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ABSTRACT 

A description is given of the current development of a novel, non-destructive, experimental method which 
allows the determination of 3-D stress distributions in birefringent materials. A conventional polariscope is used 
through which to view the model with the addition of a component positioning device. A minimal set of 
measurements has been devised which can be easily and efficiently realized in an actual laboratory arrangement, 
and which produces precisely the sufficient amount of data in order to tomographically reconstruct the full stress 
tensor within the bulk matter of the medium.  

The paper includes an outline of the mathematical procedure, the results of numerical tests of the algorithms and 
a discussion of further work necessary to realise a truly practical technique. 
 
 
1. INTRODUCTION 
With the emergence of numerical modelling techniques over the last 40 years, the use of 
experimental analysis in engineering product design and development has declined. The main 
reasons for this decline are the cost and time involved in performing experiments compared to 
numerical analysis. However there is an increasing awareness that numerical results require 
validation and therefore experimental methods need to be developed which can measure the 
strains within three-dimensional components in a similar timescale to results being generated 
by numerical models. 
 
In order to evaluate the internal stresses in models of 3-D components, stress freezing [1] is 
currently the only experimental technique routinely used. The major disadvantage to this 
photoelastic method is the requirement for the model to be sectioned for two dimensional 
analysis, consequently destroying the model. Even using the latest automated photoelastic 
techniques, the time needed to analyse the sections of the model is prohibitively long. If this 
need for sectioning could be eliminated then a single model could be used for several loading 
conditions and the analysis time reduced significantly. One solution to this problem may be 
the combination of photoelasticity with tomography. 
 
In traditional hard field tomography, a certain radiation is passed through a section of the 
body and a property of this radiation (e.g. intensity, phase etc), is measured. The internal 
structure of the object can be reconstructed from data measured at many different views from 
around the body, in terms of the Radon transform. This mathematics is well understood for 
scalar fields, however the strain field which produces the birefringent effect is a tensor 



quantity rather than a scalar quantity as usually encountered in tomography. Moreover the 
integral equation involved is non- linear and couples the components of the tensor. Although 
there have been proposed systems for 3-D photoelastic tomography none has adequately 
addressed the issue of collecting sufficient data for reconstruction of the full stress tensor 
from optical measurements. Andrienko and Dubovikov[2] describe a scheme but this is not 
workable in practise. Doyle and Danyluk[3] and Aben et al[4] have until recently 
concentrated on axisymmetric problems. Sharafutdinov[5] gives a highly theoretical and 
accurate description of a set of sufficient data for the linear, quasi-isotropic photoelastic 
tomography problem, but it is still not stated how this would be realised in practise. Aben et 
al [6]  use the Radon transform inversion on experimental data, and reconstruct one normal 
stress component for one plane. However it is stated that by rotating the specimen about 
different axes the difference of the normal stress components in any plane could be 
determined [7] . 
 
A novel, non-destructive, experimental method, which allows the determination of 3-D stress 
distributions in birefringent materials is under development and this paper describes the 
progress made to date. A minimal set of measurements has been devised which can be easily 
and efficiently realized in an actual laboratory arrangement, and which produces precisely the 
sufficient amount of data in order to tomographically reconstruct the full stress tensor within 
the bulk matter of the medium. This paper outlines the mathematical development and the 
proposed experimental procedure for the methodology. A numerical simulation has been 
carried out to test the methodology and the results are also presented.   
 
 
2. MATHEMATICAL DEVELOPMENT OF THE METHODOLOGY 
 
In this paper we present a novel method to reconstruct the stress tensor from polarization 
transformation data obtained by tomographical methods. Unlike previous efforts in Integrated 
Photoelasticity we do not attempt to determine the stress tensor directly; rather, we first 
reconstruct the dielectric tensor inside the specimen from polarization transformation data, 
and only in a second step compute the stress tensor from the dielectric tensor by means of a 
stress-optical law [8], which links stress, strain and permittivity in mutual linear relations. The 
new method is based on the seminal work of Sharafutdinov [5] who formulated an abstract, 
and highly mathematical, framework of “ Integral Geometry” , dealing with the reconstruction 
of tensor quantities on higher-dimensional spaces. Our own method is an adaptation and 
partial reformulation of this theory. The mathematical details are too lengthy for these 
proceedings, and these details, as well as a derivation of the equations satisfied by the 
anisotropy tensor in the limit of Geometrical Optics and weak anisotropy, may be found 
elsewhere [9]. In this paper it was proven that the linearized inverse problem of the 
determination of the dielectric tensor, in the “weak-anisotropy”  limit, could be reduced to six 
measurement cycles, each cycle employing a two-dimensional Radon inversion, which 
yielded altogether six diagonal elements A(η,η) of the anisotropy tensor A. The crucial point 
in the method is the careful selection of the six unit vectors η which specify the orientation of 
the planes along which the light rays intersect the specimen. Any vector η determines a 
collection of planes perpendicular to it; within each plane we scan the object by polarized 
light rays passing through this plane and measure the characteristic parameters [10], for all 
angles in this plane. From these parameters we can compute the unitary transfer matrices, 
which describe the polarization transformation of the light, up to a global phase.  In the linear 
approximation at least, this global phase can also be determined [9]. A recent exposition of 
the relation between the equivalent optical model, describing the optical light path, the Stokes 



