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PARALLEL ADAPTIVE IMPORTANCE SAMPLING

COLIN COTTER∗, SIMON COTTER† , AND PAUL RUSSELL‡

Abstract. Markov chain Monte Carlo methods are a powerful and commonly used family of
numerical methods for sampling from complex probability distributions. As applications of these
methods increase in size and complexity, the need for efficient methods which can exploit the parallel
architectures which are prevalent in high performance computing increases. In this paper, we aim
to develop a framework for scalable parallel MCMC algorithms. At each iteration, an importance
sampling proposal distribution is formed using the current states of all of the chains within an en-
semble. Once weighted samples have been produced from this, a state-of-the-art resampling method
is then used to create an evenly weighted sample ready for the next iteration. We demonstrate that
this parallel adaptive importance sampling (PAIS) method outperforms naive parallelisation of serial
MCMC methods using the same number of processors, for low dimensional problems, and in fact
shows better than linear improvements in convergence rates with respect to the number of processors
used.
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1. Introduction. Markov chain Monte Carlo (MCMC) methods are a powerful
family of tools that allow us to sample from complex probability distributions. MCMC
methods were first developed in the 70s [13], and with the development of and with the
development of faster more powerful computers, have become ever more important
in a whole range of fields in statistics, science and engineering. In particular, when
considering Bayesian inverse problems, each MCMC step may involve the numerical
solution of one or more PDE. As many samples are usually required before Monte
Carlo error is reduced to acceptable levels, these types of problem remain frustratingly
out of our grasp.
Many advances have been made in the field of MCMC to design ever more com-
plex methods that propose moves more intelligently, leading to rapidly converging
methods. Function space versions of standard methods such as the random walk
Metropolis-Hastings (RWMH) algorithm or the Metropolis adjusted Langevin algo-
rithm (MALA), whose convergence rates are independent of dimension have been
developed [7]. The hybrid (or Hamiltonian) Monte Carlo (HMC) method uses Hamil-
tonian dynamics in order to propose and accept moves to states which are a long
way away from the current position [29], and function space analogues of this have
also been proposed [1]. Riemann manifold Monte Carlo methods exploit the Rie-
mann geometry of the parameter space, and are able to take advantage of the local
structure of the target density to produce more efficient MCMC proposals [11]. This
methodology has been successfully applied to MALA-type proposals and methods
which exploit even higher order gradient information [2]. These methods allow us
explore the posterior distribution more fully with fewer iterations.
Simultaneously, great strides are continually being made in the development of com-
puting hardware. Moore’s law, which predicted that the number of transistors that
can to fit on a single microchip will double every two years, has been largely followed
since the early 70s [19]. In recent times, it has become necessary to use parallel ar-
chitectures to exploit Moore’s law. The efficient exploitation of these facilities is the
key to solving many of the computational challenges that we currently face.
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As such, the development of efficient parallel MCMC algorithms is an important area
for research. Since MCMC methods can be trivially parallelised by simply running
many independent chains in parallel, the focus needs to be on the development of
methods which gain some added benefit through parallelism. One class of parallel
MCMC method uses multiple proposals, with only one of these proposals being ac-
cepted. Examples of this approach include multiple try MCMC [17] and ensemble
MCMC [20]. In [3], a general construction for the parallelisation of MCMC methods
was presented, which demonstrated speed ups of up to two orders of magnitude when
compared with serial methods.
In this paper, we present a framework for parallelisation of importance sampling,
which can be built around any of the current Metropolis-based methodologies in
order to create an efficient target proposal from the current state of all of the chains
in the ensemble. The idea is to consider the parallel chains as an ensemble, and
to resample using a transformation based on optimal transport. Samplers based on
optimal transport have also been considered in [8].
In Section 2 we outline some preliminaries, including the general set up for Bayesian
inverse problems, the preconditioned Crank-Nicolson Langevin (pCNL) algorithm and
a brief review of the optimal transport resampler, both of which we will be employ-
ing within the algorithm. We describe the Parallel Adaptive Importance Sampler
(PAIS) in Section 3, and in Section 4 we describe how algorithmic parameters can be
automatically tuned to provide optimal convergence. In Section 5, we present some
numerical experiments that demonstrate the savings available by employing this ap-
proach as opposed to a naive/trivial parallelisation of existing MCMC methods. In
Section 6, we summarise our results and suggest some areas for future investigation.

2. Preliminaries. In this Section we will introduce preliminary topics and al-
gorithms that will be referred to throughout the paper.

2.1. Bayesian inverse problems. In this paper, we focus on the use of MCMC
methods for characterising posterior probability distributions in Bayesian inverse
problems. We wish to learn about a particular unknown quantity u, of which we
are able to make direct or indirect noisy observations. For now we say that u is a
member of a Hilbert space X.
The parameter u is observed through the observation operator G : X → Rd. Since
observations are never perfect, we assume that these measurements D are subject to
Gaussian noise, so that

D = G(u) + ε, ε ∼ µε = N (0,Σ). (2.1)

For example, if u are the rates of reactions in a chemical system, G might return the
times at which each reaction occurs, or some summary of this information.
These modelling assumptions allow us to construct the likelihood of observing the
data D given the parameter u = u∗. Rearranging (2.1) and using the distribution of
ε, we get:

