest absolute value
of any eigenvalue of A) satisfies ρ(A) 6 ‖A‖, as shown
above, but this inequality can be arbitrarily weak, as
the matrix

[
1 θ
0 1

]
shows for |θ| � 1. It is natural to ask

whether there are any sharper relations between the
spectral radius and norms. One answer is the equality

ρ(A) = lim
k→∞

‖Ak‖1/k. (4)

Another is the result that given any ε > 0 there is a
norm such that ‖A‖ 6 ρ(A) + ε; however, the norm
depends onA. This result can be used to give a proof of
the fact, discussed in the article on the Jordan canonical
form, that the powers ofA converge to zero if ρ(A) < 1.

The field of values, also known as the numerical
range, is a tool that can be used for localization and
many other purposes. It is defined for A ∈ Cn×n by

F(A) =
{
z∗Az
z∗z

: 0 6= z ∈ Cn
}
.

The set F(A) is compact and convex (a nontrivial prop-
erty proved by Toeplitz and Hausdorff) and it contains
all the eigenvalues of A. For normal matrices it is the
convex hull of the eigenvalues. The normal matrices A
are those for which AA∗ = A∗A, and they include the
Hermitian, the skew-Hermitian, and the unitary matri-
ces. For a Hermitian matrix F(A) is a segment of the real
axis while for a skew-Hermitian matrix it is a segment
of the imaginary axis. Figure 2 illustrates two fields of
values, the second of which is the convex hull of the
eigenvalues because a circulant matrix is normal.

5.2 Eigenvalue Sensitivity

If A is perturbed how much do its eigenvalues change?
This question is easy to answer for a simple eigenvalue
λ—one that has algebraic multiplicity 1. We need the
notion of a left eigenvector of A corresponding to λ,
which is a nonzero vector y such that y∗A = λy∗.
If λ is simple with right and left eigenvectors x and

−20 −10 0

−10

0

10

0 20 40

−20

−10

0

10

20

Figure 2 Fields of values for a pentadiagonal Toeplitz
matrix (left) and a circulant matrix (right), both of dimen-
sion 32. The eigenvalues are denoted by crosses.

y , respectively, then there is an eigenvalue λ + ∆λ of

A+∆A such that∆λ = y∗∆Ax/(y∗x)+O(‖∆A‖2) and

so

|∆λ| 6 ‖y‖2‖x‖2

|y∗x| ‖∆A‖ +O(‖∆A‖2).

The term ‖y‖2‖x‖2/|y∗x| can be shown to be an

(absolute) condition number for λ. It is at least 1 and

tends to infinity as y and x approach orthogonality

(which can never exactly be achieved for simple λ), so

λ can be very ill conditioned. However if A is Hermitian

then we can take y = x and the bound simplifies to

|∆λ| 6 ‖∆A‖ + O(‖∆A‖2), so all the eigenvalues of a

Hermitian matrix are perfectly conditioned.

Much research has been done to obtain eigenvalue

perturbation bounds under both weaker and stronger

assumptions about the problem. Suppose we drop the

requirement that λ is simple. Consider the matrix and

perturbation

A =

0 1 0
0 0 1
0 0 0

 , ∆A =

0 0 0
0 0 0
ε 0 0

 .
The eigenvalues of A are all zero and those of A+ ∆A
are the third roots of ε. The change in the eigenvalue

is proportional not to ε but to a fractional power of ε.
In general, the sensitivity of an eigenvalue depends on

the Jordan structure for that eigenvalue.

5.3 Companion Matrices and the Characteristic

Polynomial

The eigenvalues of a matrixA are the roots of its charac-

teristic polynomial, det(λI−A). Conversely, associated

with the polynomial

p(λ) = λn − an−1λn−1 − · · · − a0
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is the companion matrix

C =



an−1 an−2 . . . . . . a0

1 0 . . . . . . 0

0 1
. . . 0

...
. . . 0

...
0 . . . . . . 1 0

 ,

and the eigenvalues of C are the roots of p.
This relation means that the roots of a polynomial

can be found by computing the eigenvalues of an n×n
matrix, and this approach is used by some computer
codes, for example the roots function of MATLAB.
While standard eigenvalue algorithms do not exploit
the structure of C , this approach has proved competi-
tive with specialist polynomial root-finding algorithms.
Another use for the relation is to obtain bounds for
roots of polynomials from bounds for matrix eigen-
values, and vice versa.

Companion matrices have many interesting proper-
ties. For example, any nonderogatory n × n matrix
is similar to a companion matrix. Companion matri-
ces therefore have featured strongly in matrix analysis
and also in control theory. However, similarity trans-
formations to companion form are little used in prac-
tice because of problems with ill conditioning and
numerical instability.

Returning to the characteristic polynomial, p(λ) =
det(λI −A) = λn −an−1λn−1 − · · · −a0, we know that
p(λi) = 0 for every eigenvalue λi of A. The Cayley–
Hamilton theorem says that p(A) = An − an−1An−1 −
· · · − a0I = 0 (which cannot be obtained simply by
putting “λ = A” in the previous expression!). Hence the
nth power of A, and inductively all higher powers, are
expressible as a linear combination of I, A, . . . , An−1.
Moreover, if A is nonsingular then from A−1p(A) = 0 it
follows that A−1 can also be written as a polynomial in
A of degree at most n− 1. These relations are not use-
ful for practical computation because the coefficients
ai can vary tremendously in magnitude and it is not
possible to compute them to high relative accuracy.

5.4 Eigenvalue Inequalities for Hermitian Matrices

The eigenvalues of Hermitian matrices A ∈ Cn×n,
which in this section we order λn 6 · · · 6 λ1, satisfy
many beautiful inequalities. Among the most impor-
tant are those in the Courant–Fischer theorem (1905),
which states that every eigenvalue is the solution of a
min-max problem over a suitable subspace S of Cn:

λi = min
dim(S)=n−i+1

max
06=x∈S

x∗Ax
x∗x

.

Special cases are λn = minx 6=0 x∗Ax/(x∗x) and λ1 =
maxx 6=0 x∗Ax/(x∗x).

Takingx to be a unit vector ei in the previous formula
for λ1 gives λ1 > aii for all i. This inequality is just
the first in a sequence of inequalities relating sums of
eigenvalues to sums of diagonal elements, obtained by
Schur in 1923:

k∑
i=1

λi >
k∑
i=1

ãii, k = 1: n, (5)

where {ãii} is the set of diagonal elements of A
arranged in decreasing order: ã11 > · · · > ãnn. There
is equality for k = n, since both sides equal trace(A).
These inequalities say that the vector [λ1, . . . , λn] of
eigenvalues majorizes the vector [ã11, . . . , ãnn] of diag-
onal elements.

