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Abstract

Large-scale industrial plants require physical sensors to contin-
uously measure quantities such as temperatures or pressures.
A large number of sensors is required to accurately describe
the operating state of the plant, which unfortunately makes
it very difficult for them to be effectively monitored by hu-
man operators. In this work we present a method to construct
so-called metasensors, virtual sensors that compress the in-
formation from several sensors in an optimal manner. These
metasensors are used as inputs to a novel anomaly detection
system that automatically alerts operators to abnormal opera-
tion behaviour.

1 Introduction

Industrial plants are composed of a large number of individual
assets, each monitored by sensors recording physical quanti-
ties such as temperatures and pressures. The number of sen-
sors across an industrial plant is typically large to accurately
describe its operating state. This results in a vast number of
real-time signals, far too many to be actively monitored by hu-
man operators. It is therefore common to identify a small num-
ber of key sensors for continual monitoring based on past plant
behaviour. Although there is some merit to this approach, it
discards the majority of available information and is devoid of
any mechanism to identify previously unseen anomalous be-
haviour. It is also possible to identify too many “important”
sensors, leading to the need of further prioritisation that poten-
tially eliminates meaningful sensor data. It is clear that this
manual selection approach has many problems.

To improve on real-time sensor monitoring systems the authors
have devised a method of constructing so-called metasensors.
Metasensors are virtual sensors that encapsulate the state of
an individual piece of equipment in a single meaningful time
series. They are composites of real sensor data, combined in
a way that guarantees minimal loss of information. Metasen-
sors are trained on a small amount of data and then continually

updated in real-time at the same frequency as the underlying
physical sensors, or using averaged data over a fixed time pe-
riod if data smoothing is required.

Although the number of metasensors required to describe the
current plant state is typically much smaller than the num-
ber of physical sensors there are still opportunities for faults
to be missed if manual monitoring is relied upon. Automatic
anomaly detection provides a method (or methods) of alerting
operators to incipient behaviour. Time series analysis tech-
niques are used to identify changes in behaviour that are likely
to be due to the development of a fault.

In the system presented here anomaly detection is performed
on the constructed metasensors to highlight points of concern
and alert operators to potential issues. This allows action to be
taken before the asset suffers serious damage. Several anomaly
detection algorithms are employed to cover a wide range of
anomaly types. We found it beneficial to combine two or more
anomaly detection algorithms using a quorum voting system,
thereby minimising the false positive detection rate whilst re-
taining sensitivity.

In this work we provide an introduction to metasensors (sec-
tion 2) and automated time series anomaly detection (sec-
tion 3). We then present a case study showing the applica-
tion of these methods to a Sabic UK ethylene production plant
(section 4). This study focuses on furnace components, for
which the system successfully identifies tube leaks approxi-
mately up to 22 days before they were identified by plant en-
gineers. These results, discussed in section 5, demonstrate the
effectiveness of our metasensor anomaly detection system in
identifying faults at an early stage whilst adapting to continu-
ally changing operational conditions. We conclude the paper
with section 6.

2 Metasensors

Metasensors are constructed using sensor data from a relatively
short time range. This training set is ideally taken during a
period of normal plant operation, and is analysed to determine
the optimal combination of these sensors that corresponds to
the projection of the time series data from N dimensions —
where N is the number of sensors being combined — to a one-
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Fig. 1: Example metasensor construction from 3 signals (pan-
els A — C). Panel D shows the resulting metasensor, in
which features from all 3 original signals are clearly
visible.

dimensional space that maintains the largest possible variance
of the data. In this sense a metasensor is the best possible one-
dimensional representation of the combined sensor data.

Although it is possible to build metasensors from a large num-
ber of sensors spread across different plant areas, we found that
the most effective metasensors are built from sensors attached
to a single asset. This also allows detected anomalies to be
quickly associated with the faulty piece of equipment.

An example of metasensor construction is shown in figure 1.
Panels A — C show the original signals to be combined, and
the resultant metasensor is shown in panel D. Notice how the
metasensor shows features from each original signal, with the
underlying slow oscillation inherited from signal 1, the noise
from signal 2, and the wild oscillatory behaviour from signal 3.

When combining multiple sensors we use principal component
analysis [1] to effectively weight their contribution so that the
metasensor variance is maximized. This results in highly vari-
ant sensor signals contributing a large portion to the metasen-
sor, and signals with very small relative changes having a small
contribution. As a consequence, this approach automatically
ignores data from deactivated sensors as the variance of their
signals will be zero.

3 Anomaly Detection
3.1 Algorithms

Several anomaly detection algorithms are used to provide flex-
ibility in the types of abnormal behaviour that can be detected.
This allows the system to be uniformly deployed over differ-
ent assets with minimal configuration. Below is a list of the
algorithms we have implemented and tested. All of these al-
gorithms have in common that they build a statistical model of
the time series, triggering anomalies when the data fails to fit

this model. All of these methods are adaptive, meaning that
when the normal behaviour of the asset changes the algorithms
will adapt to this new state automatically.