P(D|u = u∗) ∝ exp

(
−1

2
‖G(u∗)−D‖2Σ

)
= exp (−Φ(u∗)) , (2.2)

where ‖x− y‖Σ is the Mahalanobis distance between x and y.
As discussed in [6,30], in order for this inverse problem to be well-posed in the Bayesian
sense, we require the posterior distribution, µY , to be absolutely continuous with
respect to the prior, µ0. A minimal regularity prior can be chosen informed by
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X = x0

for i = 1, 2, 3, . . . do

Y = (2 + δ)−1
[
(2− δ)Xi−1 − 2δC∇Φ(u) +

√
8δW

]
, W ∼ µ0

a(Xi−1, Y ) = min {1, exp(Φ(Xi−1)− Φ(Y ))}.
u ∼ U([0, 1])
if u < a(Xi−1, Y ) then
Xi = Y

else
Xi = Xi−1

end if
end for

Table 2.1
A pseudo-code representation of the preconditioned Crank-Nicolson Langevin (pCNL) algo-

rithm. δ ∈ (0, 2] is a step size parameter.

regularity results of the observational operator G. Given such a prior, then the Radon-
Nikodym derivative of the posterior measure, µY , with respect to the prior measure,
µ0, is proportional to the likelihood:

dµY
dµ0

∝ exp (−Φ(u∗)) . (2.3)

2.2. The preconditioned Crank-Nicolson Langevin (pCNL) algorithm.
In recent years, work has been carried out to frame MCMC proposal distributions on
function space [7]. These new discretisations perform comparably with the original
versions in low dimensions. If gradient information regarding the observation operator
is available, then a range of MCMC methods are available which exploit this infor-
mation to improve mixing rates. One example of such an algorithm is MALA. In [7],
a function space version of this method was presented, the pCNL algorithm, and is
described in full in Table 2.1. The proposal used in this method comes about through
a Crank-Nicolson approximation of the Langevin SDE, whose invariant measure is
the posterior measure µY .

2.3. Particle filters and resamplers. In several applications, data must be
assimilated in an “online” fashion, with up to date observations of the studied sys-
tem being made available on a regular basis. In these contexts, such as in weather
forecasting or oceanography, data is incorporated using a filtering methodology. One
popular filtering method is the particle filter, the first of which was dubbed the Boot-
strap filter [12]. In this method, a set of weighted particles is used to represent the
posterior distribution. The positions of the particles are updated using the model
dynamics. Then, when more observations are made available, the relative weights of
the particles are updated to take account of this data, using Bayes’ formula. Other
filtering methods, such as the Kalman filter [15] and ensemble Kalman filter [9], have
also been developed which are often used within the data assimilation community.
One advantage of the particle filter is that there are convergence results for this
method as the number of particles is increased. The downside is that, the effective
sample size decreases at each iteration. One way to tackle this is to employ a resam-
pling scheme. The aim of a successful resample is to take your unevenly weighted
ensemble and return a new ensemble of particles with even weights which is highly
correlated to the original samples.
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The Ensemble Transform (ET) method proposed by Reich [24] makes use of optimal
transportation as described in [31, 32]. The transform takes a sample of weighted
particles {yi}Mi=1 from µY and converts it into a sample of evenly weighted particles
{xi}Mi=1 from µX , by means of defining a coupling T ∗ between Y and X. Given that
a trivial coupling T t always exists in the space of transference plans, Π(µX , µY ), we
can find a coupling T ∗ which maximises the correlation between X and Y [5]. This
coupling is the solution to a linear programming problem in M2 variables with 2M−1
constraints. Maximising the correlation ensures that the new sample is as much like
the original sample as possible with the additional property that the sample is evenly
weighted.

A Monte Carlo algorithm can be implemented to resample from a weighted ensem-
ble. We create a weighted sample, then solve the optimal transport problem which
produces the coupling described above, we can draw a new sample from the evenly
weighted distribution. Reich suggests using the mean of the evenly weighted distri-
bution to produce a consistent estimator.

Analysis of this method shows that as the ensemble size increases, the statistics of
the evenly weighted sample approach those of the posterior distribution, at least well
enough for a proposal distribution as described in Section 3. The histogram of the
evenly weighted sample exhibits small oscillations in the tails of the posterior, and
also struggles to deal with discontinuities.

2.4. Deficiencies of Metropolis-type MCMC schemes. All MCMC meth-
ods are trivially parallelisable. One can take a method and simply implement it
simultaneously over a set of processes. All of the states of all of the processes can be
recorded, and in the time that it takes one process to draw N samples, M processes
can draw NM samples.

However, we argue that this is a far from optimal scenario. First of all, unless we
have a lot of information about the posterior, we will begin the algorithm a long way
from statistical equilibrium. Some initial iterations then are not samples from the
posterior, and must be thrown away. This process is known as the burn-in. In a
trivially parallelised scenario, each process must perform this process independently.

Moreover, many MCMC algorithms suffer from poor mixing, especially in multimodal
systems. The time for an MCMC trajectory to switch between modes can be large
and given that a large number of switches are required before we have a good idea
of the relative probability densities of these different regions, it can be prohibitively
expensive.

Another aspect of Metropolis-type samplers is that information computed about a
proposed state is simply lost if we choose to reject that proposal in the Metropolis
step. An advantage of importance samplers is that no evaluations of G are ever wasted
since all samples are saved along with their relative weighting.