In general there is no useful formula for the eigen-
values of a sum A + B of Hermitian matrices. How-
ever, the Courant–Fischer theorem yields the upper and
lower bounds

λk(A)+ λn(B) 6 λk(A+ B) 6 λk(A)+ λ1(B),

from which it follows that |λk(A + B) − λk(A)| 6
max(|λn(B)|, |λ1(B)|) = ‖B‖2. The latter inequality
again shows that the eigenvalues of a Hermitian matrix
are well conditioned under perturbation.

The Cauchy interlace theorem has a different flavor. It
relates the eigenvalues of successive leading principal
submatrices Ak = A(1: k,1: k) by

λk+1(Ak+1) 6 λk(Ak) 6 λk(Ak+1)

6 · · · 6 λ2(Ak+1) 6 λ1(Ak) 6 λ1(Ak+1)

for k = 1: n − 1, showing that the eigenvalues of Ak
interlace those of Ak+1.

In 1962 Alfred Horn made a conjecture that a cer-
tain set of linear inequalities involving real numbers
αi, βi, and γi, i = 1: n, is necessary and sufficient for
the existence of n× n Hermitian matrices A, B, and C
with eigenvalues the αi, βi, and γi, respectively, such
that C = A+B. The conjecture was open for many years
but was finally proved to be true in papers published by
Klyachko in 1998 and Knutson and Tao in 1999, which
exploit deep connections with algebraic geometry, rep-
resentations of Lie groups, and quantum cohomology.

5.5 Solving the Non-Hermitian Eigenproblem

The simplest method for computing eigenvalues, the
power method, computes just one: the largest in mod-
ulus. It comprises repeated multiplication of a starting
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vector x by A. Since the resulting sequence is liable to
overflow or underflow in floating-point arithmetic one
normalizes the vector after each iteration. Therefore
one step of the power method has the form x ← Ax,
x ← ν−1x, where ν = xj with |xj| = maxi |xi|. If A
has a unique eigenvalue λ of largest modulus and the
starting vector has a component in the direction of the
corresponding eigenvector then ν converges to λ and x
converges to the corresponding eigenvector. The power
method is most often applied to (A−µI)−1, where µ is
an approximation to an eigenvalue of interest. In this
form it is known as inverse iteration and convergence is
to the eigenvalue closest to µ. We now turn to methods
that compute all the eigenvalues.

Since similarities X−1AX preserve the eigenvalues
and change the eigenvectors in a controlled way, car-
rying out a sequence of similarity transformations to
reduceA to a simpler form is a natural way to tackle the
eigenproblem. Some early methods used nonunitary X,
but such transformations are now avoided because of
numerical instability when X is ill conditioned. Since
the 1960s the focus has been on using unitary similar-
ities to compute the Schur decomposition A = QTQ∗,
where Q is unitary and T is upper triangular. The diag-
onal entries of T are the eigenvalues of A, and they can
be made to appear in any order by appropriate choice of
Q. The first k columns ofQ span an invariant subspace
corresponding to the eigenvalues t11, . . . , tkk. Eigen-
vectors can be obtained by solving triangular systems
involving T .

For some matrices the Schur factor T is diagonal;
these are precisely the normal matrices defined in sec-
tion 5.1. The real Schur decomposition contains only
real matrices when A is real: A = QRQT , where Q is
orthogonal and R is real upper quasi-triangular, which
means that R is upper triangular except for 2×2 blocks
on the diagonal corresponding to complex conjugate
eigenvalues.

The standard algorithm for solving the non-
Hermitian eigenproblem is the QR algorithm, which
was proposed independently by John Francis and Vera
Kublanovskaya in 1961. The matrix A ∈ Cn×n is
first unitarily reduced to upper Hessenberg form H =
U∗AU (hij = 0 for i > j + 1), with U a product of
Householder matrices. The QR iteration constructs a
sequence of upper Hessenberg matrices beginning with
H1 = H defined by Hk−µkI =: QkRk (QR factorization,
computed using Givens rotations),Hk+1 := RkQk+µkI,
where the µk are shifts chosen to accelerate the con-
vergence of Hk to upper triangular form. It is easy to

check that Hk+1 = Q∗kHkQk, so the QR iteration carries

out a sequence of unitary similarity transformations.

Why the QR iteration works is not obvious but can

be elegantly explained by analyzing the subspaces

spanned by the columns of Qk. To produce a practi-

cal and efficient algorithm various refinements of the

iteration are needed, which include

• deflation, whereby when an element on the first

subdiagonal of Hk becomes small, that element is

set to zero and the problem is split into two smaller

problems that are solved independently,

• a double shift technique for real A that allows

two QR steps with complex conjugate shifts to be

carried out entirely in real arithmetic and gives

convergence to the real Schur form,

• a multishift technique for including m different

shifts in a single QR iteration.

A proof of convergence is lacking for all current shift

strategies. Implementations introduce a random shift

when convergence appears to be stagnating. The QR

algorithm works very well in practice and continues

to be the method of choice for the non-Hermitian

eigenproblem.

5.6 Solving the Hermitian Eigenproblem

The eigenvalue problem for Hermitian matrices is eas-

ier to solve than that for non-Hermitian matrices and

the range of available numerical methods is much

wider.

To solve the complete Hermitian eigenproblem we

need to compute the spectral decomposition A =
QDQ∗, where D = diag(λi) contains the eigenvalues

and the columns of the unitary matrix Q are the corre-

sponding eigenvectors. Many methods begin by unitary

reduction to tridiagonal form T = U∗AU , where tij = 0

for |i− j| > 1 and the unitary matrix U is constructed

as a product of Householder matrices. The eigenvalue

problem for T is much simpler, though still nontriv-

ial. The most widely used method is the QR algorithm,

which has the same form as in the non-Hermitian case

but with the upper Hessenberg Hk replaced by the Her-

mitian tridiagonal Tk and the shifts chosen to acceler-

ate the convergence of Tk to diagonal form. The Her-

mitian QR algorithm with appropriate shifts has been

proved to converge at a cubic rate.

Another method for solving the Hermitian tridiag-

onal eigenproblem is the divide and conquer method .
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This method decouples T in the form

T =
[T11 0

0 T22

]
+αvv∗,

where only the trailing diagonal element of T11 and the
leading diagonal element of T22 differ from the corre-
sponding elements of T and hence the vector v has
only two nonzero elements. The eigensystems of T11

and T22 are found by applying the method recursively,
yielding T11 = Q1Λ1Q∗1 and T22 = Q2Λ2Q∗2 . Then

T =
[Q1Λ1Q∗1 0

0 Q2Λ2Q∗2

]
+αvv∗

= diag(Q1,Q2)
(
diag(Λ1,Λ2)+αṽṽ∗

)
diag(Q1,Q2)∗,

where ṽ = diag(Q1,Q2)∗v . The eigensystem of a rank-
1 perturbed diagonal matrix D+ρzz∗ can be found by
solving the secular equation obtained by equating the
characteristic polynomial to zero:

f(λ) = 1+ ρ
n∑
j=1

|zj|2
djj − λ

= 0.

Putting the pieces together yields the overall eigende-
composition.

