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Abstract

Fiedler pencils are a family of strong linearizations for polynomials expressed in the monomial basis,
that include the classical Frobenius companion pencils as special cases. We generalize the definition
of a Fiedler pencil from monomials to a larger class of orthogonal polynomial bases. In particular,
we derive comrade-Fiedler pencils for two bases that are extremely important in practical applications:
the Chebyshev polynomials of the first and second kind. The new approach allows one to construct
linearizations having limited bandwidth: a Chebyshev analogue of the pentadiagonal Fiedler pencils
in the monomial basis. Moreover, our theory allows for linearizations of square matrix polynomials
expressed in the Chebyshev basis (and in other bases), regardless of whether the matrix polynomial is
regular or singular, and for recovery formulae for eigenvectors, and minimal indices and bases.

Keywords: Fiedler pencil, Chebyshev polynomial, linearization, matrix polynomial, singular matrix
polynomial, eigenvector recovery, minimal basis, minimal indices

MSC classification: 15A22, 15A18, 15A23, 65H04, 65F15

1 Motivation

In computational mathematics, many applications require to compute the roots of a polynomial expressed in
a nonstandard basis. Particularly relevant in practice are the Chebyshev polynomials of the first kind, that
we denote by Tk(x), see (3.1) for their formal definition. For example, suppose that we want to approximate
numerically the roots of the polynomial

T5(x)− 4T4(x) + 4T2(x)− T1(x) (1.1)

The roots of (1.1) are easy to compute analytically and they are ±1/2, ±1, and 2. However, we know that in
general a quintic (or higher degree) polynomial cannot be solved algebraically. A standard approach would
be to solve the equivalent problem of computing the eigenvalues of the colleague matrix of (1.1):

2 1/2 −2 1/2 0
1/2 0 1/2

1/2 0 1/2
1/2 0 1/2

1 0

 ,
where throughout the paper we occasionally omit some, or all, the zero elements of a matrix. Note en passant
that (1.1) is monic in the Chebyshev basis, i.e., it is a degree 5 polynomial and its coefficient for T5(x) is
1. This is why we could linearize it with a standard eigenvalue problem. Had we considered a nonmonic
polynomial, we could have used the colleague pencil instead, or we could have normalized it first.

∗Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
(vnofer@essex.ac.uk, http://privatewww.essex.ac.uk/~vnofer ). Supported in part by European Research Council Ad-
vanced Grant MATFUN (267526).
†School of Mathematics, The University of Manchester, Manchester, England, M13 9PL

(javier.perezalvaro@manchester.ac.uk). Supported by Engineering and Physical Sciences Research Council grant
EP/I005293

1



The colleague matrix is an example of what is called a linearization in the theory of (matrix) polynomials.
Formally, if P (x) is an m ×m square matrix polynomial of degree n, the pencil Ax + B is a linearization
of P (x) if there exists unimodular (i.e., with nonzero constant determinant) matrix polynomials U(x) and
V (x) such that U(x)(Ax + B)V (x) = P (x) ⊕ Imn−m. A linearization has the same elementary divisors of
the original polynomial, and in particular it has the same eigenvalues. In the scalar case m = 1, this implies
that the eigenvalues of the linearizations are precisely the roots of the linearized scalar polynomial.

When polynomials are expressed in the monomial basis, many linearizations that can be easily built from
the coefficients have been studied in recent years. One family of particular interest is Fiedler pencils (and
Fiedler matrices), introduced in [10] and since then deeply studied and generalized in many directions, see
for example [2, 4, 6, 8, 24] and the references therein. Among Fiedler pencils we find, for instance, companion
linearizations (the monomial analogues of the colleague), the particular Fiedler pencil analyzed in [13] (partic-
ularly advantageous for the QZ algorithm), and pentadiagonal linearizations (also potentially advantageous
numerically, although currently lacking an algorithm capable to fully exploit the small bandwidth).

On the other hand, many linearizations that are easy to construct from the coefficients in some nonmono-
mial bases exist and they have recently been studied under many points of view, see, e.g., [1, 3, 17, 18, 19, 20]
and the references therein. One may wonder if these two research lines can be unified: Is it possible to con-
struct any suitable generalization of Fiedler pencils for at least some nonmonomial bases, and in particular
for the Chebyshev basis? The main goal of this paper is to answer this question in the affirmative. For the
impatient reader, here is a pentadiagonal Chebyshev-Fiedler linearization of (1.1):

2 1/2 1/2
1/2 0 −4 1/2
1/2 0 0 0 1/2

1/2 1/2 0 2
1 0 0

 .
Additionally, matrix polynomials that arise in applications often have particular structures. The most

relevant of theses structures are (i) symmetric: PTi = Pi; (ii) palindromic PTi = Pn−i+1; (iii) skew-symmetric:
PTi = −Pi; and (iv) alternating: P (−x) = P (x)T or P (−x) = −P (x)T , as well as their analogues involving
conjugate transposition. Since the structure of a matrix polynomial is reflected in its spectrum, numerical
methods to solve polynomial eigenvalue problems should exploit to a maximal extent the structure of matrix
polynomials [16]. For this reason, finding linearizations that retain whatever structure the matrix polynomial
P (x) might possess is a fundamental problem in the theory of linearizations (see, for example, [4, 5, 7, 16] and
the references therein). Our results expand the arena in which to look for linearizations of matrix polynomials
expressed in some orthogonal polynomial bases having additional useful properties. Furthermore, we think
that our work is a first step that can lead to generalizing many other results obtained for the monomial
basis: for instance, using pencils closely related to the Chebyshev-Fiedler pencils, it is possible to construct
structure-preserving linearizations for some classes of structured matrix polynomials. For example, if P (x) =∑6
k=0 CkUk(x) is a m ×m matrix polynomial expressed in the Chebyshev polynomials of the second kind

basis, the following pencil

x



C7

Im
Im C5

Im
Im C3

Im
Im C1


+

1

2



−C6 Im C7 0
Im 0 0 0 Im
C7 0 C6 − C4 Im C5 0
0 0 Im 0 0 0 Im

Im C5 0 C4 − C2 Im C3

0 0 Im 0 0
Im C3 0 C2 − C0


,

is a block symmetric strong linearization of P (x).
Apart from the preservation of structure, to be relevant in numerical applications, a linearization of a

matrix polynomial P (x) must allow one to recover the eigenvectors, and minimal indices and bases of P (λ).
We will show that this recovery property is satisfied by any of the linearizations presented in this work:
eigenvectors and minimal bases of P (λ) can be recovered without any computational cost from those of the
linearization, while the minimal indices of P (λ) are obtained from the minimal indices of the linearization by
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a uniform subtraction of a constant. These facts all generalize analogous properties known for the monomial
basis [6].

Our strategy is to first extend Fiedler pencils (and matrices, as Fiedler matrices are just the constant
terms of the Fiedler pencils associated to polynomials that are monic in the considered basis) to a class of
orthogonal nonmonomial bases, including among others Chebyshev polynomials of the second kind. Section 2
is devoted to this task. Then, in Section 3 we are going to show how to modify our construction to tackle
Chebyshev polynomials of the first kind. For simplicity, we will first expose everything for scalar polynomials.
In Section 4, we will discuss how to extend our theory to (square) matrix polynomials. To keep this paper
compact, we will not formally list all the technical definitions about matrix polynomials that we are going
to refer to in that section. Readers unfamiliar with the theory of matrix polynomials may find more details
in [6, 11, 22] and the references therein. Finally, in Section 5 we are going to draw some conclusions and to
say a few words about possible future applications of this work.

