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Abstract
For a group G with G-conjugacy class of involutions X, the local

fusion graph F(G,X) has X as its vertex set, with distinct vertices x
and y joined by an edge if, and only if, the product xy has odd order.
Here we show that, with only three possible exceptions, for all pairs
(G,X) with G a sporadic simple group or the automorphism group of
a sporadic simple group, F(G,X) has diameter 2.
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1 Introduction

Suppose that G is a finite group with X a G-conjugacy class of involutions
(that is, a G-conjugacy class of elements of order 2). The local fusion graph,
F(G,X), is the graph whose vertex set is X with distinct vertices x and y
joined by an edge whenever xy has odd order. Equivalently, x and y are
joined if 〈x, y〉 is a dihedral group of order 2m, m odd, in which case x and
y are conjugate in 〈x, y〉, explaining the graph’s epithet. It is clear that G
induces graph automorphisms (by conjugation) on F(G,X) and acts tran-
sitively on the vertices. Various properties of local fusion graphs have been
investigated in [1] and [2]. In [2] local fusion graphs for finite symmetric
groups are studied, the main result being that they always have diameter
two, provided that the degree is at least five. The other finite irreducible
Coxeter groups are dealt with in [1], which also considers the possible diam-
eters. There, examples are given of groups which have local fusion graphs
whose diameter can be arbitrarily large. Local fusion graphs have even being
pressed into service [3] in the area of computational algebra, while graphs
of a similar nature appear in [10].

Our main result determines the diameter of the local fusion graphs for
(most of) the sporadic simple groups and their automorphism groups. We
shall follow the notation and conventions of the Atlas [7] and also use it as
a source of data on the sporadic simple groups – Diam(F(G,X)) will denote
the diameter of F(G,X).
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Theorem 1. Suppose that K is a sporadic simple group, G a subgroup
of Aut(K) containing K, and X is a G-conjugacy class of involutions. If
(K,X) 6= (B, 2C/2D), (M, 2B) then Diam(F(G,X)) = 2.

In Theorem 1 we note that [G : K] = 1 or 2 (see [7]), so G = K or
Aut(K). Before outlining the contents of this paper we introduce some
more notation. Suppose that G is a finite group and X is a G-conjugacy
class of involutions. Let x, y ∈ F(G,X) and i ∈ N ∪ {0}. We shall use
d(x, y) to denote the distance between x and y in F(G,X), and the i-th disc
of F(G,X), Ξi(x), is defined by

Ξi(x) = {y ∈ X | d(x, y) = i}.

So Ξ0(x) = {x}, while Ξ1(x) consists of all the neighbours of x in F(G,X).
From now on we fix t ∈ X. For a G-conjugacy class C we put

XC = {x ∈ X | tx ∈ C},

and note that XC is invariant under the action of CG(t) by conjugation.
We shall sometimes adapt the Atlas [7] notation for conjugacy classes by
adding a subscript which indicates the group whose conjugacy class this is.
So, for example, 2CHS:2 indicates that we are considering the 2C conjugacy
class (as in the Atlas) of HS : 2.

For most of the sporadic groups, calculations employing GAP [18] and
Magma [6] yield the diameter of F(G,X) – the details of these being given in
Section 2.1. When (G,X) = (B, 2A) or (M, 2A), by extracting appropriate
subgroup information from the Atlas we demonstrate in Propositions 4
and 6 that F(G,X) has diameter 2. This approach works largely for the
following disparate reasons: the number of CG(t)-orbits of X is small; these
orbits are of the form XC for some conjugacy class C of G; and it is possible
to identify G-conjugacy classes in smaller subgroups. However, in the case
of (G,X) = (B, 2B), for example, X2B is not a CG(t)-orbit, so we choose in
Proposition 5 to investigate F(G,X) using the detailed description of the
point-line collinearity graph given in [14]. As a by-product, for this case our
proof is computer-free. Furthermore, this angle of attack will undoubtedly
lead to a sharper picture of the local fusion graph for (M, 2B). Indeed, for
(G,X) = (M, 2B) it can be shown that the diameter of the local fusion
graph is at most 6. This follows from [13], where it is shown that the
commuting involution graph of M on the 2B conjugacy class has diameter
3, when combined with the observation that two commuting 2B involutions
are distance 2 apart in F(M, 2B). However, this bound is almost certainly
not the best possible. Finally, we remark that for the three graphs not
covered by Theorem 1 the permutation rank of G on X is very large.