Other methods are suitable for computing just a por-
tion of the spectrum. Suppose we want to compute the
kth smallest eigenvalue of T and that we can some-
how compute the integer N(x) equal to the number
of eigenvalues of T that are less than or equal to x.
Then we can apply the bisection method to N(x) to
find the point where N(x) jumps from k − 1 to k.
We can compute N(x) by making use of the following
result about the inertia of a Hermitian matrix, defined
by inertia(A) = (ν, ζ,π), where ν is the number of neg-
ative eigenvalues, ζ is the number of zero eigenvalues,
and π is the number of positive eigenvalues.

Theorem 2 (Sylvester’s inertia theorem). If A is Her-
mitian and M is nonsingular then inertia(A) =
inertia(M∗AM).

Sylvester’s inertia theorem says that the number
of negative, zero, and positive eigenvalues does not
change under congruence transformations. By using GE
we can factorize2 T − xI = LDL∗, where D is diago-
nal and L is unit lower bidiagonal (a bidiagonal matrix
is one that is both triangular and tridiagonal). Then
inertia(T − xI) = inertia(D), so the number of nega-
tive diagonal or zero elements of D equals the number
of eigenvalues of T − xI less than or equal to 0, which
is the number of eigenvalues of T less than or equal

2. The factorization may not exist, but if it does not we can simply
perturb T slightly and try again without any loss of numerical stability.

to x, that is, N(x). The LDL∗ factors of a tridiagonal

matrix can be computed in O(n) flops, so this bisec-

tion process is efficient. An alternative approach can be

built by using properties of Sturm sequences, which are

sequences comprising the characteristic polynomials

of leading principal submatrices of T − λI.

5.7 Computing the SVD

For a rectangular matrix A ∈ Cm×n the eigenvalues of

the Hermitian matrix
[

0 A
A∗ 0

]
of dimension m + n are

plus and minus the nonzero singular values of A along

with m + n − 2 min(m,n) zeros. Hence the SVD can

be computed via the eigendecomposition of this larger

matrix. However, this would be inefficient, and instead

one uses algorithms that work directly on A and are

analogues of the algorithms for Hermitian matrices.

The standard approach is to reduce A to bidiagonal

form B by Householder transformations applied on the

left and the right and then to apply an adaptation of the

QR algorithm that works on the bidiagonal factor (and

implicitly applies the QR algorithm to the tridiagonal

matrix B∗B).

5.8 Generalized Eigenproblems

The generalized eigenvalue problem (GEP) Ax = λBx,

with A,B ∈ Cn×n, can be converted into a standard

eigenvalue problem if B (say) is nonsingular: B−1Ax =
λx. However, such a transformation is inadvisable

numerically unless B is very well conditioned. IfA and B
have a common null vector z the problem takes on a dif-

ferent character because then (A−λB)z = 0 for any λ;

such a problem is called singular . We will assume that

the problem is regular , so that det(A − λB) 6≡ 0. The

linear polynomial A− λB is sometimes called a pencil .

It is convenient to write λ = α/β, where α and β are

not both zero, and rephrase the problem in the more

symmetric form βAx = αBx. If x is a nonzero vector

such that Bx = 0 then, since the problem is assumed

to be regular, Ax 6= 0 and so β = 0. This means that

λ = ∞ is an eigenvalue. Infinite eigenvalues may seem

a strange concept, but in fact they are no different in

most respects to finite eigenvalues.

An important special case is the definite general-

ized eigenvalue problem, in which A and B are Hermi-

tian and B (say) is positive definite. If B = R∗R is a

Cholesky factorization then Ax = λBx can be rewrit-

ten as R−∗AR−1 ·Rx = λRx, which is a standard eigen-

problem for the Hermitian matrix C = R−∗AR−1. This
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argument shows that the eigenvalues of a definite prob-
lem are all real. Definite generalized eigenvalue prob-
lems arise in many physical situations where an energy
minimization principle is at work, such as in problems
in engineering and physics.

A generalization of the QR algorithm called the QZ
algorithm computes a generalization to two matrices
of the Schur decomposition: Q∗AZ = T , Q∗BZ = S,
where Q and Z are unitary and T and S are upper tri-
angular. The generalized Schur decomposition yields
the eigenvalues as the ratios tii/sii and enables eigen-
vectors to be computed by substitution.

The quadratic eigenvalue problem (QEP) Q(λ)x =
(λ2A2 + λA1 + A0)x = 0, where Ai ∈ Cn×n, i = 0: 2,
arises most commonly in the dynamic analysis of struc-
tures when the finite element method is used to dis-
cretize the original PDE into a system of second-order
ODEs A2q̈(t) + A1q̇(t) + A0q(t) = f(t). Here, the Ai
are usually Hermitian (though A1 is skew-Hermitian in
gyroscopic systems) and positive (semi)definite. Anal-
ogously to the GEP, the QEP is said to be regular if
det(Q(λ)) 6≡ 0. The quadratic problem differs funda-
mentally from the linear GEP because a regular problem
has 2n eigenvalues, which are the roots of det(Q(λ)) =
0, but at most n linearly independent eigenvectors,
and a vector may be an eigenvector for two different
eigenvalues. For example, the QEP with

Q(λ) = λ2I + λ
[−1 −6

2 −9

]
+
[

0 12
−2 14

]
has eigenvalues 1, 2, 3, and 4, with eigenvectors

[
1
0

]
,[

0
1

]
,
[

1
1

]
, and

[
1
1

]
, respectively. Moreover, there is no

Schur form for three or more matrices, that is, we can-
not in general find unitary matrices U and V such that
U∗AiV is triangular for i = 0: 2.

Associated with the QEP is the matrixQ(X) = A2X2+
A1X +A0, with X ∈ Cn×n. From the relation

Q(λ)−Q(X) = A2(λ2I −X2)+A1(λI −X)
= (λA2 +A2X +A1)(λI −X)

it is clear that if we can find a matrix X such that
Q(X) = 0, known as a solvent, then we have reduced
the QEP to finding the eigenvalues of X and solving
one n×n GEP. For the 2×2 Q above there are five sol-
vents, one of which is

[
3 0
1 2

]
. The existence and enumer-

ation of solvents is nontrivial and leads into the theory
of matrix polynomials. In general, matrix polynomials
are matrices of the form

∑k
i=0 λiAi whose elements are

polynomials in a complex variable; an older term for
such matrices is λ-matrices.

The standard approach for numerical solution of the
QEP mimics the conversion of the scalar polynomial
root problem into a matrix eigenproblem described in
section 5.3. From the relation

L(λ)z ≡
([A1 A0

I 0

]
+ λ

[A2 0
0 −I

])[λx
x

]
=
[Q(λ)x

0

]
we see that the eigenvalues of the quadratic Q are the
eigenvalues of the 2n×2n linear polynomial L(λ). This
is an example of an exact linearization process—thanks
to the hidden λ in the eigenvector! The eigenvalues of L
can be found using the QZ algorithm. The eigenvectors
of L have the form z =

[ λx
x
]
, where x is an eigenvector

of Q, and so x can be obtained from either the first n
(if λ 6= 0) or the last n components of z.