We have tried to keep the technical prerequisites to read this paper to the minimum. Nevertheless, in
some instances we have found useful to apply certain techniques first invented by V. N. Kublanovskaya [14],
and recently rediscovered and applied to the theory of Fiedler pencils [22].

2 Fiedler pencils in orthogonal bases with constant recurrence
relations

In this section we consider a family of orthogonal polynomials with a constant three-terms recurrence relation,
i.e., we set

φ−1(x) = 0, φ0(x) = 1, αφk+1(x) = xφk(x)− βφk(x)− γφk−1(x), k = 0, . . . , n− 1, (2.1)

where 0 6= α, β, γ ∈ C do not depend on n.
Although the requirement of a constant recurrence relation unfortunately excludes many commonly used

orthogonal polynomials, such as Legendre or Jacobi, some practically important polynomial bases that fit
into the above defined category include the monomials (α = 1, β = γ = 0) and the Chebyshev polynomials
of the second kind (α = γ = 1/2, β = 0).

Suppose now that we have a polynomial of degree n expressed in the basis {φ0, . . . , φn},

p(x) =

n∑
j=0

cjφj(x), with cn 6= 0. (2.2)

Then the following n× n pencil is known as the comrade pencil [3, 19] of (2.2):

C(x) = x


cn

1
. . .

1
1

−

−dn−1 −dn−2 −dn−3 . . . −d0

α β γ
. . .

. . .
. . .

α β γ
α β

 , (2.3)

where dn−1 = αcn−1 − βcn, dn−2 = αcn−2 − γcn, and dk = αck for k = 0, . . . , n− 3, since its characteristic
polynomial is equal to αp(x).

In the following, in the spirit of [10] we will construct a family of comrade pencils that contains as
a particular case the comrade pencil (2.3). To this purpose, we now recall the definition of some special
matrices that we denote by Mj and Nj . The discovery of the Mj is due to M. Fiedler [10] and was historically
the first approach to Fiedler pencils (in the monomial basis).

Definition 2.1. Given the polynomial (2.2) expressed in the orthogonal polynomial basis defined by (2.1),
define

M0 =

[
In−1

−c0

]
, N0 =

[
In−1

0

]
, Mn =

[
cn

In−1

]
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and for k = 1, 2, . . . , n− 1

Mk =


In−k−1

−ck 1
1 0

Ik−1

 , Nk = M−1
k =


In−k−1

0 1
1 ck

Ik−1

 .

Importantly, the matrices Nk and Mk both satisfy the commutativity relations

[Xi, Yj ] = 0⇔ |i− j| 6= 1, for any X,Y ∈ {M,N}. (2.4)

Theorem 2.2. The comrade pencil (2.3) can be factorized as

C(x) = Mnx− αMn−1 · · ·M1M0 − βMn − γMnN0N1 · · ·Nn−1Mn.

Proof. It is evident that the linear term in C(x) is, by definition, Mn. We therefore only need to prove that
equality holds for the constant term. From (2.3) we may write it, up to a minus sign, as the sum of three
terms:

α


−cn−1 −cn−2 · · · −c0

1
. . .

1
1

+ βMn + γ


0 cn

0 1
. . .

. . .

1
0

 .
That the first term is equal to αMn−1 · · ·M1M0 has been already proved in [10, Lemma 2.1]. It remains to
show that the third term is equal to γMnN0N1 · · ·Nn−1Mn. To see this, we claim that for m = 0, . . . , n− 1
it holds

N0N1 · · ·Nm =

[
In−m−1

Jm+1

]
,

where Jk denotes a nilpotent Jordan block of size k. We prove this result by induction. The claim is obviously
true for m = 0. Now suppose that it holds for m− 1 and note that

N0N1 · · ·Nm =

[
In−m

Jm

]
Nm =

[
In−m−1

Jm+1

]
,

concluding the inductive step. Then, in particular, N0N1 · · ·Nn−1 = Jn, and hence γMnN0N1 · · ·Nn−1Mn =
γMnJnMn = γMnJn, concluding the proof.

As in [10], our approach will be based in permuting the factors Mj in a different order. The important
difference with respect to the monomial basis is that we will simultaneously permute the factors Nj in the
reverse order.

Definition 2.3. Let σ be a permutation of {0, 1, . . . , n− 1}, and let us define Mσ := Mσ(0) · · ·Mσ(n−1), and
Nσ := Nσ(n−1) · · ·Mσ(0). Then the pencil

Fσ(x) := Mnx− αMσ − βMn − γMnNσMn (2.5)

is called the Fiedler-comrade pencil associated with the permutation σ.

The relations (2.4) imply that some Fiedler-comrade pencils associated with different permutations σ are
equal. For example, for n = 3, the Fiedler-colleague pencils xM3−αM0M2M1−βM3−γM3N1N2N0M3 and
xM3 − αM2M0M1 − βM3 − γM3N1N0N2M3 are equal. These relations suggest that the relative positions
of the matrices Mi and Mi+1 in the product Mσ(0) · · ·Mσ(n−1) or, equivalently, the position of the matrices
Ni and Ni+1 in the product Nσ(n−1) · · ·Nσ(0) are of fundamental importance. This motivates the definition
of the consecutions and inversions of a permutation, introduced in [6], that we recall here.
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Definition 2.4. [6] Let σ be a permutation of {0, 1, . . . , n−1}. Then, for i = 0, 1, . . . , n−2, the permutation
σ has a consecution at i if σ(i) < σ(i+ 1), and it has an inversion at i otherwise.

The previous definition allows us to define a canonical form for the products Mσ = Mσ(0) · · ·Mσ(n−1)

and Nσ = Nσ(n−1) · · ·Nσ(0) in (2.5).

Lemma 2.5. Let Fσ(x) be the Fiedler-comrade pencil associated with the permutation σ, and let σ have
precisely Γ consecutions, at c1 − 1, . . . , cΓ − 1. Denote Mj:i = Mj−1 · · ·Mi and Nj:i = Ni · · ·Nj−1. Then,
Fσ(x) can be written in the normal form

Fσ(x) = Mnx− αMc1:0Mc2:c1 · · ·Mn:cΓ − βMn − γMnNn:cΓ · · ·Nc2:c1Nc1:0Mn. (2.6)

Proof. It is immediate from the commutativity properties of the matrices Mj and Nj .

In the following theorem we show that any Fiedler-comrade pencil Fσ(x) is strictly equivalent to C(x),
that is, there exist nonsingular matrices U and V such that UFσ(x)V = C(x). In addition, the theorem also
shows that all Fiedler-comrade pencils associated with a polynomial p(x) have as characteristic polynomial
αnp(x).

Theorem 2.6. Any Fiedler-comrade pencil of a polynomial p(x) as in (2.2) is strictly equivalent to the
comrade pencil (2.3). Moreover, its characteristic polynomial is equal to αnp(x).

