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This paper introduces a new class of models of digital communications channels.
Physically, these models take account of the digital nature of the input. Mathe-
matically, they are iterated function systems. As a consequence of making explicit
assumptions about the role of discreteness in the models, it is possible to make
general statements about the behaviour of these channels without needing to as-
sume that they are linear. We provide the mathematical background necessary to
understand the behaviour of these models and prove a number of results about
their observability. We also provide a number of examples intended to demonstrate
their connection with linear state space models, and to suggest how the nonlinear
theory might be developed towards applications.
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1. Introduction

This paper concerns the modelling of digital communications systems; in particular,
it introduces a new approach to the modelling of digital channels that is sufficiently
general to incorporate nonlinear channel models. We aim to persuade the reader of
two things: that there is a theory that allows nonlinearity to be dealt with in a gen-
eral way without descending into a morass of special cases; and that this theory can
be viewed as a natural development of the already familiar state space modelling
of channels. The paper is a synthesis of two areas of recent mathematical develop-
ment: work on a class of stochastic dynamical systems known as iterated function
systems (IFS) (for a good self-contained introduction, see the book by Barnsley
(1988), or for more mathematical detail Falconer 1990, Diaconis & Freedman 1999
or Kigami 2001); and delay embedding ideas, which have been developed in the
dynamical systems community over the past two decades (see the books by Ott et
al. 1994 and Kantz & Schreiber 1997). IFSs will be used to formulate a new chan-
nel model which is much richer than those used hitherto. The new channel model
should really be seen as modelling both the channel and the transmitted signal.
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2 D.S. Broomhead, J.P. Huke, M.R. Muldoon, J. Stark

Delay embedding will provide the tools that establish the relationship between the
output of the channel, its internal state and ultimately the input that generated
them.

In the next section the idea of IFSs will be introduced in the context of digital
channel models. In addition, some examples will be developed which will serve as
illustrations both here and in subsequent sections. In §3 some of the basic mathe-
matical ideas that underpin the theory of IFSs will be described. In the following
section, §4, linear systems will be discussed from this point of view. In §5 it will be
shown how delay methods—which later will be developed in the general nonlinear
context—reduce to the standard state space approach in the linear case. In §6 the
full nonlinear theory will be developed and results proved about the information
that can be obtained by processing the output time series of a general IFS channel.
Finally, in §7, the implications of these results for digital signal processing will be
discussed.

2. IFSs as Models of Digital Channels

A communications channel is a physical system which can—at least in principle—
be modelled by differential equations derived from the laws of physics. For example,
one may motivate ordinary differential equation (ODE) models of linear channels
by considering the response of passive electrical circuits to externally applied driv-
ing signals. Similarly, the telegraph equation—a linear partial differential equation
(PDE)—is a good model of signal transmission along an insulated wire. In optics,
propagation of the envelope of an intense light pulse can be modelled by another
PDE, the nonlinear Schrödinger equation. Here the Kerr effect—the dependence of
the refractive index of the fibre on the electric field intensity—necessitates the use
of a nonlinear model.

A channel can be very complicated and include the transmitter, receiver and
amplification/repeater stages as well as the actual medium through which the sig-
nal propagates. We do not expect, therefore, to be able to write down and solve
exact physical models (and, indeed, such explicit descriptions of channels are not
commonly employed in the communications literature). However, the fact that we
assume the existence of such a model allows us to make a number of further, basic
assumptions which concern the representation of the state of the channel and the
way that the state evolves. In particular, we shall generally assume that the state
of the channel can be thought of as a point in a suitable state space, and that the
state evolves according to a flow generated by the underlying differential equation
model. For example, if the model consists of an ODE (or a system of ODEs) the
state space will be Rn (for some positive integer n), or possibly some more general
finite dimensional manifold; if the model is a PDE the state space will be a function
space. Note that the differential equation will need to be non-autonomous to take
account of the input to the channel. We are considering digital communications and
so the input consists of a sequence of symbols drawn from some finite alphabet. The
nature of these symbols is arbitrary, though in practice they would almost always
be (possibly complex) numbers.

We take the state space of the channel be a compact, m-dimensional (finite m)
differentiable manifold, M. We assume that time is divided up into consecutive
periods of length τ and that one symbol is input during each period—the number
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of symbols in the alphabet is K. For each symbol there is a system of ODEs on
M that describe the evolution of the channel’s state while that symbol is being
fed in. That is, we have a collection of vector fields Xk : M× [0, τ) → TM where
k ∈ {1, 2, . . . ,K} labels the symbol and the dynamics of the channel are governed
by

dx

dt
= Xkn

(x, t− nτ) for nτ ≤ t < (n + 1)τ.

Here x ∈M is the state and kn is the symbol input during the nth period [nτ, (n+
1)τ).

We assume the Xk are sufficiently well-behaved that the system of ODEs ẋ =
Xk(x, t) has unique solutions; then, integrating from t = 0 to t = τ gives a diffeo-
morphism wk : M → M. (In this paper we consider sampling the channel at the
input symbol rate; this corresponds to integrating the ODEs for the whole sym-
bol period τ . Oversampling the channel would necessitate subdividing this interval;
this possibility will be discussed elsewhere.) So in this picture an alphabet of input
symbols corresponds via the channel model to a set of mappings of the state space.
Sometimes it will be possible to assume that the input symbols are represented by
forcing terms, χk : [0, τ ] → TM, which are added to a symbol independent vector
field

Xk(x, t) = X(x) + χk(t) (2.1)

as in the following examples.

Example 2.1 (A 2nd order linear recursive channel). The model is a damped
harmonic oscillator (damping constant γ and undamped natural frequency ω0) which
is forced by a sequence of non-overlapping pulses, sk(t), each occupying an interval
of constant length τ .

d2

dt2
u + γ

d

dt
u + ω2

0u =
∞∑

l=0

skl
(t− lτ)

We shall generally think of this as a system of 1st order ODEs:

d

dt

(
u

p

)
=

(
0 1

−ω2
0 −γ

) (
u

p

)
+

∞∑
l=0

χkl
(t− lτ) (2.2)

where the χk(t) = (0, sk(t))T are the compactly supported input pulses. In this
simple example, the state space of the channel is R2.