Moreover, a trivially parallelised MCMC scheme is exactly that - trivial. Intuition
suggests that we can gain some speed up by sharing information across the processes
and that is exactly what we wish to demonstrate in this paper.

These deficiencies of the trivial method of parallelising MCMC methods motivated
the development of the Parallel Adaptive Importance Sampler (PAIS). In the next
section we will introduce the method in its most general form. We will then introduce
the version that we have implemented, which utilises the resampler recently suggested
by Reich [24] described in Section 2.3, and the pCNL proposal distribution described
in Section 2.2.
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X(0) = X0 = [x
(0)
1 , x

(0)
2 , . . . , x

(0)
M ]T

for i = 0, 1, 2, ..., N do

Y(i) = [y
(i)
1 , y

(i)
2 , . . . , y

(i)
M ]T , y

(i)
j ∼ ν(·;x(i)

j )

χ(y; X(i)) = 1
M

∑M
j=1 ν(y;x

(i)
j ).

W(i) = [w
(i)
1 , w

(i)
2 , . . . , w

(i)
M ]T , w

(i)
j =

π(y
(i)
j )

χ(y
(i)
j ;X(i))

.

Resample using ETMC: (W(i),Y(i))→ ( 1
M 1,X(i+1))

end for
Table 3.1

A pseudo-code representation of the Parallel Adaptive Importance Sampler (PAIS).

3. The Parallel Adaptive Importance Sampler (PAIS). Important sam-
pling can be a very efficient method for sampling from a probability distribution. A
proposal density is chosen, from which we can draw samples. Each sample is assigned
a weight given by the ratio of the target density and the proposal density at that
point. They are efficient when the proposal density is concentrated in similar areas
to the target density, and incredibly inefficient when this is not the case. The aim of
the PAIS is to use the states of a set of parallel MCMC chains to construct a proposal
distribution which will be as close as possible to the target density. Given enough
processors, the states of all of these chains at one point in time may be reasonably
representative sample of the target density.

The proposal distribution could be constructed in many different ways, but we choose
to use a mixture distribution, made up of MCMC proposals (in this paper, specifically
the pCNL proposal from Section 2.2). Once the proposal is constructed, we can
sample a new set of states from the proposal distribution, and each is assigned a
weight given by the ratio of the target density and the proposal mixture distribution
density. Assuming that our proposal distribution is a good one, then the variance of
the weights will be small, and we will have many useful samples. Finally, we need
to create a set of evenly weighted samples which best represent this set of weighted
samples. This is achieved by implementing the ETMC algorithm. Once we once
again have a set of evenly weighted samples that we believe represents the target
distribution well, we can iterate the process once again. The algorithm is given in
more detail in Table 3.1.

We wish to sample states x ∈ X from a posterior probability distribution µY . Since
we have M processes, we represent the current state of all of the Markov chains as
a vector X = [x1, x2, . . . , xM ]T . We are also given a transition kernel ν(·, ·), which
might come from an MCMC method, for example the pCNL proposal presented in
Section 2.2.

Since the resampling does not give us a statistically identical sample to that which
is inputted, we cannot assume that the samples X(i) are samples from the posterior.
Therefore, as with serial importance samplers, the weighted samples (W(i),Y(i))Ni=1,
or their statistics, are stored.

The key here is to choose a suitable transition kernel ν such that if X(i) is a decent
representative sample of the posterior, the mixture density χ(·; X(i)) is a reasonable
approximation of the posterior distribution. If this is the case, the newly proposed
states Y(i) will also be a good (and relatively independent) sample of the posterior
with low variance in the weights W(i).
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In Section 5, we will demonstrate how the algorithm performs, using pCNL algorithm.
We do not claim that this choice is optimal, but is simply chosen as an example to
show that sharing information across processes can improve on the original MCMC
algorithm and lead to convergence in fewer evaluations of G. This is important since
if the inverse problem being tackled involves computing the likelihood from a very
large data set this could lead to a large saving of computational cost.

4. Automated tuning of Algorithm Parameters. Efficient selection of scal-
ing parameters in MCMC algorithms is critical to achieving optimal mixing rates and
hence achieving fast convergence to the target density. One significant difficulty is
finding an appropriate ν such that χ is a close approximation to the posterior den-
sity π. If the proposal distribution is over-dispersed, then the algorithm will propose
states a long way from the current state at the cost of a relatively low acceptance
rate, impacting the quality of inferences on the posterior. Similarly, if the posterior
is under-dispersed, the process will take a long time to fully explore the space so the
mixing rate, and hence convergence rate, will be slow. It is therefore necessary to find
a proposal distribution which is slightly over-dispersed to ensure the entire posterior
is explored [10], but is as close to the posterior as possible.

Proposal distributions which are slightly over-dispersed as described above, can be
found by tuning the variance of the proposal distribution ν during the burn-in phase
of the algorithm. Algorithms which use this method to find optimal proposal dis-
tributions are known as adaptive MCMC algorithms. Adaptive MCMC algorithms
will converge to the stationary distribution π(·), irrespective of whether the adaptive
parameter itself converges to an optimal value, under the following conditions [26,27]:

1. The adaptive parameter exhibits diminishing adaptation, which says that the
amount of movement in the adaptive parameter decreases with the length of
the chain.

2. The smallest number of steps for which the kernel has sufficiently converged,
from an initial state x, is finite, by bounded convergence.

