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Abstract

Graphene consists nominally of a regular planar hexagonal carbon
lattice monolayer. However, its structure experiences perturbations in
the presence of external influences, whether from substrate properties,
thermal or electromagnetic fields, or ambient fluid movement. Here we
give an information geometric model to represent the state space of per-
turbations as a Riemannian pseudosphere with scalar curvature close to
− 1

2 . This would allow the representation of a trajectory of states under a
given ambient or process change, so opening the possibility for geomet-
rically formulated dynamical models to link structural perturbations to
the physics.
Keywords: Graphene, perturbations, information geometry, state
space manifold
MSC: 53B20, 62M40, 94A17

1 Introduction

A large number of papers have reported micrographic imaging of graphene
membranes, revealing the underlying lattice structure with superimposed lo-
cal variations in topography and induced charges. For example, Hamilton [9]
showed typical structural features at several scales in transmission electron
micrographs. Costamagna and Dobry [3] studied 2D to 3D transitions in
graphene sheets and obtained a correlation between the standard deviation of
the out of plane distance and the mean lattice dimension. Meyer et al. [16]
showed a transmission electron micrograph of a few-layer graphene membrane
and Stolyarova et al. [18] used scanning tunneling microscopy to reveal verti-
cal variations of 0.8nm over regions of 20nm. Couto et al [4] found a linear
correlation between reciprocal mobility and the carrier density in all samples
tested: thus devices with smaller density fluctuations had greater mobility
and this is consistent with the effect of random strain variations in graphene.
They were able to confirm the role of random strain fluctuations as an impor-
tant source of disorder and so account for the above mentioned correlation.
Whether this relationship can be linked to a linear correlation between strain
standard deviation and mean is an interesting question.

Ishigami et al [11] described a novel heat cleaning method in argon/hydrogen
which at the 600nm scale reduced the standard deviation of height of graphene
on SiO2 from 8Åto 3Å. The nominal monolayer thickness is 3.4Å in bulk
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graphite and on SiO2 the layer thickness was measured with an AFM as 4.2Å;
in air the thickness was 9Å because of the presence of impurity ambient species
at the interface or on the graphene monolayer. From this it suggests that the
standard deviation of local thickness of a graphene stratum is of the same
order as its mean thickness at the 600nm scale. We note also the report by
Xu et al [19] of thermal effects on height fluctuations of freestanding graphene
during scanning tunnelling microscopy experiments.

We consider first the simplest situation of tiny Gaussian variations applied to
the locations of the carbon atoms in the nominally planar hexagonal graphene
structure, which has lattice constants 2.461Å and 6.708Å. Such, sparse, dis-
tributed structural fluctuations would result in behavioural variations, as would
departures from planarity caused by substrate carried impurities or other am-
bient species trapped in between. We believe that these type of fluctuations
may be treated as spatially distributed variations and so modelled by prob-
ability density functions, which we may formulate as a geometrical space on
which transitions or evolution of fluctuation patterns may be represented and
linked to observable physical behaviour.

The degeneration of 2D crystal order was simulated by Lucarini through per-
turbations of the three regular tessellations of the plane: square, hexagonal
and triangular, by an increasing spatial Gaussian noise applied to vertices.
Physically, there the perturbing spatial noise intensity corresponds to a lattice
temperature in the structural symmetry degeneration. The statistical param-
eters of the evolving changes were analyzed through those of the (convex) cells
in the Voronoi tessellations, which are optimal partitions of the space from the
given set of generating vertices of the structure. In all cases the gamma distri-
bution was an excellent model for the observed probability density functions
of all metric properties: inter-vertex distance, perimeters of polygons, areas
of polygons and with the same result for 3D cubic crystal lattices (SC, BCC,
FCC) [15], where also the volumes of polyhedra followed gamma distributions.
With the onset of noise, quite quickly the three 2D tessellations became indis-
tinguishable. Similar results were found also for perturbations of the three 3D
cubic crystal lattices [15, 5]. Lucarini [14] suggested that such an approach
could be made to model the structure of graphene.