We thank the referee for their careful reading of this paper, and their
many helpful suggestions.
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2 Diameter of F(G, X)

Quite a number of the sporadic simple groups and their conjugacy classes
will be dealt with using the next two results. The first is a consequence of
some well-known character theoretic results and the second is an elementary
observation relating to the size of the first disc of a regular graph. For
Lemma 2 we require some more notation, so suppose G is a finite group,
with conjugacy classes K1, . . . ,K` and corresponding class sums K1, . . . ,K`

in the group algebra CG. Also let aijk be defined by

KiKj =
∑̀
k=1

aijkKk.

The aijk are referred to as the structure constants of G, and may be cal-
culated from the character table of G (see Chapter 28 of [11] for further
details).

Lemma 2. Suppose G is a finite group with X a G-conjugacy class of
involutions. Assume that X = Ki. Then for x ∈ X we have

|Ξ1(x)| =
∑

j

ajii,

where the sum is over all j such that the conjugacy class Kj contains ele-
ments of odd order (excluding the conjugacy class of the identity element).

Proof. Let x ∈ X. Then ajii is the number of pairs (z, y) where z ∈ Kj and
y ∈ Ki = X are such that zy = x. So, letting Kj run over all G-conjugacy
classes of non-trivial odd order elements,

∑
j ajii is the number of y ∈ X

such that xy has odd order, whence the lemma holds.

Lemma 3. Suppose that X is a finite regular graph with valency d. If
d > |X |/2, then X is connected and has diameter at most 2.

Proof. For x ∈ X , let ∆(x) denote the neighbours of x in X . So |∆(x)| =
d. Let x ∈ X . Since |∆(x)| = d > |X |/2, the regularity of X implies
connectedness. Suppose there exists y ∈ X such that x and y are distance
3 apart. Then ∆(x) ∩∆(y) = ∅. Therefore

|∆(x)| ≤ |X | − |∆(y)| = |X | − |∆(x)|

by regularity. Hence |∆(x)| ≤ |X |/2, a contradiction. Thus the diameter of
X is at most 2.

Note that Lemma 3 is best possible, as the example of dumbbell graphs
attest.
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2.1 K is not isomorphic to B or M

In Table 1 we list the first disc sizes for the local fusion graphs of G where
G = K or Aut(K), K a sporadic simple group. These values have been
calculated using Lemma 2 with the aid of GAP [18]. Note that for

(K,X) = (M12, 2C), (J1, 2A), (M22, 2C), (J2, 2A), (J3, 2A/2B)
(He, 2B), (Suz, 2A/2B), (O′N, 2B), (Fi22, 2A), (Ly, 2A)
(Fi23, 2A), (J4, 2B), (Fi′24, 2C)

we have |Ξ1(t)| > |X|/2, and so by Lemma 3 we have Diam(F(G,X)) = 2.
Now suppose that (K,X) does not fall into this category, and also that
K 6= B or M. Here our strategy is as follows. First we obtain (by means
detailed below) a set of CG(t)-orbit representatives for X. Then for each
CG(t)-orbit representative x for which tx has even order, we check that
there exists another CG(t)-orbit representative y for which both ty and yx
have odd order, thus demonstrating that d(t, x) = 2. Then by the vertex-
transitivity of F(G,X) we have Diam(F(G,X)) = 2. For a number of cases
it is straightforward to obtain a set of CG(t)-orbit representatives using the
Magma [6] command DoubleCosetRepresentatives to find representa-
tives of the double cosets CG(t)gCG(t), where g ∈ G. However this command
can fail when the index [G : CG(t)] becomes relatively large. Therefore,
when (K,X) = (Fi22, 2C), respectively (Fi23, 2B), (Fi23, 2C), (Fi′24, 2A),
(Fi′24, 2B) and (Fi′24, 2D), we use the CG(t)-orbit representatives calculated
on page 119, respectively pages 128, 129, 140, 82 and 83 of [17] to verify
Theorem 1, while for K = Co1 we make use of the representatives calcu-
lated in [4]. Finally, when K = HN and Th the required representatives
are taken from [16].

2.2 K is isomorphic to B

Proposition 4. Suppose that K ∼= B and X = 2A. Then Diam(F(G,X)) =
2.