For concreteness we will take the input to be binary so K = 2 and (calling the
pulse shapes s− and s+ rather than s1 and s2) take s±(t) to be ±1 on the interval
[0, τ) and zero elsewhere. In this case the corresponding diffeomorphisms are

w±

(
u

p

)
= A

(
u

p

)
±B (2.3)

where the 2× 2 matrix A and the vector B may be obtained via simple integrations.
Provided that γ > 0, the maps w± are affine contractions of the state space with a
common linear part.
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4 D.S. Broomhead, J.P. Huke, M.R. Muldoon, J. Stark

Example 2.2 (A 2nd order nonlinear recursive channel). This model is
derived from example 2.1 by the inclusion of a cubic contribution to the restoring
force so that the oscillator is now of Duffing type (Thompson & Stewart 2002).

d2

dt2
u + γ

d

dt
u + ω2

0u + u3 =
∞∑

l=0

skl
(t− lτ)

In this example we force the system with a sequence of delta functions uniformly
spaced in time and with amplitudes ±χ. Our two pulse shapes are: s±(t) = ±χδ(t).
As before we can take the state space of the channel to be R2.

We cannot find closed forms for the maps w± in this case. This will usually be
the case even for simple nonlinear equations. For the illustrations given below we
find w± by numerical integration.

This picture, in which an alphabet of input symbols corresponds via the channel
model to a set of mappings of the state space, becomes more complicated if the
physical model is a PDE. In this case the state space is an infinite-dimensional func-
tion space and the dynamics are generally given by a semi-flow. However, for certain
dissipative PDEs, it can be shown that there exists an attracting, finite-dimensional,
invariant submanifold—called the inertial manifold—of the state space. The PDE
restricted to this manifold is a system of ODEs (see for example the books Temam
1988 and Constantin et al. 1989).

What happens when a sequence of symbols k1, k2, k3, . . . is input to the channel?
If the initial state of the channel is x0 then we see from the above discussion that
the state after the first symbol period will be wk1(x0). Since this is the state at
the beginning of the second symbol period, the state after two symbols have been
input will be wk2 ◦ wk1(x0), and so on. In other words the effect of inputting a
sequence of symbols is to apply the corresponding sequence of maps to the channel
state. Since a digital message is a random sequence of symbols, the dynamics of the
channel is given by random composition of the maps {wk}K

k=1.
The maps {wk}K

k=1 are determined by the physical properties of the channel as
embodied, for example, by the differential equation that describes the channel’s time
evolution, so the properties of the channel—for instance, whether it is saturating
or whether it is stable—will be reflected in the maps. This is important because
it may be possible to use such properties of the maps to prove things about the
system. One of the most useful properties is that of contraction (we saw that the
maps in the above examples have this property). We can regard contractivity of
the maps as relating to the stability of the channel in the following sense: if wk is
a contraction then the effect of repeatedly inputting the k-th symbol many times
is that the channel converges to a fixed state that (in the limit) does not depend
on its initial state. If all the maps are contractions then the state always remains
in some bounded region of the state space, whatever the input sequence.

We noted above that the assumption that the channel is described by differential
equations requires the maps {wk}K

k=1 to be diffeomorphisms—in particular they are
invertible. This invertibility reflects the fact that memory of the initial condition
is never completely lost. However in some physical channels it may be that, to a
good approximation, some (or all) information about the initial condition of the
channel is lost in finite time. This would happen, for example, if the contraction
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of one of the maps were so great that the images of two different states were
indistinguishable. (The decay rate of excitations, or at any rate certain kinds of
excitations, would then be very short compared with the symbol period.) Thus
under certain circumstances it may be advantageous to consider maps which are
not invertible. In fact, communications engineers commonly model channels as finite
impulse response (FIR) filters, and as we shall see below (§7) this corresponds to
using non-invertible wk maps.

We have—so far—referred only to the states of the channel. However, M will
generally be multidimensional (as in the case of example 2.1 where two variables, u
and p, are required to specify the state) and so we must consider what is meant by
the output of the channel in this kind of model. We say that the output depends
on the current state of the channel, that is, that there exists a function v : M→ R
such that if the state of the channel at a given time is x ∈M then the corresponding
output is v(x). Later we shall need to assume that v is a smooth function.

This completes our (abstract) picture of the digital communication channel. The
output of the channel is a sequence of real-valued measurements made on a random
dynamical system which consists of a state space M, and a finite collection of maps
wk : M→M, one for each symbol. At each time step (symbol period) one of these
maps is chosen at random and applied to the current channel state to generate the
next state. The appropriate mathematical structure for describing this situation is
the iterated function system (IFS), which is described in the next section.

The abstract picture sketched above was motivated by consideration of physical
channels governed by differential equations and driven by a discrete symbol set.
In some situations the channel might be more appropriately described as a fully
discrete system: for example, the channel may be represented as a hidden Markov
model, the state space being a finite set with probabilistic dynamics. Though the
motivation is then not applicable, with suitable interpretations of M and the wk

the IFS picture still applies, though such an extension is beyond the scope of this
paper.

3. Some Theory of IFSs

Formally, an iterated function system consists of a state space, and a collection of
maps of this space. In each time step the state evolves under the action of a map
chosen at random from the collection. In our case we shall assume that the state
space M is equipped with a metric and that with respect to this it is complete.
We assume further that the maps {wk}K

k=1 are contractions on M. This gives us
a special kind of IFS—a hyperbolic IFS—about which much is known (Barnsley
1988). In particular, it can be shown that there exists a unique compact subset of
M, let us say A, which satisfies the following relationship:

A =
K⋃

k=1

wk(A) (3.1)

This set is attracting in the sense that any starting state inM approaches A as time
goes on, so after a transient period the dynamics of the system become confined to
A.
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Figure 1. The attractor A for the system of example 2.1 with parameters τ = 1.0,
γ = 1.0 and ω0 = π/3.