The variance of the proposal distributions that are used within the proposal mixture
distribution plays a key role in how well the proposal distribution represents the
target distribution, and therefore how quickly the algorithm converges. A large over-
dispersed proposal distribution will sample a lot from the tails of the distribution, but
may also find other regions of high density with respect to the target distribution. A
very small variance in the proposal distributions will lead to a very rough proposal
mixture distribution. In practise, we wish to find the happy medium in which the
proposal distribution is slightly more dispersed than the target density, whilst also
being a good representation of the regions which have high density with respect to
the target distribution.

Adaptively choosing the variance of the proposal distributions with a large initial
guess allows us to first explore the state space globally, searching for multiple modes.
Reducing the proposal variances to an optimal value then allows us to explore each
region efficiently. The fact that we have multiple chains allows us to assess quickly
and effectively what the optimal variance of the proposal distributions should be.

In many MCMC algorithms such as the Random Walk Metropolis-Hastings (RWMH)
algorithm, the optimal scaling parameter can be found by searching for the parameter
value which gives an optimal acceptance rate, e.g. for near Gaussian targets we have
23.4% for RWMH and 57.4% for MALA [25]. Unlike Metropolis-Hastings algorithms,
the PAIS algorithm does not accept or reject proposed values, so we need another
method of measuring the optimality of δ. Section 4.1 gives some possible methods of
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tuning δ.

4.1. Statistics for Determining the Optimal Scaling Parameter.

4.1.1. Determining optimal scaling parameter δ using error analysis.
MCMC algorithms can be assessed by comparing their approximation of the poste-
rior to the analytic distribution. To assess this, a distance metric must be chosen.
Examples are the relative error between the sample moments and the true moments,
or the relative L2 error between the true density, π(x|D), and the constructed his-
togram. The relative error in the m-th moment is∣∣∣∣∣N−1

∑N
i=1x

m
i − E[Xm]

E[Xm]

∣∣∣∣∣ ,
where {xi}Ni=1 is a sample of size N produced by the algorithm. The relative L2 error
between a continuous function to a piecewise constant function, e, is

e2 =

nb∑
i=1

[∫
Ri

π(a|D) da− vBi
]2/ nb∑

i=1

[∫
Ri

π(a|D) da

]2

, (4.1)

where the points {Ri}nb
i=1 are the d-dimensional histogram bins, so that

⋃
iRi ⊆ X

and Ri ∩ Rj = ∅, nb is the number of bins, v is the volume of a bin, and Bi is the
value of the ith bin.

These statistics are not practical for finding optimal values of δ since they require
knowledge of the analytic solution, and require that the algorithm be run for a long
time to build up a sufficiently large sample. However they can be used to assess
the ability of other statistical measures to find the optimal proposal variances in a
controlled setting.

Another related statistic, is the variance of the sample estimate of the first moment µ̂.
Assuming that the algorithm is converging to the invariant distribution, convergence
will be fastest when the variance of the estimate is minimised. This fact follows from
the convergence rate of Monte Carlo algorithms, σ/

√
n. The proposal distribution

which minimises the variance, σ2, of µ̂, is the most desirable. This variance statistic
often converges faster than the moment itself, and does not require any knowledge of
the true value of the moment.

The following statistics can be used for importance sampling algorithms.

4.1.2. Determining optimal δ using the variance of the weights. Impor-
tance samplers assign a weight to each sample they produce, based on a ratio of the
posterior to the proposal at that point. This type of sampler is most efficient when
the posterior is proportional to the proposal distribution, in this case the weights are
constant, and so the variance of the weights, var(w(y)), is zero. Hence, the optimal
value of δ, is

δ∗var = arg min
δ

var(w(y)).

The mean of the estimator var(w(y)) is a smooth function, and so it is used to tune
δ during the burn-in phase of MCMC algorithms. The variance of the estimator can
be large, especially far away from the optimal value, so it can take a large number of
samples to calculate descent directions.
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4.1.3. Determining optimal δ using the effective sample size. The effec-
tive sample size, neff, can be used to assess the efficiency of importance samplers.
Ideally, in each iteration, we would like all M of our samples to provide us with new
information about the posterior distribution. In practise, we are unlikely to achieve
a ratio of exactly 1.
The effective sample size can be defined in the following way:

neff =

(∑M
i=1wi

)2

∑M
i=1w

2
i

≈ ME(w)2

E(w2)
= M

(
1− var(w)

E(w2)

)
.

The second two expressions are true when M →∞. From the last expression we see
that when the variance of the weights is zero, neff = M ; this is our ideal scenario. In a
neighbourhood around δ∗var, neff decreases when the variance increases. So if v(w(y))
can be equal to zero for a particular problem and proposal distribution, maximising
the effective sample size is equivalent to minimising the variance of the weights. In
the PAIS algorithm we have a dynamic proposal which is perturbed at every iteration.
The statistic neff converges faster than the variance of the weights, and so is preferable
as a means of tuning δ. While δ∗var and the optimal value found using the effective
sample size, δ∗eff, coincide when v(w(y)) = 0, this is not usually possible, so the
methods will find different optimal values of δ∗.
The neff statistic also has another useful property; if we imagine the algorithm in
the burn-in phase, for example, we have M processes in the tail of a Gaussian curve
searching for the area of high density. If the processes are evenly spaced, then the
particle closest to the mean will have an exponentially higher weight assigned to it.
The effective sample size in this scenario will be close to 1. As the algorithm burns in,
the processes find the flatter area near the mean so the number of samples contributing
information to the posterior will increase. By this argument we can see that rising
neff signals the end of the burn-in period.