Proof. Here we have G = K ∼= B. By page 216 of [7], CG(t) has five orbits
on X, and they are {t}, X2B, X2C , X3A and X4B. Clearly Ξ1(t) = X3A. Let
ξ ∈ 11A. Then CG(ξ) = 〈ξ〉 × L with L ∼= S5. Considering elements of
order 22 and using [7] we infer that L ∩ 2A 6= ∅ 6= L ∩ 2B. Since there
are involutions in L of cycle type 22 whose product has cycle type 22 and
X2A = ∅, we must have L∩2A = (1, 2)L and L∩2B = (1, 2)(3, 4)L. Without
loss we may take t = (1, 2) ∈ L and then for x = (3, 4) ∈ L we have x ∈ X2B.
With y = (2, 3) ∈ L we obtain a path (t, y, x) in F(G,X). Since X2B is a
CG(t)-orbit, this gives X2B ⊆ Ξ2(t).

Moving on to examine X2C , this time we choose ξ ∈ 13A. So CG(ξ) =
〈ξ〉 × L with L ∼= S4. Looking at elements of order 26 and employing [7]
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again we see that L ∩ 2A 6= ∅ 6= L ∩ 2C. Since X2A = ∅, we deduce that
L ∩ 2A = (1, 2)L and L ∩ 2C = (1, 2)(3, 4)L. Again, taking t = (1, 2) ∈ L
and x = (3, 4) ∈ L we get x ∈ X2C and then arguing as in the case of X2B

gives X2C ⊆ Ξ2(t).
From [7], looking at elements of order 10 we see X ∩ CG(ξ) 6= ∅ for

ξ ∈ 5A. Now, by [7] CG(ξ) = 〈ξ〉 × L where L ∼= HS : 2. So we may
suppose that t ∈ L. Looking at products of conjugate involutions in HS : 2
we see that t ∈ 2CHS:2 and there exists x ∈ X4B ∩ L (see, for example [5],
Table 2). Employing Magma [6], and using the 100 degree permutation
representation of HS : 2, we check that d(t, x) = 2 (note that t has 30
fixed points in this permutation representation), which completes the proof
of Proposition 4.

We shall use G to denote the point-line collinearity graph of Γ, the max-
imal 2-local geometry, for G ∼= B. The data arrayed in [14] and [15] which
describes the structure of the graph G will form the backbone of the proof
of Proposition 5, and we recommend that the reader has these sources to
hand as they are referenced extensively. The vertex set of G is X = 2B.
For x ∈ X, the edges of G joined to x are encoded by the lines in Γx, the
residue geometry at x. Now the lines in Γx correspond to certain type-2
vectors in the Leech lattice (see [14] and [15] again). We shall display these
vectors by writing their co-ordinates on a 24-element set which we denote
by Ωx (the subscript x is to indicate that we are working in Γx, as we will
be considering a number of different vertices of G). Blank entries mean the
co-ordinate is zero. Further, the Steiner system S(24, 8, 5) on Ωx plays an
important role and, just as in [14] and [15], we employ Curtis’s MOG (see
[9] and also [8]) to describe this Steiner system.

Proposition 5. Suppose that K ∼= B and X = 2B. Then Diam(F(G,X)) =
2.

Proof. Again we note that G = K ∼= B. By Theorem 1(ii) of [14] G has
permutation rank 10 on X, and the CG(t)-orbits are {t},∆1(t),∆j

2(t) (1 ≤
j ≤ 3),∆j

3 (1 ≤ j ≤ 4) and ∆4(t). We proceed by examining each of these
CG(t)-orbits.

(5.1) Ξ1(t) = ∆4
3(t) ∪∆4(t).

From calculation of structure constants and the sizes of the CG(t)-orbits
(Table 1 of [14]) we see that ∆4

3(t) = X3A, ∆4(t) = X5A and for x ∈
X \ (X3A ∪X5A ∪ {t}), tx has even order, so giving (5.1).

(5.2) ∆1(t) ⊆ Ξ2(t).

Let y ∈ ∆4(t). By Theorem 10 of [14] we may choose x ∈ ∆1(t) ∩ ∆4
3(t).

Then, by (5.1), (y, t, x) is a path in F(G,X). Since G acts transitively on
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X, there exists g ∈ G such that yg = t. Then xg ∈ ∆1(t) with d(t, xg) = 2.
Because ∆1(t) is a CG(t)-orbit, it follows that ∆1(t) ⊆ Ξ2(t) and (5.2) holds.

