

Functoriality and K-theory for $GL_n(R)$

Mendes, Sergio and Plymen, Roger

2015

MIMS EPrint: 2015.93

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Functoriality and K-theory for $\operatorname{GL}_n(\mathbb{R})$

Sergio Mendes and Roger Plymen

Abstract

We investigate base change and automorphic induction \mathbb{C}/\mathbb{R} at the level of K-theory for the general linear group $\operatorname{GL}_n(\mathbb{R})$. In the course of this study, we compute in detail the C^* -algebra K-theory of this disconnected group. We investigate the interaction of base change with the Baum-Connes correspondence for $\operatorname{GL}_n(\mathbb{R})$ and $\operatorname{GL}_n(\mathbb{C})$. This article is the archimedean companion of our previous article [11].

Mathematics Subject Classification (2000). 22D25, 22D10, 46L80. Keywords. General linear group, tempered dual, base change, K-theory.

1 Introduction

In the general theory of automorphic forms, an important role is played by *base change* and *automorphic induction*, two examples of the principle of functoriality in the Langlands program [3]. Base change and automorphic induction have a global aspect and a local aspect [1][7]. In this article, we focus on the archimedean case of base change and automorphic induction for the general linear group $GL(n, \mathbb{R})$, and we investigate these aspects of functoriality at the level of K-theory.

For $\operatorname{GL}_n(\mathbb{R})$ and $\operatorname{GL}_n(\mathbb{C})$ we have the Langlands classification and the associated *L*-parameters [8]. We recall that the domain of an *L*-parameter of $\operatorname{GL}_n(F)$ over an archimedean field *F* is the Weil group W_F . The Weil groups are given by

$$W_{\mathbb{C}} = \mathbb{C}^{\times}$$

and

$$W_{\mathbb{R}} = \langle j \rangle \mathbb{C}^{\times}$$

where $j^2 = -1 \in \mathbb{C}^{\times}$, $jc = \overline{c}j$ for all $c \in \mathbb{C}^{\times}$. Base change is defined by restriction of *L*-parameter from $W_{\mathbb{R}}$ to $W_{\mathbb{C}}$.

An *L*-parameter ϕ is *tempered* if $\phi(W_F)$ is bounded. Base change therefore determines a map of tempered duals.

In this article, we investigate the interaction of base change with the Baum-Connes correspondence for $\operatorname{GL}_n(\mathbb{R})$ and $\operatorname{GL}_n(\mathbb{C})$.

Let F denote \mathbb{R} or \mathbb{C} and let $G = G(F) = \operatorname{GL}_n(F)$. Let $C_r^*(G)$ denote the reduced C^* -algebra of G. The Baum-Connes correspondence is a canonical isomorphism [2][5][9]

$$\mu_F: K^{G(F)}_*(\underline{E}G(F)) \to K_*C^*_r(G(F))$$

where $\underline{E}G(F)$ is a universal example for the action of G(F).

The noncommutative space $C_r^*(G(F))$ is strongly Morita equivalent to the commutative C^* -algebra $C_0(\mathcal{A}_n^t(F))$ where $\mathcal{A}_n^t(F)$ denotes the tempered dual of G(F), see [12, §1.2][13]. As a consequence of this, we have

$$K_*C_r^*(G(F)) \cong K^*\mathcal{A}_n^t(F).$$

This leads to the following formulation of the Baum-Connes correspondence:

$$K^{G(F)}_*(\underline{E}G(F)) \cong K^*\mathcal{A}^t_n(F)$$

Base change and automorphic induction \mathbb{C}/\mathbb{R} determine maps

$$\mathcal{BC}_{\mathbb{C}/\mathbb{R}}:\mathcal{A}_n^t(\mathbb{R})\to\mathcal{A}_n^t(\mathbb{C})$$

and

$$\mathcal{AI}_{\mathbb{C}/\mathbb{R}}: \mathcal{A}_n^t(\mathbb{C}) \to \mathcal{A}_{2n}^t(\mathbb{R}).$$

This leads to the following diagrams

and

where the left-hand vertical maps are the unique maps which make the diagrams commutative.

In section 2 we describe the tempered dual $\mathcal{A}_n^t(F)$ as a locally compact Hausdorff space.

In section 3 we compute the K-theory for the reduced C^* -algebra of $\operatorname{GL}(n,\mathbb{R})$. The real reductive Lie group $\operatorname{GL}(n,\mathbb{R})$ is not connected. If n is even our formulas show that we always have non-trivial K^0 and K^1 . We also recall the K-theory for the reduced C^* -algebra of the complex reductive group $\operatorname{GL}(n,\mathbb{C})$, see [13]. In section 4 we recall the Langlands parameters for $\operatorname{GL}(n)$ over archimedean local fields, see [8]. In section 5 we compute the base change map $\mathcal{BC} : \mathcal{A}_n^t(\mathbb{R}) \to \mathcal{A}_n^t(\mathbb{C})$ and prove that \mathcal{BC} is a continuous proper map. At the level of K-theory, base change is the zero map for n > 1 (Theorem 5.4) and is nontrivial for n = 1 (Theorem 5.5). In section 6, we compute the automorphic induction map $\mathcal{AI} : \mathcal{A}_n^t(\mathbb{C}) \to \mathcal{A}_{2n}^t(\mathbb{R})$. Contrary to base change, at the level of K-theory, automorphic induction is nontrivial for every n (Theorem 6.5). In section 7, where we study the case n = 1, base change for K^1 creates a map

$$\mathcal{R}(\mathrm{U}(1)) \longrightarrow \mathcal{R}(\mathbb{Z}/2\mathbb{Z})$$

where $\mathcal{R}(U(1))$ is the representation ring of the circle group U(1) and $\mathcal{R}(\mathbb{Z}/2\mathbb{Z})$ is the representation ring of the group $\mathbb{Z}/2\mathbb{Z}$. This map sends the trivial character of U(1) to $1 \oplus \varepsilon$, where ε is the nontrivial character of $\mathbb{Z}/2\mathbb{Z}$, and sends all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The K-cycle

$$(C_0(\mathbb{R}), L^2(\mathbb{R}), id/dx)$$

is equivariant with respect to \mathbb{C}^{\times} and \mathbb{R}^{\times} , and therefore determines a class $\mathscr{D}_{\mathbb{C}} \in K_1^{\mathbb{C}^{\times}}(\underline{E}\mathbb{C}^{\times})$ and a class $\mathscr{D}_{\mathbb{R}} \in K_1^{\mathbb{R}^{\times}}(\underline{E}\mathbb{R}^{\times})$. On the left-hand-side of the Baum-Connes correspondence, base change in dimension 1 admits the following description in terms of Dirac operators:

$$\partial_{\mathbb{C}} \mapsto (\partial_{\mathbb{R}}, \partial_{\mathbb{R}})$$

This extends the results of [11] to archimedean fields.

We thank Paul Baum for a valuable exchange of emails.

2 On the tempered dual of GL(n)

Let $F = \mathbb{R}$. In order to compute the K-theory of the reduced C^* -algebra of $\operatorname{GL}(n, F)$ we need to parametrize the tempered dual $\mathcal{A}_n^t(F)$ of GL(n, F).

Let M be a standard Levi subgroup of GL(n, F), i.e. a block-diagonal subgroup. Let ${}^{0}M$ be the subgroup of M such that the determinant of each block-diagonal is ± 1 . Denote by $X(M) = \widehat{M/{}^{0}M}$ the group of unramified characters of M, consisting of those characters which are trivial on ${}^{0}M$.

Let W(M) = N(M)/M denote the Weyl group of M. W(M) acts on the discrete series $E_2({}^{0}M)$ of ${}^{0}M$ by permutations.

Now, choose one element $\sigma \in E_2({}^{0}M)$ for each W(M)-orbit. The *isotropy* subgroup of W(M) is defined to be

$$W_{\sigma}(M) = \{ \omega \in W(M) : \omega . \sigma = \sigma \}.$$

Form the disjoint union

$$\bigsqcup_{(M,\sigma)} X(M)/W_{\sigma}(M) = \bigsqcup_{M} \bigsqcup_{\sigma \in E_2(^0M)} X(M)/W_{\sigma}(M).$$
(1)

The disjoint union has the structure of a locally compact, Hausdorff space and is called the *Harish-Chandra parameter space*. The parametrization of the tempered dual $\mathcal{A}_n^t(\mathbb{R})$ is due to Harish-Chandra, see [10].

Proposition 2.1. There exists a bijection

$$\bigsqcup_{(M,\sigma)} X(M) / W_{\sigma}(M) \longrightarrow \mathcal{A}_{n}^{t}(\mathbb{R})$$
$$\chi^{\sigma} \mapsto i_{GL(n),MN}(\chi^{\sigma} \otimes 1),$$

where $\chi^{\sigma}(x) := \chi(x)\sigma(x)$ for all $x \in M$.

In view of the above bijection, we will denote the Harish-Chandra parameter space by $\mathcal{A}_n^t(\mathbb{R})$.