4.1.4. Behaviour of the effective sample size for varying ensemble size.
If we are to use the effective sample size ratio as an indicator of how to tune the
proposal variance, we need to look at how it behaves in different situations. In Section
5 we see how it behaves for different observation operators. Here we look at how the
statistic behaves as we vary the ensemble size, M . Figure 4.1 shows results for the
second problem discussed in 5.2 when using the PAIS-pCNL algorithm to explore the
posterior distribution. The left part of the figure shows that as the ensemble size
increases, the value of δ which gives the optimal effective sample size ratio decreases.
This is to be expected since we are trying to fit more kernels into the posterior
distribution, so the variance of each kernel needs to be decreased.

4.2. The Adaptive Algorithm. A popular approach for adaptive MCMC al-
gorithms is to view the scaling parameter as a random variable which we can sample
during the course of the MCMC iterations. However, it can be slow to converge to
the optimal value, and we may need an uninformative prior for the scaling parameter.
Alternatively, the parameter may be randomly sampled from some interval at various
points during the chain, a benefit being that it allows some exploration of the state
space but never converges to an optimal value of the scaling parameter. We choose
to use a divide and conquer scheme which optimises the effective sample size. Some
more sophisticated examples are described in [27] and [14]. The proposed algorithm,
is not presented as an optimal strategy but as an example of the benefits of tuning
the algorithm using the effective sample size statistic.
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Fig. 4.1. Left: A contour plot showing how δeff varies with the ensemble size. The black line
highlights the optimal value of δ. Right: The value of the effective sample size ratio for the optimal
δ at each ensemble size. i.e. the value of the effective sample size ratio along the black line in the
left figure. Set up for this problem is given in Section 5.2.

From hereon in, we will assume that we are using the proposal from the pCNL algo-
rithm given in Section 2.2, which is given by:

Y = (2 + δ)−1
[
(2− δ)Xi−1 − 2δC∇Φ(u) +

√
8δW

]
, W ∼ µ0, (4.2)

where X is our current state and Y is our proposed state. The scaling parameter δ
dictates the variance in the proposal distribution.
In the adaptive algorithm described in Table A.1 in Appendix A, we calculate a
sequence {δ(k)}k=1 which converges to the optimal scaling parameter δ∗, resulting in
the optimal transition density χ for our MCMC algorithm. We must choose some
sequence of iterations at which to update δ(j), {nk}k=1, which can be decided using a
sequence in which the terms grow exponentially further apart. The algorithm is given
for the PAIS method but a similar method is used to adaptively calculate δ∗ for the
pCNL algorithm.
When implemented, there are a number of parameters which must be chosen to allow
efficient tuning of δ. Firstly, the initial value of δ should be chosen so that the chains
spread out quickly across the state space. However, if it is chosen to be too large,
then the method may become unstable and inefficient. We also choose two iteration
numbers at which we change our adaptive strategy. At iteration Njoin we resample
using the full ensemble size instead of using to subsets of the full ensemble. This allows
us to fine-tune the scaling parameter using the full resampler, but slows down the rate
of convergence of the scaling parameter. Finally we choose a time, Nstop, at which we
stop updating our parameter to guarantee ergodicity of the MCMC algorithm.

5. Numerical Examples.

5.1. Sampling from a one dimensional Gaussian distribution. In this
example we look at how PAIS compares to naively parallelised MCMC. We compare
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the pCNL algorithm [7] with its PAIS variant, the PAIS-pCNL algorithm. We consider
several statistics for measuring the efficiency of the PAIS algorithm compared to
existing Metropolis-Hastings algorithms when applied to a simple one dimensional
Gaussian posterior.
Since we are comparing against trivially parallelised MCMC algorithms, we also need
to decide which statistic T (δ) to optimise for these approaches. In the examples which
follow, we have optimised the naively parallelised pCNL algorithm using the optimal
acceptance rate α̂ = 0.75. This value was found by using the L2 error minimums to
calculate δ∗. This means that we are minimising the statistic

TMH(δ) =

∣∣∣∣Nacc(δ)

Ntotal
− α̂

∣∣∣∣ ,
where Nacc(δ) is the number of accepted moves and Ntotal is the total number of
samples produced. For the PAIS algorithm, we are maximising the effective sample
size as discussed in Section 4.1.3, so TPAIS(δ) = neff(δ).

5.1.1. Target distribution. Consider the simple case of a linear observation
operator G(u) = u, where the prior on u and the observational noise follow Gaussian
distributions. Then, following Equation 2.2, the Gaussian posterior has the resulting
form

law(µY ) = π(u|D) ∝ exp

(
−1

2

∥∥u−D∥∥2

Σ
− 1

2

∥∥u∥∥2

T

)
, (5.1)

where Σ and T are the covariances of the observational noise and prior distributions
respectively. In the numerics which follow, we choose Σ = σ2IN and T = τ2Id with
τ2 = 2 and σ2 = 0.1, and we observe u = −2.5 noisily such that

D = G(u) + η ∼ N (G(u),Σ).