6 Sparse Linear Systems

For linear systems coming from discretization of dif-
ferential equations it is common that A is banded ,
that is, the nonzero elements lie in a band about the
main diagonal. An extreme case is a tridiagonal matrix,
of which the classic example is the second-difference
matrix, illustrated for n = 4 by

A =


−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2

 , A−1 = −1
5


4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

 .
This matrix corresponds to a centered finite difference
approximation to a second derivative: f ′′(x) ≈ (f (x +
h)−2f(x)+f(x−h))/h2. Note thatA−1 is a full matrix.
For banded matrices, GE produces banded LU factors
and its computational cost is proportional to n times
the square of the bandwidth.

A matrix is sparse if advantage can be taken of the
zero entries, because of either their number or their dis-
tribution. A banded matrix is a special case of a sparse
matrix. Sparse matrices are stored on a computer not as
a square array but in a special format that records only
the nonzeros and their location in the matrix. This can
be done with three vectors: one to store the nonzero
entries and the other two to define the row and column
indices of the elements in the first vector.

Sparse matrices help to explain the tenet: never solve
a linear system Ax = b by computing x = A−1 ×b. The
reasons for eschewing A−1 are threefold:

• Computing A−1 requires three times as many flops
as solving Ax = b by GE with partial pivoting.
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• GE with partial pivoting is backward stable for solv-
ing Ax = b (see section 8) but solution via A−1 is
not.

• IfA is sparse,A−1 is generally dense and so requires
much more storage than GE with partial pivoting.

When GE is applied to a sparse matrix fill-in occurs
when the row operations cause a zero entry to become
nonzero during the elimination. To minimize the stor-
age and the computational cost, fill-in must be avoided
as much as possible. This can be done by employing
row and column interchanges to choose a suitable pivot
from the active submatrix. The first such strategy was
introduced by Markowitz in 1957. At the kth stage,
with c(k)j denoting the number of nonzeros in rows
k to n of column j and r (k)i the number of nonzeros
in columns k to n of row i, the Markowitz strategy
finds the pair (r , s) that minimizes

(
r (k)i − 1

)(
c(k)j − 1

)
over all nonzero potential pivots a(k)ij and then takes
a(k)rs as the pivot. The quantity being minimized is a
bound on the fill-in. In practice, the potential pivots
must be restricted to those not too much smaller in
magnitude than the partial pivot, in order to preserve
numerical stability. The result of GE with Markowitz
pivoting is a factorization PAQ = LU , where P and Q
are permutation matrices.

The analogue of the Markowitz strategy for Hermi-
tian positive definite matrices chooses a diagonal entry
a(k)ii as the pivot, where r (k)i is minimal. This is the mini-
mum degree algorithm, which has been very successful
in practice. Figure 3 shows in the first row a sparse and
banded symmetric positive definite matrix A of dimen-
sion 225 followed to the right by its Cholesky factor.
The Cholesky factor has many more nonzeros than A.
The second row shows the matrix PAPT produced by
an approximate minimum degree ordering (produced
by the MATLAB symamd function) and its Cholesky fac-
tor. We can see that the permutations have destroyed
the band structure but have greatly reduced the fill-in,
producing a much sparser Cholesky factor.

As an alternative to GE for solving sparse linear sys-
tems one can apply iterative methods, described in sec-
tion 9; for sufficiently large problems these are the only
feasible methods.

7 Overdetermined and Underdetermined
Systems

Linear systems Ax = b with a rectangular matrix
A ∈ Cm×n are very common. They break into two cat-
egories: overdetermined systems, with more equations
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Figure 3 Sparsity plots of a symmetric positive definite
matrix (left) and its Cholesky factor (right) for original
matrix (first row) and reordered matrix (second row). nz is
the number of nonzeros.

than unknowns (m > n), and underdetermined systems,
with fewer equations than unknowns (m < n). Since in
general there is no solution whenm > n and there are
many solutions when m < n, extra conditions must
be imposed for the problems to be well-defined. These
usually involve norms and different choices of norms
are possible. We will restrict our discussion mainly to
the 2-norm, which is the most important case, but other
choices are also of practical interest.

7.1 The Linear Least Squares Problem

Whenm > n the residual r = b−Ax cannot in general
be made zero so we try to minimize its norm. The most
common choice of norm is the 2-norm, which gives the
linear least squares problem

min
x∈Cn

‖b −Ax‖2. (6)

This choice can be motivated by statistical consider-
ations (the Gauss–Markov theorem) or by the fact that
the square of the 2-norm is differentiable, which makes
the problem explicitly solvable. Indeed by setting the
gradient of ‖b − Ax‖2

2 to zero we obtain the normal
equations A∗Ax = A∗b, which any solution of the least
squares problem must satisfy. If A has full rank then
A∗A is positive definite and so there is a unique solu-
tion, which can be computed by solving the normal
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equations using Cholesky factorization. For reasons of
numerical stability, it is preferable to use a QR fac-
torization: if A = Q

[
R1
0

]
then the normal equations

reduce to the triangular system R1x = c, where c is the
first n components of Q∗b.

WhenA is rank deficient there are many least squares
solutions, which vary widely in norm. A natural choice
is one of minimal 2-norm, and in fact there is a unique
minimal 2-norm solution, xLS , given by

xLS =
r∑
i=1

(u∗i b/σi)vi,

where

A = UΣV∗, U = [u1, . . . , um], V = [v1, . . . , vn] (7)

is an SVD and r = rank(A). The use of this formula in
practice is not straightforward because a matrix stored
in floating-point arithmetic will rarely have any zero
singular values. Therefore r must be chosen by desig-
nating which singular values can be regarded as negligi-
ble and this choice should take account of the accuracy
with which the elements of A are known.

Another choice of least squares solution in the rank-
deficient case is a basic solution: one with at most r
nonzeros. Such a solution can be computed via the QR
factorization with column pivoting.

7.2 Underdetermined Systems

When m < n and A has full rank, there are infinitely
many solutions to Ax = b and again it is natural to
seek one of minimal 2-norm. There is a unique such
solution xLS = A∗(AA∗)−1b, and it is best computed
via a QR factorization, this time of A∗. A basic solu-
tion, with m nonzeros, can alternatively be computed.
As a simple example, consider the problem “find two
numbers whose sum is 5”, that is, solve [1 1]

[ x1
x2

]
=

5. A basic solution is [5 0]T while the minimal 2-
norm solution is [5/2 5/2]T . Minimal 1-norm solu-
tions to underdetermined systems are important in
compressed sensing.

7.3 Pseudoinverse

The analysis in the previous two subsections can be
unified in a very elegant way by making use of the
Moore–Penrose pseudoinverse A+ of A ∈ Cm×n, which
is defined as the unique X ∈ Cn×m satisfying the
Moore–Penrose conditions

AXA = A, XAX = X,
(AX)∗ = AX, (XA)∗ = XA.