We will see now the particular features of the archimedean case, starting with $GL(n, \mathbb{R})$. Since the discrete series of $GL(n, \mathbb{R})$ is empty for $n \geq 3$, we only need to consider partitions of n into 1's and 2's. This allows us to to decompose n as n = 2q + r, where q is the number of 2's and r is the number of 1's in the partition. To this decomposition we associate the partition

$$n = (\underbrace{2, \dots, 2}_{q}, \underbrace{1, \dots, 1}_{r}),$$

which corresponds to the Levi subgroup

$$M \cong \underbrace{GL(2,\mathbb{R}) \times \ldots \times GL(2,\mathbb{R})}_{q} \times \underbrace{GL(1,\mathbb{R}) \times \ldots \times GL(1,\mathbb{R})}_{r}.$$

Varying q and r we determine a representative in each equivalence class of Levi subgroups. The subgroup ${}^{0}M$ of M is given by

$${}^{0}M \cong \underbrace{SL^{\pm}(2,\mathbb{R}) \times \ldots \times SL^{\pm}(2,\mathbb{R})}_{q} \times \underbrace{SL^{\pm}(1,\mathbb{R}) \times \ldots \times SL^{\pm}(1,\mathbb{R})}_{r},$$

where

$$SL^{\pm}(m,\mathbb{R}) = \{g \in GL(m,\mathbb{R}) : |det(g)| = 1\}$$

is the unimodular subgroup of $GL(m, \mathbb{R})$. In particular, $SL^{\pm}(1, \mathbb{R}) = \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$.

The representations in the discrete series of $GL(2,\mathbb{R})$, denoted \mathcal{D}_{ℓ} for $\ell \in \mathbb{N}$ ($\ell \geq 1$) are induced from $SL(2,\mathbb{R})$ [8, p.399]:

$$\mathcal{D}_{\ell} = ind_{SL^{\pm}(2,\mathbb{R}),SL(2,\mathbb{R})}(\mathcal{D}_{\ell}^{\pm}),$$

where \mathcal{D}_{ℓ}^{\pm} acts in the space

$$\{f: \mathcal{H} \to \mathbb{C} | f \text{ analytic }, \|f\|^2 = \int \int |f(z)|^2 y^{\ell-1} dx dy < \infty \}.$$

Here, \mathcal{H} denotes the Poincaré upper half plane. The action of $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by

$$\mathcal{D}_{\ell}^{\pm}(g)(f(z)) = (bz+d)^{-(\ell+1)}f(\frac{az+c}{bz+d}).$$

More generally, an element σ from the discrete series $E_2(^0M)$ is given by

$$\sigma = i_{G,MN}(\mathcal{D}_{\ell_1}^{\pm} \otimes \ldots \otimes \mathcal{D}_{\ell_q}^{\pm} \otimes \tau_1 \otimes \ldots \otimes \tau_r \otimes 1),$$
(2)

where $\mathcal{D}_{\ell_i}^{\pm}$ ($\ell_i \geq 1$) are the discrete series representations of $SL^{\pm}(2,\mathbb{R})$ and τ_j is a representation of $SL^{\pm}(1,\mathbb{R}) \cong \mathbb{Z}/2\mathbb{Z}$, i.e. $id = (x \mapsto x)$ or $sgn = (x \mapsto \frac{x}{|x|})$.

Finally we will compute the unramified characters X(M), where M is the Levi subgroup associated to the partition n = 2q + r.

Let $x \in GL(2,\mathbb{R})$. Any character of $GL(2,\mathbb{R})$ is given by

$$\chi(det(x)) = (sgn(det(x)))^{\varepsilon} |det(x)|^{it}$$

 $(\varepsilon = 0, 1, t \in \mathbb{R})$ and it is unramified provided that

$$\chi(det(g)) = \chi(\pm 1) = (\pm 1)^{\varepsilon} = 1, \text{ for all } g \in SL^{\pm}(2, \mathbb{R}).$$

This implies $\varepsilon = 0$ and any unramified character of $GL(2, \mathbb{R})$ has the form

$$\chi(x) = |det(x)|^{it}, \text{ for some } t \in \mathbb{R}.$$
(3)

Similarly, any unramified character of $GL(1, \mathbb{R}) = \mathbb{R}^{\times}$ has the form

$$\xi(x) = |x|^{it}, \text{ for some } t \in \mathbb{R}.$$
(4)

Given a block diagonal matrix $diag(g_1, ..., g_q, \omega_1, ..., \omega_r) \in M$, where $g_i \in GL(2, \mathbb{R})$ and $\omega_j \in GL(1, \mathbb{R})$, we conclude from (3) and (4) that any unramified character $\chi \in X(M)$ is given by

$$\begin{split} \chi(diag(g_1, ..., g_q, \omega_1, ..., \omega_r)) &= \\ &= |det(g_1)|^{it_1} \times ... \times |det(g_q)|^{it_q} \times |\omega_1|^{it_{q+1}} \times ... \times |\omega_r|^{it_{q+r}}, \end{split}$$

for some $(t_1, ..., t_{q+r}) \in \mathbb{R}^{q+r}$. We can denote such element $\chi \in X(M)$ by $\chi_{(t_1,...,t_{q+r})}$. We have the following result.

Proposition 2.2. Let M be a Levi subgroup of $GL(n, \mathbb{R})$, associated to the partition n = 2q + r. Then, there is a bijection

$$X(M) \to \mathbb{R}^{q+r}$$
, $\chi_{(t_1,...,t_{q+r})} \mapsto (t_1,...,t_{q+r}).$

Let us consider now $\operatorname{GL}(n, \mathbb{C})$. The tempered dual of $\operatorname{GL}(n, \mathbb{C})$ comprises the *unitary principal series* in accordance with Harish-Chandra [6, p. 277]. The corresponding Levi subgroup is a maximal torus $T \cong (\mathbb{C}^{\times})^n$. It follows that ${}^0T \cong \mathbb{T}^n$ the compact *n*-torus.

The principal series representations are given by

$$\pi_{\ell,it} = i_{G,TU}(\sigma \otimes 1), \tag{5}$$

where $\sigma = \sigma_1 \otimes \ldots \otimes \sigma_n$ and $\sigma_j(z) = (\frac{z}{|z|})^{\ell_j} |z|^{it_j} \ (\ell_j \in \mathbb{Z} \text{ and } t_j \in \mathbb{R}).$

An unramified character is given by

$$\chi \left(\begin{array}{cc} z_1 & & \\ & \ddots & \\ & & z_n \end{array} \right) = |z_1|^{it_1} \times \dots \times |z_n|^{it_n}$$

and we can represent χ as $\chi_{(t_1,\ldots,t_n)}$. Therefore, we have the following result.

Proposition 2.3. Denote by T the standard maximal torus in $GL(n, \mathbb{C})$. There is a bijection

$$X(T) \to \mathbb{R}^n$$
, $\chi_{(t_1,\dots,t_n)} \mapsto (t_1,\dots,t_n).$

3 K-theory for GL(n)

Using the Harish-Chandra parametrization of the tempered dual of $\operatorname{GL}(n, \mathbb{R})$ and $\operatorname{GL}(n, \mathbb{C})$ (recall that the Harish-Chandra parameter space is a locally compact, Hausdorff topological space) we can compute the K-theory of the reduced C^* -algebras $C_r^*\operatorname{GL}(n, \mathbb{R})$ and $C_r^*\operatorname{GL}(n, \mathbb{C})$.

3.1 *K*-theory for $GL(n, \mathbb{R})$

We exploit the strong Morita equivalence described in $[12, \S 1.2]$. We infer that

$$K_{j}(C_{r}^{*}\mathrm{GL}(n,\mathbb{R})) = K^{j}(\bigsqcup_{(M,\sigma)} X(M)/W_{\sigma}(M))$$

$$= \bigoplus_{(M,\sigma)} K^{j}(X(M)/W_{\sigma}(M))$$

$$= \bigoplus_{(M,\sigma)} K^{j}(\mathbb{R}^{n_{M}}/W_{\sigma}(M)), \qquad (6)$$

where $n_M = q + r$ if M is a representative of the equivalence class of Levi subgroup associated to the partition n = 2q + r. Hence the K-theory depends on n and on each Levi subgroup.

To compute (6) we have to consider the following orbit spaces:

- (i) Rⁿ, in which case W_σ(M) is the trivial subgroup of the Weil group W(M);
- (ii) \mathbb{R}^n / S_n , where $W_{\sigma}(M) = W(M)$ (this is one of the possibilities for the partition of *n* into 1's);
- (iii) $\mathbb{R}^n/(S_{n_1} \times \ldots \times S_{n_k})$, where $W_{\sigma}(M) = S_{n_1} \times \ldots \times S_{n_k} \subset W(M)$ (see the examples below).

Definition 3.1. An orbit space as indicated in (ii) and (iii) is called a closed cone.

The K-theory for \mathbb{R}^n may be summarized as follows

$$K^{j}(\mathbb{R}^{n}) = \begin{cases} \mathbb{Z} \text{ if } n = j \mod 2\\ 0 \text{ otherwise }. \end{cases}$$

The next results show that the K-theory of a closed cone vanishes.

Lemma 3.2. $K^{j}(\mathbb{R}^{n}/S_{n}) = 0, j = 0, 1.$

Proof. We need the following definition. A point $(a_1, ..., a_n) \in \mathbb{R}^n$ is called normalized if $a_j \leq a_{j+1}$, for j = 1, 2, ..., n - 1. Therefore, in each orbit there is exactly one normalized point and \mathbb{R}^n/S_n is homeomorphic to the subset of \mathbb{R}^n consisting of all normalized points of \mathbb{R}^n . We denote the set of all normalized points of \mathbb{R}^n by $N(\mathbb{R}^n)$.

In the case of n = 2, let (a_1, a_2) be a normalized point of \mathbb{R}^2 . Then, there is a unique $t \in [1, +\infty)$ such that $a_2 = ta_1$ and the map

$$\mathbb{R} \times [1, +\infty[\to N(\mathbb{R}^2), (a, t) \mapsto (a, ta)]$$

is a homeomorphism.

If n > 2 then the map

$$N(\mathbb{R}^{n-1}) \times [1, +\infty[\to N(\mathbb{R}^n), (a_1, ..., a_{n-1}, t) \mapsto (a_1, ..., a_{n-1}, ta_n)$$

is a homeomorphism. Since $[1, +\infty)$ kills both the K-theory groups K^0 and K^1 , the result follows by applying Künneth formula.