Proof. By Lemma 2.5, we may assume that any Fiedler pencil is in the normal form (2.6).
We now proceed by induction on the number of consecutions Γ in the permutation σ. If Γ = 0, we recover

the comrade pencil (2.3), which is, obviously, strictly equivalent to itself. Additionally, it is easy to check that
its characteristic polynomial is equal to αnp(x). Now suppose that we have proved the result for the sequence
c2, . . . , cΓ, Γ ≤ n − 1, that is, for a Fiedler-comrade pencil with Γ − 1 consecutions, and prepend an extra
element c1. We now need to inductively prove the statement for c1, c2, . . . , cΓ. Let Q = Mc2:c1 · · ·Mn:cΓ ,
P = Mc1:0, and R = Nc1:0. Note that Q and Mn are invertible, while both P and R commute with Mn, as
this will be important in the following.

By assumption, the pencil Mnx − αQP − βMn − γMnRQ
−1Mn is strictly equivalent to the comrade

pencil (2.3) since it is associated with a permutation that has Γ− 1 consecutions. So we just need to show
that the pencils Mnx− αPQ− βMn − γMnQ

−1RMn and Mnx− αQP − βMn − γMnRQ
−1Mn are strictly

equivalent. Indeed,

QM−1
n (Mnx− αPQ− βMn − γMnQ

−1RMn)Q−1Mn = Mnx− αQP − βMn − γMnRQ
−1Mn,

which shows that the result is true for any Fiedler-comrade pencil with Γ consecutions. The second statement
of the theorem follows because det(QM−1

n ) det(Q−1Mn) = 1.

Interestingly, as in the monomial case, some of the Fiedler-comrade pencils have a pentadiagonal band-
width. We say that σ is an even/odd permutation of {0, 1, . . . , n − 1} if it either lists first all the even
elements of {0, 1, . . . , n− 1} and then all the odd ones, or vice versa.

Theorem 2.7. Let σ be an even/odd permutation. Then Fσ(x) is a pentadiagonal pencil.

Proof. The argument is very similar to the one in the monomial basis. Indeed, the key observation is that
when we multiply the matrices Mk for only k even (or odd), we obtain a tridiagonal matrix because the
non-identity blocks do not overlap. The very same observation holds for the Nk. We now only need the
following facts: the product of two tridiagonal matrices is pentadiagonal, and the (left or right) product of
a pentadiagonal matrix with a diagonal matrix is pentadiagonal. Therefore:

• The addend xMn is diagonal;

• The addend −αMσ is pentadiagonal;

• The addend −βMn is diagonal;
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• The addend −γMnNσMn is pentadiagonal.

Hence, their sum is a pentadiagonal pencil.

We illustrate one of the pentadiagonal Fiedler-comrade pencils in two cases: for a polynomial with degree
7 (odd degree) and for a polynomial with degree 8 (even degree), so its general pattern can be discerned. First,

for a polynomial
∑7
k=0 ckφk(x) the Fiedler-comrade pencil associated with the permutation (0, 2, 4, 6, 1, 3, 5)

is equal to 

xc7 + αc6 − βc7 αc5 − γc7 −α 0 0 0 0
−α x− β 0 −γ 0 0 0
−γc7 αc4 − γc6 x− β αc3 − γc5 −α 0 0

0 −α 0 x− β 0 −γ 0
0 0 −γ αc2 − γc4 x− β αc1 − γc3 −α
0 0 0 −α 0 x− β 0
0 0 0 0 −γ αc0 − γc2 x− β


,

and, second, for the polynomial
∑8
k=0 ckφk(x) the pentadiagonal Fiedler-comrade pencil associated with the

permutation (0, 2, 4, 6, 1, 3, 5, 7) is equal to

xc8 + αc7 − βc8 −α −γc8 0 0 0 0 0
αc6 − γc8 x− β αc5 − γc7 −α 0 0 0 0
−α 0 x− β 0 −γ 0 0 0
0 −γ αc4 − γc6 x− β αc3 − γc5 −α 0 0
0 0 −α 0 x− β 0 −γ 0
0 0 0 −γ αc2 − γc4 x− β αc1 − γc3 −α
0 0 0 0 −α 0 x− β 0
0 0 0 0 0 −γ αc0 − γc2 β


.

3 Fiedler pencils and Chebyshev polynomials of the first kind

We do not believe that our approach can be easily generalized to any (nonconstant) three-terms recurrence
relation, but these difficulties can be easily overcome when the recurrence is nonconstant only because of a
small number of exceptions. The price that one pays is that there are fewer Fiedler-comrade pencils for a
given degree n. We illustrate this by analyzing the important case of the Chebyshev polynomials of the first
kind, that we denote by Tk(x) := cos(k arccos(x))1.

Our motivation to focus on this particular case is that, among nonstandard polynomial bases, Chebyshev
polynomials of the first kind are of great practical importance. To name but one reason, it is (mainly)
Chebyshev technology that allows the software package chebfun [23] to graciously achieve its goal to deliver
accurate numerical computations with continuous functions. Applications also exist for matrix polynomials
expressed in the Chebyshev basis [9]. Unfortunately, the analysis of the previous section does not cover the
Chebyshev polynomials of the first kind, since they fail to satisfy a constant recurrence relation. Yet, they
are very close to doing so. Indeed, the corresponding recurrence is

T0(x) = 1, T1(x) = xT0(x),
1

2
Tk+1(x) = xTk(x)− 1

2
Tk−1(x), k = 1, . . . , n− 1. (3.1)

In other words, α = γ = 1
2 , β = 0, with the only exception of k = 0, where α = 1. This can be overcome by

“melting” the matrices M1 and M0, as well as the matrices N1 and N0, in Definition 2.1, to accomodate the
two different values that α can take. More explicitly, we can define the following factors:

Definition 3.1. Given the polynomial p(x) =
∑n
j=0 cjTj(x) expressed in the Chebyshev polynomial basis of

the first kind defined by (3.1), define

M1 =

In−2

−c1 −c0
2 0

 , N1 =

In−2

0 1
0 0

 , Mn =

[
cn

In−1

]
1This defining formula holds on [−1, 1].
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and for k = 2, 3, . . . , n− 1

Mk =


In−k−1

−ck 1
1 0

Ik−1

 , Nk = M−1
k .

Again, the matrices Nk and Mk satisfy the commutativity relations (2.4).
The Chebyshev version of the comrade pencil is known as the colleague pencil [3, 12, 19]. The colleague

pencil of p(x) =
∑n
j=0 cjTj(x) is

CT (x) = x


cn

1
. . .

1
1

−

−dn−1 −dn−2 −dn−3 . . . −d0

1
2

1
2

. . .
. . .

1
2

1
2

1

 , (3.2)

where dn−2 = cn−2/2− cn/2 and dk = ck/2 for k = 0, . . . , n− 3 and k = n− 1.

Theorem 3.2. The colleague pencil (3.2) can be factorized as

CT (x) = Mnx+
1

2

(
Mn−1 · · ·M2M1 +MnN1N2 · · ·Nn−1Mn

)
.

Proof. The proof follows closely that of Theorem 2.2, and we invite the reader to fill in the details.

We now introduce the Chebyshev-Fiedler pencils of a polynomial p(x) expressed in the Chebyshev basis.
We have decided not to give the details of the proofs of the results in the rest of this section, because they
follow very closely their Fiedler-comrade pencil analogues, that were explained in detail in the previous
section.