(It is certainly not obvious that these equations have
a unique solution.) In the case where A is square and
nonsingular it is easily seen that A+ is just A−1. More-
over, if rank(A) = n then A+ = (A∗A)−1A∗, while if
rank(A) = m then A+ = A∗(AA∗)−1. In terms of the
SVD (7),

A+ = V diag(σ−1
1 , . . . , σ−1

r ,0, . . . ,0)U∗,

where r = rank(A). The formula xLS = A+b holds for
all m and n, so the pseudoinverse yields the minimal
2-norm solution to both the least squares (overdeter-
mined) problem Ax = b and an underdetermined sys-
tem Ax = b. The pseudoinverse has many interesting
properties, including (A+)+ = A, but it is not always
true that (AB)+ = B+A+.

Although the pseudoinverse is a very useful theoret-
ical tool it is rarely necessary to compute it explicitly
(just as for its special case the matrix inverse).

The pseudoinverse is just one of many ways of gen-
eralizing the notion of inverse to rectangular matri-
ces, but it is the right one for minimum 2-norm solu-
tions to linear systems. Other generalized inverses can
be obtained by requiring only a subset of the four
Moore–Penrose conditions to hold.

8 Numerical Considerations

Prior to the introduction of the first digital comput-
ers in the 1940s, numerical computations were carried
out by humans, sometimes with the aid of mechanical
calculators. The human involvement in a sequence of
calculations meant that potentially dangerous events
such as dividing by a tiny number or subtracting two
numbers that agree to almost all their significant digits
could be observed, their effect monitored, and possible
corrective action taken—such as temporarily increas-
ing the precision of the calculations. On the very early
computers intermediate results were observed on a
cathode-ray tube monitor, but this became impossible
as problem sizes increased (along with available com-
puting power). Fears were raised in the 1940s that algo-
rithms such as GE would suffer exponential growth
of errors as the problem dimension increased, due
to the rapidly increasing number of arithmetic opera-
tions, each having its associated rounding error. These
fears were particularly concerning given that the error
growth might be unseen and unsuspected.

The subject of rounding error analysis grew out
of the need to understand the effect on algorithms
of rounding errors. The person who did the most to
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develop the subject was James Wilkinson, whose influ-
ential papers and 1961 and 1965 books showed how
backward error analysis can be used to obtain deep
insights into numerical stability. We will discuss just
two particular examples.

Wilkinson showed that when a nonsingular linear
system Ax = b is solved by GE in floating-point
arithmetic the computed solution x̂ satisfies

(A+∆A)x̂ = b, ‖∆A‖∞ 6 p(n)ρnu‖A‖∞.

Here p(n) is a cubic polynomial, the growth factor

ρn =
maxi,j,k |a(k)ij |
maxi,j |aij|

> 1

measures the growth of elements during the elimina-
tion, and u is the unit roundoff. This is a backward
stability result : it says that the computed solution x̂
is the exact solution of a perturbed system. Ideally,
we would like ‖∆A‖∞ 6 u‖A‖∞, which reflects the
uncertainty caused by converting the elements of A to
floating-point numbers. The polynomial term p(n) is
pessimistic and might be more realistically replaced by
its square root. The danger term is the growth factorρn,
and the conclusion from Wilkinson’s analysis is that a
pivoting strategy should aim to keep ρn small. If no
pivoting is done, ρn can be arbitrarily large (e.g., for
A =

[ ε
1

1
1

]
with 0 < ε � 1, ρn ≈ 1/ε). For partial pivot-

ing however, it can be shown that ρn 6 2n−1 and that
this bound is attainable. In practice, ρn is almost always
of modest size for partial pivoting (ρn 6 50, say); why
this should be so remains one of the great mysteries of
numerical analysis!

One of the benefits of Wilkinson’s backward error
analysis is that it enables us to identify classes of matri-
ces for which pivoting is not necessary, that is, for
which the LU factorization A = LU exists and ρn is
nicely bounded. One such class is the matrices that
are diagonally dominant by either rows or columns, for
which ρn 6 2.

The potential instability of GE can be attributed to
the fact that A is premultiplied by a sequence of non-
unitary transformations, any of which can be ill con-
ditioned. Many algorithms, including Householder QR
factorization and the QR algorithm for eigenvalues, use
exclusively unitary transformations. Such algorithms
are usually (but not always) backward stable, essen-
tially because unitary transformations do not magnify
errors: ‖UAV‖ = ‖A‖ for any unitary U and V for the
2-norm and the Frobenius norm. As an example, the QR
algorithm applied to A ∈ Cn×n produces a computed

upper triangular matrix T̂ such that

Q̃∗(A+∆A)Q̃ = T̂ , ‖∆A‖F 6 p(n)u‖A‖F ,

where Q̃ is some exactly unitary matrix and p(n) is a
cubic polynomial. The computed Schur factor Q̂ is not
necessarily close to Q̃—which in turn is not necessarily
close to the exact Q!— but it is close to being orthogo-
nal: ‖Q̂∗Q̂−I‖F 6 p(n)u. This distinction between the
different Q matrices is an indication of the subtleties
of backward error analysis. For some problems it is not
clear exactly what form of backward error result it is
possible to prove while obtaining useful bounds. How-
ever, the purpose of a backward error analysis is always
the same: either to show that an algorithm behaves in a
numerically stable way or to shed light on how it might
fail to do so and to indicate what quantities should be
monitored in order to identify potential instability.

9 Iterative Methods

In numerical linear algebra methods can broadly be
divided into two classes: direct and iterative. Direct
methods, such as GE, solve a problem in a fixed num-
ber of arithmetic operations or a variable number that
in practice is fairly constant, as for the QR algorithm for
eigenvalues. Iterative methods are infinite processes
that must be truncated at some point when the approx-
imation they provide is “good enough”. Usually, iter-
ative methods do not transform the matrix in ques-
tion and access it only through matrix–vector products;
this makes them particularly attractive for large, sparse
matrices, where applying a direct method may not be
practical.

We have already seen in section 5.5 a simple iterative
method for the eigenvalue problem: the power method.
The stationary iterative methods are an important class
of iterative methods for solving a nonsingular linear
system Ax = b. These methods are best described in
terms of a splitting

A = M −N,

with M nonsingular. The system Ax = b can be rewrit-
ten Mx = Nx + b, which suggests constructing a
sequence {x(k)} from a given starting vector x(0) via

Mx(k+1) = Nx(k) + b. (8)

Different choices of M and N yield different methods.
The aim is to chooseM in such a way that it is inexpen-
sive to solve (8) while M is a good enough approxima-
tion to A that convergence is fast. It is easy to analyze
convergence. Denote by e(k) = x(k) −x the error in the
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kth iterate. Subtracting Mx = Nx + b from (8) gives
M(x(k+1) − x) = N(x(k) − x), so

e(k+1) = M−1Ne(k) = · · · = (M−1N)k+1e(0). (9)

If ρ(M−1N) < 1 then (M−1N)k → 0 as k → ∞ (see
Jordan canonical form) and so x(k) converges to x, at
a linear rate. In practice, for convergence in a reason-
able number of iterations we need ρ(M−1N) to be suf-
ficiently less than 1 and the powers of M−1N should
not grow too large initially before eventually decaying;
in other words, M−1N must not be too nonnormal.