The symmetric group S_n acts on \mathbb{R}^n by permuting the components. This induces an action of any subgroup $S_{n_1} \times \ldots \times S_{n_k}$ of S_n on \mathbb{R}^n . Write

$$\mathbb{R}^n \cong \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \ldots \times \mathbb{R}^{n_k} \times \mathbb{R}^{n-n_1-\ldots-n_k}.$$

If $n = n_1 + \ldots + n_k$ then we simply have $\mathbb{R}^n \cong \mathbb{R}^{n_1} \times \ldots \times \mathbb{R}^{n_k}$.

The group $S_{n_1} \times \ldots \times S_{n_k}$ acts on \mathbb{R}^n as follows.

 S_{n_1} permutes the components of \mathbb{R}^{n_1} leaving the remaining fixed; S_{n_2} permutes the components of \mathbb{R}^{n_2} leaving the remaining fixed; and so on. If $n > n_1 + \ldots + n_k$ the components of $\mathbb{R}^{n-n_1-\ldots-n_k}$ remain fixed. This can be interpreted, of course, as the action of the trivial subgroup. As a consequence, one identify the orbit spaces

$$\mathbb{R}^n/(S_{n_1} \times \ldots \times S_{n_k}) \cong \mathbb{R}^{n_1}/S_{n_1} \times \ldots \times \mathbb{R}^{n_k}/S_{n_k} \times \mathbb{R}^{n-n_1-\ldots-n_k}$$

Lemma 3.3. $K^j(\mathbb{R}^n/(S_{n_1}\times\ldots\times S_{n_k})=0, j=0,1, where S_{n_1}\times\ldots\times S_{n_k}\subset S_n.$

Proof. It suffices to prove for $\mathbb{R}^n/(S_{n_1} \times S_{n_2})$. The general case follows by induction on k.

Now, $\mathbb{R}^n/(S_{n_1} \times S_{n_2}) \cong \mathbb{R}^{n_1}/S_{n_1} \times \mathbb{R}^{n-n_1}/S_{n_2}$. Applying the Künneth formula and Lemma 3.2, the result follows.

We give now some examples by computing $K_j C_r^* GL(n, \mathbb{R})$ for small n.

Example 3.4. We start with the case of $GL(1, \mathbb{R})$. We have:

$$M = \mathbb{R}^{\times}$$
, ${}^{0}M = \mathbb{Z}/2\mathbb{Z}$, $W(M) = 1$ and $X(M) = \mathbb{R}$.

Hence,

$$\mathcal{A}_{1}^{t}(\mathbb{R}) \cong \bigsqcup_{\sigma \in (\widehat{\mathbb{Z}/2\mathbb{Z}})} \mathbb{R}/1 = \mathbb{R} \sqcup \mathbb{R},$$
(7)

and the K-theory is given by

$$K_j C_r^* GL(1, \mathbb{R}) \cong K^j(\mathcal{A}_1^t(\mathbb{R})) = K^j(\mathbb{R} \sqcup \mathbb{R}) = K^j(\mathbb{R}) \oplus K^j(\mathbb{R}) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & , j = 1 \\ 0 & , j = 0 \end{cases}$$

Example 3.5. For $GL(2,\mathbb{R})$ we have two partitions of n = 2 and the following data

Partition	M	^{0}M	W(M)	X(M)	$\sigma \in E_2(^0M)$
2+0	$GL(2,\mathbb{R})$	$SL^{\pm}(2,\mathbb{R})$	1	\mathbb{R}	$\sigma = i_{G,P}(\mathcal{D}_{\ell}^+), \ell \in \mathbb{N}$
1+1	$(\mathbb{R}^{\times})^2$	$(\mathbb{Z}/2\mathbb{Z})^2$	$\mathbb{Z}/2\mathbb{Z}$	\mathbb{R}^2	$\sigma = i_{G,P}(id \otimes sgn)$

Then the tempered dual is parameterized as follows

$$\mathcal{A}_{2}^{t}(\mathbb{R}) \cong \bigsqcup_{(M,\sigma)} X(M) / W_{\sigma}(M) = (\bigsqcup_{\ell \in \mathbb{N}} \mathbb{R}) \sqcup (\mathbb{R}^{2}/S_{2}) \sqcup (\mathbb{R}^{2}/S_{2}) \sqcup \mathbb{R}^{2},$$

and the K-theory groups are given by

$$K_j C_r^* GL(2, \mathbb{R}) \cong K^j(\mathcal{A}_2^t(\mathbb{R})) \cong (\bigoplus_{\ell \in \mathbb{N}} K^j(\mathbb{R})) \oplus K^j(\mathbb{R}^2) = \begin{cases} \bigoplus_{\ell \in \mathbb{N}} \mathbb{Z} &, j = 1\\ \mathbb{Z} &, j = 0. \end{cases}$$

Example 3.6. For $GL(3, \mathbb{R})$ there are two partitions for n = 3, to which correspond the following data

Partition	M	^{0}M	W(M)	X(M)
2+1	$GL(2,\mathbb{R})\times\mathbb{R}^{\times}$	$SL^{\pm}(2,\mathbb{R}) \times (\mathbb{Z}/2\mathbb{Z})$	1	\mathbb{R}^2
1 + 1 + 1	$(\mathbb{R}^{ imes})^3$	$(\mathbb{Z}/2\mathbb{Z})^3$	S_3	\mathbb{R}^3

For the partition 3 = 2 + 1, an element $\sigma \in E_2(^{0}M)$ is given by

$$\sigma = i_{G,P}(\mathcal{D}^+_{\ell} \otimes \tau) \ , \ \ell \in \mathbb{N} \ and \ \tau \in (\widetilde{\mathbb{Z}}/2\widetilde{\mathbb{Z}}).$$

For the partition 3 = 1 + 1 + 1, an element $\sigma \in E_2(^{0}M)$ is given by

$$\sigma = i_{G,P}(\bigotimes_{i=1}^{3} \tau_i) , \ \tau_i \in (\widehat{\mathbb{Z}/2\mathbb{Z}}).$$

The tempered dual is parameterized as follows

$$\mathcal{A}_{3}^{t}(\mathbb{R}) \cong \bigsqcup_{(M,\sigma)} X(M) / W_{\sigma}(M) = \bigsqcup_{\mathbb{N} \times (\mathbb{Z}/2\mathbb{Z})} (\mathbb{R}^{2}/1) \bigsqcup_{(\mathbb{Z}/2\mathbb{Z})^{3}} (\mathbb{R}^{3}/S_{3}).$$

The K-theory groups are given by

$$K_j C_r^* GL(3, \mathbb{R}) \cong K^j(\mathcal{A}_3^t(\mathbb{R})) \cong \bigoplus_{\mathbb{N} \times (\mathbb{Z}/2\mathbb{Z})} K^j(\mathbb{R}^2) \oplus 0 = \begin{cases} \bigoplus_{\mathbb{N} \times (\mathbb{Z}/2\mathbb{Z})} \mathbb{Z} &, j = 0\\ 0 &, j = 1. \end{cases}$$

The general case of $GL(n, \mathbb{R})$ will now be considered. It can be split in two cases: n even and n odd.

• n = 2q even

Suppose *n* is even. For every partition n = 2q + r, either $W_{\sigma}(M) = 1$ or $W_{\sigma}(M) \neq 1$. If $W_{\sigma}(M) \neq 1$ then $\mathbb{R}^{n_M}/W_{\sigma}(M)$ is a cone and the *K*-groups K^0 and K^1 both vanish. This happens precisely when r > 2 and therefore we have only two partitions, corresponding to the choices of r = 0 and r = 2, which contribute to the *K*-theory with non-zero *K*-groups

Partition	M	^{0}M	W(M)
2q	$GL(2,\mathbb{R})^q$	$SL^{\pm}(2,\mathbb{R})^q$	S_q
2(q-1)+2	$GL(2,\mathbb{R})^{q-1} \times (\mathbb{R}^{\times})^2$	$SL^{\pm}(2,\mathbb{R})^{q-1} \times (\mathbb{Z}/2\mathbb{Z})^2$	$S_{q-1} \times (\mathbb{Z}/2\mathbb{Z})$

We also have $X(M) \cong \mathbb{R}^q$ for n = 2q, and $X(M) \cong \mathbb{R}^{q+1}$, for n = 2(q-1)+2.

For the partition n = 2q (r = 0), an element $\sigma \in E_2(^{0}M)$ is given by

$$\sigma = i_{G,P}(\mathcal{D}^+_{\ell_1} \otimes \ldots \otimes \mathcal{D}^+_{\ell_q}) , \ (\ell_1, \ldots \ell_q) \in \mathbb{N}^q \text{ and } \ell_i \neq \ell_j \text{ if } i \neq j.$$

For the partition n = 2(q-1) + 2 (r = 2), an element $\sigma \in E_2({}^0M)$ is given by

$$\sigma = i_{G,P}(\mathcal{D}^+_{\ell_1} \otimes \ldots \otimes \mathcal{D}^+_{\ell_{q-1}} \otimes id \otimes sgn) , \ (\ell_1, \ldots \ell_{q-1}) \in \mathbb{N}^{q-1} \text{ and } \ell_i \neq \ell_j \text{ if } i \neq j.$$

Therefore, the tempered dual has the following form

$$\mathcal{A}_n^t(\mathbb{R}) = \mathcal{A}_{2q}^t(\mathbb{R}) = (\bigsqcup_{\ell \in \mathbb{N}^q} \mathbb{R}^q) \sqcup (\bigsqcup_{\ell' \in \mathbb{N}^{q-1}} \mathbb{R}^{q+1}) \sqcup \mathcal{C}$$

where C is a disjoint union of closed cones as in Definition 3.1.