(5.3) ∆1
2(t) ∪∆2

2(t) ∪∆3
2(t) ⊆ Ξ2(t).

Choose y ∈ ∆4
3(t). Our aim, for each of i = 1, 2, 3, is to find x1, x2 ∈

∆1(y) ∩∆4(t) so as x2 ∈ ∆i
2(x1). This would then imply that (x1, t, x2) is

a path in F(G,X) with x2 ∈ ∆i
2(x1). The transitively of G on X and the

fact that ∆i
2(t) is a CG(t)-orbit will then yield (5.3).

Consulting Theorem 9 of [14] we see that choosing x1, x2 ∈ X with
y + xj ∈ U2 (j = 1, 2) will ensure that x1, x2 ∈ ∆1(y) ∩ ∆4(t). By (4.7)
of [15], (∆1

2,+) ⊆ U2. The set (∆1
2,+) is defined on page 278 of [15], and

we recall its definition here. Using the labelling of the MOG [9] on the
24-element set Ω as in [9], (∆1

2,+) is the set of all type-2 vectors of the
Leech lattice whose underlying C-set is an octad contained in Ω \ {14,∞}
and which contains 0. So we fix

y + x1 =
2 2 2 2
2 2 2 2

∈ (∆1
2,+).

If we take

y + x2 =
2 2 2 2

2 2 2 2

,

then y+x2 ∈ (∆1
2,+) and the inner product (y+x1) · (y+x2) = 16, whence

x2 ∈ ∆2
2(x1) by (3.2)(iii) of [15] and the definition of ∆2

2(x1). On the other
hand, selecting

y + x2 =

2
2 2 2

2
2 2 2

∈ (∆1
2,+)

gives that (y + x1) · (y + x2) = 8. Hence, using (3.2)(iv) of [15] and the
definition of ∆3

2(x1) we have x2 ∈ ∆3
2(x1).

To complete the proof of (5.3) it remains to find y + x2 ∈ U2 such that
x2 ∈ ∆1

2(x1). Now we also have that (∆2
2,−) ⊆ U2 by (4.7) of [15], where

(∆2
2,−) consists of all type-2 vectors in the Leech lattice whose underlying

octad of Ω contains {14,∞} but not 0. We shall select y+ x2 from (∆2
2,−).

Taking

y + x2 =

2 2 2 2 2
2
2
2

∈ (∆2
2,−)
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we have (y + x1) · (y + x2) = 0. By (3.2) of [15] we now need to show that
(y+x1)◦∩(y+x2)◦ = ∅. The sets (y+xi)◦ are defined prior to (3.2) of [15] –
they are certain subsets of G◦, where G◦ consists of the following 2-element
sets of type-2 vectors (the numbers in brackets give the number of each type
of 2-element set).

{{4v∞ ± 4vj ,−4v14 ∓ 4vj | j ∈ Ω \ {∞, 14}} (44)
{{(3,−1,±122), (1,−3,±122)}} (1024)
{{(2,−2, (±2)6, 016), (2,−2, (±2)6, 016)}} (1232).

Then

(y + xi)◦ = {{z1, z2} ∈ G◦ | (y + xi) · z1 = ±16 = (y + xi) · z2}.

First we consider which elements of G◦ of the form {4v∞±4vj ,−4v14∓4vj}
are in (y + x2)◦. Let Yi denote the octad of Ω underlying y + xi, i =
1, 2. If j /∈ Y2, then (y + x2) · (4v∞ ± 4vj) = 8, so to be in (y + x2)◦

we must have j ∈ Y2. But for j ∈ Y2, (y + x1) · (4v∞ ± 4vj) = 0 and so
{4v∞ ± 4vj ,−4v14 ∓ 4vj} /∈ (y + x1)◦. Now we look at elements of G◦ of
the form {(2,−2,±26, 016), (2,−2,±26, 016)}. For such elements to be in
(y+x2)◦ their non-zero co-ordinates must all be located in Y2 and hence are
not in (y + x1)◦. Finally, considering the last type of element of G◦ we see
that those in (y + x2)◦ must look likez1 =

3 -1 1 1 1
1

(±1)16 1
1

, z2 =

1 -3 -1 -1 -1
-1

(±1)16 -1
-1

 .