The results of Lucarini’s simulations of 2D and 3D crystal disordering were
put into an information geometric framework [5] by means of which the space
of perturbations was represented by a Riemannian manifold of gamma proba-
bility density functions provided with the Fisher information metric [2]. That
allowed the representation of the tessellation-constrained degeneration down
to the Poisson Voronoi limit.

Remark: Here we are not concerned with such large scale degeneration as
in [13] but with very small variations in the hexagonal structure of graphene,
which might resemble the early stages of the Gaussian perturbations of a hexag-
onal crystal lattice. The small scale of such perturbations mitigates the concern
that applying the same Gaussian variation to the location of carbon atoms for
graphene and to the ‘mother’point for Voronoi tessellation could result in dif-
ferent structures. We believe that at the scale envisaged this difference would
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be small, but certainly worth investigating through simulations, and if possible
experimentally. A further concern in the case of graphene was that the dy-
namical behaviour of the network of carbon atoms could possibly bring about
different distributional properties from the case of ‘static’Voronoi tessellations.
Again this is worthy of investigation but at small scales the dynamical vari-
ations might be expected to yield oscillations that centred on the mean static
case.

The application of the information geometric methodology to real data de-
pends on estimating the mean and variance of the distributions of e.g. hexagon
perimeters in an ideal planar model but additionally obtaining also distri-
butions of out of plane distances for vertices if non-planar fluctuations are
present. Such data could then be used to represent the distributions of fluctu-
ations from a regular planar hexagonal crystal, either using individual lengths
or combinations thereof. In any case we expect that the distributions involved
will be gamma and that variations in the influences causing the fluctuations
will move the distribution about in the space of gamma distributions. We out-
line how an information geometric approach may help model the behaviour
through the provision of a geometrically formulated natural state space on
which to represent physical influences. It may be that the bivariate gamma
distribution discussed with applications in [2] could be used as the model if
correlated horizontal and vertical fluctuations are observed in graphene.

The gamma distribution, which seems to be encountered in many naturally
occurring processes [2], can be characterised by the following uniqueness the-
orem:

Theorem 1.1 ([12, 10]) For independent positive random variables with a
common probability density function f, having independence of the sample
mean and the sample coefficient of variation is equivalent to f being the gamma
distribution.
A proof was given by Hwang and Hu [10] but the result seems to have been
known earlier and in [6] we gave a proof partly based on the 1954 article by
Laha [12].

The family of gamma distributions with random variable x in event space
Ω = R+ has a collection of probability density functions given by

{f(x;µ, κ) =

(
κ

µ

)κ xκ−1

Γ(κ)
e−xκ/µ | µ, κ ∈ R+} ≡ R+ × R+, (1)

and Γ is the gamma function. The gamma probability density functions (1)
depend smoothly on parameters µ, κ ∈ R+. The mean is E[x] = µ, the variance
is E[x2] − E[x]2 = σ2 = µ2/κ and so we see that 1√

κ
is the constant of

proportionality between the standard deviation and the mean, which reflects
the result in Theorem 1.1.

Given a set of identically distributed, independent data values X1, X2, . . . , Xn,
the ‘maximum likelihood’ or ‘maximum entropy’ parameter values µ̂, κ̂ for
fitting the gamma distribution (1) are computed in terms of the mean and
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mean logarithm of the Xi by maximizing the likelihood function

Likf (µ, κ) =

n∏
i=1

f(Xi;µ, κ).

Taking the logarithm and setting the gradient to zero we obtain

µ̂ = X̄ =
1

n

n∑
i=1

Xi (2)

log κ̂− Γ′(κ̂)

Γ(κ̂)
= log X̄ − 1

n

n∑
i=1

logXi

= log X̄ − logX. (3)

We note that the distribution of a sum of independent gamma random vari-
ables is itself gamma distributed. The special case κ = 1 in (1) corresponds
to the situation of the random or Poisson process with mean µ (and so also
σ = µ) then the distribution of size of inter-event spaces is exponential, the
unique distribution with unit mean having maximum entropy–that is least
constraints.