These values result in a posterior density in which the vast majority of the density is
contained inside the high density region of the prior. This means that it should be
straightforward for the algorithm to find the stationary distribution. The Kullback-
Leibler (KL) divergence, which gives us a measure of how different the prior and
posterior are, is DKL(µY ||µ0) = 2.67 for this problem.

5.1.2. Numerical implementation. In each of the following simulations, we
perform three tasks. First we calculate the optimal value of δ by optimising the statis-
tics described in Section 4.1. Once we have these parameters, we run the algorithms
and compare the convergence speeds of the algorithms. Finally, we implement the
adaptive algorithms described in Section 4.2 and compare the convergence of these
algorithms with the nonadaptive algorithms.
(1) Finding the optimal parameters: To find the optimal parameters we choose
32 values of δ evenly spaced on a log scale between [10−5, 2]. We run the PAIS-pCNL
algorithm for 10,000 iterations and pCNL for 100,000 iterations, each with M = 50
processes. We took 32 repeats of both algorithms and then used the medians of the
statistics to find the optimal parameters.
(2) Measuring convergence of nonadaptive algorithms: We run the algorithms
in Section 5.1 and Section 5.2 for 10 million iterations, again with 50 processes. The
algorithms are run using the optimal parameters found in (1). The relative L2 error
(Equation 4.1) is used as a measure of accuracy. The simulation for each algorithm
was repeated 24 times.

10



(3) Measuring convergence of adaptive algorithms: We run the adaptive algo-
rithms under the same conditions as the nonadaptive algorithms, and again use the
relative L2 error to compare efficiency. The initial value of δ is given in the discussion
of each simulation.
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Fig. 5.1. Finding optimal values of δ for the pCNL (left) algorithm and PAIS-pCNL (right)
algorithm for the problem in Section 5.1. The setup is as in Section 5.1.2.

Statistic pCNL
δ∗L2 3.7e-3

δ∗var(µ̂) 5.8e-2

Acceptance Rate (δ∗L2) 9.9e-1
Acceptance Rate (δ∗var(µ̂)) 7.4e-1

Statistic PAIS-pCNL
δ∗eff 1.5e-2
δ∗var(w(y)) 6.4e-2

δ∗L2 1.7e-2

Table 5.1
Optimal values of δ summarised from Figure 5.1. Statistics calculated as described in Section 4.1.

5.1.3. Optimal values of δ. Figure 5.1 (left) shows the two values of δ which
may be optimal for the pCNL algorithm, found at the turning points. The first
estimate comes from the relative L2 error, and the second comes from the variance
of the estimate of the mean. The optimal acceptance rates of the function space
algorithms are expected to be slightly higher than their finite dimensional versions.
Since the L2 error estimate of the histogram gives an acceptance rate which is near
to 100%, we say that the optimal acceptance rate is that as given by the variance of
the mean, roughly 75%. The results in Figure 5.1 are summarised in Table 5.1 (left).
Figure 5.1 (right) shows the effective sample size ratio compared to the error analysis
and the variance of the weights. Although the L2 error graph is noisy, the maximum
in the effective sample size is close to the minimum in the L2 error. The minimum
in the variance of the weights however is a long way away. We choose the effective
sample size as the best estimator of the optimal scaling parameter because of this,
and because the effective sample size statistic converges to a smooth graph faster than
either the variance of the weights or the L2 error.

5.1.4. Convergence of pCNL vs PAIS-pCNL. Figure 5.2 shows that the
PAIS-pCNL algorithm converges to the posterior distribution faster than the standard
function space pCNL algorithm, in both L2 error and relative error in the moments.
A description of the speed up attained by this algorithm is given in Section 5.3.5.
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Fig. 5.2. Relative error in the first moment (right) and histograms (left) produced by the
(A)pCNL and (A)PAIS-pCNL algorithms against iterations for problem 5.1. The setup is as in
Section 5.1.2 (2, 3).

Both adaptive algorithms are run with initial values of δ0 = 0.1. From Figure 5.2
we can see that the APAIS-pCNL algorithm converges at least as quickly as the
PAIS-pCNL algorithm. The ApCNL algorithm initially has trouble converging to the
posterior; during the initial burn-in phase, some chains find themselves a long way
out in the tails where due to the high gradient they will overshoot the high density
region and reject almost all proposed values.

5.1.5. Scaling of the PAIS algorithm with ensemble size. Throughout
this paper, we use an ensemble size M = 50, but it is interesting to see how the PAIS
algorithm scales if we were to increase the ensemble size, and if there is some limit
below which the algorithm fails. We implement the problem in Section 5.1, using the
pCNL algorithm with ensemble sizes ranging from M = 2 up to M = 494.
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Fig. 5.3. Ratio of PAIS-pCNL samples required to reach the same tolerance as the pCNL
algorithm.

Figure 5.3 was produced using the method of finding optimal δ described in Sec-
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tion 5.1.2(1), then running 32 repeats at each ensemble size. The convergence rates
are then found by regressing through the data. The graph is still very noisy but
demonstrates that increasing the ensemble size continues to reduce the number of
iterations required in comparison with naive MCMC. When M < 8, the algorithm
takes a long time to reach stationarity. This indicates superlinear improvement of
PAIS with respect to ensemble size, in terms of the number of iterations required,
which is a demonstration of our belief that parallelism of MCMC should give us
added value over and above that provided by naive parallelism.