An interpretation of equation (3.1) is that A is made up of K contracted images
of itself, one corresponding to each input symbol. For any state in A, if the symbol
k is input the resulting next state is in wk(A). Thus the set wk(A) consists of
all the states that the system can be in given that the last input was symbol k.
This is not the same as saying that wk(A) is the set of states for which the last
input was symbol k since some states may be in more than one of the wk(A) sets.
However, if wk(A) ∩ wk′(A) = ∅ for all k 6= k′, then no state can be in more
than one such set and so the states uniquely identify the last input symbol. Such
a situation is obviously convenient if the object is channel equalization (that is,
the reconstruction of the input sequence from the sequence of outputs). IFSs which
have this property are called non-overlapping; the attractor of a non-overlapping
IFS is totally disconnected.

Figure 1 shows the attractor A for the system of example 2.1. Equation (3.1)
indicates that the attractor is self-similar, and it is often a complicated fractal set
like the one in the figure. It is easy to view the set in the figure as the union of
two contracted copies of itself, as in equation (3.1): the part of the set above the
line p = −u is the image of A under w+, the part below is the image under w−.
Clearly, the parameter values chosen here are such that the IFS is non-overlapping.
Thus it is possible to determine the last symbol input from the state of the system,
by noting whether this state is in w+(A) or w−(A). The line p = −u can be used
as a decision boundary: points above this line correspond to the last input being
s+, those below to the last symbol being s−.

Whether or not an IFS is non-overlapping depends on the contractivity of the
maps {wk}. This in turn depends on the physical properties of the channel—in
particular the rate at which transients decay—and the time between inputs. For a
given channel, the faster that symbols are input the weaker the contraction, and
so there will be a symbol input rate above which the IFS will be overlapping. (In
example 2.1, assuming that 2ω0 > γ (i.e. the underdamped case), the contraction
factor is e−

γτ
2 . For sufficiently short symbol periods τ the contraction will be small

(the exponential factor will be close to 1) and the IFS will fail to be non-overlapping.
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However, the larger the damping factor γ the smaller τ can be before overlapping
occurs. In fact it is sufficient (though not always necessary) that e−

γτ
2 be less than

1
2 for this IFS to be non-overlapping.)

The recursive structure of equation (3.1) allows more refined decompositions
such as:

A =
K⋃

k,k′=1

wk ◦wk′(A) (3.2)

that is, a decomposition of A obtained by applying all possible pairs of wk to A.
These sets can be labelled with the pairs k, k′ corresponding to the last 2 symbols
input to the channel. For a hyperbolic IFS this process can be refined to the limit
where each state in A can be labelled by an infinite string of k’s. (This process is
known, for obvious reasons, as backward iteration (Diaconis & Freedman 1999).)
Such a string is called an address of the state. If the IFS is non-overlapping each
state in A has a unique address.

The discussion above suggests that each state retains information about the
infinite history of inputs that gave rise to it. However, even if it were possible to
observe the states directly, we can only do so with a limited accuracy and can
therefore only obtain a limited amount of information about the history of inputs.

4. Linear Input-Output Systems as IFSs

The majority of previous work on the modelling of communications channels has
concentrated on linear models. In this section and the next we shall describe how
such linear models—for the case of digital signalling—can be considered as iterated
function systems of the kind described above. The linear models are special cases
of the IFS models because the wk maps they give rise to are always affine, but
we shall see that some of the important questions that arise when we seek to use
IFS models for signal processing applications are already present in the linear case.
In particular we will need to investigate how to exploit the models when only the
outputs (not the states) are known: this is done for the linear case in the next
section.

The channel models currently in most common use fall into the class of linear
input-output models (Kailath et al. 2000). These models have the form

p∑
j=0

αjyn+1−j =
q−1∑
j=0

βjun−j (4.1)

where we can take α0 to be unity, and αp and βq−1 are non-zero. To find the
relationship between these and the IFS models discussed above we convert to a
state space form in the usual way (Kailath et al. 2000): we let r be the larger of p
and q and set the upper limits of the sums in equation (4.1) to r on the left hand
side, and r − 1 on the right, adding terms with zero coefficients to the left or right
as necessary. This model can be written in the form of a system of linear equations

xn+1 = Axn + Bun (4.2)
yn+1 = Cxn+1 (4.3)
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8 D.S. Broomhead, J.P. Huke, M.R. Muldoon, J. Stark

where

A =



−α1 −α2 −α3 . . . −αr−1 −αr

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0


(4.4)

B = (1, 0, 0, . . . , 0)T and C = (β0, β1, β2, . . . , βr−1). (A is r× r, B is r× 1 and C is
1× r)†. For the case of digital inputs we think of the un’s as all being drawn from
a finite set, corresponding to the finite set of possible input symbols; say s1, s2, . . .,
sK are the possible input values. Thus equation (4.2) takes the form

xn+1 = Axn + Bskn (4.5)

In this case the model (4.2,4.3) can be regarded as an IFS model, with xn as the
state at time n, and Rr (with the Euclidean metric) as the state space. The maps
of the IFS are the functions wk(x) = Ax+Bsk, one for each input symbol as usual,
and equation (4.5) becomes xn+1 = wkn

(xn), so that at every time step we find
the new state by applying one of the maps wk. Recall from §2 that the output of
the IFS channel is given by a function on the state space; equation (4.3) specifies
this function for the linear model.