Definition 3.3. Let σ be a permutation of {1, 2, . . . , n − 1}, and define Mσ := Mσ(1) · · ·Mσ(n−1), and
Nσ := Nσ(n−1) · · ·Mσ(1). Then the pencil

Fσ(x) = Mnx−
1

2
(Mσ +MnNσMn)

is called the Chebyshev-Fiedler pencil associated with the permutation σ.

Observe that, because of the one exceptional α in the recurrence relation, Chebyshev-Fiedler pencils of
a polynomial of degree n are constructed from only n− 1 building blocks Mi, in contrast with the situation
of Section 2, where there were n such blocks. This implies that we only get 2n−2, rather than 2n−1, distinct
Fiedler pencils. However, we can overcome this loss by defining a different family of Chebyshev-Fiedler
pencils using a different M1 and N1, namely,

M̃1 = MT
1 = In−2 ⊕

[
−c1 2
−c0 0

]
and Ñ1 = NT

1 = In−2 ⊕
[
0 0
1 0

]
.

This second family is related to the Chebyshev-Fiedler pencils of Definition 3.3 by transposition.

Analogously to the normal form for Fiedler-comrade pencil, there is a normal form for Chebyshev-Fiedler
pencils which follows immediately from the commutativity properties of the matrices Mk and Nk.

Lemma 3.4. Let Fσ(x) be the Chebyshev-Fiedler pencil associated with the permutation σ, and let σ have
precisely Γ consecutions, at c1 − 1, . . . , cΓ − 1. Denote Mj:i = Mj−1 · · ·Mi and Nj:i = Ni · · ·Nj−1. Then,
Fσ(x) can be written in the normal form

Fσ(x) = Mnx+
1

2
(Mc1:1Mc2:c1 · · ·Mn:cΓ +MnNn:cΓ · · ·Nc2:c1Nc1:1Mn). (3.3)
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The following theorem shows that all Chebyshev-Fiedler pencils associated with the same polynomial
p(x) are strictly equivalent to the colleague pencil CT (x) of p(x).

Theorem 3.5. Every Chebyshev-Fiedler pencil of a polynomial p(x) is strictly equivalent to the colleague
pencil (3.2) of the polynomial p(x). Moreover, its characteristic polynomial is equal to p(x)/2n−1.

Again, we obtain pentadiagonal pencils by taking even/odd permutations. As in the previous section, we
illustrate one of the pentadiagonal Chebyshev-Fiedler pencils in two cases: for a polynomial with degree 7
(odd degree) and for a polynomial with degree 8 (even degree), so its general pattern can be discerned. First,

for a polynomial
∑7
k=0 ckTk(x) the Chebyshev-Fiedler pencil associated with the permutation (1, 3, 5, 2, 4, 6)

is equal to

1

2



2xc7 + c6 −1 −c7 0 0 0 0
c5 − c7 2x c4 − c6 −1 0 0 0
−1 0 2x 0 −1 0 0
0 −1 c3 − c5 2x c2 − c4 −1 0
0 0 −1 0 2x 0 −1
0 0 0 −1 c1 − c3 2x c0 − c2
0 0 0 0 −2 0 2x


,

and, second, for the polynomial
∑8
k=0 ckTk(x) the pentadiagonal Chebyshev-Fiedler pencil associated with

the permutation (1, 3, 5, 7, 2, 4, 6) is equal to

1

2



2xc8 + c7 c6 − c8 −1 0 0 0 0 0
−1 2x 0 −1 0 0 0 0
−c8 c5 − c7 2x c4 − c6 −1 0 0 0

0 −1 0 2x 0 −1 0 0
0 0 −1 c3 − c5 2x c2 − c4 −1 0
0 0 0 −1 0 2x 0 −1
0 0 0 0 −1 c1 − c3 2x c0 − c2
0 0 0 0 0 −2 0 2x


.

From these examples, the reader may get the generic version of the example we have used as a motivation
in the introduction.

4 Matrix polynomials

The goal of this section is to extend our treatment to matrix polynomials. Being Chebyshev polynomials of
the first kind the most important family of orthogonal polynomials in numerical applications, we will only
focus on generalizing Chebyhsev-Fiedler pencils to the matrix polynomial case, though one can do the same
with Fiedler-comrade pencils, obtaining similar results.

For a matrix polynomial A(x) =
∑`
k=0Akφk(x) expressed in a certain basis {φ0, φ1, . . . , φ`}, the notation

row (A) denotes the matrix
row (A) =

[
A` · · · A1 A0

]
.

Clearly, this definition depends on the choice of basis {φ0, φ1, . . . , φ`}, which should be clear from the context.

4.1 The colleague pencil and the generalized Horner shifts of a matrix polyno-
mial

Let Cj ∈ Cm×m and consider a matrix polynomial expressed in the Chebyshev basis (3.1):

P (x) =

n∑
j=0

CjTj(x). (4.1)

Associated with the polynomial P (x) in (4.1) we introduce two families of matrix polynomials that will play
a key role in the following developments. These matrix polynomials, denoted by Hk,h(x) and Vk,h(x), are
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generalizations of the Horner shifts of a matrix polynomial expressed in the monomial basis (see, for example,
[6]).

Definition 4.1. Let P (x) be a matrix polynomial as in (4.1). Its generalized Horner shift of order (k, h) is

Hk,h(x) =

k∑
j=0

Cj+n−kTj+h(x),

and its generalized Horner shift of the second kind of order (k, h) is

Vk,h(x) =

k∑
j=0

Cj+n−kUj+h(x),

where U0(x), . . . , Un(x) are the Chebyshev polynomials of the second kind.

Note that the generalized Horner shifts in Definition 4.1 do not coincide with the Clenshaw shifts intro-
duced in [21], althought both families of matrix polynomials can be seen as a generalization of the Horner
shifts.

We now introduce the colleague pencil of the matrix polynomial (4.1):

CT (x) = x


Cn

Im
. . .

Im
Im

−
1

2


−Dn−1 −Dn−2 −Dn−3 . . . −D0

Im 0 Im
. . .

. . .
. . .

Im 0 Im
2Im 0

 , (4.2)

where the Di are defined analogously to the di in Section 3.
The colleague pencil CT (x) is a remarkable pencil. It is a strong linearization for P (x) regardless of

whether P (x) is regular or singular, and the eigenvectors, when P (x) is regular, and the minimal indices and
bases, when P (x) is singular, of CT (x) and of P (x) are related in simple ways. All these claims are proved
in Theorem 4.2. Here and thereafter, with a slight abuse of notation, we say that a matrix is a basis of a
certain subspace to mean that its columns are a basis of the subspace.

Theorem 4.2. Let P (x) be a matrix polynomial as in (4.1) and let CT (x) be its colleague pencil (4.2).
Then:

(a) The colleague pencil CT (x) is a strong linearization of P (x).

(b) Assume that P (λ) is singular.

(b1) If M(x) is a right minimal basis of P (λ) with minimal indices 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp, then[
Tn−1(x) · · · T1(x) T0(x)

]T ⊗M(x)

is a right minimal basis of CT (x) with minimal indices 0 ≤ ε1+n−1 ≤ ε2+n−1 ≤ · · · ≤ εp+n−1.