If {z1, z2} ∈ (y + x1)◦, then we must have z1 = z′1 or z′′1 where

z′1 =

3 -1 1 1 1
1 1 1 1 1
1 1 1 1 1

1

and z′′1 =

3 -1 1 1 1
-1 -1 -1 -1 1
-1 -1 -1 -1 1

1

(the blank entries being ±18). Since z1 is required to be a type-2 vector
in the Leech lattice, the 3 and −1 co-ordinates positions of z1 must be a
C-set of Ω. So if z1 = z′1, then there must be an octad of Ω containing
{∞, 14} and being contained in {∞, 14, 15, 18, 10, 2, 19, 1, 12, 21}. From the
MOG we see there are no such octads. Thus z1 6= z′1 and so z1 = z′′1 . Then
Π = {∞, 14, 0, 8, 3, 20, 4, 13, 16, 17} must be contained in a C-set (which is
either a dodecad or a 16-ad), with

Ω \Π ⊇ Ψ = {17, 11, 22, 9, 5, 6}.

Since the octad containing Ψ is not contained in Ω\Π, we must have that Π
is contained in a dodecad. But this is impossible as Y1 ⊆ Π and a dodecad
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cannot contain an octad. Thus we have verified that (y+x1)◦∩(y+x2)◦ = ∅
and therefore x2 ∈ ∆1

2(x1) by (3.2) of [15]. Hence (5.3) is established.
There are three CG(t)-orbits remaining which require our attention,

namely ∆1
3(t),∆2

3(t) and ∆3
3(t). In dealing with these we shall first prove

the following.

(5.4) Let x1, x2, x3 ∈ X where x2 ∈ ∆1(x1) and x3 ∈ ∆1(x2). Further
assume that x2 ∈ ∆4

3(t), x3 ∈ ∆4(t) and x3 ∈ ∆3
2(x1). Then there exists

g ∈ CG(t) and a line ` ∈ Γ1(x3) (whose points are x3, x4, x5) such that

(i) x4 ∈ ∆4(t) and x5 ∈ ∆2
3(t); and

(ii) x4, x5 ∈ ∆4
3(xg

1).

By Theorem 10 of [14] we have that CG(t)∩CG(x2)∩CG(x3) ∼M22 : 2 and
x3 + x2 ∈ HSx3 (the subscript x3 telling us that this set of lines are to be
viewed in Γx3 , the residue of x3). Using the explicit description of HS given
in (3.8) of [15] we may, without loss, assume that x3 + x2 = 4v∞+ 4v14. By
hypothesis x3 ∈ ∆3

2(x1), and so, relative to x1, the CG(x1)∩CG(x3) orbits of
lines incident with x3 are listed in Theorem 5 of [14]. The description of such
CG(x1) ∩CG(x3) orbits revolves around a certain element of Ωx3 \ {∞, 14}.
Since CG(t) ∩ CG(x2) ∩ CG(x3) acts transitively on Ωx3 \ {∞, 14}, we may
suppose this element is 0 (and replace x1 by xg

1, for some g ∈ CG(t) ∩
CG(x2)∩CG(x3)). Consulting Theorem 5 of [14] again (applied with xg

1 = t
and x3 = x) we see that the lines in (α3, x3 + x2,±3) have one point in
∆3

2(xg
1) and the other two are in ∆4

3(xg
1). Let ` ∈ Γ1(x3) correspond to the

following type-2 vector

v =

1 1 1 1 1 1
3 -1 -1 -1 1 1

-1 -1 -1 -1 1 1
1 1 1 1 1 1

,

and let x3, x4, x5 be the three points collinear with `. Then, as ` ∈ (α3, x3 +
x2,±3), we have x4, x5 ∈ ∆4

3(xg
1). We now wish to determine the CG(t)-

orbits to which x4 and x5 belong. This can be done by pinning down which
CG(t) ∩ CG(x3) orbit ` belongs to and applying Theorem 10 of [14]. Note
that ` /∈ HSx3 . The inner product of v with the following six type-2 vectors
in HSx3

2 2 2 2
2 2 2 2

2 2
2 2

2 2
2 2
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2 2 2 2 2
2
2
2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2
2 2
2 2

2 2

is 16. Thus for at least six of the lines k in HSx3 , ` ∈ α2
2(x3, k). Surveying

the CG(t) ∩ CG(x3)-orbits on lines at x3 we see the only possibility is that
` ∈ [0, 8, 28, 64]HSx3

. Hence by Theorem 10 of [14], one of x4 and x5 is in
∆2

3(t) and the other is in ∆4(t), which proves (5.4).