As noted above the wk maps for the linear model have the form wk(x) =
Ax+Bsk. The attractor of the IFS consisting of these maps will be a (often fractal)
set in the state space Rr. In the case where p < q, αr = 0 and A is rank deficient:
in fact it is clear from (4.4) that A has rank r − 1 (= q − 1). The range of A is
thus an r − 1 dimensional subspace (say V1), and the range of wk is the r − 1
dimensional hyperplane produced by translating V1 by bk = Bsk. Hence for any
x ∈ Rr, wk(x) lies in one of K parallel hyperplanes. (These hyperplanes are distinct
since B does not lie in the range of A.) From (3.1) we see that the attractor in this
case consists of K pieces, each a translation of the others, each piece lying in one
of the hyperplanes. The hyperplane in which a given state lies uniquely identifies
the latest input symbol.

If αr−1 is also zero we can say more about the attractor. Note that wk◦wk′(x) =
A2x + ABsk + Bsk′ = A2x + Abk + bk′ . Note also that A2 has rank r− 2, so that
the range of A2 is an r− 2 dimensional subspace, V2 say, which is a subspace of V1:
the K translates of V2 produced by adding the vectors Abk also all lie in V1. The
r − 1 dimensional hyperplanes parallel to V1 (produced by adding the vectors bk′)
thus each contain a copy of these K translates of V2. In the last paragraph we found
that the attractor consisted of K parallel pieces; equation (3.2) indicates that each
of these pieces itself consists of K pieces, each of which is a translate of the others.
Thus the attractor consists of K2 pieces, all identical apart from translation.

By repeating this argument for αr−2 = 0, . . ., αp+1 = 0 we see that the at-
tractor consists of Kr−p pieces, identical apart from translation, each lying in an
p dimensional hyperplane of Rr. The hyperplanes have a hierarchical organization:
there are K hyperplanes, of dimension r−1, each of which contains K hyperplanes
of dimension r − 2, and so on down to the p dimensional hyperplanes containing

† We assume that (4.2,4.3) is observable; this question is discussed further in the next section.
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IFS Models of Digital Channels 9

the pieces of the attractor. Within the p dimensional hyperplanes the attractor
may be fractal, and connected or disconnected. Note that identifying which r − i
dimensional hyperplane contains the current state uniquely identifies the i latest
input symbols.

In applications, p is often in fact taken to be zero (in which case all the elements
in the top row of A are zero); this corresponds to modelling the channel as an FIR
filter (Clark 1985). In this case the attractor consists of only finitely many (in fact
Kr) points, namely all the points of the form (sk1 , sk2 , . . . , skr )

T . Whatever the
initial state of the channel this attractor is reached in finite time (in r symbol
periods), and the current state on the attractor obviously identifies the r latest
input symbols.

5. Delay Embedding of Linear Systems

We have seen that the linear input-output system (4.1) falls into the class of IFS
models. The main differences between (4.1) and the more general iterated function
systems we want to consider are of course that the state space of the IFS can
be a more general space than Rn (it need not even be a vector space), and the
maps wk need not be of the simple affine form wk(x) = Ax + Bsk. Before we
move on to these nonlinear systems, however, it will be helpful to consider certain
systems which, while more general than (4.1), are still linear. The main question
to be addressed here is how to derive information about the system when the only
knowledge available is the output sequence: that is, the sequence of states is not
known. This problem is a standard one in the theory of linear systems; here we
shall set it in the context of iterated function systems to make clear its connections
to the corresponding problem for the nonlinear case, which is treated in the next
section.

Suppose that the digital channel has the form of a general discrete time, linear,
time invariant system:

xn+1 = Axn + Bun (5.1)
yn+1 = Cxn+1 (5.2)

These equations have the same form as (4.2) and (4.3), but now the input and
output can be in principle be vectors: un ∈ Rm and yn ∈ Rp; xn ∈ Rr is the state
vector; and A, B and C are appropriately dimensioned but otherwise arbitrary
matrices. For the case of digital inputs we again think of the un’s as all being
drawn from a finite set, corresponding to the finite set of possible input symbols;
say s1, s2, . . ., sK are the possible input vectors. Thus equation (5.1) again takes
the form

xn+1 = Axn + Bskn
(5.3)

and this model can be regarded as an IFS in just the same way as (4.2,4.3): Rr is
the state space: the maps of the IFS are wk(x) = Ax + Bsk as before; and (5.2)
defines the measurement function.

The usual assumption is that the only information available to us is the sequence
of outputs {yn}. What can we learn about the sequence of states and in particular
the sequence of inputs from this information? To answer this question we shall
assume that the output is a sequence of scalar values i.e. p = 1. (This is inessential:
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10 D.S. Broomhead, J.P. Huke, M.R. Muldoon, J. Stark

the same general principles apply for multivariate observations.) We can approach
the problem by trying to use sequences of consecutive output values to represent
the state of the system. Thus we define a d-dimensional delay vector of observations

yn = (yn, yn+1, . . . , yn+(d−1))T

and ask how this is related to the state of the system, xn, and the inputs.
In terms of the maps {wk} and the state xn, the delay vector yn can be written

as follows

yn = (Cxn, Cwkn(xn), Cwkn+1 ◦wkn(xn), . . . , Cwkn+d−2 ◦ . . . ◦wkn(xn))T (5.4)

This is a mapping from Rr to Rd, parameterized by the (d − 1)-tuple of input
symbols (kn, kn+1, . . . , kn+d−2); there are Kd−1 such maps. Note that the map re-
lating the n-th state xn to the n-th delay vector yn depends not only on the n-th
input symbol, but on the subsequent d− 2 input symbols as well. We write this as
yn = Φkn,...,kn+d−2xn, with the function Φkn,...,kn+d−2 : Rr → Rd defined by equa-
tion (5.4). To simplify the notation further we shall denote a general (d− 1)-tuple
of input symbols by Ω—as we have noted there are Kd−1 possible (d−1)-tuples; we
can call this set K: thus Ω is an element of K. We say Ωn = (kn, kn+1, . . . , kn+d−2),
and then write yn = ΦΩn

xn.
Using the expressions for the wk maps in terms of A, B and sk we can write

ΦΩn
in terms of these quantities. Since the wk maps are all affine, with common

linear part, it turns out that ΦΩn is affine, and its linear part is independent of the
input symbols. In particular ΦΩnx = Φx + ΨΩn where