Three standard choices of splitting are, with D =
diag(A) and L and U denoting the strictly lower and
strictly upper triangular parts of A, respectively,

• M = D, N = −(L+U): Jacobi iteration;
• M = D + L, N = −U : Gauss–Seidel iteration;
• M = 1

ωD + L, N = 1−ω
ω D − U , where ω ∈ (0,2)

is a relaxation parameter: successive overrelaxation
(SOR) iteration.

Sufficient conditions for convergence are that A is
strictly diagonally dominant by rows for the Jacobi
iteration and that A is symmetric positive definite for
the Gauss–Seidel iteration. How to choose ω so that
ρ(M−1N|ω) is minimized for the SOR iteration was
elucidated in the landmark 1950 PhD thesis of David
Young.

The Google PageRank algorithm, which underlies
Google’s ordering of search results, can be interpreted
as an application of the Jacobi iteration to a certain lin-
ear system involving the adjacency matrix of the graph
corresponding to the whole world wide web. However,
the most common use of stationary iterative methods
is as preconditioners within other iterative methods.

The aim of preconditioning is to convert a given lin-
ear system Ax = b into one that can be solved more
cheaply by a particular iterative method. The basic idea
is to use a nonsingular matrix W to transform the sys-
tem to (W−1A)x = W−1b in such a way that (a) the pre-
conditioned system can be solved in fewer iterations
than the original system and (b) matrix–vector multi-
plications with W−1A (which require the solution of a
linear system with coefficient matrix W ) are not signif-
icantly more expensive than matrix–vector multiplica-
tions with A. In general, this is a difficult or impossible
task, but in many applications the matrix A has struc-
ture that can be exploited. For example, many elliptic
PDE problems lead to a positive definite matrixA of the
form

A =
[M1 F
FT M2

]
,

where M1z = d1 and M2z = d2 are easy to solve. In

this case it is natural to take W = diag(M1,M2) as the

preconditioner. When A is Hermitian positive definite

the preconditioned system is written in a way that pre-

serves the structure. For example, for the Jacobi pre-

conditioner, D = diag(A), the preconditioned system

would be written D−1/2AD−1/2x̃ = b̃, where x̃ = D1/2x
and b̃ = D−1/2b. Here, the matrixD−1/2AD−1/2 has unit

diagonal and off-diagonal elements lying between −1

and 1.

The most powerful iterative methods for linear sys-

tems Ax = b are the Krylov methods. In these methods

each iterate x(k) is chosen from the shifted subspace

x(0) +Kk(A, r (0)) where

Kk(A, r (0)) = span{r (0), Ar (0), . . . , Ak−1r (0)}

is a Krylov subspace of dimension k, with r (k) =
b − Ax(k). Different strategies for choosing approxi-

mations from within the Krylov subspaces yield dif-

ferent methods. For example, the conjugate gradient

method (CG, for Hermitian positive definite A) and

the full orthogonalization method (FOM, for general A)

make the residual r (k) orthogonal to the Krylov sub-

space Kk(A, r (0)), while the minimal residual method

(MINRES, for Hermitian A) and the generalized min-

imal residual method (GMRES, for general A) mini-

mize the 2-norm of the residual over all vectors in the

Krylov subspace. How to compute the vectors defined

in these ways is nontrivial. It turns out that CG can

be implemented with a recurrence requiring just one

matrix–vector multiplication and three inner products

per iteration, and MINRES is just a little more expen-

sive. GMRES, being applicable to non-Hermitian matri-

ces, is significantly more expensive, and it is also much

harder to analyze its convergence behavior. For general

matrices there are alternatives to GMRES that employ

short recurrences. We mention just BiCGSTAB, which

has the distinction that the 1992 paper by Henk van

der Vorst that introduced it was the most-cited paper

in mathematics of the 1990s.

Theoretically, Krylov methods converge in at most

n iterations for a system of dimension n. However, in

practical computation rounding errors intervene and

the methods behave as truly iterative methods not

having finite termination. Since n is potentially huge,

a Krylov method would not be used unless a good

approximate solution was obtained in many fewer than

n iterations, and preconditioning plays a crucial role

here. Available error bounds for a method help to guide
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the choice of preconditioner, but care is needed in inter-
preting the bounds. To illustrate this, consider the CG
method for Ax = b, where A is Hermitian positive defi-
nite. In the A-norm, ‖z‖A = (z∗Az)1/2, the error on the
kth step satisfies

‖x − x(k)‖A 6 2‖x − x(0)‖A
(
κ2(A)1/2 − 1
κ2(A)1/2 + 1

)k
,

where κ2(A) = ‖A‖2‖A−1‖2. If we can precondition A
so that its 2-norm condition number is very close to 1
then fast convergence is guaranteed. However, another
result says that if A has k distinct eigenvalues then
CG converges in at most k iterations. Therefore a bet-
ter approach might be to choose the preconditioner so
that the eigenvalues of the preconditioned matrix are
clustered into a small number of groups.

Another important class of iterative methods is
multigrid methods, which work on a hierarchy of grids
that come from a discretization of an underlying PDE
(geometric multigrid) or are constructed artificially
from a given matrix (algebraic multigrid).

An important practical issue is how to terminate
an iteration. Popular approaches are to stop when the
residual r (k) = b − Ax(k) (suitably scaled) is small or
when an estimate of the error x−x(k) is small. Compli-
cating factors include the fact that the preconditioner
can change the norm and a possible desire to match the
error in the iterations with the discretization error in
the PDE from which the linear system might have come
(as there is no point solving the system to greater accu-
racy than the data warrants). Research in recent years
has led to good understanding of these issues.

The ideas of Krylov methods and preconditioners can
be applied to problems other than linear systems. A
popular Krylov method for solving the least squares
problem (6) is LSQR, which is mathematically equiva-
lent to applying CG to the normal equations. In large-
scale eigenvalue problems only a few eigenpairs are
usually required. A number of methods project the
original matrix onto a Krylov subspace and then solve a
smaller eigenvalue problem. These include the Lanczos
method for Hermitian matrices and the Arnoldi method
for general matrices. Also of much current research
interest are rational Krylov methods based on rational
generalizations of Krylov subspaces.