Theorem 3.7. Suppose n = 2q is even. Then the K-groups are

$$K_j C_r^* GL(n, \mathbb{R}) \cong \left\{ \begin{array}{ll} \bigoplus_{\ell \in \mathbb{N}^q} \mathbb{Z} &, j \equiv q(mod2) \\ \bigoplus_{\ell \in \mathbb{N}^{q-1}} \mathbb{Z} &, otherwise. \end{array} \right.$$

If q = 1 then the direct sum $\bigoplus_{\ell \in \mathbb{N}^{q-1}} \mathbb{Z}$ will denote a single copy of \mathbb{Z} .

• n = 2q + 1 odd

If n is odd only one partition contributes to the K-theory of $GL(n, \mathbb{R})$ with non-zero K-groups:

Partition	M	^{0}M	W(M)	X(M)
2q + 1	$GL(2,\mathbb{R})^{q+1} \times \mathbb{R}^{\times}$	$SL^{\pm}(2,\mathbb{R})^q \times (\mathbb{Z}/2\mathbb{Z})$	S_q	\mathbb{R}^{q+1}

An element $\sigma \in E_2({}^0M)$ is given by

$$\sigma = i_{G,P}(\mathcal{D}^+_{\ell_1} \otimes \ldots \otimes \mathcal{D}^+_{\ell_q} \otimes \tau) , \ (\ell_1, \ldots \ell_q, \tau) \in \mathbb{N}^q \times (\mathbb{Z}/2\mathbb{Z}) \text{ and } \ell_i \neq \ell_j \text{ if } i \neq j.$$

The tempered dual is given by

$$\mathcal{A}_n^t(\mathbb{R}) = \mathcal{A}_{2q+1}^t(\mathbb{R}) = (\bigsqcup_{\ell \in (\mathbb{N}^q \times (\mathbb{Z}/2\mathbb{Z}))} \mathbb{R}^{q+1}) \sqcup \mathcal{C}$$

where C is a disjoint union of closed cones as in Definition 3.1.

Theorem 3.8. Suppose n = 2q + 1 is odd. Then the K-groups are

$$K_j C_r^* GL(n, \mathbb{R}) \cong \begin{cases} \bigoplus_{\ell \in \mathbb{N}^q \times (\mathbb{Z}/2\mathbb{Z})} \mathbb{Z} &, j \equiv q+1 (mod2) \\ 0 &, otherwise. \end{cases}$$

Here, we use the following convention: if q = 0 then the direct sum is $\bigoplus_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z} \cong \mathbb{Z} \oplus \mathbb{Z}$.

We conclude that the K-theory of $C_r^*GL(n, \mathbb{R})$ depends on essentially one parameter q given by the maximum number of 2's in the partitions of n into 1's and 2's. If n is even then $q = \frac{n}{2}$ and if n is odd then $q = \frac{n-1}{2}$.

3.2 *K*-theory for $GL(n, \mathbb{C})$

Let T° be the maximal compact subgroup of the maximal compact torus Tof $\operatorname{GL}(n, \mathbb{C})$. Let σ be a unitary character of T° . We note that W = W(T), $W_{\sigma} = W_{\sigma}(T)$. If $W_{\sigma} = 1$ then we say that the orbit $W \cdot \sigma$ is generic.

Theorem 3.9. The K-theory of $C_r^* \operatorname{GL}(n, \mathbb{C})$ admits the following description. If $n = j \mod 2$ then K_j is free abelian on countably many generators, one for each generic W- orbit in the unitary dual of T° , and $K_{j+1} = 0$.

Proof. We exploit the strong Morita equivalence described in [13, Prop. 4.1]. We have a homeomorphism of locally compact Hausdorff spaces:

$$\mathcal{A}_n^t(\mathbb{C}) \cong \bigsqcup X(T)/W_\sigma(T)$$

by the Harish-Chandra Plancherel Theorem for complex reductive groups [6], and the identification of the Jacobson topology on the left-hand-side with the natural topology on the right-hand-side, as in [13]. The result now follows from Lemma 4.3. $\hfill \Box$

4 Langlands parameters for GL(n)

The Weil group of \mathbb{C} is simply

$$W_{\mathbb{C}} \cong \mathbb{C}^{\times},$$

and the Weil group of \mathbb{R} can be written as disjoint union

$$W_{\mathbb{R}} \cong \mathbb{C}^{\times} \sqcup j\mathbb{C}^{\times},$$

where $j^2 = -1$ and $jcj^{-1} = \overline{c}$ (\overline{c} denotes complex conjugation). We shall use this disjoint union to describe the representation theory of $W_{\mathbb{R}}$.

Definition 4.1. An L- parameter is a continuous homomorphism

$$\phi: W_F \to GL(n, \mathbb{C})$$

such that $\phi(w)$ is semisimple for all $w \in W_F$.

L-parameters are also called Langlands parameters. Two *L*-parameters are equivalent if they are cojugate under $GL(n, \mathbb{C})$. The set of equivalence classes of *L*-parameters is denoted by \mathcal{G}_n . And the set of equivalence classes of *L*-parameters whose image is bounded is denoted by \mathcal{G}_n^t .

Let F be either \mathbb{R} or \mathbb{C} . Let $\mathcal{A}_n(F)$ (resp. $\mathcal{A}_n^t(F)$) denote the smooth dual (resp. tempered dual) of GL(n, F). The local Langlands correspondence is a bijection

$$\mathcal{G}_n(F) \to \mathcal{A}_n(F).$$

In particular,

$$\mathcal{G}_n^t(F) \to \mathcal{A}_n^t(F)$$

is also a bijection.

We are only interested in L-parameters whose image is bounded. In the sequel we will refer to them, for simplicity, as L-parameters.

L-parameters for $W_{\mathbb{C}}$

A 1-dimensional L-parameter for $W_{\mathbb{C}}$ is simply a character of \mathbb{C}^{\times} (i.e. a unitary quasicharacter):

$$\chi(z) = \left(\frac{z}{|z|}\right)^{\ell} \otimes |z|^{it}$$

where $|z| = |z|_{\mathbb{C}} = z\overline{z}, \ \ell \in \mathbb{Z}$ and $t \in \mathbb{R}$. To emphasize the dependence on parameters (ℓ, t) we write sometimes $\chi = \chi_{\ell, t}$.

An *n*-dimensional *L*-parameter can be written as a direct sum of *n* 1-dimensional characters of \mathbb{C}^{\times} :

$$\phi = \phi_1 \oplus \ldots \oplus \phi_n,$$

with $\phi_k(z) = \left(\frac{z}{|z|}\right)^{\ell_k} \otimes |z|^{t_k}, \ell_k \in \mathbb{Z}, t_k \in \mathbb{R}, k = 1, ..., n.$

L-parameters for $W_{\mathbb{R}}$

The 1-dimensional $L\text{-}\mathrm{parameters}$ for $W_{\mathbb{R}}$ are as follows

$$\begin{array}{l} \begin{pmatrix} \phi_{\varepsilon,t}(z) = |z|_{\mathbb{R}}^{it} \\ & , \varepsilon \in \{0,1\}, t \in \mathbb{R}. \\ & \phi_{\varepsilon,t}(j) = (-1)^{\varepsilon} \end{array} \end{array}$$

We may now describe the local Langlands correspondence for $GL(1, \mathbb{R})$:

$$\begin{split} \phi_{0,t} &\mapsto 1 \otimes |.|_{\mathbb{R}}^{it} \\ \phi_{1,t} &\mapsto sgn \otimes |.|_{\mathbb{R}}^{it} \end{split}$$

Now, we consider 2-dimensional L-parameters for $W_{\mathbb{R}}$:

$$\phi_{\ell,t}(z) = \begin{pmatrix} \chi_{\ell,t}(z) & 0\\ 0 & \overline{\chi}_{\ell,t}(z) \end{pmatrix} , \phi_{\ell,t}(j) = \begin{pmatrix} 0 & (-1)^{\ell}\\ 1 & 0 \end{pmatrix}$$

with $\ell \in \mathbb{Z}$ and $t \in \mathbb{R}$.

and

$$\phi_{m,t,n,s}(z) = \begin{pmatrix} \chi_{0,t}(z) & 0\\ 0 & \chi_{0,s}(z) \end{pmatrix}, \ \phi_{m,t,n,s}(j) = \begin{pmatrix} (-1)^m & 0\\ 0 & (-1)^n \end{pmatrix}.$$

with $m, n \in \{0, 1\}$ and $t, s \in \mathbb{R}$.

The local Langlands correspondence for $GL(2,\mathbb{R})$ may be described as follows.

The *L*-parameter ϕ_{m_1,t_1,m_2,t_2} corresponds, via Langlands correspondence, to the unitary principal series:

$$\phi_{m_1,t_1,m_2,t_2} \mapsto \pi(\mu_1,\mu_2),$$

where μ_i is the character of \mathbb{R}^{\times} given by

$$\mu_i(x) = \left(\frac{x}{|x|}\right)^{m_i} |x|^{it}, m_i \in \{0, 1\}, t_i \in \mathbb{R}.$$

The *L*-parameter $\phi_{\ell,t}$ corresponds, via the Langlands correspondence, to the discrete series:

$$\phi_{\ell,t} \mapsto D_{\ell} \otimes |det(.)|^{it}_{\mathbb{R}}$$
, with $\ell \in \mathbb{N}, t \in \mathbb{R}$.