Φ =


C

CA

CA2

...
CAd−1

 (5.5)

and

ΨΩn
=


0
CBskn

C(Bskn+1 + ABskn)
...
C(Bskn+d−2 + ABskn+d−3 + A2Bskn+d−4 + . . . + Ad−2Bskn)

 (5.6)

The delay vectors therefore all lie on a finite collection of parallel affine subspaces
of Rd; there will be Kd−1 of these, one for each offset vector ΨΩn

. Ideally we would
like these subspaces to be distinct: for this to be so we must have at least that
d ≥ rank Φ + 1, so from now on we will assume that d ≥ r + 1 ≥ rank Φ + 1.
Even with this condition it is possible for two of the subspaces to be coincident:
this happens if the difference between two of the ΨΩn

vectors lies in the image of
Φ; however such a situation would be non-generic and could be removed by small
changes in A, B, C or sk (see Appendix Appendix A). If the Kd−1 subspaces are
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indeed all distinct it is possible to identify the n-th input signal just by noting in
which affine subspace yn lies. As each input symbol arrives the vector of delays
moves to a new subspace, but although there are Kd−1 subspaces, at any given
time the delay vector can move to one of only K different subspaces.

We noted before that after transients have decayed the system state becomes
confined to an attractor, A—a compact subset of the state space. Each of the affine
subspaces contains an image of the attractor, namely ΦΩn

A, and the delay vectors
correspondingly become confined to these copies of A, (in fact these images are all
identical apart from translation). Assuming that Φ is full rank, each of the images
is equivalent to A under an invertible affine transformation (in particular there
is a one-to-one correspondence between the states in A and the delay vectors in
each image). Hence each image shares the topological properties and many of the
geometrical properties of A: it is connected (or disconnected) if A is; it is a fractal
set if A is, and has the same dimension as A; it can be partitioned and addressed
in just the same way as A.

If Φ is full rank, and the offsets ΨΩn
are such that the affine subspaces are

distinct, the delay vectors give a rather complete representation of the state space,
and of the evolution of the states as symbols are input. How likely is it that these
conditions will hold?

Conditions under which Φ will be full rank are well known: this matrix is com-
monly encountered in linear systems theory and is known as the observability matrix
(Kaczorek 1992). Simple sufficient conditions are that A has distinct eigenvalues
and that C is not a left eigenvector of A. These conditions are generically satisfied,
and so we may generally assume that Φ will be full rank. Further it is shown in Ap-
pendix A that for generic choices of B, Ω 6= Ω′ implies that ΨΩ −ΨΩ′ is not in the
range of Φ, and so the affine subspaces are distinct.

(a) Example 2.1 revisited

From equation (2.3) we see that the system of example 2.1 is an example of the
type of linear system specified in equation (5.1). We can generate an output from
this system by specifying a measurement C as in equation (5.2). In the following
we use the parameter values as for figure 1 i.e. τ = 1.0, γ = 1.0 and ω0 = π/3. In
addition we take C = (1, 0).

Figure 2 shows the result of using the method of delays with d = 3 on the output
from this system. Since K = 2 we expect there to be 22 parallel affine subspaces
each containing a copy of the attractor from figure 1. Figure 2 is plotted using a
coordinate system which takes the common normal of the subspaces—that is the
normal to the range of Φ—as the vertical axis; the four attractor images can be
clearly distinguished. The four images in figure 2 are the images of A under the four
possible delay maps Φ(+,+),Φ(−,+),Φ(+,−) and Φ(−,−), in this order working from
the top. The ordering of the images as well as their actual positions in delay space
are dependent upon the choice of C. In figure 3 we plot a single sheet from figure 2:
the one shown contains the image Φ(+,+)A. This is just a linear transformation of
the attractor in figure 1. By observing which sheet a delay vector lies in, we can
identify the last two input symbols and since the images have addresses in the same
way as A itself—since the delay map is one-to-one—knowing where a delay vector
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Figure 2. A delay plot (d = 3) of the attractor for the system of example 2.1 with
parameters τ = 1.0, γ = 1.0 and ω0 = π/3. The measurement function used was

C = (1, 0).

lies within a sheet in principle gives information about the previous history of input
symbols.

In contrast, if we use d = 2 delays to study the output of this second order
system, the result is ambiguous because the (two-dimensional) affine subspaces
produced by the two delay maps Φ+ and Φ−, are necessarily coincident. This is
illustrated in figure 4 which shows how the images Φ+A and Φ−A overlap. Clearly
delay vectors found in the centre of the plot cannot be associated unambiguously
with either input.

6. Delay Embedding of Nonlinear Systems

Recall from §2 our general picture of a digital channel: the state of the channel is
an element of a state space M (usually a manifold), and at each time step (input
symbol period) a map wk is chosen from a finite collection of K maps, corresponding
to the K possible input symbols, and applied to the current state to generate a new
state: thus we have xn+1 = wkn(xn), where kn labels the symbol input at time n.
A new output value is also generated from xn+1 using the measurement function v:
thus we have yn = v(xn). Just as in the linear case discussed above we can define
d-dimensional delay vectors by

yn = (yn, yn+1, . . . , yn+(d−1))T

The delay vector yn can be written in terms of the state xn as follows

yn = (v(xn), v◦wkn
(xn), v◦wkn+1◦wkn

(xn), . . . , v◦wkn+d−2◦. . .◦wkn
(xn))T (6.1)
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Figure 3. The image Φ(+,+)A of the attractor for the system of example 2.1 with param-
eters τ = 1.0, γ = 1.0 and ω0 = π/3. This corresponds to the topmost sheet shown in
figure 2.
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Figure 4. A delay plot (d = 2) of the attractor for the system of example 2.1 with
parameters τ = 1.0, γ = 1.0 and ω0 = π/3. The measurement function used was

C = (1, 0).