10 Nonnormality and Pseudospectra

Normal matrices A ∈ Cn×n (defined in section 5.1)
have the property that they are unitarily diagonaliz-
able: A = QDQ∗ for some unitary Q and diagonal

D = diag(λi) containing the eigenvalues on its diag-

onal. In many respects, normal matrices have very pre-

dictable behavior. For example, ‖Ak‖2 = ρ(A)k and

‖ etA ‖2 = eα(tA), where the spectral abscissa α(tA) is

the largest real part of any eigenvalue of tA. However,

matrices that arise in practice are often very nonnor-

mal. The adjective “very” can be quantified in various

ways, of which one is the Frobenius norm of the strictly

upper triangular part of the upper triangular matrix T
in the Schur decomposition A = QTQ∗. For example,

the matrix
[
t11 θ
0 t22

]
is nonnormal for θ 6= 0 and grows

increasingly nonnormal as |θ| increases.

Consider the moderately nonnormal matrix

A =
[−0.97 25

0 −0.3

]
. (10)

While the powers of A ultimately decay to zero, since

ρ(A) = 0.97 < 1, we see from figure 4 that initially they

increase in norm. Likewise, since α(A) = −0.3 < 0 the

norm ‖ etA ‖2 tends to zero as t →∞, but figure 4 shows

that there is an initial hump in the plot. In station-

ary iterations the hump caused by a nonnormal iter-

ation matrix M−1N can delay convergence, as is clear

from (9). In finite precision arithmetic it can even hap-

pen that, for a sufficiently large hump, rounding errors

cause the norms of the powers to plateau at the hump

level and never actually converge to zero.

How can we predict the shape of the curves in fig-

ure 4? Let us concentrate on ‖Ak‖2. Initially it grows

like ‖A‖k2 and ultimately it decays like ρ(A)k, the decay

rate following from (4). The height of the hump is

related to pseudospectra, which have been popularized

by Nick Trefethen.

The ε-pseudospectrum of A ∈ Cn×n is defined, for a

given ε > 0, to be the set

Λε(A) = {z ∈ C : z is an eigenvalue of A+ E
for some E with ‖E‖2 < ε }, (11)

and it can also be represented, in terms of the resolvent

(zI −A)−1, as

Λε(A) = {z ∈ C : ‖(zI −A)−1‖2 > ε−1 }.

The 0.001-pseudospectrum, for example, tells us the

uncertainty in the eigenvalues of A if the elements are

known only to three decimal places. Pseudospectra pro-

vide much insight into the effects of nonnormality of

matrices and (with an appropriate extension of the def-

inition) linear operators. For nonnormal matrices the

pseudospectra are much bigger than a perturbation of
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the spectrum by ε. It can be shown that for any ε > 0,

sup
k>0

‖Ak‖ > ρε(A)− 1
ε

, ‖Ak‖ 6 ρε(A)
k+1

ε
,

where the pseudospectral radius ρε(A) = max{ |λ| :
λ ∈ Λε(A) }. For A in (10) and ε = 10−2 these inequal-
ities give an upper bound of 230 for ‖A3‖ and a lower
bound of 23 for supk>0 ‖Ak‖, and figure 5 plots the
corresponding ε-pseudospectrum.

11 Structured Matrices

In a wide variety of applications the matrices have
a special structure. The matrix elements might form
a pattern, as for a Toeplitz matrix or a Hamiltonian
matrix, the matrix may satisfy a nonlinear equation
such as A∗ΣA = Σ, where Σ = diag(±1), which yields
the pseudo-unitary matrices A, or the submatrices may
satisfy certain rank conditions (as for quasisepara-
ble matrices). We discuss here two of the oldest and
most studied classes of structured matrices, both of
which were historically important in the analysis of
iterative methods for linear systems arising from the
discretization of differential equations.

11.1 Nonnegative Matrices

A nonnegative matrix is a real matrix all of whose
entries are nonnegative. A number of important classes
of matrices are subsets of the nonnegative matrices.
These include adjacency matrices, stochastic matrices,
and Leslie matrices (used in population modeling). Non-
negative matrices have a large body of theory, which
originates with Perron in 1907 and Frobenius in 1908.

To state the celebrated Perron–Frobenius theorem
we need the definition that A ∈ Rn×n with n > 2 is
reducible if there is a permutation matrix P such that

PTAP =
[A11 A12

0 A22

]
,

where A11 and A22 are square, nonempty submatrices,
and it is irreducible if it is not reducible. A matrix with
positive entries is trivially irreducible. A useful char-
acterization is that A is irreducible if and only if the
directed graph associated with A (which has n vertices,
with an an edge connecting the ith vertex to the jth
vertex if aij 6= 0) is strongly connected.

Theorem 3 (Perron–Frobenius). IfA ∈ Rn×n is nonneg-
ative and irreducible then

1. ρ(A) > 0,
2. ρ(A) is an eigenvalue of A,

3. there is a positive vector x such that Ax = ρ(A)x,
4. ρ(A) is an eigenvalue of algebraic multiplicity 1.

To illustrate the theorem consider the following two
irreducible matrices and their eigenvalues:

A =

8 1 6
3 5 7
4 9 2

 , Λ(A) = {15,±2
√

6},

B =

 0 0 6
1
2 0 0
0 1

3 0

 , Λ(B) =
{
1, 1

2 (−1±
√

3i)
}
.

The Perron–Frobenius theorem correctly tells us that
ρ(A) = 15 is a distinct eigenvalue of A, and that it has
a corresponding positive eigenvector, which is known
as the Perron vector. The Perron vector of A is the vec-
tor of all ones, as A forms a magic square and ρ(A) is
the magic sum! The Perron vector of B, which is both a
Leslie matrix and a companion matrix, is [6 3 1]T . There
is one notable difference between A and B: for A, ρ(A)
exceeds the other eigenvalues in modulus, but all three
eigenvalues of B have modulus 1. In fact, Perron’s orig-
inal version of Theorem 3 says that if A has all positive
elements then ρ(A) is not only an eigenvalue of A but
is larger in modulus than every other eigenvalue. Note
that B3 = I, which provides another way to see that the
eigenvalues of B all have modulus 1.

We saw in the section 9 that the spectral radius plays
an important role in the convergence of stationary iter-
ative methods, through ρ(M−1N), where A = M −N is
a splitting. In comparing different splittings we can use
the result that for A,B ∈ Rn×n, with |A| denoting the
matrix (|aij|),
|aij| 6 bij ∀i, j ⇒ ρ(A) 6 ρ(|A|) 6 ρ(B).

11.2 M-Matrices

A ∈ Rn×n is anM-matrix if it can be written in the form
A = sI − B, where B is nonnegative and s > ρ(B). M-
matrices arise in many applications, a classic one being
Leontief’s input–output models in economics.