In fact, the gamma distribution has an essential generalising property of the
exponential distribution since in particular it represents inter-event distances
for generalisations of the Poisson process to a ‘censored’ Poisson process. In-
deed, for integer κ = 1, 2, . . . , (1) models a process that is Poisson but with
intermediate events removed to leave only every κth. Formally, the gamma
distribution is the κ-fold convolution of the exponential distribution, called
also the Pearson Type III distribution. The Chi-square distribution with in-
teger n = 2κ degrees of freedom models the distribution of a sum of squares
of n independent random variables all having the Gaussian distribution with
zero mean and standard deviation σ; this is a gamma distribution with mean
µ = nσ2 for integer κ = 1, 2, . . . .

We might expect that the horizontal structural fluctuations in graphene are
small-scale rare events in a random process, such as a perturbation of a Poisson
spatial process. A wide range of near-Poisson processes is discussed in terms
of the information geometry of the gamma family in [2]. In the context of
small structural fluctuations in graphene there may be an interpretation of
the anticipated very high values of κ compared with unit mean in terms of the
censored Poisson process corresponding to rare events, for example, small and
rare variations in hexagon perimeter or area. Accordingly, here we investigate
the properties of the gamma distribution for possible modeling of graphene, if
observational data becomes available then other choices may arise, including
bivariate models for vertical and horizontal variability.

Whereas the nominal monolayer thickness of graphene is 3.4Å in bulk graphite,
on SiO2 it is 4.2Å and in air the impurities increased the thickness to 9Å. At
the 600nm scale the standard deviation of height was of similar size to the
mean thickness [11], which suggests that the coefficient of variation is unity
and the vertical process is approximately exponential.
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2 Information geometry of the gamma distribution

For any smooth family of probability density functions

{pθ|θ ∈ Θ ⊆ Rn} (4)

defined on some fixed event space Ω (typically R, R+ or products thereof) the
covariance matrix [gij ] is the expectation of the matrix of derivatives of the log-
likelihood function l = log pθ, with respect to parameters (θi). This is positive
definite and hence defines a Riemannian metric on the smooth n-manifold of
probability density functions with coordinates (θi).

The components of the Riemannian metric are given by the expectation of the
covariance matrix of gradients of the log-likelihood function l with respect to
the n parameters (θi) [1, 2]:

[gij ] = E

(
∂l

∂θi
∂l

∂θj

)
=

[∫
Ω
pθ

(
∂l

∂θi
∂l

∂θj

)]
, (5)

or equivalently, under mild regularity conditions [17],

[gij ] = E

(
∂2l

∂θi∂θj

)
=

[∫
Ω
pθ

(
∂2l

∂θi∂θj

)]
, (6)

with arc length function

ds2 =
∑
i,j

gij dθ
i dθj .

The family (4) is called an exponential family if the pθ admit expression in
terms of functions {C,F1, ..., Fn} on Ω and a function ϕ on Θ as:

pθ(x) = e{C(x)+
∑

i θi Fi(x)−ϕ(θ)} , (7)

then these (θi) are its natural parameters, and ϕ is the potential function. By
integrating (7) over Ω, then using∫

p(x; θ) dx = 1, on the left

we take logs and obtain:

ϕ(θ) = log

∫
e{C(x)+

∑
i θi Fi(x)} dx . (8)

For the gamma distribution, it can be seen that (ν = κ/µ, κ) are natural
parameters and its potential function is

ϕ(ν, κ) = log Γ(κ)− κ log ν. (9)

In these coordinates the components of the metric are given by

[gij ] (ν, κ) =

[ κ
ν2

− 1
ν

− 1
ν

d2

dκ2
log(Γ)

]
(10)
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In such cases the n-manifold of probability density functions can be repre-
sented by a natural affine immersion in Rn+1 via

h : (θ) ∈ Rn 7→ ((θ), ϕ(θ)) ∈ Rn+1. (11)

So the natural representation of the manifold of gamma distributions M in R3

is
h : M → R3 : (ν, κ) 7→ (ν, κ, log Γ(κ)− κ log ν) (12)

This is convenient for visualising and metrising curves that depict trajectories
in the space of gamma distributions [2]; observational data for graphene struc-
tures under varying external conditions could then be visualised and correlated
with the physics.