(5.5) ∆1
3(t) ∪∆3

3(t) ⊆ Ξ2(t).

Choose x2 ∈ ∆4
3(t). Let x1, x3 ∈ ∆1(x2) be chosen so as x2 +x1 corresponds

to 4v3 + 4v15 and x2 + x3 to the type-2 vector

w =
2 2 2 2
2 2 2 2

.

Then x2 + x1 ∈ (∆1,−) ⊆ U3 (at x2) and x2 + x3 ∈ (∆1
2,+) ⊆ U2 (at x2)

(see (4.7) of [15]), where (∆1,−) and (∆1
2,+) are relative to 0 ∈ Ωx2 . Let

Γ0(x2 + x1) = {x1, x
′
1, x2}. Consequently, without loss, we have x1 ∈ ∆1

3(t),
x′1 ∈ ∆3

3(t) and x3 ∈ ∆1
4(t) by Theorem 9 of [14]. Further the inner product

of 4v3 + 4v15 and w is 8, whence x3 ∈ ∆3
2(x1) and x3 ∈ ∆3

2(x′1) by (3.2) of
[15]. Applying (2.4.4) to x1, x2, x3 yields that there exists x4 ∈ ∆1(x3) ∩
∆4(t) ∩ ∆4

3(xg
1) for some g ∈ CG(t). So, by (5.1), (xg

1, x4, t) is a path of
length 2 in F(G,X). Since ∆1

3(t) is a CG(t)-orbit, this forces ∆1
3(t) ⊆ Ξ2(t).

A similar argument, with x′1 in place of x1, proves that ∆3
3(t) ⊆ Ξ2(t) also,

whence (5.5) follows.

(5.6) ∆2
3(t) ⊆ Ξ2(t).

We start with x2 ∈ ∆4
3(t), and again let 0 be the element of Ωx2 relative to

t which encodes the line orbits at x2. Choose x1 ∈ ∆1(x2) and x3 ∈ ∆1(x2)
such that

x2 + x1 =
2 2 2 2
2 2 2 2
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and

x2 + x3 =
2 2 2 2

2 2 2 2

.

Then both of these type-2 vectors are in (∆1
2,+) and hence (see (4.7) of

[15]) in U2 (based at x2). Therefore, by Theorem 9 of [14], x1, x3 ∈ ∆4(t).
Moreover, as (x2 +x1) · (x2 +x3) = 8, x3 ∈ ∆3

2(x1). So we may apply (2.4.4)
to conclude there is an x5 ∈ ∆1(x3) with x5 ∈ ∆2

3(t) and x5 ∈ ∆4
3(xg

1) for
some g ∈ CG(t). Hence, as xg

1 ∈ ∆4(t), (5.1) implies that (t, xg
1, x5) is a path

in F(G,X) of length 2. Thus x5 ∈ Ξ2(t), whence ∆2
3(t) ⊆ Ξ2(t), so giving

(5.6).
Combining (5.1) – (5.6) completes the proof of Proposition 5.

2.3 K is isomorphic to M

Proposition 6. Suppose that K ∼= M and X = 2A. Then Diam(F(G,X)) =
2.

Proof. Here we have G = K ∼= M. By Table 2 of [12], CG(t) has 9 orbits
on X, namely {t}, X2A, X2B, X3A, X3C , X4A, X4B, X5A and X6A. Hence
Ξ1(t) = X3A ∪X3C ∪X5A. By [7] the eleventh power of any element of G of
order 44 is in 4A. Also from [7], G has only one conjugacy class of elements
of order 11. Let g be an element of G of order 11. Then CG(g) = 〈g〉 ×M
with M ∼= M12, again by [7]. So M ∩4A 6= ∅. Moreover, looking at elements
of order 22 and using [7] once more we deduce that M ∩ 2A 6= ∅ 6= M ∩ 2B.
Since elements of order 4 in M12 square to the class 2BM12 (the 2B class in
M12) and, in G, 4A elements square into 2B, we see that 2A ∩M = 2AM12

and 2B ∩M = 2BM12 . Hence, if x ∈ X2A∪X2B ∪X4A, we may without loss
suppose that 〈t, x〉 ≤ M (see, for example, Table 2, line 2 of [5]). Then, by
Section 2.1, d(t, x) = 2.