5.2. Sampling from a one dimensional Gaussian with a higher KL di-
vergence. In this example we use the same setup used in Section 5.1. We choose
a posterior distribution which has most of its mass far out in the tails of the prior
distribution. The KL divergence is DKL(µY ||µ0) = 4.670. This means that the algo-
rithm will have to “work harder” to find the area of high probability in the posterior
density.

5.2.1. Target distribution. As in the previous example, we use the identity
observation operator G(u) = u, which results in the Gaussian posteriors in Equa-
tion 5.1. However, this time we choose σ2 = 0.01 and τ2 = 0.01 so the posterior
distribution is N (D/(1 + σ2/τ2), τ2σ2/(σ2 + τ2)) = N (D/2, 0.005) which for large D
is a long way out in the tail of the prior with a very small variance. For the simu-
lations which follow we observe a reading of u = 4, with observational noise drawn
from N (0, σ2).
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Fig. 5.4. Finding optimal values of δ for the pCNL (left) algorithm and PAIS-pCNL (right)
algorithm for the problem in Section 5.2. The setup is as in Section 5.1.2.

Statistic pCNL
δ∗L2 8.6e-2

δ∗var(µ̂) 9.1e-1

Acceptance Rate (δ∗L2 ) 9.9e-1
Acceptance Rate (δ∗var(µ̂)) 8.1e-1

Statistic PAIS-pCNL
δ∗eff 2.6e-1
δ∗var(w(y)) 2.6e-1

δ∗L2 2.8e-1

Table 5.2
Optimal values of δ summarised from Figure 5.4. Statistics calculated as described in Section 4.1.
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5.2.2. Optimal values of δ. We find the optimal values of δ using the same
methods described in Sections 5.1.2 and 5.1.3. The results are displayed in Figure 5.4
and Table 5.2. There is a huge difference between the two error estimates of δ for
pCNL, although the corresponding variance graph is very flat making it sensitive to
Monte Carlo error. The variance of the mean estimate has an 81% acceptance rate,
which is larger than the pCNL acceptance rate found previously.

For the PAIS-pCNL algorithm, it is again clear that the effective sample size ratio is
a useful statistic for judging the optimal value of δ. The relative L2 error estimate of
δ∗, shown in Table 5.2, is slightly higher than the other two estimates, but from the
graph there again seems to be a fairly flat wide minimum which is in the same region
as the optimal effective sample size ratio. The variance of the weights becomes so
small in the critical region that we get numerical zeroes, which means that we could
not use this method to tune the scaling parameter adaptively.
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Fig. 5.5. Relative error in the first moment (right) and histograms (left) produced by the
(A)pCNL and (A)PAIS-pCNL algorithms against iterations for problem 5.2. The setup is as de-
scribed in Section 5.1.2 (2,3).

5.2.3. Convergence of pCNL vs PAIS-pCNL. Figure 5.5 shows that the
PAIS-pCNL algorithm, converges to the posterior distribution faster than the pCNL
algorithm. The adaptive algorithms both struggle with the first moment for the first
million iterations, but produce better estimates after 10 million iterations.

5.3. Sampling from Bimodal Distributions. In this section we investigate
the behaviour of the PAIS algorithm when applied to bimodal problems. Metropolis-
Hastings methods can struggle with multimodal problems, particularly where switches
between the modes are rare, resulting in incorrectly proportioned modes in the his-
tograms, for example. With the PAIS algorithm, we see that the resampling step
redistributes chains to new modes as they are found. This means that we expect
the number of chains in a mode to be approximately proportional to the probability
mass in that mode. As a result, reconstructed posteriors with disproportional modes,
as is familiar with the Metropolis-Hastings algorithms, are not produced. We again
look at an ‘easy’ problem, BM(1), which has a KL divergence of 0.880, and a ‘harder’
problem, BM(2), which has a KL divergence of 3.647. Problem BM(1) has two modes
which are separated by a smaller energy barrier. In BM(2) we increase the distance
between the two modes which has the effect of increasing the required energy to jump
between modes. These posteriors are shown in Figure 5.6.
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5.3.1. Target Distribution. The following setup is the same for both problems.
We consider an observation operator G(u) = u2, and assign the prior u ∼ µ0 =
N (0, τ2 = 0.25). We assume that a noisy reading, D, is taken according to D =
G(u) + ε, where ε ∼ µε = N (0, σ2 = 0.1). This results in the non-Gaussian posterior

π(u|D) ∝ exp

(
− 1

2σ2
‖u2 −D‖2 − 1

2τ2
‖u‖2

)
.

To create the ‘easy’ problem we say that the true value of G(u) = 0.75, and the ‘hard’
problem is generated using G(u) = 2. In the numerics which follow we draw noise
from µε to generate our data point.
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Fig. 5.6. Posterior distributions for problem BM(1) and BM(2). Problem BM(1) has a noisy
data value of 0.921312 which results in an energy barrier which is relatively easy to cross, as well
as their common prior distribution.

5.3.2. Numerical Implementation. The numerical implementation for most
of the following simulations follow the same setup as described in Section 5.1.2. The
only exception is that the convergence plots for both adaptive and nonadaptive algo-
rithms are run for 106 iterations instead of 107.

5.3.3. Calculating values of Optimal δ∗. Calculating the optimal values of
the scaling parameters for this problem is similar to the Gaussian case; we check only
the acceptance rate to find the optimal values for pCNL and we use the effective
sample size to find the optimal values for PAIS-pCNL. Table 5.3 gives the optimal
values of δ for both problems.