(b2) If N(x) is a left minimal basis of P (λ) with minimal indices 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq, then[
N(x)TV0,0(x) N(x)TV1,0(x) · · · N(x)TVn−2,0(x) N(x)TVn−1,0(x)/2

]
is a left minimal basis of CT (x) with minimal indices 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq.

(c) Assume that P (λ) is regular.

(c1) If v is a right eigenvector of P (x) with finite eigenvalue x∗, i.e., P (x∗)v = 0, then[
Tn−1(x∗)vT · · · T1(x∗)vT T0(x∗)vT )

]T
if a right eigenvector of CT (x) with finite eigenvalue x∗.
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(c2) If wT is a left eigenvector of P (x) with finite eigenvalue x∗, i.e., wTP (x∗), then[
wTV0,0(x∗) wTV1,0(x∗) · · · wTVn−2,0(x∗) wTVn−1,0(x∗)/2

]
is a left eigenvector of CT (x) with finite eigenvalue x∗.

(c3) If v and wT are, respectively, right and left eigenvectors of P (x) for the eigenvalue ∞ then[
vT 0T(n−1)m×1

]T
and

[
wT 01×(n−1)m

]
are, respectively, right and left eigenvectors of CT (x)

for the eigenvalue ∞, where 0`1×`2 denotes the zero matrix of size `1 × `2.

Proof. First, we prove part (a). Consider the vectors Φ(x) =
[
Tn−1(x) · · · T0(x)

]T
and Λ(x) =[

xn−1 · · · x0
]T

, and let B be the change of basis matrix such that Φ(x) = BΛ(x). Then,

CT (x)BΛ(x) = CT (x)Φ(x) =
1

2
e1 ⊗ P (x),

which means that the pencil CT (x)B belongs to the vector space L1(P ) (see [15] for details about the L1(P )
vector space). By [22, Theorem 8.3], C(x)B is a strong linearization of P (x) if and only if row (CTB) has
rank mn−m+ rank row (P ). Clearly, row (CTB) and row (CT ) have the same rank. Similarly, rank row (P )
does not depend on the choice of the basis {φ0, . . . , φ`}. Indeed, in both cases one can argue that changing
basis is equivalent to postmultiplying by an invertible square matrix, and hence rank is preserved.

The structure of CT (x) makes clear that the rank of row (CT ) is m(n− 1) + ν, where ν is the rank of the
first block row of row (CT ). It remains to show that rank row (P ) = ν. To this goal observe that the rank of
the first block row of row (CT ) is equal to rank

[
Cn Dn−1 Dn−2 Dn−3 · · · D0

]
, and that[

Cn Dn−1 Dn−2 Dn−3 · · · D0

]
=

[
Cn Cn−1 Cn−2 Cn−3 . . . C0

]


Im 0 − 1
2Im

1
2Im

1
2Im

1
2Im

. . .
1
2Im


,

which implies that rank row (P ) = ν.
Then, we prove part (b1). First, it is immediate to verify that 2CT (x)(Φ(x)⊗M(x)) = e1⊗(P (x)M(x)) =

0. Since Φ(x) ⊗M(x) clearly has full column rank, we have that it is a basis of ker CT (x). It remains to
show that it is minimal. But this follows from the minimality of M(x): indeed, for any µ ∈ C rank Φ(µ) ⊗
M(µ) = rankM(µ), and denoting by M(x)hc the high order coefficient matrix [11] of M(x) we have that
(Φ(x)⊗M(x))hc = e1 ⊗M(x)hc. To complete the argument, note that all the blocks of Φ(x)⊗M(x) are of
the form T`(x)M(x), with 0 ≤ ` ≤ n−1, and that the maximum degree, which is equal to n−1+deg(M(x)),
is attained in the topmost block of Φ(x) ⊗M(µ). The result now follows from [11, Main Theorem]. The
proof of part (b2) follows very closely that of part (b1), so we omit it.

To prove part (c1), just note 2CT (x)(Φ(x)⊗v) = e1⊗(P (x)v), which implies that CT (x∗)(Φ(x∗)⊗v) = 0
if and only if P (x∗)v = 0. Again, the proof for part (c2) is very similar, so we omit it.

Finally, recall that a regular matrix polynomial P (x) has an infinite eigenvalue if and only if the reversal
polynomial revP (x) has eigenvalue zero, and the corresponding left and right eigenvectors of P (x) at the
eigenvalue ∞ are just the left and right null vectors of revP (0) = 2n−1Cn. Since the leading coefficient of
CT (x) is diag [Cn, Im(n−1)] we get immediately part (c3).

4.2 Duality of matrix pencils

In this section we recall the concepts of pencil duality and column and row minimality [14, 22]. Duality will
allow us to extend Theorem 4.2 to any Chebyshev-Fiedler pencil by slightly modifying the proofs of [22] for
Fiedler pencils.
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Definition 4.3. [22] The m × n pencil L(x) = xL1 + L0 and the n × p pencil R(x) = xR1 + R0 are said
to be dual pencils if the following two conditions hold:

1. L1R0 = L0R1;

2. rank
[
L1 L0

]
+ rank

[
R1

R0

]
= 2n.

In this case we say that L(x) is a left dual of R(x) and that R(x) is a right dual of L(x). Moreover, if

rank
[
L1 L0

]
= m we say that L(x) is row-minimal, and if rank

[
R1

R0

]
= p we say that R(x) is column-

minimal.

The rest of the paper heavily uses Definition 4.3 specialized to the square case m = n = p.
We now recall two results that show how the concept of duality may be applied to the study of lineariza-

tions of matrix polynomials, and how right minimal indices and bases, and right eigenvectors of a pair of
dual pencils are related.

Theorem 4.4. [22, Theorem 6.2] Let P (x) be a matrix polynomial and let R(x) be a strong linearization
of P (x). If R(x) is column-minimal, any row-minimal left dual pencil of R(x) is also a strong linearization
of P (x).

Theorem 4.5. [22, Theorems 3.8 and 4.14] Let L(x) = xL1 +L0 and R(x) = xR1 +R0 be a pair of square
row-minimal and column-minimal, respectively, pair of dual pencils.

(a) Assume that L(x) and R(x) are singular. If M(x) is a right minimal basis for R(x), then N(x) =
R1M(x) is a right minimal basis for L(x). Moreover, if 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal
indices of M(x), then 0 ≤ ε1 − 1 ≤ ε2 − 1 ≤ · · · ≤ εp − 1 are the right minimal indices of N(x).

(b) Assume that L(x) and R(x) are regular. If v is a right eigenvector of R(x) with finite eigenvalue x∗,
then R1v is a right eigenvector of L(x) with finite eigenvalue x∗.

4.3 Chebyshev-Fiedler pencils of a matrix polynomial

Analogously to Section 3, given a polynomial P (x) as in (4.1), define

M1 =

Im(n−2)

−C1 −C0

2Im 0

 , N1 =

Im(n−2)

0 Im
0 0

 , Mn =

[
Cn

Im(n−1)

]
,

and for k = 2, 3, . . . , n− 1

Mk =


Im(n−k−1)

−Ck Im
Im 0

Im(k−1)

 , Nk = M−1
k =


Im(n−k−1)

0 Im
Im Ck

Im(k−1)

 .
Then, the Chebyshev-Fiedler pencil of P (x) is defined as in Definition 3.3.