parameters of the light, and the characteristic parameters to be measured was given in Ref. 
[11]. In the linearized inverse problem, the (η,η) component of the transfer matrix can then be 
expressed as the two-dimensional Radon transform of the tensor component A(η,η); but, since 
the latter is a rotational scalar with respect to the given plane it can immediately be computed 
by Radon inversion using a filtered-back projection algorithm [12]. If this procedure is 
repeated for six carefully chosen directions η we can determine the anisotropy tensor A, and 
thus the full dielectric tensor, within the whole interior of the photoelastic object; in this last 
step we utilize the so-called polarization identity, well known from basic Linear Algebra. 
 
Once the dielectric tensor is reconstructed, the stress tensor can then be obtained from a 
knowledge of the stress-optical law for the given photoelastic material. 
 
The crucial advantage of the new method is that the equations of the linearized inverse 
problem now contain the tensor components of the anisotropy tensor A directly; whereas, in 
previous attempts [7,13], the inverse problem had always been formulated in terms of the 
stress tensor. However, the latter enters the linearized problem only through the differences 
between the principal stress components, so that the stress cannot be reconstructed directly, 
except for stress configurations exhibiting a certain degree of symmetry (typically axial 
symmetry). In contrast, our method is capable of reconstructing arbitrary dielectric tensors, 
hence arbitrary stress tensors, as long as the degree of anisotropy is reasonably small. For a 
photoelastic specimen this means that the dielectric tensor should deviate weakly from the 
homogeneous isotropic permittivity of the unloaded material. The precise specification of this 
condition is found in [9]. 
 
 

3. EXPERIMENTAL DESIGN 

It is proposed that a conventional polariscope is used to collect the data needed for the 
tomographic reconstruction with the addition of a component positioning device which is 
shown in Figure 1.  
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Figure 1 Proposed design for the component positioning device, showing the specimen tilted by a) 0° and b) 
45°. The immersion tank is placed in the field of view of a conventional polariscope 

 
As described above, in order to collect sufficient data, the specimen is required to be rotated 
within the field of view for six different axes of rotation. It is proposed that this can be 
practically achieved by having one axis of rotation and re-positioning the specimen with 
respect to this axis. It has been found that it is necessary to tilt the object with respect to the 
axis of rotation and for each tilt angle rotate the specimen about each of its three orthogonal 
axes. The optimum tilt angles which result in sufficient data are 0º and 45º to the axis of 
rotation, resulting in six orientations of the specimen (Figure 2) and consequently six sets of 
data in total. Figures 1 (a) and (b) show the specimen placed on a component positioning 
device orientated at a tilt angle of 0° and 45° respectively. The rotation stage located below 
the tank will drive the rotation of the component positioning device. It is essential that, when 
it is tilted, the component positioning device must not block the light path and therefore 
should be manufactured from a transparent material of known refractive index. If it is made 
from the same material as the birefringent specimen, this will further simplify the 
mathematics. The immersion tank is filled with a fluid of matched refractive index to the 
specimen to prevent refraction of the light at the specimen surface.  
 
3.1 Data collection 
The specimen is rotated 180° about the axis of rotation and the three characteristic 
photoelastic parameters [10] are determined at discrete intervals during this rotation. A 
Fourier polarimetry method has been chosen to do this [14], where the analyser and polariser 
are rotated simultaneously at a fixed ratio of 3:1 over a 360° revolution of the polariser and a 
number of intensity images are recorded at discrete intervals. The detected intensity signal can 
be expanded into a Fourier series using a fast Fourier transform of the images so that the 
Fourier coefficients can be found. These Fourier coefficients can be described in terms of the 
characteristic parameters. The polariser and analyser of the polariscope are controlled by the 
same control unit as the rotation stage, and therefore all motion is synchronised. Once the 
characteristic parameters are determined for each orientation of the specimen these are then 
processed using the procedure described above. 
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Figure 2 The six orientations of the specimen relative to a vertical axis of rotation. 
 