Proposition 4.2. (i) $\phi_{\ell,t} \cong \phi_{-\ell,t}$;

- (*ii*) $\phi_{\ell,t,m,s} \cong \phi_{m,s,\ell,t}$;
- (*iii*) $\phi_{0,t} \cong \phi_{1,t,0,t} \cong \phi_{0,t,1,t}$;

The proof is elementary. We now quote the following result.

Lemma 4.3. [8] Every finite-dimensional semi-simple representation ϕ of $W_{\mathbb{R}}$ is fully reducible, and each irreducible representation has dimension one or two.

5 Base change

We may state the base change problem for archimedean fields in the following way. Consider the archimedean base change \mathbb{C}/\mathbb{R} . We have $W_{\mathbb{C}} \subset W_{\mathbb{R}}$ and there is a natural map

$$Res_{W_{\mathcal{C}}}^{W_{\mathbb{R}}} : \mathcal{G}_n(\mathbb{R}) \longrightarrow \mathcal{G}_n(\mathbb{C})$$
 (8)

called *restriction*. By the local Langlands correspondence for archimedean fields [3, Theorem 3.1, p.236][8], there is a base change map

$$\mathcal{BC}: \mathcal{A}_n(\mathbb{R}) \longrightarrow \mathcal{A}_n(\mathbb{C}) \tag{9}$$

such that the following diagram commutes

$$\begin{array}{c} \mathcal{A}_n(\mathbb{R}) \xrightarrow{\mathcal{BC}} \mathcal{A}_n(\mathbb{C}) \\ \mathbb{R}^{\mathcal{L}_n} & \uparrow^{\mathbb{C}\mathcal{L}_n} \\ \mathcal{G}_n(\mathbb{R}) \xrightarrow{W_{\mathbb{R}}} \mathcal{G}_n(\mathbb{C}) \end{array}$$

Arthur and Clozel's book [1] gives a full treatment of base change for GL(n). The case of archimedean base change can be captured in an elegant formula [1, p. 71]. We briefly review these results.

Given a partition n = 2q + r let χ_i (i = 1, ..., q) be a ramified character of \mathbb{C}^{\times} and let ξ_j (j = 1, ..., r) be a ramified character of \mathbb{R}^{\times} . Since the χ_i 's are ramified, $\chi_i(z) \neq \chi_i^{\tau}(z) = \chi_i(\overline{z})$, where τ is a generator of $Gal(\mathbb{C}/\mathbb{R})$. By Langlands classification [8], each χ_i defines a discrete series representation $\pi(\chi_i)$ of $GL(2,\mathbb{R})$, with $\pi(\chi_i) = \pi(\chi_i^{\tau})$. Denote by $\pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r)$ the generalized principal series representation of $GL(n,\mathbb{R})$

$$\pi(\chi_1, \dots, \chi_q, \xi_1, \dots, \xi_r) = i_{GL(n,\mathbb{R}),MN}(\pi(\chi_1) \otimes \dots \otimes \pi(\chi_q) \otimes \xi_1 \otimes \dots \otimes \xi_r \otimes 1).$$
(10)

The base change map for the general principal series representation is given by induction from the Borel subgroup $B(\mathbb{C})$ [1, p. 71]:

$$\mathcal{BC}(\pi) = \Pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r) = i_{GL(n,\mathbb{C}), B(\mathbb{C})}(\chi_1, \chi_1^{\tau}, ..., \chi_q, \chi_q^{\tau}, \xi_1 \circ N, ..., \xi_r \circ N),$$
(11)

where $N = N_{\mathbb{C}/\mathbb{R}} : \mathbb{C}^{\times} \longrightarrow \mathbb{R}^{\times}$ is the norm map defined by $z \mapsto z\overline{z}$. We illustrate the base change map with two simple examples.

Example 5.1. For n = 1, base change is simply composition with the norm map

$$\mathcal{BC}: \mathcal{A}_1^t(\mathbb{R}) \to \mathcal{A}_1^t(\mathbb{C})$$
, $\mathcal{BC}(\chi) = \chi \circ N.$

Example 5.2. For n = 2, there are two different kinds of representations, one for each partition of 2. According to (10), $\pi(\chi)$ corresponds to the partition 2 = 2 + 0 and $\pi(\xi_1, \xi_2)$ corresponds to the partition 2 = 1 + 1. Then the base change map is given, respectively, by

$$\mathcal{BC}(\pi(\chi)) = i_{GL(2,\mathbb{C}),B(\mathbb{C})}(\chi,\chi^{\tau}),$$

and

$$\mathcal{BC}(\pi(\xi_1,\xi_2)) = i_{GL(2,\mathbb{C}),B(\mathbb{C})}(\xi_1 \circ N,\xi_2 \circ N).$$

5.1 The base change map

Now, we define base change as a map of topological spaces and study the induced K-theory map.

Proposition 5.3. The base change map $\mathcal{BC} : \mathcal{A}_n^t(\mathbb{R}) \to \mathcal{A}_n^t(\mathbb{C})$ is a continuous proper map.

Proof. First, we consider the case n = 1. As we have seen in Example 5.1, base change for GL(1) is the map given by $\mathcal{BC}(\chi) = \chi \circ N$, for all characters $\chi \in \mathcal{A}_1^t(\mathbb{R})$, where $N : \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ is the norm map.

Let $z \in \mathbb{C}^{\times}$. We have

$$\mathcal{BC}(\chi)(z) = \chi(|z|^2) = |z|^{2it}.$$
(12)

A generic element from $\mathcal{A}_1^t(\mathbb{C})$ has the form

$$\mu(z) = \left(\frac{z}{|z|}\right)^{\ell} |z|^{it}, \tag{13}$$

where $\ell \in \mathbb{Z}$ and $t \in S^1$, as stated before. Viewing the Pontryagin duals $\mathcal{A}_1^t(\mathbb{R})$ and $\mathcal{A}_1^t(\mathbb{C})$ as topological spaces by forgetting the group structure, and comparing (12) and (13), the base change map can be defined as the following continuous map

$$\varphi: \mathcal{A}_1^t(\mathbb{R}) \cong \mathbb{R} \times (\mathbb{Z}/2\mathbb{Z}) \longrightarrow \mathcal{A}_1^t(\mathbb{C}) \cong \mathbb{R} \times \mathbb{Z}$$
$$\chi = (t, \varepsilon) \longmapsto (2t, 0)$$

A compact subset of $\mathbb{R} \times \mathbb{Z}$ in the connected component $\{\ell\}$ of \mathbb{Z} has the form $K \times \{\ell\} \subset \mathbb{R} \times \mathbb{Z}$, where $K \subset \mathbb{R}$ is compact. We have

$$\varphi^{-1}(K \times \{\ell\}) = \begin{cases} \emptyset & , \text{ if } \ell \neq 0\\ \frac{1}{2}K \times \{\varepsilon\} & , \text{ if } \ell = 0, \end{cases}$$

where $\varepsilon \in \mathbb{Z}/2\mathbb{Z}$. Therefore $\varphi^{-1}(K \times \{\ell\})$ is compact and φ is proper.

The Case n > 1. Base change determines a map $\mathcal{BC} : \mathcal{A}_n^t(\mathbb{R}) \to \mathcal{A}_n^t(\mathbb{C})$ of topological spaces. Let $X = X(M)/W_{\sigma}(M)$ be a connected component of $\mathcal{A}_n^t(\mathbb{R})$. Then, X is mapped under BC into a connected component $Y = Y(T)/W_{\sigma'}(T)$ of $\mathcal{A}_n^t(\mathbb{C})$. Given a generalized principal series representation

$$\pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r)$$

where the χ_i 's are ramified characters of \mathbb{C}^{\times} and the ξ 's are ramified characters of \mathbb{R}^{\times} , then

$$\mathcal{BC}(\pi) = i_{G,B}(\chi_1, \chi_1^{\tau}, ..., \chi_q, \chi_q^{\tau}, \xi_1 \circ N, ..., \xi_r \circ N).$$

Here, $N = N_{\mathbb{C}/\mathbb{R}}$ is the norm map and τ is the generator of $Gal(\mathbb{C}/\mathbb{R})$.

We associate to π the usual parameters uniquely defined for each character χ and ξ . For simplicity, we write the set of parameters as a (q + r)-uple:

$$(t, t') = (t_1, ..., t_q, t'_1, ..., t'_r) \in \mathbb{R}^{q+r} \cong X(M).$$

Now, if $\pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r)$ lies in the connected component defined by the fixed parameters $(\ell, \varepsilon) \in \mathbb{Z}^q \times (\mathbb{Z}/2\mathbb{Z})^r$, then

$$(t,t') \in X(M) \mapsto (t,t,2t') \in Y(T)$$

is a continuous proper map.

It follows that

$$\mathcal{BC}: X(M)/W_{\sigma}(M) \to Y(T)/W_{\sigma'}(T)$$

is continuous and proper since the orbit spaces are endowed with the quotient topology. $\hfill \Box$

Theorem 5.4. The functorial map induced by base change

$$K_j(C_r^*GL(n,\mathbb{C})) \xrightarrow{K_j(\mathcal{BC})} K_j(C_r^*GL(n,\mathbb{R}))$$

is zero for n > 1.

Proof. We start with the case n > 2. Let n = 2q + r be a partition and M the associated Levi subgroup of $GL(n, \mathbb{R})$. Denote by $X_{\mathbb{R}}(M)$ the unramified characters of M. As we have seen, $X_{\mathbb{R}}(M)$ is parametrized by \mathbb{R}^{q+r} . On the other hand, the only Levi subgroup of $GL(n, \mathbb{C})$ for n = 2q + r is the diagonal subgroup $X_{\mathbb{C}}(M) = (\mathbb{C}^{\times})^{2q+r}$.