Theorem 4.6. Let P (x) be a matrix polynomial as in (4.1) and let Fσ(x) be a Chebyshev-Fiedler pencil asso-
ciated with a permutation σ with consecutions and inversions precisely at c1−1, c2−2, . . . , cΓ−1 and ii−1, i2−
1, . . . , iΛ − 1, and let Tσ = Nn:cΓMn · · ·Nn:c2MnNn:c1Mn and Sσ = (MnNn−1 · · ·Ni1)(MnNn−1 · · ·Ni2) · · ·
(MnNn−1 · · ·NiΛ). Then:

(a) The pencil Fσ(x) is a strong linearization of P (x).

(b) Assume that P (x) is singular.
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(b1) If M(x) is a right minimal basis of P (λ) with minimal indices 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp, then

Tσ
[
Tn−1(x) · · · T1(x) T0(x)

]T ⊗M(x)

is a right minimal basis of Fσ(x) with minimal indices 0 ≤ ε1 +n− 1−Γ ≤ ε2 +n− 1−Γ ≤ · · · ≤
εp + n− 1− Γ.

(b2) If N(x)T is a left minimal basis of P (λ) with minimal indices 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq, then[
N(x)TUn−2(x) · · · N(x)TU1(x) N(x)TU0(x) N(x)TVn−1,0(x)/2

]
Sσ

is a left minimal basis of Fσ(x) with minimal indices 0 ≤ η1 +n− 2−Λ ≤ η2 +n− 2−Λ ≤ · · · ≤
ηq + n− 2− Λ.

(c) Assume that P (x) is regular.

(c1) If v is a right eigenvector of P (x) with finite eigenvalue x∗, i.e. P (x∗)v = 0, then

Tσ
[
Tn−1(x∗)vT · · · T1(x∗)xT T0(x∗)vT )

]T
is a right eigenvector of Fσ(x) with finite eigenvalue x∗.

(c2) If wT is a left eigenvector of P (x) with finite eigenvalue x∗, i.e., wTP (x∗), then[
wTUn−2(x∗) · · · wTU1(x∗) wTU0(x∗) wTVn−1,0(x∗)/2

]
Sσ

is a left eigenvector of Fσ(x) with finite eigenvalue x∗.

(c3) If v and wT are, respectively, right and left eigenvectors of P (x) for the eigenvalue ∞ then[
vT 0T(n−1)m×1

]T
and

[
wT 01×(n−1)m

]
are, respectively, right and left eigenvectors of Fσ(x)

for the eigenvalue ∞.

Proof. We start proving parts (a), (b1) and (c1). The strategy of the proof follows closely the proof for the
monomial basis given in [22, Theorem 7.2]; however, there are some differences that we here highlight. By
Lemma 3.4, we may assume that any Fiedler pencil is in the normal form (3.3).

We now proceed by induction on the number of consecutions Γ in the permutation σ. If Γ = 0, we recover
the colleague pencil (4.2), and, so, the results are true by Theorem 4.2. Suppose that we have proved the
results in parts (a), (b1) and (c1) for the sequence c2, . . . , cΓ, Γ < n− 1, that is, for any Chebyshev-Fiedler
pencil with Γ − 1 consecutions, and prepend an extra element c1. We now need to inductively prove the
statement for c1, c2, . . . , cΓ. Let Q = Mc2:c1 · · ·Mn:cΓ , P = Mc1:1, and R = Nc1:1. Note that Q is invertible,
while both P and R commute with Mn, as this will be important in the following.

By assumption, the pencil Fσ̂(x) = Mnx− (QP −MnRQ
−1Mn)/2 is a strong linearization of P (x) since

the permutation σ̂ has Γ− 1 consecutions precisely at c2 − 1, . . . , cΓ − 1. Moreover, Fσ̂(x) is also a column-
minimal pencil. To see this, consider the following two cases: (i) P (x) is regular; and (ii) P (x) singular. If
P (x) is regular, then it is obvious that Fσ̂(x) is column-minimal, and if P (x) is singular, the right minimal
indices of Fσ̂(x) are equal, by the induction hypothesis, to 0 < ε1 + n − Γ ≤ ε2 + n − Γ ≤ · · · ≤ εp + n − Γ
which are larger than 0, so Fσ̂(x) is column-minimal.

Now, observe that Fσ̂(x) is strictly equivalent to the pencil Q−1Mnx− (P +Q−1MnRQ
−1Mn)/2, which

is still a column-minimal strong linearization of P (x). We claim that the pencil Fσ(x) = Mnx − (PQ +
MnQ

−1RMn)/2 is a row-minimal left dual of the latter pencil. To see this, we need to check the two
conditions in Definition 4.3. For the first, note that

Mn(P +Q−1MnRQ
−1Mn) =MnP +MnQ

−1MnRQ
−1Mn =

PMn +MnQ
−1RMnQ

−1Mn =

(PQ+MnQ
−1RMn)Q−1Mn.

For the second, we need to observe that by the inductive assumption

rank

[
−Q−1Mn

P +Q−1MnRQ
−1Mn

]
= nm,
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and hence, we only need to check that rank
[
−Mn PQ+MnQ

−1RMn

]
= nm. By the structure of Mn, it

is sufficient to argue that the (1, n − cΓ + 1)th block element of PQ + MnQ
−1RMn is equal to Im/2. The

latter claim follows from the following arguments. First, due to the structure of the matrices Mk, the matrix
PQ = Mc1:1Mc2:c1 · · ·McΓ:cΓ−1

has
[
Im 0 · · · 0

]
as its first block row, while, by direct multiplication, it

may be checked that the matrix Mn:cΓ is equal to
−Cn−1 · · · −CcΓ Im
Im

. . .

Im

⊕ Im(cΓ−1).

Thus, the first block row of the matrix PQ is equal to
[
0 · · · 0 Im 0 · · · 0

]
, where the entry equal to

Im is in the block position (1, n−cΓ+1). Second, recall that the permutation σ has its last inversion at iΛ−1.
This implies that we can rearrange the product N0:c1 · · ·NcΓ:n in the form (Nρ(0)Nρ(1) · · ·Nρ(iΛ−1))(Nn−1 · · ·
NiΛ+1NiΛ) for some permutation ρ of (0, 1, . . . , iΛ− 1). Due to the structure of the matrices Nk, the matrix
Nρ(0)Nρ(1) · · ·Nρ(iΛ−1) has

[
Im 0 · · · 0

]
as its first block row, while, by direct multiplication, it may be

checked that the matrix Nn−1 · · ·NiΛ+1NiΛ is equal to
Im

Im Cn−1

. . .
...

Im CiΛ

⊕ Im(iΛ−1).

Thus, the first block row of the matrix Q−1R is equal to
[
0 · · · 0 Im 0 · · · 0

]
, where the entry

equal to Im is in the block position (1, n − iΛ + 1). Since n − iΛ + 1 6= n − cΓ + 1, we conclude that the
(1, n− cΓ + 1)th block entry of Fσ(x) is equal to Im/2. By Theorem 4.4 we get finally that Fσ(x) is a strong
linearization of P (x).