 

4. NUMERICAL SIMULATION 

Since the experimental procedure is under development, the methodology was tested  
numerically by simulating the strain field for an axially loaded cylinder, shown in Figure 3, 
calculating the strain tensor analytically assuming linear elasticity and an elastically isotropic 
material. The forward problem was solved using a standard ODE solver along each ray. The 
linear approximation was not assumed for the forward calculation. The reconstruction was 
performed using a standard ramp filtered back projection [12]. For this test no attempt was 
made to simulate noise in the data, although the inverse Radon transform is known to be 
mildly ill posed so we would expect reconstructions to degrade significantly with 
measurement error unless some smoothness of the solution was assumed a priori.  
 
The results of the reconstruction algorithm shown in Figure 4 are typical of the results for 
many planes which were analysed. Other results have also been presented elsewhere [9,15] 
For purposes of illustration, two examples of reconstructions, are shown. In each case the 
component of the permittivity tensor normal to the plane intersecting the cylinder is 
presented. Figure 4 a) shows the original tensor for the plane shown in Figure 3. Figures 4 b) 
and c) show the reconstruction of the same plane. In Figure 4 b)  the resolution is 50x50 
pixels based on 36 scans, i.e. 5º intervals between each increment of rotation, while in Figure 
4 b) the resolution is 254x254 pixels, based on 180 scans of the object, i.e. 1º intervals. The 
latter is almost indistinguishable at this resolution to the original simulated permittivity tensor 
component in Figure 4 a).  
 

 

Figure 3 A cylinder loaded in axial compression which was used for the numerical simulation. The permittivity 
tensor for the plane indicated is shown in Figure 4 
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Figure 4. Results of reconstruction for simulated data. (a) The original tensor component (b) A reconstruction 
using 5º intervals of rotation on a 50×50 grid, showing artefacts typical of an inverse Radon transform with 
incomplete data. (c) Reconstruction on a 256×256 pixel grid using scans at 1º intervals of rotation. 
 



5. DISCUSSION 

With further experimental development, it is considered that the proposed methodology will 
be a useful, practical tool in the verification of numerical models. Although this method does 
not eliminate the need for stress freezing, it does eliminate the need for the sectioning of 
three-dimensional photoelastic models, thereby allowing a single model to be used to examine 
several loading conditions. However, it must be recognised that this is an ongoing project and 
that paper presents the work carried out so far, and several obstacles must be overcome before 
the realisation of a truly practical experimental method. 
 
In standard photoelasticity the relative stress optic coefficient is measured and therefore only 
the difference in principal stresses may be obtained directly [16]. The proposed method would 
require the determination of the absolute stress optic coefficients, c1 and c2 in order to 
determine the principal stresses from the dielectric tensor. Measurements of absolute 
retardations for such calibration purposes have been made using a Mach-Zehnder 
interferometer [17], but are difficult and time consuming. We admit that the requirement to 
make such measurements is a drawback to the proposed technique and alternative 
measurement methods are currently being explored. 
 
The success of reconstructing simulated data will aid the selection of resolution and rotation 
intervals required for the experimental implementation. Figure 4b) shows that a relatively 
coarse resolution and interval of rotation can still give recognisable stress tensors therefore 
data could possibly be collected much faster than originally thought and at a lower resolution. 
This remains to be tested.  
 
If tomographic photoelasticity is to be implemented in industrial applications, then the 
limitation of the proposed methodology to weak anisotropy must be overcome. For higher 
strain fields, where the linear approximation is not valid, the forward solver used for this 
simulation, together with the inverse solver for the linearized problem (assuming an isotropic 
background before perturbation) could be used in a Newton-Kantarovich [18] method for 
non-linear reconstruction. 
 
 
6. CONCLUSIONS  
A numerical algorithm to reconstruct the full 3-D strain field for the general non-symmetric 
case, under the assumption of sufficiently small strain has been implemented. A possible 
experimental system capable of collecting the data required by this algorithm has been 
described and further issues to be considered have been discussed.  
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