Article submitted to Royal Society



14 D.S. Broomhead, J.P. Huke, M.R. Muldoon, J. Stark

(cf. equation (5.4)). Again we can write this as yn = ΦΩn
(xn) where ΦΩn

: M→ Rd

is the delay map defined in (6.1), and Ωn = (kn, kn+1, . . . , kn+d−2) is a vector of
input symbols as before. We found in the linear case that, so long as d is large
enough, we could expect the delay maps to reproduce the state space faithfully in
the sense that ΦΩn was injective, (and in fact affine). Thus each delay map produced
a copy of the attractor, and the delay vector yn moved around on these copies
according the sequence of input symbols. It can be shown that analogous results
hold in the nonlinear case as well. The delay maps will not now be affine, but if M is
a compact differentiable manifold, on which the wk maps are diffeomorphisms, and
v is smooth then the delay maps will (generically) be embeddings, that is, smooth
maps from M to Rd that are diffeomorphisms onto their images. (Again, d will
need to be large enough for this to be true: in the nonlinear case ‘large enough’
means d ≥ 2m + 1, where m is the dimension of M.) Thus for each Ω, ΦΩM
will be an m-dimensional submanifold of Rd, and the corresponding image of the
attractor ΦΩA shares the topological and many of the geometric properties of A: it
is a fractal set if A is, with the same dimension; it can be partitioned and addressed
in the same way as A, and so on. Taking M to be a manifold is consistent with our
assumption that the channel is to be modelled by a set of differential equations.
The wk’s, which are derived from the flow produced by the differential equations,
will be diffeomorphisms, as we saw in §2.

The proof of these assertions for the nonlinear case is somewhat technical: details
can be found in Stark et al. 2003, where the following theorem is proved.

Theorem 6.1 (Takens’ theorem for IFSs). Let M be a compact manifold of
dimension m ≥ 1 and say d ≥ 2m + 1, r ≥ 1; let Cr(M,R) be the space of Cr

real-valued functions on M (the ‘measurement functions’), and Dr(M) the space
of Cr diffeomorphisms of M. Let S = {1, 2, . . . ,K} (the ‘alphabet of symbols’) and
K = Sd−1. Also let F = [Dr(M)]K . For every (c, v) in an open and dense set of
F × Cr(M,R) the ‘delay map’ Φ(c,v,Ω) is an embedding for every Ω ∈ K, where
Φ(c,v,Ω) is defined by

Φ(c,v,Ω)(x) = (v(x), v ◦wk1(x), v ◦wk2 ◦wk1(x), . . . , v ◦wkd−1 ◦ . . . ◦wk1(x))T

where Ω = (k1, k2, . . . , kd−1) and c = (w1,w2, . . . ,wK).

In the discussion of the linear system in the previous section we concluded
not only that the individual delay maps ΦΩ each give a faithful copy (i.e. an em-
bedding) of the state space, but also that the copies arising from different delay
maps usually do not intersect (that is, ΦΩM and ΦΩ′M are generically disjoint if
Ω 6= Ω′): this is because the images ΦΩM and ΦΩ′M form parallel affine subspaces
of Rd. The theorem just quoted provides the analogue for the nonlinear case of
the delay maps giving faithful copies of the state space M, but nothing has been
said so far about the intersection of ΦΩM and ΦΩ′M for different delay maps. Of
course the delay maps are now nonlinear so we cannot expect their images to be
anything like parallel. Nor can we use the fact that two m-dimensional subman-
ifolds of R2m+1 will generically have empty intersection, because the images are
not arbitrary submanifolds of Rd: they must be of the form ΦΩM for an allowed
delay map. It turns out that there are cases where the images of two different delay
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maps intersect and that the intersection persists under small changes in both the
diffeomorphisms {wk}K

k=1 and the measurement function v. In particular, suppose
there is x ∈ M, and two diffeomorphisms w1 and w2 such that w1(x) = w2(x);
thus w1M intersects w2M at w1(x), and if this intersection is transversal it cannot
be eliminated by small changes in w1 and w2. Now let Ω = (1, k2, k3, . . . , kd−1) and
Ω′ = (2, k2, k3, . . . , kd−1), then it is clear that ΦΩ(x) = ΦΩ′(x) whatever the mea-
surement function. Thus the images ΦΩM and ΦΩ′M have a point of intersection,
and this point cannot be eliminated by small changes to the wk maps.

If two different wk’s map a state x to the same image this means that the channel
can find itself in a state in which its response to two different input symbols is the
same. This situation is clearly undesirable in a communications system, so one
expects this possibility to have been designed out of any practical system. In fact
there is a situation in which we can be sure that this problem will not arise. We take
the state space to be Rn, and assume, as in §2, that the evolution of the state while
the k-th symbol is input is governed by the differential equations ẋ = Xk(x, t). As
noted before (see equation (2.1)), the right hand side can take the form of a time
independent vector field (describing the state evolution when there is no input) plus
a forcing term depending on the input symbol:

Xk(x, t) = X(x) + χk(t)

The forcing corresponding to each symbol may last only a short fraction of the
symbol period. If the pulses are sufficiently sharp and strong that they can be
treated impulsively, so that the forcing is effectively a delta function occurring
at the start of the symbol period, we have Xk(x, t) = X(x) + αkδ(t), where αk

characterises the k-th symbol. (Example 2.2 is of this kind.) Integrating this we
find wk(x) = φτ (x + αk), where φτ is the time τ map of the unforced vector field
X. Since αk is assumed different to αk′ for k 6= k′, and φτ is a diffeomorphism,
we see that, for any x, wk(x) 6= wk′(x) for k 6= k′. So in this case the problem of
persistent intersection of delay map images will not occur. We note that the practice
of modelling data transmission as the driving of the channel by a sequence of delta
functions is a common one in conventional signal processing: see for example Bissell
& Chapman 1992.