If q = 0 then r = n and both $X_{\mathbb{R}}(M)$ and $X_{\mathbb{C}}(M)$ are parametrized by \mathbb{R}^n . But then in the real case an element $\sigma \in E_2({}^0M)$ is given by

$$\sigma = i_{GL(n,\mathbb{R}),P}(\chi_1 \otimes ... \otimes \chi_n)_{:}$$

with $\chi_i \in \mathbb{Z}/2\mathbb{Z}$. Since $n \geq 3$ there is always repetition of the χ_i 's. It follows that the isotropy subgroups $W_{\sigma}(M)$ are all nontrivial and the quotient spaces \mathbb{R}^n/W_{σ} are closed cones. Therefore, the K-theory groups vanish.

If $q \neq 0$, then $X_{\mathbb{R}}(M)$ is parametrized by \mathbb{R}^{q+r} and $X_{\mathbb{C}}(M)$ is parametrized by \mathbb{R}^{2q+r} (see Propositions 2.2 and 2.3).

Base change creates a map

$$\mathbb{R}^{q+r} \longrightarrow \mathbb{R}^{2q+r}$$

Composing with the stereographic projections we obtain a map

$$S^{q+r} \longrightarrow S^{2q+r}$$

between spheres. Any such map is nullhomotopic [4, Proposition 17.9]. Therefore, the induced K-theory map

$$K^j(S^{2q+r}) \longrightarrow K^j(S^{q+r})$$

is the zero map.

The Case n = 2. For n = 2 there are two Levi subgroups of $GL(2, \mathbb{R})$, $M_1 \cong GL(2, \mathbb{R})$ and the diagonal subgroup $M_2 \cong (\mathbb{R}^{\times})^2$. By Proposition 2.2

 $X(M_1)$ is parametrized by \mathbb{R} and $X(M_2)$ is parametrized by \mathbb{R}^2 . The group $GL(2,\mathbb{C})$ has only one Levi subgroup, the diagonal subgroup $M \cong (\mathbb{C}^{\times})^2$. From Proposition 2.3 it is parametrized by \mathbb{R}^2 .

Since $K^1(\mathcal{A}_2^t(\mathbb{C})) = 0$ by Theorem 5.1, we only have to consider the K^0 functor. The only contribution to $K^0(\mathcal{A}_2^t(\mathbb{R}))$ comes from $M_2 \cong (\mathbb{R}^{\times})^2$ and we have (see Example 3.5)

$$K^0(\mathcal{A}_2^t(\mathbb{R})) \cong \mathbb{Z}$$

For the Levi subgroup $M_2 \cong (\mathbb{R}^{\times})^2$, base change is

$$\begin{array}{lcl} \mathcal{BC}: \mathcal{A}_2^t(\mathbb{R}) & \longrightarrow & \mathcal{A}_2^t(\mathbb{C}) \\ \pi(\xi_1, \xi_2) & \mapsto & i_{GL(2,\mathbb{C}), B(\mathbb{C})}(\xi_1 \circ N, \xi_2 \circ N), \end{array}$$

Therefore, it maps a class $[t_1, t_2]$, which lies in the connected component $(\varepsilon_1, \varepsilon_2)$, into the class $[2t_1, 2t_2]$, which lies in the connect component (0, 0). In other words, base change maps a generalized principal series $\pi(\xi_1, \xi_2)$ into a nongeneric point of $\mathcal{A}_2^t(\mathbb{C})$. It follows from Theorem 3.9 that

$$K^0(\mathcal{BC}): K^0(\mathcal{A}_2^t(\mathbb{R})) \to K^0(\mathcal{A}_2^t(\mathbb{C}))$$

is the zero map.

5.2 Base change in one dimension

In this section we consider base change for GL(1).

Theorem 5.5. The functorial map induced by base change

 $K_1(C_r^*\mathrm{GL}(1,\mathbb{C})) \xrightarrow{K_1(\mathcal{BC})} K_1(C_r^*\mathrm{GL}(1,\mathbb{R}))$

is given by $K_1(\mathcal{BC}) = \Delta \circ Pr$, where Pr is the projection of the zero component of $K^1(\mathcal{A}_1^t(\mathbb{C}))$ into \mathbb{Z} and Δ is the diagonal $\mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$.

Proof. For GL(1), base change

$$\chi \in \mathcal{A}_1^t(\mathbb{R}) \mapsto \chi \circ N_{\mathbb{C}/\mathbb{R}} \in \mathcal{A}_1^t(\mathbb{C})$$

induces a map

$$K^1(\mathcal{BC}): K^1(\mathcal{A}_1^t(\mathbb{C})) \to K^1(\mathcal{A}_1^t(\mathbb{R})).$$

Any character $\chi \in \mathcal{A}_1^t(\mathbb{R})$ is uniquely determined by a pair of parameters $(t, \varepsilon) \in \mathbb{R} \times \mathbb{Z}/2\mathbb{Z}$. Similarly, any character $\mu \in \mathcal{A}_1^t(\mathbb{C})$ is uniquely determined by a pair of parameters $(t, \ell) \in \mathbb{R} \times \mathbb{Z}$. The discrete parameter ε (resp., ℓ) labels each connected component of $\mathcal{A}_1^t(\mathbb{R}) = \mathbb{R} \sqcup \mathbb{R}$ (resp., $\mathcal{A}_1^t(\mathbb{C}) = \bigsqcup_{\mathbb{Z}} \mathbb{R}$).

Base change maps each component ε of $\mathcal{A}_1^t(\mathbb{R})$ into the component 0 of $\mathcal{A}_1^t(\mathbb{C})$, sending $t \in \mathbb{R}$ to $2t \in \mathbb{R}$. The map $t \mapsto 2t$ is homotopic to the identity. At the level of K^1 , the base change map is given by $K_1(BC) = \Delta \circ Pr$, where Pr is the projection of the zero component of $K^1(\mathcal{A}_1^t(\mathbb{C}))$ into \mathbb{Z} and Δ is the diagonal $\mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$.

6 Automorphic induction

We begin this section by describing the action of $Gal(\mathbb{C}/\mathbb{R})$ on $\widehat{W_{\mathbb{C}}} = \widehat{\mathbb{C}^{\times}}$. Take $\chi = \chi_{\ell,t} \in \widehat{\mathbb{C}^{\times}}$ and let τ denote the nontrivial element of $Gal(\mathbb{C}/\mathbb{R})$. Then, $Gal(\mathbb{C}/\mathbb{R})$ acts on $\widehat{\mathbb{C}^{\times}}$ as follows:

$$\chi^{\tau}(z) = \chi(\overline{z}).$$

Hence,

$$\chi_{\ell,t}^{\tau}(z) = \left(\frac{\overline{z}}{|z|}\right)^{\ell} |z|_{\mathbb{C}}^{it} = \left(\frac{z}{|z|}\right)^{-\ell} |z|_{\mathbb{C}}^{it}$$

and we conclude that

$$\chi_{\ell,t}^{\tau}(z) = \chi_{-\ell,t}(z).$$

In particular,

$$\chi^{\tau} = \chi \Leftrightarrow \ell = 0 \Leftrightarrow \chi = |.|_{\mathbb{C}}^{it}$$

i.e, χ is unramified.

Note that $W_{\mathbb{C}} \subset W_{\mathbb{R}}$, with index $[W_{\mathbb{R}} : W_{\mathbb{C}}] = 2$. Therefore, there is a natural induction map

$$Ind_{\mathbb{C}/\mathbb{R}}: \mathcal{G}_1^t(\mathbb{C}) \to \mathcal{G}_2^t(\mathbb{R}).$$

By the local Langlands correspondence for archimedean fields [3, 8], there exists an automorphic induction map $\mathcal{AI}_{\mathbb{C}/\mathbb{R}}$ such that the following diagram commutes

$$\begin{array}{c} \mathcal{A}_{1}^{t}(\mathbb{C}) \xrightarrow{\mathcal{A}\mathcal{I}_{\mathbb{C}/\mathbb{R}}} \mathcal{A}_{2}^{t}(\mathbb{R}) \\ \xrightarrow{\mathbb{C}\mathcal{L}_{1}} & & \uparrow \mathbb{R}\mathcal{L}_{2} \\ \mathcal{G}_{1}^{t}(\mathbb{C}) \xrightarrow{Ind_{\mathbb{C}/\mathbb{R}}} \mathcal{G}_{2}^{t}(\mathbb{R}) \end{array}$$

The next result describes reducibility of induced representations.

Proposition 6.1. Let χ be a character of $W_{\mathbb{C}}$. We have:

- (i) If $\chi \neq \chi^{\tau}$ then $Ind_{\mathbb{C}/\mathbb{R}}(\chi)$ is irreducible;
- (ii) If $\chi = \chi^{\tau}$ then $Ind_{\mathbb{C}/\mathbb{R}}(\chi)$ is reducible. Moreover, there exist $\rho \in \widehat{W_{\mathbb{R}}}$ such that

$$Ind_{\mathbb{C}/\mathbb{R}}(\chi) = \rho \oplus \rho^{\tau} = \rho \oplus sgn.\rho,$$

where $\rho_{|W_{\mathbb{C}}} = \chi$;

(*iii*) $Ind_{\mathbb{C}/\mathbb{R}}(\chi_1) \cong Ind_{\mathbb{C}/\mathbb{R}}(\chi_2)$ if and only if $\chi_1 = \chi_2$ of $\chi_1 = \chi_2^{\tau}$.