Now assume that P (x) is singular and consider the vector Φ(x) =
[
Tn−1(x) · · · T0(x)

]T
. By the

induction hypothesis we have that a right minimal basis for Fσ̂(x) and for Q−1Fσ̂(x) is given by

Nn:cΓMn · · ·Nn:c2MnΦ(x)⊗M(x),

with minimal indices 0 ≤ ε1 + n−Γ ≤ ε2 + n−Γ ≤ · · · ≤ εp + n−Γ. Since the pencils Fσ(x) and Q−1Fσ̂(x)
are related via a duality relation, from part (a) in Theorem 4.5 we get that a right minimal basis for Fσ(x)
is given by

(Q−1Mn)Nn:cΓMn · · ·Nn:c2MnΦ(x)⊗M(x) =

(Nn:cΓMn)(NcΓ:cΓ−1Mn) · · ·Nc2:c1Nn:c2MnΦ(x)⊗M(x) = TσΦ(x)⊗M(x),

with minimal indices 0 ≤ ε1 + n− 1− Γ ≤ ε2 + n− 1− Γ ≤ · · · ≤ εp + n− 1− Γ. Therefore part (b1) is true
for Fσ(x). If P (x) is regular, the argument to prove the result for the right eigenvectors of Fσ(x) is similar
to the one for part (b1) but using part (b) in Theorem 4.5 instead of part (a), so we omit it.

Next, we prove parts (b2) and (c2). We will get left eigenvectors, and left minimal indices and bases of
a pencil from right eigenvectors, and right minimal indices and bases of its transpose pencil. Clearly, if a
pencil F (x) is a strong linearization of P (x) then F (x)T is a strong linearization of P (x)T .

Assume that P (x) is singular. We need to consider first the following Fiedler-Chebyshev pencil

Ĉ(x) = xMn −
1

2
(M1M2 · · ·Mn−1 +MnNn−1 · · ·N2N1Mn) .

13



Following closely the proof of Theorem 2.2, it may be checked that the pencil Ĉ(x)T is equal to

1

2



2xCTn + CTn−1 CTn−2 − CTn CTn−3 · · · CT2 CT1 −2Im
−Im 2xIm −Im

. . .
. . .

. . .

−Im 2xIm −Im
−Im 2xIm −Im

−Im 2xIm
−CTn −CTn−1 · · · · · · −CT3 CT0 − CT2 2xIm


.

We claim that a right minimal basis for the pencil above is given by[
Un−2(x) · · · U1(x) U0(x) Vn−1,0(x)T /2

]T ⊗N(x), (4.3)

with minimal indices 0 ≤ η1 +n− 2 ≤ η2 +n− 2 ≤ · · · ≤ ηq +n− 2. The proof for the previous claim is very
similar to the one for the right minimal basis for the colleague pencil in Theorem 4.2. We therefore only give
a sketch of the argument highlighting the differences but omitting the most tedious details. First, by direct
multiplication and using the recurrence relations for the Chebyshev polynomials of the second kind (that is,
(2.1) with α = γ = 1/2, β = 0), it may be checked that

Ĉ(x)T
[
Un−2(x) · · · U1(x) U0(x) Vn−1,0(x)T /2

]T ⊗N(x) =
1

2
en ⊗ P (x)TN(x) = 0,

so, using the equation above, it may be proved that (4.3) is, indeed, a right minimal basis for Ĉ(x)T . To
complete the argument, notice that there are only two different types of blocks in (4.3), namely, U`(x)N(x),
with 0 ≤ ` ≤ n − 2, and Vn−1,0(x)N(x)/2. Clearly, the maximum degree among all blocks of the form
U`(x)N(x) is deg (N(x))+n−2, attained only in the topmost block of (4.3). For the block Vn−1,0(x)TN(x)/2,
notice that

xVn−1,0(x)TN(x) =P (x)TN(x) +
(
CTn Un−2(x) + · · ·+ CT3 U1(x) + CT2 U0(x)− CT0 U0(x)

)
N(x) =(

CTn Un−2(x) + · · ·+ CT3 U1(x) + CT2 U0(x) + CT0 U0(x)
)
N(x).

Taking degrees in the equation above we get

1 + deg (Vn−1,0(x)TN(x)) ≤ n− 2 + deg (N(x)).

Thus, deg (Vn−1,0(x)TN(x)) ≤ n− 3 + deg (N(x)), and, therefore, the degree of (4.3) is n− 2 + deg (N(x)).

Now let us consider the pencil Fσ(x)T . With the notation M̂j:i = MT
j−1 · · ·MT

i and N̂j:i = NT
i · · ·NT

j−1,
and using the commutativity properties of the matrices Mk and Nk, it is immediate to show that this pencil
may be written as

Fσ(x)T = xMT
n −

1

2

(
M̂i1:1M̂i2:i1 · · · M̂iΛ:n +MT

n N̂iΛ:n · · · N̂i2:i1N̂i1:1M
T
n

)
.

We now prove part (b2) by induction on the number of inversions Λ in the permutation σ. The procedure is
very similar to the one in the inductive argument for right eigenvectors, and right minimal indices and bases,
so we only sketch it. For Λ = 0 we recover the pencil Ĉ(x), so the result is true in this case as we just have

seen. Now, let P̂ = M̂i1:1, Q̂ = M̂i2:i1 · · · M̂iΛ:n and R̂ = N̂i1:1. Then, the pencil Fσ(x)T is a row-minimal left

dual of the pencil Q̂−1
(
xMT

n − (Q̂P̂ +MT
n R̂Q̂

−1MT
n )/2

)
, where the pencil xMT

n − (Q̂P̂ +MT
n R̂Q̂

−1MT
n )/2

is the transpose of a Chebyshev-Fiedler pencil associated with a permutation with Γ − 1 inversions at
i2 − 1, . . . , iΛ − 1. By the induction hypothesis, a right minimal basis for the previous pencil is given by

N̂n:iΛM
T
n · · · N̂n:i2M

T
n

[
Un−2(x) · · · U1(x) U0(x) Vn−1,0(x)T /2

]T ⊗N(x),

so, using Theorem 4.5, we get that a right minimal basis for Fσ(x)T is given by

N̂n:iΛM
T
n · · · N̂n:i1M

T
n

[
Un−2(x) · · · U1(x) U0(x) Vn−1,0(x)T /2

]T ⊗N(x).

14



Then, the result follows taking the transpose of the equation above. If P (x) is regular, the argument to
prove the result for the left eigenvectors of Fσ(x) is similar to the one for part (b2) but using part-(b) in
Theorem 4.5 instead of part-(a).

Finally we consider part (c3), that is, eigenvectors with eigenvalues at ∞. Recall that a regular matrix
polynomial P (x) has an infinite eigenvalue if and only if the reversal polynomial revP (x) has eigenvalue
zero, and the corresponding left and right eigenvectors of P (x) at the eigenvalue ∞ are just the left and
right null vectors of revP (0) = 2n−1Cn. Since the leading coefficient of every Chebyshev-Fiedler pencil is
diag [Cn, Im(n−1)] we get immediately part (c3).