AdWin is a change-point detection algorithm developed by
Bifet and Gavalda [2]. It searches for points in the data
that separate periods of behaviour based on the mean
value within an expanding window. It is therefore very
effective at locating changes in average value, but it is in-
sensitive to changes in the variance of the signal.

StatWin To also capture changes in variance we developed
another anomaly detection algorithm called StatWin.
StatWin detects when the most recent data point provided
by a metasensor lies outside of a statistical envelope de-
fined by previous metasensor behaviour within a moving
time window.

KMeans A k-means clustering algorithm is used to model the
data, and then the most recent value of the metasensor
is compared to this clustering to determine if it is suffi-
ciently “close” to previously seen values within a fixed
window. If it is not, the value is considered anomalous.
This algorithm is based on an approach described by Hill
and Minsker [3]. It effectively detects changes in both av-
erage value and variance, but rather than relying on a con-
tinuous window of allowable data it uses the cluster cen-
troids to define regions of acceptable metasenor values.
This means that this algorithm may recognise anomalies
that lie within the range of previously seen data. For ex-
ample, given a signal comprising entirely of the numbers
0 and 100, this algorithm would indicate a value of 50 as
anomalous, as it is not sufficiently “close” to the previ-
ous values. This algorithm will be referred to as KMeans
within this paper.

BCPD On-line Bayesian change-point detection (BCPD)
builds a statistical model of the data and marks the points
at which the underlying data distribution changes signif-
icantly [4, 5]. This approach typically provides a good
general purpose algorithm that is directly applicable to
any time series without any changes in configuration.

3.2 Data Windowing

Data windowing provides an efficient method of dealing with
continuous data in real-time. All but one of the anomaly de-
tection algorithms, AdWin, use a fixed size moving window.
AdWin is designed around the concept of a dynamically ex-
panding window that shrinks when changes are detected to ex-
clude the old “different” data. This means that the window
expands gradually as new points are added, and then shrinks
instantaneously to remove the oldest data which does not fit
the current behaviour.

KMeans and StatWin require a fixed size window to be popu-
lated before anomalies can be detected. This is because accu-
rate statistical measurements (in StatWin’s case) and k-means



clustering (in KMeans’ case) cannot be performed without a
sufficient number of data points. Once “full” new data points
are added to the end of the window, the oldest point is removed
from the start to maintain a constant window size.

To ensure numerical stability the on-line Bayesian change
point detection algorithm also uses a fixed size window, al-
though it does not have the limitation of requiring this window
to be fully populated before anomalies can be detected (as was
the case with StatWin and KMeans). This change detection
algorithm calculates the probability that each data point being
analysed is a contiguous block of similar behaviour. Smaller
and smaller weights are given to points more distant from the
latest value.

3.3 Quorum Voting

Although it is possible to use individual algorithms for specific
assets, better results can be seen when several algorithms are
combined in a “democratic” way. Quorum voting (or majority
voting) provides this framework.

The simplest form of quorum voting collects the anomaly re-
sults from each selected algorithm and only reports an anomaly
if the number of algorithms detecting an anomaly is greater
than a pre-set threshold (often > 50%). It is also possible to in-
clude a time window to also count anomalies detected by sev-
eral algorithms at slightly different times. The window width
can range from a few minutes to hours depending on the fre-
quency of the underlying sensor signals and the behaviour of
the asset. This accounts for the different ways in which the
above algorithms detect anomalies, ensuring that the sensitiv-
ity is maintained but the false positive rate is minimised.

An example of anomaly detection is shown in figure 2. The
three algorithms KMeans, AdWin, and StatWin are combined
to produce the quorum voting results shown as red dots in
panel A. The detection results of the individual algorithms are
shown in panel B.

4 Case Study

Our anomaly detection system has been recently trialled on
historical data from a Sabic UK petrochemicals plant, specif-
ically targeting its heat exchangers. Inner tube leaks are rela-
tively common in heat exchangers and exhibit a specific sensor
signature. A small hole develops in the inner tube allowing gas
to escape, leading to a gradually falling temperature of the gas
that remains in the pipe. The temperature of the steam, which
is used as the exchange medium, remains constant, or in some
cases slightly increases. The size of the hole can vary in dif-
ferent cases, and can increase over time. The size of the hole
effects the rate at which the gas temperature decreases.

It was found that inner tube skin leaks could be positively iden-
tified soon after they develop, and often several days before
they were identified by the plant engineers. Examples of these
are shown in figure 3 and figure 4.
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Fig. 2: Example anomaly detection on a test signal using the
k-means, AdWin and StatWin algorithms. The results
from the individual algorithms are shown on panel B,
with the signal and quorum voting combined result
shown in panel A.
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Fig. 3: Anomaly detection results from heat exchanger data
taken from a Sabic UK petrochemicals plant. The gas
temperature is shown in blue, the steam in green and
the detected anomalies in red. Anomalies are detected
from the 9% of October, 20 days before the fault was
identified by the engineers and the furnace taken of-
fline.
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Fig. 4: Anomaly detection results for heat exchanger data
taken from a Sabic UK petrochemicals plant. The gas
temperature is shown in blue, the steam in green and
the detected anomalies in red. The first anomaly is de-
tected on the 11" of March, the leak was detected by
plant engineers on the 2"¢ of April.