Proof. Apply Frobenius reciprocity

$$Hom_{W_{\mathbb{R}}}(Ind_{\mathbb{C}/\mathbb{R}}(\chi_1), Ind_{\mathbb{C}/\mathbb{R}}(\chi_2)) \cong Hom_{W_{\mathbb{C}}}(\chi_1, \chi_2).$$

Now, $W_{\mathbb{R}} = W_{\mathbb{C}} \sqcup jW_{\mathbb{C}}$. Therefore, the restriction of $Ind_{\mathbb{C}/\mathbb{R}}(\chi)$ to $W_{\mathbb{C}}$ is $\chi \oplus \chi^{\tau}$. The result follow since $Ind_{\mathbb{C}/\mathbb{R}}(\chi)$ is semi-simple. \Box

Proposition 6.2. A finite dimensional continuous irreducible representation of $W_{\mathbb{R}}$ is either a character or isomorphic to some $Ind_{\mathbb{C}/\mathbb{R}}(\chi)$, with $\chi \neq \chi^{\tau}$.

Proof. It follows immediately from Lemma 4.3

In this section we describe automorphic induction map as a map of topological spaces. We begin by considering n = 1.

Let $\chi = \chi_{\ell,t}$ be a character of $W_{\mathbb{C}}$. If $\chi \neq \chi^{\tau}$, by proposition 4.2, $\phi_{\ell,t} \simeq \phi_{-\ell,t}$. Hence,

$$\mathcal{AI}_{\mathbb{C}/\mathbb{R}}(\mathbb{C}\mathcal{L}_1(\chi_{\ell,t})) = D_{|\ell|} \otimes |det(.)|^{it}$$

On the other hand, if $\chi = \chi^{\tau}$ then $\chi = \chi_{0,t}$ and $\chi(z) = |z|_{\mathbb{C}}^{it}$. Therefore,

$$\mathcal{AI}_{\mathbb{C}/\mathbb{R}}(\mathbb{C}\mathcal{L}_1(|.|^{it}_{\mathbb{C}})) = {}_{\mathbb{R}}\mathcal{L}_2(\rho \oplus sgn.\rho) = \pi(\rho, \rho^{-1}),$$

where $\pi(\rho, \rho^{-1})$ is a reducible principal series and ρ is the character of $\mathbb{R}^{\times} \simeq W_{\mathbb{R}}^{ab}$ associated with $\chi_{0,t} = |.|_{\mathbb{C}}^{it}$ via class field theory, i.e. $\rho_{|W_{\mathbb{C}}} = \chi$.

Recall that

$$\mathcal{A}_1^t(\mathbb{C}) \cong \bigsqcup_{\ell \in \mathbb{Z}} \mathbb{R}$$

and

$$\mathcal{A}_2^t(\mathbb{R}) \cong \left(\bigsqcup_{\ell \in \mathbb{N}} \mathbb{R}\right) \bigsqcup (\mathbb{R}^2 / S_2) \bigsqcup (\mathbb{R}^2 / S_2) \bigsqcup \mathbb{R}^2.$$

As a map of topological spaces, automorphic induction for n = 1 may be described as follows:

$$(t,\ell) \in \mathbb{R} \times \mathbb{Z} \mapsto (t,|\ell|) \in \mathbb{R} \times \mathbb{N}, \text{ if } \ell \neq 0$$
(14)

$$(t,0) \in \mathbb{R} \times \mathbb{Z} \mapsto (t,t) \mapsto \mathbb{R}^2, \text{ if } \ell = 0.$$
(15)

More generally, let $\chi_1 \oplus ... \oplus \chi_n$ be an *n* dimensional *L*-parameter of $W_{\mathbb{C}}$. Then, either $\chi_k \neq \chi_k^{\tau}$ for every *k*, in which case automorphic induction is

$$\mathcal{AI}_{\mathbb{C}/\mathbb{R}}(\mathbb{C}\mathcal{L}_n(\chi_1 \oplus \ldots \oplus \chi_n)) = D_{|\ell_1|} \otimes |det(.)|^{it_1} \oplus \ldots \oplus D_{|\ell_n|} \otimes |det(.)|^{it_n}$$
(16)

or for some k (possibly more than one), $\chi_k = \chi_k^{\tau}$, in which case we have

$$\mathcal{AI}_{\mathbb{C}/\mathbb{R}}({}_{\mathbb{C}}\mathcal{L}_{n}(\chi_{1}\oplus\ldots\oplus|.|_{\mathbb{C}}^{it_{k}}\oplus\ldots\oplus\chi_{n})) = D_{|\ell_{1}|}\otimes|det(.)|^{it_{1}}\oplus\ldots$$

$$\oplus\pi(\rho_{k},\rho_{k}^{-1})\oplus\ldots\oplus D_{|\ell_{n}|}\otimes|det(.)|^{it_{n}}.$$
(17)

In order to describe automorphic induction as a map of topological spaces, it is enough to consider components of $\mathcal{A}_n^t(\mathbb{C})$ with generic *W*-orbit. For convenience, we introduce the following notation:

if $(t_1, ..., t_n)$ is in the component of $\mathcal{A}_n^t(\mathbb{C})$ labeled by $(\ell_1, ..., \ell_n)$, i.e.

$$(t_1, \dots, t_n) \in (\mathbb{R} \times \{\ell_1\}) \times \dots \times (\mathbb{R} \times \{\ell_n\})$$

we write simply

$$(t_1, \dots, t_n) \in \mathbb{R}^n_{(\ell_1, \dots, \ell_n)}, \ \ell_i \in \mathbb{Z}.$$

There are two cases:

Case 1: $\chi_k \neq \chi_k^{\tau}$, i.e. $\ell_k \neq 0$, for every k,

$$\mathcal{AI}: (t_1, ..., t_n) \in \mathbb{R}^n_{(\ell_1, ..., \ell_n)} \longmapsto (t_1, ..., t_n) \in \mathbb{R}^n_{(|\ell_1|, ..., |\ell_n|)}$$
(18)

So, $(|\ell_1|, ..., |\ell_n|) \in \mathbb{N}^n$.

Case 2: if there are 0 < m < n characters such that $\chi_k = \chi_k^{\tau}$, then

$$\mathcal{AI}: (t_1, ..., t_k, ..., t_n) \in \mathbb{R}^n_{(\ell_1, ..., 0, ..., \ell_n)} \longmapsto (t_1, ..., t_k, t_k, ..., t_n) \in (\mathbb{R}^n / W)_{(|\ell_1|, ..., |\ell_n|)^*}$$
(19)

where $(|\ell_1|, ..., |\ell_n|)^* \in \mathbb{N}^{n-m}$ means that we have deleted the *m* labels corresponding to $\ell_k = 0$. Note that if m > 1, necessarily $W \neq 0$.

We have the following result

Proposition 6.3. The automorphic induction map

$$\mathcal{AI}_{\mathbb{C}/\mathbb{R}}:\mathcal{A}_{n}^{t}(\mathbb{C})\to\mathcal{A}_{2n}^{t}(\mathbb{R})$$

is a continuous proper map.

The proof follows from the above discussion and is similar to that of proposition 5.3.

Example 6.4. Consider n = 3. Then,

$$\mathcal{A}_3^t(\mathbb{C}) \simeq \bigsqcup_{\sigma} \mathbb{R}^3 / W_{\sigma}$$

and

$$\mathcal{A}_{6}^{t}(\mathbb{R}) \simeq \left(\bigsqcup_{\ell \in \mathbb{N}^{3}} \mathbb{R}^{3}\right) \sqcup \left(\bigsqcup_{\ell' \in \mathbb{N}^{2}} \mathbb{R}^{4}\right) \sqcup \mathcal{C},$$

where C is a disjoint union of cones.

Let $\chi_1 \oplus \chi_2 \oplus \chi_3$ denote a 3-dimensional L-parameter of $W_{\mathbb{C}}$. We have the following description of $\mathcal{AI}_{\mathbb{C}/\mathbb{R}}$ as a map of topological spaces:

• $\chi_1 \neq \chi_1^{\tau}, \chi_2 \neq \chi_2^{\tau}, \chi_3 \neq \chi_3^{\tau}$

 $(t_1, t_2, t_3) \in \mathbb{R}^3_{(\ell_1, \ell_2, \ell_3)} \longmapsto (t_1, t_2, t_3) \in \mathbb{R}^3_{(|\ell_1|, |\ell_2|, |\ell_3|)}$

with $\ell_i \in \mathbb{Z} \setminus \{0\}$.

• $\chi_1 = \chi_1^{\tau}, \chi_2 \neq \chi_2^{\tau}, \chi_3 \neq \chi_3^{\tau}$

 $(t_1, t_2, t_3) \in \mathbb{R}^3_{(0,\ell_2,\ell_3)} \longmapsto (t_1, t_1, t_2, t_3) \in (\mathbb{R}^4/W)_{(|\ell_2|,|\ell_3|)}$ with $\ell_i \in \mathbb{Z} \setminus \{0\}$. Similar for the cases $(\ell_1, 0, \ell_3)$ and $(\ell_1, \ell_2, 0)$.

• $\chi_1 = \chi_1^{\tau}, \chi_2 = \chi_2^{\tau}, \chi_3 \neq \chi_3^{\tau}$

 $(t_1, t_2, t_3) \in \mathbb{R}^3_{(0,0,\ell_3)} \longmapsto (t_1, t_1, t_2, t_2, t_3) \in (\mathbb{R}^5/W)_{(|\ell_3|)}$ with $\ell_3 \in \mathbb{Z} \setminus \{0\}$. Similar for the cases $(\ell_1, 0, 0)$ and $(0, \ell_2, 0)$.