(a) Delay Embedding for Example 2.2

Example 2.2 provides a simple model of a nonlinear channel. The extent to which
the nonlinearity affects the behaviour of the channel depends upon the amplitude
of the input χ. For small enough χ (at a given τ) the amplitude u will remain small
and the equation will be effectively linear. For illustrative purposes we take χ to
be moderately large, by which we mean that if the system is close to zero when a
pulse arrives the resulting displaced state experiences a restoring force with similar
linear and nonlinear contributions. The attractor for this case is shown in figure 5.
As with example 2.1 we find that this attractor appears to be totally disconnected;
in particular the line p = u may be used as a boundary which separates the two
components w+A and w−A.

To apply the method of delays we need to specify a measurement function.
In the figures below we use a linear measurement v : R2 → R where v(u, p) =
cos( π

32 )u− sin( π
32 )p. Figure 6 shows the delay plot of this output using d = 3. It is
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Figure 5. The attractor for the system of example 2.2 with parameters τ = 1.0, γ = 1.0,
ω0 = π/3 and χ = 1.
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Figure 6. A delay plot (d = 3) of the attractor for the system of example 2.2 with pa-
rameters τ = 1.0, γ = 1.0, ω0 = π/3 and χ = 1. The measurement function used was
v(u, p) = cos( π

32
)u− sin( π

32
)p.

plotted using a similar coordinate system to the one used in figure 2, here based on
the linear system that approximates the nonlinear system when the state remains
close to the origin. As expected there are four copies of the attractor, though they
clearly no longer lie in affine subspaces. It is clear from the figure that the four
images of the attractor are disjoint and so, as with the linear case, we can decide
the latest symbol input to the channel by noting the image in which the delay
vector currently lies. We could in principle use this for channel equalization.

In fact three delays are not enough to ensure that the images will be embeddings
of the attractor; the theorem above would require us to use d = 5 to guarantee this,
although using fewer may result in the delay maps being embeddings if, as here,
the nonlinearity is not too great. Figure 7 shows a similar plot using a larger value
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Figure 7. A delay plot (d = 3) of the attractor for the system of example 2.2 with pa-
rameters τ = 1.0, γ = 1.0, ω0 = π/3 and χ = 10. The measurement function used was
v(u, p) = cos( π

32
)u− sin( π

32
)p.

of χ so that the nonlinear terms are much more significant. This figure shows the
image of only one of the delay maps rather than the four shown in the previous
figure. In this case it is not at all clear that the data lies on a submanifold of the
delay space. It may be that more delays are needed to achieve this.

7. Implications for Signal Processing

The essential features of the IFS model of a digital channel are: the state space
M, (which need not be a vector space); the maps wk of the state space to itself,
(which again need not be linear), one for each symbol in the alphabet; and the
attractorA that these maps generate (and which is specified in terms of the maps by
equation (3.1)). When it comes to using the model in signal processing applications
a further layer is added: measurements are made on the channel states and are
described by the function v, and the relationships between these measurements
and the underlying state space need to be examined. We have seen in the preceding
sections that by constructing delay vectors of outputs various aspects of the state
space are reproduced in delay space Rd; in particular there are several (Kd−1) copies
of M embedded in Rd, each copy labelled by a d− 1-tuple of input symbols. Each
copy is in one-to-one correspondence with M and each copy obviously contains a
copy of the attractor A. The delay space is also equipped with analogues of the
maps wk, though as with the state space itself the version in Rd is somewhat more
complicated than the original collection {wk}K

k=1: each copy of M has K maps
defined on it, the image of each map being one of the copies of M (note that these
images are all different).

The picture provided by the model is thus a geometrical one. Of course, defining
the model is only part of the story: we also need to know how to use the model in the
processing of digital signals passed through our channel. We anticipate that this will
need considerable development: here we restrict ourselves to some broad comments,
concentrating on equalization (which for our purposes means the identification of
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the input sequence from the channel outputs). We have remarked several times
above that the location of the current delay vector gives information about the
latest input symbols; indeed, the more information we have about this location the
more we can infer (in principle) about the input sequence: identifying which copy
of M the delay vector lies in specifies the latest d − 1 symbols, and more precise
information about where in the attractor the delay vector lies (i.e. its address)
potentially gives information both about these symbols and earlier ones. The key
to using the delay vectors actually to detect the input signals of course lies in
knowing where in delay space the copies of M are situated. This information is
not known a priori : it must be derived in some way from observations made on
the channel. The information we seek to obtain from these observations may be
more or less precise: at its most basic we could simply try to divide up the delay
space into regions, each of which contains one of the copies; then identifying which
region a given delay vector lies in would identify the copy (all delay vectors being
assumed to lie in one copy or another). Indeed it may be enough for a region to
contain several copies: say, all those Kd−2 copies sharing a given symbol as the
latest one. In fact, the use of a feedforward transversal filter to equalize the linear
FIR channel can be viewed as a division of delay space into regions in just this
way (see Gibson et al. 1991): in this case the space is partitioned by one or more
parallel hyperplanes. Even for the linear FIR channel, however, the regions may not
be separable by hyperplanes, and Gibson et al. 1991 suggest the use of nonlinear
region boundaries implemented using (for example) multilayer perceptrons (Gibson
et al. 1991) or radial basis functions (Chen et al. 1991).

There are various ways we could go about trying to locate the copies in delay
space, depending on what information there is available. In the particularly simple
case of an FIR channel, the attractor (which plays an even more dominant role
than usual in this case since transients disappear in finite time) consists of a finite
collection of points, and can be found directly from the channel output. If the
channel is assumed to be linear (described by (5.1) and (5.2)) then we know that
each of the copies is an r-dimensional affine subspace, and that all the copies are
identical apart from translations. An efficient approach to locating the copies in
that case would be to estimate the parameters of the channel (the matrices A, B
and C of (5.1) and (5.2), or the coefficients in (4.1)) which then determine what
happens in delay space through the maps ΦΩ of §5. How we go about estimating
the parameters will depend on whether or not a training sequence is to be used.