The special sign pattern of an M-matrix—positive
diagonal elements and nonpositive off-diagonal
elements—combines with the spectral radius condi-
tion to give many interesting characterizations and
properties. For example, a nonsingular matrix A with
nonpositive off-diagonal elements is anM-matrix if and
only if A−1 is nonnegative. Another characterization,
which makes connections with section 1, is that A
is an M-matrix if and only if A has positive diagonal
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Figure 4 2-norms of powers and exponentials of 2× 2 matrix A in (10).
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Figure 5 Approximation to 10−2-pseudospectrum of A in
(10) comprising eigenvalues of 5000 randomly perturbed
matrices A+ E in (11). The eigenvalues of A are marked by
white circles.

entries and AD is diagonally dominant by rows for
some nonsingular diagonal matrix D.

An important source ofM-matrices is discretizations
of differential equations, and the archetypal example is
the second-difference matrix, described at the start of
section 6, which is an M-matrix multiplied by −1. For
this application it is an important result that when A
is an M-matrix the Jacobi and Gauss–Seidel iterations
for Ax = b both converge for any starting vector—a
result that is part of the more general theory of regular
splittings.

Another important property of M-matrices is imme-
diate from the definition: the eigenvalues all lie in the

open right half-plane. This means that M-matrices are
special cases of positive stable matrices, which in turn
are of great interest due to the fact that the stabil-
ity of various mathematical processes is equivalent to
positive (or negative) stability of an associated matrix.

The class of matrices whose inverses are M-matrices
is also much-studied. To indicate why, we state a result
about matrix roots. It is known that if A is an M-matrix
thenA1/2 is also anM-matrix. But ifA is stochastic (that
is, it is nonnegative and has unit row sums), A1/2 may
not be stochastic. However, if A is both stochastic and
the inverse of an M-matrix then A1/p is stochastic for
all positive integers p.

12 Matrix Inequalities

There is a large body of work on matrix inequalities,
ranging from classical 19th and early 20th century
inequalities (some of which are described in section 5.4)
to more recent contributions, which are often moti-
vated by applications, notably in statistics, physics,
and control theory. In this section we describe just
a few examples, chosen for their interest or practical
usefulness.

An important class of inequalities on Hermitian
matrices is expressed using the Löwner (partial) order-
ing in which for HermitianX and Y ,X > Y denotes that
X−Y is positive semidefinite while X > Y denotes that
X − Y is positive definite. Many inequalities between
real numbers generalize to Hermitian matrices in this
ordering. For example, if A,B,C are Hermitian and A
commutes with B and C then

A > 0, B 6 C ⇒ AB 6 AC.



18

A function f is matrix monotone if it preserves the
order, that is, A 6 B implies f(A) 6 f(B), where f(A)
denotes a function of a matrix. Much is known about
this class of functions, including that t1/2 and log t are
matrix monotone but t2 is not.

Many matrix inequalities involve norms. One exam-
ple is

‖|A| − |B|‖F 6
√

2‖A− B‖F ,

where A,B ∈ Cm×n and |·| is the matrix absolute value
defined in section 2. This inequality can be regarded
as a perturbation result that shows the matrix absolute
value to be very well conditioned.

An example of an inequality that finds use in the
analysis of convergence of methods in nonlinear opti-
mization is the Kantorovich inequality, which for Her-
mitian positive definite A with eigenvalues λn 6 · · · 6
λ1 and x 6= 0 is

(x∗Ax)(x∗A−1x)
(x∗x)2

6
(λ1 + λn)2

4λ1λn
.

This inequality is attained for somex, and the left-hand
side is always at least 1.

Many inequalities are available that generalize scalar
inequalities for means. For example, the arithmetic–
geometric mean inequality (ab)1/2 6 1

2 (a+b) for posi-
tive scalars has an analogue for Hermitian positive def-
inite A and B in the inequality A # B 6 1

2 (A+ B), where
A# B is the geometric mean defined as the unique Her-
mitian positive definite solution to XA−1X = B. The
geometric mean also satisfies the extremal property

A # B =max
{
X : X = X∗,

[A X
X B

]
> 0

}
,

which hints at matrix completion problems, in which
the aim is to choose missing elements of a matrix in
order to achieve some goal, which could be to satisfy a
particular matrix property or, as here, to maximize an
objective function. Another mean for Hermitian posi-
tive definite matrices (and applicable more generally),
is the log-Euclidean mean, exp( 1

2 (logA+ logB)), where
log is the principal logarithm, which is used in image
registration, for example.

Finally, we mention an inequality for the matrix expo-
nential. Although there is no simple relation between
eA+B and eA eB in general, for Hermitian A and B the
inequality trace(eA+B) 6 trace(eA eB) was proved inde-
pendently by S. Golden and J. Thompson in 1965. Orig-
inally of interest in statistical mechanics, the Golden–
Thompson inequality has more recently found use in
random matrix theory. Again for Hermitian A and B,

the related inequalities ‖ eA+B ‖ 6 ‖ eA/2 eB eA/2 ‖ 6
‖ eA eB ‖ hold for any unitarily invariant norm.

13 Library Software

From the early days of digital computing the benefits
of providing library subroutines for carrying out basic
operations such as the addition of vectors and the for-
mation of vector inner products was recognized. Over
the ensuing years many matrix computation research
codes were published, including in the Linear Alge-
bra volume of the Handbook for Automatic Computa-
tion (1971) and in the Collected Algorithms of the ACM.
Starting in the 1970s the concept of standardized sub-
programs was developed in the form of the Basic Lin-
ear Algebra Subprograms (BLAS), which are specifica-
tions for vector (level 1), matrix–vector (level 2), and
matrix–matrix (level 3) operations. The BLAS have been
widely adopted, and highly optimized implementations
are available for most machines. The freely-available
LAPACK library of Fortran codes represents the current
state of the art for solving dense linear equations, least
squares problems, and eigenvalue and singular value
problems. Many modern programming packages and
environments build on LAPACK.

It is interesting to note that the TOP500 list
(http://www.top500.org) ranks the world’s fastest
computers by their speed (measured in flops per sec-
ond) in solving a random linear system Ax = b by GE.
This benchmark has its origins in the 1970s LINPACK
project, a precursor to LAPACK, in which the perfor-
mance of contemporary machines was compared by
running the LINPACK GE code on a 100× 100 system.

14 Outlook

Matrix analysis and numerical linear algebra remain
very active areas of research. Many problems in applied
mathematics and scientific computing require the solu-
tion of a matrix problem at some stage, so there is
always a demand for better understanding of matrix
problems and faster and more accurate algorithms for
their solution. As the overarching applications evolve,
new problem variants are generated, often involving
new assumptions on the data, different requirements
on the solution, or new metrics for measuring the suc-
cess of an algorithm. A further driver of research is
computer hardware. With the advent of processors with
many cores, the use of accelerators such as graphics
processing units (GPUs), and the harnessing of vast
numbers of processors for parallel computing, the
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standard algorithms in numerical linear algebra are
having to be reorganized and possibly even replaced,
so we are likely to see significant changes in the coming
years.

15 Further Reading

Three must-haves for researchers are Golub and Van
Loan’s influential treatment of numerical linear alge-
bra and the two volumes by Horn and Johnson, which
contain a comprehensive treatment of matrix analysis.
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