For an exponential family (7) there is a simpler method to compute the infor-
mation metric (5) from the log-likelihood function l(θ, x) = log pθ(x) :

∂il(θ, x) = Fi(x)− ∂iϕ(θ) (13)

and
∂i∂jl(θ, x) = −∂i∂jϕ(θ) , which is independent of x. (14)

Then the information metric g on the n-dimensional space of parameters Θ ⊂
Rn, equivalently on the set {pθ|θ ∈ Θ ⊂ Rn}, has components:

[gij ](θ) = −
∫

Ω
[∂i∂jl(θ, x)] pθ(x) dx = ∂i∂jϕ(θ) = [ϕij ](θ) . (15)

The gamma distribution has a surprisingly tractable information geometry [1,
2], and the Riemannian metric in the 2-dimensional manifold (M, g) of gamma
distributions (1) is easily computed from the definition (5) in (µ, κ) coordi-
nates:

[gij ] (µ, κ) = =

[
κ
µ2

0

0 d2

dκ2
log(Γ)− 1

κ

]
. (16)

So the coordinates (µ, κ) yield an orthogonal basis of tangent vectors, which
is useful in calculations because then the arc length function in M is simply

ds2 =
κ

µ2
dκ2 +

((
Γ′(κ)

Γ(κ)

)′
− 1

κ

)
dκ2 =

κ

µ2
dκ2 +

(
ψ′(κ)− 1

κ

)
dκ2

where ψ′(κ) =
(

Γ′(κ)
Γ(κ)

)′
.

Such a manifold with the Levi-Civita metric connection (cf. eg [7]) is a pseu-
dosphere, with its negative scalar curvature given by [2]:

R(κ) =
ψ′(κ) + κψ′′(κ)

4 (κψ′(κ)− 1)2 so − 1

2
< R(κ) < −1

4
(17)

from which it follows that R(κ)→ −1
2 as κ→∞.

In the context of horizontal structural fluctuations of inter-vertex distances
or hexagon perimeter length in graphene with a unit mean, we expect the
standard deviation σ = µ√

κ
<< 1 hence it follows that κ >> 1 and the scalar

curvature (17) will be close to −1
2 .
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3 A state space for graphene structural fluctuations

For the standard deviation of, say, hexagon perimeters, σ(P ) = µ(P )/κ, to be
between 1% and 10% of the mean, for example, we have a range of 100 < κ <
10000 for the relevant gamma distributions. A propos the characterisation
of the gamma distribution in Theorem 1.1, Couto et al [4] confirmed the
role of random strain fluctuations as an important source of disorder and so
accounted for the observed correlation between reciprocal mobility and the
carrier density in all samples tested. Whether this relationship can be linked
to a linear correlation between strain standard deviation and mean strain is
an interesting question from the point of view of a model using a gamma
distribution.

Formulating the family of gamma probability density functions as a Rieman-
nian manifold in natural coordinates we can use geometric methods to de-
scribe the progress of fluctuation changes on property behaviour and provide
a graphical representation through a natural affine immersion in R3.

Given a differential equation on the manifold to represent an evolution of fluc-
tuations, its integral curves would yield trajectories for the structural state.
On a space of probability density functions there is always one natural vector
field, arising from the gradient field of the entropy function. This differential
equation and its integral curves in the manifold of gamma probability den-
sity functions represent progress of random disordering (maximising entropy)
as intensity of disturbance increases. So this field may represent well enough
the initial development of structural changes with increasing fluctuation inten-
sity in graphene. Then the physical manifestation in properties or associated
behaviour might be linked to the effect of fluctuation intensity.