Now suppose that x ∈ X4B. Consulting page 234 of [7] we see that G
contains a subgroup H where H ∼= A6, the involutions of H are in 2A and
the order four elements of H are in 4B. Thus, without loss of generality,
〈t, x〉 ≤ H, whence d(t, x) = 2 by Theorem 1.1 of [2].

Finally we assume that x ∈ X6A. Put z = tx and H = NG(〈z2〉). By
[7], z2 ∈ 3A and hence H ∼ 3.Fi24. Set H = H/〈z2〉. In H \H ′ there are
two H involution conjugacy classes, namely 2CFi24 and 2DFi24 . Looking at
the possible product orders of involutions we see that X ∩H = 2CFi24 (the
Fischer transpositions). So t and x are transpositions in Fi24. Thus we may
find y ∈ X ∩H for which ty and yx both have order 3. Consequently ty and
yx have odd order (in fact order 3) and so d(t, x) = 2, whence Proposition
6 holds.

Section 2.1 and Propositions 4, 5 and 6 together prove Theorem 1.
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3 Discs of F(G, X)

The disc sizes for the local fusion graphs featuring in Theorem 1 are given
in Table 1.
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Table 1: First disc sizes for F(G,X)

K Class Class size |Ξ1(t)|
M11 2A 165 80
M12 2A 396 180

2B 495 176
2C 792 460

J1 2A 1, 463 1, 072
M22 2A 1, 155 576

2B 330 112
2C 1, 386 1, 040

J2 2A 315 224
2B 2, 520 1, 212
2C 1, 800 532

M23 2A 3, 795 1, 344
HS 2A 5, 775 2, 304

2B 15, 400 7, 152
2C 1, 100 336
2D 23, 100 10, 704

J3 2A 26, 163 16, 832
2B 20, 520 12, 716

M24 2A 11, 385 2, 816
2B 31, 878 10, 880

McL 2A 22, 275 10, 304
2B 113, 400 47, 564

He 2A 24, 990 4, 992
2B 187, 425 119, 552
2C 266, 560 104, 796

Ru 2A 593, 775 149, 504
2B 1, 252, 800 570, 752

Suz 2A 135, 135 69, 632
2B 2, 779, 920 1, 454, 432
2C 370, 656 137, 960
2D 2, 358, 720 757, 592

O′N 2A 2, 857, 239 1, 079, 168
2B 2, 624, 832 1, 435, 412

Co3 2A 170, 775 59, 264
2B 2, 608, 200 904, 112

Co2 2A 56, 925 14, 336
2B 1, 024, 650 379, 904
2C 28, 690, 200 5, 084, 672

Fi22 2A 3, 510 2, 816
2B 1, 216, 215 484, 352
2C 36, 468, 450 12, 015, 872
2D 61, 776 22, 400
2E 19, 459, 440 7, 102, 592
2F 22, 239, 360 10, 969, 856

HN 2A 1, 539, 000 391, 424
2B 74, 064, 375 26, 906, 624
2C 75, 240, 000 28, 083, 824

Ly 2A 1, 296, 826, 875 659, 509, 424
Th 2A 976, 841, 775 377, 298, 944

Fi23 2A 31, 671 28, 160
2B 55, 582, 605 15, 234, 560
2C 12, 839, 581, 755 3, 308, 650, 496

Co1 2A 46, 621, 575 13, 451, 264
2B 2, 065, 694, 400 902, 774, 912
2C 10, 680, 579, 000 3, 014, 586, 368

J4 2A 3, 980, 549, 947 1, 112, 555, 520
2B 47, 766, 599, 364 26, 545, 360, 896

Fi′24 2A 4, 860, 485, 028 1, 504, 701, 440
2B 7, 819, 305, 288, 795 3, 351, 534, 645, 248
2C 306, 936 275, 264
2D 5, 686, 767, 482, 760 1, 780, 551, 713, 600

B 2A 13, 571, 955, 000 2, 370, 830, 336
2B 11, 707, 448, 673, 375 4, 010, 408, 935, 424
2C 156, 849, 238, 149, 120, 000 56, 546, 114, 902, 065, 152
2D 355, 438, 141, 723, 665, 000 94, 228, 887, 171, 497, 984

M 2A 97, 239, 461, 142, 009, 186, 000 30, 528, 114, 911, 948, 570, 624
2B 5, 791, 748, 068, 511, 982, 636, 944, 259, 375 1, 486, 325, 429, 210, 105, 899, 724, 570, 624
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