Observe that the matrix Tσ in Theorem 4.6 is symbolically the same2 of [22, Theorem 7.6] for Fiedler
pencils with an inversion at 0 (since the matrix M1 never appears as a factor of the matrix Tσ). This means
that the explicit form of the block vector

Tσ
[
Tn−1(x)Im · · · T1(x)Im T0(x)Im

]T
, (4.4)

mimics exactly the formulae already known for the monomial basis [6], with the only difference that any
monomial xj is replaced by Tj(x), and that any product of xh times a Horner shift of degree k is replaced
by a generalized Horner shift of order (h, k). Similar observations can be made for the explicit form of the
block vector [

Un−2(x)Im · · · U1(x)Im U0(x)Im
1
2Vn−1,0(x)

]
Sσ. (4.5)

After applying these modifications, all the results known for the monomial basis, see for instance [6, 22],
translate verbatim. These remarks yield the following result.

Theorem 4.7. Let P (x) be a matrix polynomial as in (4.1), let Fσ(x) be a Chebyshev-Fiedler pencil of

P (x), and let A(x) =
[
A1(x)T A2(x)T · · · An(x)T

]T
and B(x) =

[
B1(x) B2(x) · · · Bn(x)

]
be,

respectively, the block vectors in (4.4) and (4.5). Setting cσ(1 : `) and iσ(1 : `) for the number of consecutions
and inversions, respectively, from 1 to `, then the kth block entry of A(x) is given by

Ak(x) =


Tiσ(1:n−2)+1(x)Im if k = 1,
Tiσ(1:n−k−1)+1(x)Im if 1 < k < n and there is an inversion at k,
Hk−1,iσ(1:n−k−1)+1(x) if 1 < k < n and there is a consecution at k, and
T0(x)Im if k = n,

and the kth block entry of B(x) is given by

Bk(x) =


Ucσ(1:n−2)(x)Im if k = 1,
Ucσ(1:n−k−1)(x)Im if 1 < k < n and there is a consecution at k,
Vk−1,cσ(1:n−k−1)(x) if 1 < k < n and there is an inversion at k, and
V0,n−1(x)/2 if k = n,

for k = 1, 2, . . . , n.

Theorem 4.7 allows us to obtain, for example, explicit formulae for the left and right eigenvectors of a
Chebyshev-Fiedler pencil Fσ(x) associated with an eigenvalue x∗. Besides their intrinsic matrix theoretical
interest, formulae for the eigenvectors of a linearization find applications in numerical analysis, e.g., for
conditioning analysis [20]. As an example of the previous results, consider the pentadiagonal Chebyshev-
Fiedler pencil

Fσ(x) =
1

2


2xC5 + C4 −Im −C5 0 0
C3 − C5 2xIm C2 − C4 −Im 0
−Im 0 2xIm 0 −Im

0 −Im C1 − C3 2xIm C0 − C2

0 0 −2Im 0 2xIm

 .
2By symbolically the same we mean that it has the same formula, but of course it is built from the coefficients of (4.1) in

the Chebyshev basis T0(x), . . . , Tn(x) rather than those in the monomial basis.
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Then, its right and left eigenvectors with eigenvalue x∗ are, respectively, of the form
T2v
(C5T3 + C4T2)v
T1v
(C5T4 + C4T3 + C3T2 + C2T1)v
T0v

 and



U2w
U1w
(CT5 U3 + CT4 U2 + CT3 U1)w
U0w
1
2

(
CT5 U4 + CT4 U3 + CT3 U2 + CT2 U1 + C1U0

)
w



T

,

where v and wT are, respectively, right and left eigenvectors of P (x) with eigenvalue x∗, and where we omit
the dependence on x∗ in the polynomials Tj(x) and Uj(x) for brevity.

Note that, since T0(x) = U0(x) = 1, the block vectors A(x) and B(x) in Theorem 4.7 have always one
block entry equal to the identity matrix Im: the nth block entry in the case of A(x), and the (n− i1 + 1)th
entry in the case of B(x), where σ has its first inversion at i1−1. This fact allows one to recover eigenvalues,
and minimal indices and bases of P (x) from those of any of its Chebyshev-Fiedler linearizations.

Theorem 4.8. Let P (x) be a matrix polynomial as in (4.1) and let Fσ(x) be a Chebyshev-Fiedler pencil
associated with a permutation σ with first inversion precisely at i1 − 1.

(a) Assume that P (x) is singular.

(a1) Suppose {z1(x), z2(x), . . . , zp(x)} is any right minimal basis of Fσ(x), with vectors partitioned into
blocks conformable to the blocks of CT (x), and let vj(x) be the nth block of zj(x), for j = 1, 2, . . . , p.
Then {v1(x), v2(x), . . . , vp(x)} is a right minimal basis of P (x).

(a2) Suppose {y1(x)T , y2(x)T , . . . , yq(x)‘T} is any left minimal basis of Fσ(x), with vectors partitioned
into blocks conformable to the blocks of CT (x), and let wj(x) be the (n− i1 + 1)th block of yj(x),
for j = 1, 2, . . . , q. Then {w1(x)T , w2(x)T , . . . , wq(x)T } is a left minimal basis of P (x).

(b) Assume that P (x) is regular.

(b1) If z ∈ Cnm×1 is a right eigenvector of Fσ(x) with finite eigenvalue x∗ partitioned into blocks
conformable to the blocks of Fσ(x), then the nth block of z is a right eigenvector of P (x) with
finite eigenvalue x∗.

(b2) If yT ∈ C1×nm is a left eigenvector of Fσ(x) with finite eigenvalue x∗ partitioned into blocks
conformable to the blocks of Fσ(x), then the (n− i1 + 1)th block of y is a left eigenvector of P (x)
with finite eigenvalue x∗.

5 Future outlook

We see the present paper as a first step towards the understanding of Fiedler pencils for a class of nonmono-
mial bases. Fiedler pencils and their generalizations, such as generalized Fiedler pencils [2] or Fiedler pencils
with repetitions [24], have been studied in the monomial basis for many years since their invention (for the
monic case) by Fiedler [10]. Applications include, to name but a few, rootfinding [8], polynomial eigenvalue
problems [13], and the design of structured linearizations [4]. We hope that Fiedler pencils in the Chebyshev
and related bases, here introduced, will lead to a similarly fruitful research line in the next future. We believe
that there is the potential for this to happen, as some of the nonmonomial bases considered here (namely,
the Chebyshev basis of the first and second kind) are very relevant in several applications.

To motivate our point, we display here, focusing for definiteness on degree n = 6, a block-symmetric
linearization for the matrix polynomial P (x) =

∑6
j=0 Cjφj(x) expanded in an orthogonal basis with constant

recurrence relations (as, for example, the Chebyshev polynomials of the second kind). We have constructed
it as a “Fiedler-comrade pencil with repetitions”, in the same spirit of [4].

x


C7

C7 C5

Im
Im C3

Im
Im C1

−

αC6 βC6 0 γC6

βC6 βC5 + γC6 − αC4 αIm γC5

0 αIm 0 βIm 0 γIm
γC6 γC5 βIm βC3 + γC4 − αC1 αIm γC3

0 αIm 0 βIm
γIm γC3 βIm βC1 + γC1 − αC0

 .
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Similarly, the block symmetric pencil that we presented in the introduction was also obtained by merging
the approach of [4] with the results contained in the present paper. As the Chebyshev basis is particularly
important when looking for real eigenvalues lying on a certain interval, we think that a family of Hermitian
linearizations that can be easily obtained from the coefficients of a (matrix) polynomial expressed in the
Chebyshev basis may be of practical interest. Hence, we think that a systematic study of generalized
Chebyhev-Fiedler pencils is an interesting potential future research line.
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