• $\chi_1 = \chi_1^{\tau}, \chi_2 = \chi_2^{\tau}, \chi_3 = \chi_3^{\tau}$

$$(t_1, t_2, t_3) \in \mathbb{R}^3_{(0,0,0)} \longmapsto (t_1, t_1, t_2, t_2, t_3, t_3) \in (\mathbb{R}^6/W)$$

6.2 Automorphic induction in one dimension

Automorphic induction \mathcal{AI} induces a K-theory map at the level of K-theory groups K^1 :

$$K^{1}(\mathcal{AI}): K^{1}(\mathcal{A}_{2}^{t}(\mathbb{R})) \to K^{1}(\mathcal{A}_{1}^{t}(\mathbb{C})).$$

$$(20)$$

We have

$$K^1(\mathcal{A}_2^t(\mathbb{R})) \cong \bigoplus_{\ell \in \mathbb{N}} \mathbb{Z}.$$

Each class of 1-dimension L-parameters of $W_{\mathbb{C}}$ (characters of \mathbb{C}^{\times})

$$[\chi] = [\chi_{\ell,t}] = [\chi_{-\ell,t}] \ (\ell \neq 0)$$

contributes with one generator to $K^1(\mathcal{A}_2^t(\mathbb{R}))$. Note that, under \mathcal{AI} , this is precisely the parametrization given by the discrete series $D_{|\ell|}$.

On the other hand,

$$K^1(\mathcal{A}_1^t(\mathbb{C})) \cong \bigoplus_{\ell \in \mathbb{Z}} \mathbb{Z}.$$

Again, each class (of characters of \mathbb{C}^{\times}) $[\chi]$ contributes with a generator to $K^1(\mathcal{A}_1^t(\mathbb{C}))$, only this time $[\chi_{\ell,t}] \neq [\chi_{-\ell,t}]$, i.e, ℓ and $-\ell$ belong to different classes.

Note that we may write

$$K^1(\mathcal{A}_2^t(\mathbb{R})) \cong \bigoplus_{\text{Discrete series}} \mathbb{Z} = \bigoplus_{[D_{|\ell|}]} \mathbb{Z} = \bigoplus_{\ell \in \mathbb{N}} \mathbb{Z}$$

and

$$K^1(\mathcal{A}_1^t(\mathbb{C})) \cong \bigoplus_{\widehat{\mathbb{C}^{\times}}} \mathbb{Z} = \bigoplus_{[\chi_\ell]} \mathbb{Z} = \bigoplus_{\ell \in \mathbb{Z}} \mathbb{Z}.$$

The automorphic induction map

$$K^1(\mathcal{AI}): K^1(\mathcal{A}_2^t(\mathbb{R})) \to K^1(\mathcal{A}_1^t(\mathbb{C}))$$

may be interpreted, at the level of K^1 , as a kind of "shift" map

$$[D_{|\ell|}] \mapsto [\chi_{|\ell|}]$$

More explicitly, the "shift" map is

$$\bigoplus_{\ell \in \mathbb{N}} \mathbb{Z} \to \bigoplus_{\ell \in \mathbb{Z}} \mathbb{Z}, ([D_1], [D_2], ...) \mapsto (..., 0, 0, [\chi_1], [\chi_2], ...)$$

where the image under $K^1(\mathcal{AI})$ on each component of the right hand side with label $\ell \leq 0$ is zero (because $K^1(\mathcal{AI})$ is a group homomorphism so it must map zero into zero).

6.3 Automorphic induction in *n* dimensions

In this section we consider automorphic induction for GL(n). Contrary to base change (see theorems 5.4 and 5.5), the K-theory map of automorphic induction is nonzero for every n.

Theorem 6.5. The functorial map induced by automorphic induction

 $K_j(C_r^*\mathrm{GL}(2n,\mathbb{R})) \xrightarrow{K_j(\mathcal{AI})} K_j(C_r^*\mathrm{GL}(n,\mathbb{C}))$

is given by

$$[D_{|\ell_1|} \otimes \ldots \otimes D_{|\ell_n|}] \longmapsto [\chi_{|\ell_1|} \oplus \ldots \oplus \chi_{|\ell_n|}]$$

if $n \equiv j \pmod{2}$ and $\chi_k \neq \chi_k^{\tau}$ for every k, and is zero otherwise.

Here, $[D_{|\ell_1|} \otimes ... \otimes D_{|\ell_n|}]$ denotes the generator of the component $\mathbb{Z}_{(|\ell_1|,...,|\ell_n|)}$ of $K_j(C_r^*\mathrm{GL}(2n,\mathbb{R}))$ and $[\chi_{|\ell_1|} \oplus ... \oplus \chi_{|\ell_n|}]$ is the generator of the component $\mathbb{Z}_{(|\ell_1|,...,|\ell_n|)}$ of $K_j(C_r^*\mathrm{GL}(n,\mathbb{C}))$

Proof. Let $0 \le m < n$ be the number of characters χ_k with $\chi_k = \chi_k^{\tau}$.

Case 1:
$$m = 0$$

In this case, $\chi_k \neq \chi_k^{\tau}$ for every k. Each character χ_{ℓ_k} , $\ell_k \neq 0$, is mapped via the local langlands correspondence into a discrete series $D_{|\ell_k|}$. At the level of K-theory, a generator $[D_{|\ell_k|}]$ is mapped into $[\chi_{|\ell_k|}]$. The result follows from (16).

Case 2: m > 0 odd

Then, if $n \equiv j \pmod{2}$, $K^j(\mathbb{R}^{n+m}) = 0$ and $K_j(\mathcal{AI})$ is zero.

Case 3: m > 0 is even

In this case $K^{j}(\mathbb{R}^{n}) = K^{j}(\mathbb{R}^{n+m})$. However, $X_{\mathbb{R}}(M) \simeq \mathbb{R}^{n+m}$ corresponds precisely to the partition of 2n into 1's and 0's given by

$$2n = 2(n-m) + 2m$$

Hence, the number of 1's in the partition is $2m \ge 4$. It follows that $(t_1, ..., t_n)$ is mapped into a cone and, as a consequence, $K_i(\mathcal{AI})$ is zero.

This concludes the proof.

7 Connections with the Baum-Connes correspondence

The standard maximal compact subgroup of $GL(1, \mathbb{C})$ is the circle group U(1), and the maximal compact subgroup of $GL(1, \mathbb{R})$ is $\mathbb{Z}/2\mathbb{Z}$. Base change for K^1 creates a map

$$\mathcal{R}(\mathrm{U}(1)) \longrightarrow \mathcal{R}(\mathbb{Z}/2\mathbb{Z})$$

where $\mathcal{R}(U(1))$ is the representation ring of the circle group U(1) and $\mathcal{R}(\mathbb{Z}/2\mathbb{Z})$ is the representation ring of the group $\mathbb{Z}/2\mathbb{Z}$. This map sends the trivial character of U(1) to $1 \oplus \varepsilon$, where ε is the nontrivial character of $\mathbb{Z}/2\mathbb{Z}$, and sends all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The real line \mathbb{R} is a universal example for the action of \mathbb{R}^{\times} and \mathbb{C}^{\times} . The K-cycle

$$(C_0(\mathbb{R}), L^2(\mathbb{R}), id/dx)$$

is equivariant with respect to \mathbb{C}^{\times} and \mathbb{R}^{\times} , and therefore determines a class $\mathscr{D}_{\mathbb{C}} \in K_1^{\mathbb{C}^{\times}}(\underline{E}\mathbb{C}^{\times})$ and a class $\mathscr{D}_{\mathbb{R}} \in K_1^{\mathbb{R}^{\times}}(\underline{E}\mathbb{R}^{\times})$. On the left-hand-side of the Baum-Connes correspondence, base change in dimension 1 admits the following description in terms of Dirac operators:

$$\partial_{\mathbb{C}} \mapsto (\partial_{\mathbb{R}}, \partial_{\mathbb{R}})$$

It would be interesting to interpret the automorphic induction map at the level of representation rings:

$$\mathcal{AI}^* : \mathcal{R}(O(2n)) \longrightarrow \mathcal{R}(U(n)).$$

References

- J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton University Press, Princeton, 1989.
- [2] P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K-theory for group C*-algebras, Contemporary Math., 167 (1994) 241–291.
- [3] J. Bernstein, S. Gelbart et al, An introduction to the Langlands program, Birkhauser 2003.
- [4] R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York 1982.
- [5] J. Chabert, S. Echterhoff, R. Nest, The Connes-Kasparov conjecture for almost connected groups and for linear *p*-adic groups, Publications Math. I.H.E.S. 97 (2003) 239-278.
- [6] Harish-Chandra, Collected papers, Vol. 4, Springer, Berlin (1984).

- [7] G. Henniart, Induction automorphe pour $GL(n, \mathbb{C})$, J. Functional Analysis 258, issue 9 (2010) 3082–3096.
- [8] A. W. Knapp, Local Langlands correspondence: the archimedean case, Proc. Symp. Pure. Math. 55, 1994, 393–410.
- [9] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002) 1–95.
- [10] C. Mœglin, Representations of GL(n) over the Real Field, Proc. Symp. Pure Math. 61 (1997), 157–166.
- [11] S. Mendes, R.J. Plymen, Base change and K-theory for GL(n), J. Noncommut. Geom., 1 (2007), 311–331.
- [12] R. J. Plymen, The reduced C*-algebra of the p-adic group GL(n), J. Functional Analysis 72 (1987) 1–12.
- [13] M. G. Penington, R. J. Plymen, The Dirac operator and the principal series for complex semisimple Lie groups, J. Functional Analysis, 53 (1983) 269–286.

S. Mendes, ISCTE, Av. das Forças Armadas, 1649-026, Lisbon, Portugal Email: sergio.mendes@iscte.pt

R.J. Plymen, Southampton University, Southampton SO17 1BJ, England and School of Mathematics, Manchester University, Manchester M13 9PL, England