The Shannon entropy of the gamma family (1) is given in both sets of coordi-
nates by:

Sf (ν, κ) = −
∫ ∞

0
f log f dx : R2+ → R

(ν, κ) 7→ κ− (κ− 1)ψ(κ) + log(Γ(κ))− log(ν) (18)

(µ, κ) 7→ κ− (κ− 1)ψ(κ) + log(Γ(κ))− log(µ/κ) (19)

where ψ = Γ′

Γ is the digamma function. The entropy gradient vector field is

∇Sf (ν, κ) =

{
−1

ν
, 1− (κ− 1)ψ(1)(κ)

}
(20)

∇Sf (µ, κ) =

{
−κ
µ
, 1− (κ− 1)ψ(1)(κ)

}
(21)

and an unconstrained degeneration of order would follow its integral curves
down to κ = 1. In fact of course we do not have unconstrained disordering
for graphene because we must retain the hexagonal structure, so we would
expect a slightly less steep descent with increasing fluctuation intensity, ie
with increasing noise level a in the terms of the hexagonal crystal lattice
simulations. For the hexagonal simulation [15] the distribution of perimeters of
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the hexagons followed a gamma distribution; the mean perimeter was P̄ ≈ 0.65
and the standard deviation of the perimeter was given approximately by

σ(P ) ≈ a√
6

for 0 < a < 0.5.

In the 2D crystal cases simulated by Lucarini [13] the hexagonal structure was
stable under small perturbations but the square and triangular structures were
not stable. However, with the onset of noise, quite quickly all three possible
tessellations became indistinguishable above noise a ≈ 0.5. With intense noise
they converged to the 2D Poisson-Voronoi tessellations, for which exact ana-
lytic results are known [8]. The limiting values were κ ≈ 16 for the perimeter
of polygons and κ ≈ 3.7 for areas. Hence in our context, for fluctuations of
order 1% of the mean, say, σ(P ) ≈ 0.01µ(P ) ≈ 0.0065, which corresponds to
the noise amplitude a ≈ 0.016 in [13].

4 Discussion

Ideally, we would like experimental data on vertical and horizontal spatial
variations in graphene. Certainly there is little in the published literature on
the distribution and scale of structural fluctuations that have been observed.
Until more details become available we take the view that a representation of
spatially distributed fluctuations could provide a stimulus to generate suitable
data; when such data is available the model here is easily adapted, and could
incorporate a bivariate distribution for vertical and horizontal variability. In
due course it may be that a product distribution of vertical and horizontal
variations may seem more appropriate, then, for example the bivariate gamma
distribution described with applications in [2] may be appropriate. Such a
bivariate model will be considered elsewhere.

If variations other than Gaussian perturbations better represent the fluctua-
tions in graphene, then suitable information geometric models could use appro-
priate other models. For the present, we have some quantitative clues to the
possible parameters of a model for fluctuations in graphene structure. These
come from computer simulations of Gaussian perturbations of hexagonal crys-
tal lattices [13, 15], from limited experimental data on spatial variability of
vertical deviations [16, 11, 18], and from observed correlation of vertical stan-
dard deviation with mean lattice dimension [3] which confirmed the role of
random strain variations in graphene.

Whereas the nominal monolayer thickness of graphene is 3.4Å in bulk graphite,
on SiO2 it is 4.2Å and in air the impurities increased the thickness to 9Å. At
the 600nm scale the standard deviation of height was of similar size to the
mean thickness, which suggests that the coefficient of variation is unity and the
vertical process is approximately exponential and hence arises from a Poisson
spatial process. The spatial variations in the horizontal structure are, however,
expected to have a standard deviation much smaller than the mean for local
hexagon perimeter.
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The information geometry of the gamma manifold turns out to be that of a
Riemannian pseudosphere [2] with scalar curvature R(κ) given in (17), from
which it follows that R(κ) → −1

2 as κ → ∞. In the context of structural
fluctuations of inter-vertex distances or hexagon perimeters in graphene with
a unit mean, we expect the standard deviation σ = µ√

κ
<< 1 hence it follows

that κ >> 1 and the scalar curvature (17) will be close to −1
2 . There is a

natural embedding of this space as a curved surface in R3 [2], and trajectories
of structural changes can be represented on this surface as curves to which
any observed physical features could be attached.

Acknowledgement The author is grateful to an anonymous reviewer who
made the points addressed in the Remark on the second page.
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