These two examples show the variation in signals (gas and
steam temperature) that can be seen on a plant, with signifi-
cantly more noise being present in figure 4 compared to fig-
ure 3. However, in both cases a clear downward trend in one
of the signals is seen.

The first example, shown in figure 3, is a low-noise sensor pair
in which a consistent but slow downward trend in gas temper-
ature (shown by the blue line) is observed. The initial leak ap-
pears to begin on the 4" of October with the first anomaly de-
tected on the 9*". Another anomaly possibly caused by the leak
is identified on the 15", and then a relatively high anomaly ar-
rival rate is seen between the 25" and the 29*"* of October
when the furnace is brought offline.

The sensors in figure 4 show a much higher noise level. The
leak begins to develop around the 6" of March just before a
feed change occurs, which is the cause of the spikes in temper-
ature on the 7*". The first anomaly is reported on the 11*" of
March and the second on the 16t". After this point no more
anomalies are reported as the signal variance is so high that the
behaviour remains statistically consistent.

5 Discussion
5.1 Industrial Case Study

As can be seen from figures 3 — 4, the presented system has
the potential to successfully identify asset failures. The inner
tube leaks are detected soon after the leak has developed, and
before the plant engineers had identified the fault. As well as
the large number of assets to be monitored this is also partly
due to the slow nature of this particular type of failure. If only
a short section of data is assessed (e.g. one day), the downward

gradient of the blue temperature sensor is not identifiable. In
the case shown in figure 4 this is particularly true because the
level of noise is so high.

These two examples are representative of the tube leaks pro-
cessed, with faults being identified between 22 and 10 days
before they are identified using standard techniques. This gives
sufficient notice for the plant operators to implement a strategy
to either take the exchanger offline so that it can be repaired,
or reduce its workload so that it is more likely to remain op-
erational until its next scheduled shutdown. This information
has a positive impact on the plant availability as it saves equip-
ment from large scale failures that require significant amounts
of time to rectify.

The amount of anomalies detected by any fault identification
system is an important aspect in its “trustworthiness.” It is
of unrealistic to expect that a versatile system such as this,
designed to detect anomalous behaviour across different asset
types with minimal configuration, will produce perfect results
with no false positives and no missed faults. It seems plausi-
ble that the preferred state would be a small number of false
positives with no missed true faults rather than a more conser-
vative state in which some faults are missed but there are no
false positives. On the other hand, the rate of false positives
must be low enough to not lead to a loss in confidence in the
results of the system.

The tube leaks shown here are a good example of this, as the
detection parameters used are completely identical between
the two. Although there is a high level of erratic behaviour
in the gas temperature in the case shown in figure 4 only two
anomalies are identified. This is due to the adaptive nature of
the anomaly detection algorithms, ensuring that the anomalies
are considered within the context of current behaviour, and the
quorum voting approach.

5.2 Metasensor Anomaly Detection

Although it would be possible to perform anomaly detection on
the sensors individually this has several drawbacks. Firstly the
number of sensors can be large, which introduces performance
issues if the system is intended to be used in real-time. This is
especially true if several algorithms are being utilised and then
combined through quorum voting. Secondly, if the sensors are
treated independently synchronised bulk movement (e.g. all
temperatures increase at the same time) will not be detected
unless the deflection in each sensor is significant. When com-
bined through metasensor construction relatively small simul-
taneous changes in each sensor would result in a large deflec-
tion in the metasensor. This allows the system to detect faults
quickly.

5.3 Limitations

A main limitation of this study is that only one type of fault
has been considered. However, a large amount of process
data was made available for analysis which allowed us to cal-
ibrate the system to account for the varying signal qualities



seen on the plant. It was also possible to use the large num-
ber of known process events such as feed changes and furnace
de-cokes as features that should be identified. The short time-
scale changes caused by these events can be considered anoma-
lous as they are not part of the steady-state operational regime.
Other events that could be used to identify such rapid changes
may come from the alarm system. Analysis of triggered alarm
patterns can reveal underlying incipient behaviour [6, 7], and
this information could be used alongside the system presented
here to identify the root cause of anomalies.

It is possible that, for a large number of signals, a single
metasensor could be insufficient to accurately represent the
variance of the original sensors. In this case it could be benefi-
cial to use more than one principal component for the metasen-
sor construction. However, as it was found that this system is
most effectively used at the asset level, it is unlikely that such
a large number of sensors would be compressed into a single
metasensor.

6 Conclusions

An effective anomaly detection system has been presented, ca-
pable of detecting various types of anomalous behaviour across
a large range of industrial assets. The system requires very lit-
tle configuration, and quickly adapts to changing behaviour to
allow its continued use for long periods of time without user
intervention. The utilisation of quorum voting minimises the
false positive rate of the system whilst retaining the sensitivity
of the individual algorithms.

It has been demonstrated that the system successfully identifies
asset faults far in advance of serious failure, allowing action to
be taken to minimise overall damage and increase overall asset
availability.
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