For a nonlinear channel the copies of state space are no longer r-dimensional
affine subspaces: they are now r-dimensional submanifolds of delay space. The ge-
ometry of these submanifolds may be quite complicated, and they may intersect.
Determining their positions is now a rather more challenging problem. Without
going into too much detail we note that one way to view this is as a pattern classifi-
cation problem, with the delay vectors as patterns and the copies as classes. In this
spirit, collecting delay vectors from the channel output supplies us with a sample of
data points from the copies of M. If we know the corresponding inputs (if, say, we
are using a training sequence) then we can deduce to which copy each data point
belongs. We can attempt to delineate the copies by, for example, the use of clus-
tering techniques, combined perhaps with the use of level set representations of the
submanifolds, or local parameterizations (Kirby 2001). In the absence of knowledge
of the inputs we shall not only need to determine the region of space in which each
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copy lies, but also its ‘label’: the d − 1-tuple of symbols to which it corresponds.
One way to approach this latter problem is to observe the sequence in which the
copies are visited: if a delay vector in copy A is succeeded by one in copy B the
label of B is related to that of A by shifting the symbols in A’s label one place
to the left (dropping the leftmost) and adding a new symbol at the right. (Note
this means that if B is the same as A, all the symbols in A’s label must be the
same.) By observing the delay vectors for long enough we can attempt to devise a
consistent set of labels. In fact the sequence of delay vectors contains much more
subtle information: the structure of the attractor implied by equation (3.1) means
that where in a copy of the attractor a delay vector lies carries information about
the labels of the copies it has previously visited: thus the more information we can
deduce about the structure of the attractor the more easily we can assign the labels.

A particular difference between linear and nonlinear channels concerns the pos-
sible intersection of the copies of the state space, in Rd. It was noted in §4 that in
the linear case such intersections are non-generic—they can only happen for spe-
cial choices of the system parameters, and even then most perturbations (however
small) of the parameters will produce systems without intersections. The simplicity
of this situation results, of course, from the fact that the copies are necessarily par-
allel affine subspaces. In the nonlinear case the copies are not constrained in this
way, and, as well as intersecting each other, can in principle have self-intersections.
The ‘Takens’ Theorem for IFS’s’ quoted in §6 shows that, in fact, self-intersections
are non-generic, but it says nothing about intersections between two different copies
(that is, two images ΦΩM and ΦΩ′M where Ω 6= Ω′). As we have seen such inter-
sections can in fact be persistent under perturbations. These intersections clearly
pose difficulties for equalization: there will now be delay vectors whose latest input
symbols cannot be identified simply by determining which copy of M they lie in
(since they lie in more than one); and (probably more significantly) there are likely
to be problems in locating and distinguishing the copies in delay space using data.
Whether or not a particular channel actually suffers from these problems depends
on the maps wk of the IFS. As described at the end of §6 there is a case in which
it is clear that intersections will not occur: this is when the input symbols are
introduced as sharp pulses.

The above is not intended to do more than hint at some of the problems and
approaches that arise when we consider using the IFS model in applications (par-
ticularly channel equalization). Other questions also arise: how best should we use
the output to estimate the dimensions r and d? How should we assess the extent
to which the channel is in fact nonlinear, or non-recursive? How can we use the
self-similar nature of the attractor to inform the model in delay space? We intend
to develop algorithms based on the IFS model in subsequent work.

Appendix A. Non-intersection of Hyperplanes

Here we show that if Ω and Ω′ are distinct elements of K then (generically) the
vector ΨΩ −ΨΩ′ does not lie in the range of Φ. We can do this for the case p = 1
and m = 1 as follows (the argument for larger p and m is similar). We assume that
Φ has r + 1 rows (that is, we ignore any rows of Φ below the r + 1-th: clearly if the
proposition is true for d = r + 1 it will be true for all larger values of d).
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If Φ is full rank then the row vectors C, CA, . . ., CAr−1 are linearly independent
(Kaczorek 1992). Hence there is a unique r + 1-vector Λ = (λ1, λ2, . . . , λr, 1) such
that ΛΦ = 0. The condition that ΨΩ−ΨΩ′ lies outside the range of Φ is equivalent
to the condition that the matrix [Φ : ΨΩ −ΨΩ′ ] is full rank (i.e. rank r + 1). From
equations (5.5) and (5.6) we see that this matrix has the form

C 0
CA CBδkn

CA2 C(Bδkn+1 + ABδkn
)

...
...

CAr C(Bδkn+r−1 + ABδkn+r−2 + . . . + Ar−1Bδkn
)


where δkn = skn − sk′n . It is clear that this matrix fails to have full rank if and only
if Λ(ΨΩ −ΨΩ′) = 0. Using equation (5.6) this becomes

[λ2, λ3, . . . , λr, 1]


δkn

0 0 · · · 0
δkn+1 δkn

0 · · · 0
δkn+2 δkn+1 δkn

· · · 0
...

...
...

. . .
...

δkn+r−1 δkn+r−2 δkn+r−3 · · · δkn




C

CA

CA2

...
CAr−1

B = 0

(A 1)
Writing the product of the first three matrices of the above equation as the (1× r)
matrix V this becomes V B = 0; if V 6= 0 this equation is clearly not satisfied for
almost all choices of B. Hence it is sufficient for us to show that V 6= 0.

Assume to begin with that δkn
6= 0. Since the rows of the third matrix are

linearly independent and the second matrix is full rank, there is no choice of
λ2, λ3, . . . , λr for which V is zero. If, on the contrary, δkn

= 0 we work with the
reduced system

[λ3, . . . , λr, 1]


δkn+1 0 · · · 0
δkn+2 δkn+1 · · · 0
...

...
. . .

...
δkn+r−1 δkn+r−2 · · · δkn+1




C

CA
...

CAr−2

B = 0 (A2)

and note that if δkn+1 6= 0 the same argument applies. If δkn+1 = 0, we continue
the same process until we find the first δk 6= 0 (since Ω 6= Ω′ there must always be
at least one such δk).
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