Algorithm δ∗acc δ∗eff

pCNL 1.9e-1 -
PAIS-pCNL - 3.9e-2

Algorithm δ∗acc δ∗eff δ∗L2

pCNL 5.8e-2 - 9.1e-1
PAIS-pCNL - 2.6e-2 2.6e-2

Table 5.3
Optimal values of δ for BM(1) (left) and BM(2) (right).

In problem BM(1), the pCNL algorithm has the higher value of δ, which corresponds
to a close to independence sampling, effectively sampling from the prior. This is
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because the regions with the majority of the target density are well covered by the
prior. The PAIS-pCNL algorithm samples more efficiently from its mixture χ, and so
a lower value of δ is more efficient.
Problem BM(2) is much harder than BM(1); transitions between the modes are ex-
tremely unlikely for the standard pCNL algorithm. This means that we need to
consider the convergence on two levels; we should consider the algorithm’s ability to
find all the modes, and to sample them thoroughly and in the correct proportions.
To get correctly proportioned modes with the pCNL algorithm it is important that the
chains can transition between the modes, which means that δ must be large. However,
this leads to a lower acceptance rate, and so we sacrifice convergence locally. The prior
distribution µ0 is not a good approximation of the posterior distribution, and so too
large a value of δ (which leads to an independence sampler using the prior as a proposal
distribution) leads to an inefficient method sampling. For these reasons, the pCNL
algorithm is very slow to converge for problems of this type.
We can achieve these two regimes in pCNL by tuning δ using the acceptance rate for
local convergence, and by L2 error for global convergence. Similarly in PAIS-pCNL
we can use the effective sample size for local convergence, and the L2 error for global
convergence.
From Table 5.3 (right) we see that there is a large difference between the optimal
value of δ for each regime, meaning that both will result in inefficient sampling. The
PAIS-pCNL algorithm manages to sample the detail and the large scale behaviour
with the same value of δ∗: a clear advantage to using this algorithm for this problem.

5.3.4. Convergence of pCNL vs PAIS-pCNL. We see a significant speed
with the PAIS-pCNL algorithm for BM(1). Figure 5.7 shows the adaptive and non-
adaptive convergence rates.
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Fig. 5.7. Error analysis for the PAIS-pCNL and pCNL algorithms for problem BM(1). The
solid blue line, and dashed red line compare the algorithms with fixed optimal scaling parameters,
and the blue crossed and magenta crossed lines compare the adaptive algorithms. The setup is as
described in Section 5.3.2 (2,3).

We can see that the adaptive algorithms compare closely with the respective non-
adaptive algorithms and the improvement PAIS offers remains significant.
For BM(2) the algorithms are run with the global optimal value of δ∗, and with the
local optimal value of δ∗. Figure 5.8 shows that the algorithms using the globally
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optimal δ∗ convergence diagnostics converge slowly towards the true posterior after
a long burn-in period, whereas the algorithms using the local optimal δ∗ converge
quickly, but get stuck in one mode meaning that the convergence rate flattens out.
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Fig. 5.8. pCNL and PAIS-pCNL convergence statistics using locally and globally optimal δ, for
problem BM(2). The setup is as described in Section 5.3.2 (2).

The adaptive algorithm as stated in Section 4.2 is one way of combining the two
regimes. Another method uses a small number of ‘scout’ chains with a large δ to
continually search out new modes. Other methods of mode searches are described
in [16], and the regeneration method is applicable [21].

Figure 5.9 shows the success of the (A)PAIS-pCNL algorithms in converging to the
posterior, compared to the (A)pCNL algorithms. We can see that using the pCNL
algorithm for this problem would be infeasible.

5.3.5. Calculating the Speed Up in Convergence. The graphs in the pre-
vious section clearly show that the PAIS-pCNL algorithm converges faster than the
pCNL algorithm when both are parallelised with the same number of threads. We
can calculate the number of iterations required to achieve a particular tolerance level
in our solution for each algorithm and compare these to calculate a percentage saving.
In Figure 5.10 we demonstrate our calculation of the savings. The constants c1 and
c2 are found by regressing through the data with a fixed exponent of −1/2 excluding
the initial data points where the graph has not finished burning in.

A summary of the percentage of iterations required using the PAIS algorithm com-
pared with the respective Metropolis-Hastings algorithms is given in Table 5.4. The
blank entries correspond to occasions when the MH algorithms haven’t converged to
the posterior distribution.

5.3.6. A Useful Property of the PAIS Algorithm for Multimodal Dis-
tributions. The biggest issue for the Metropolis-Hastings algorithms when sampling
from a posterior such as the one in BM(2) is that it is unlikely that the correct ratio
of chains will occur in each of the modes, and since there is no interaction between
the chains, there is no way to remedy this problem. The PAIS algorithm tackles this
problem with its resampling step. The algorithm uses its dynamic kernel to build
up an approximation of the posterior at each iteration, and then compares this to
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Fig. 5.9. Convergence graphs for problem BM(2), the (A)pCNL and (A)PAIS-pCNL algorithms
have been run with optimal δ∗ for the L2 error and the adaptive algorithm described in Section 4.2.
The setup is as described in Section 5.3.2 (3).
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Fig. 5.10. Illustration of calculating the number of PAIS-pCNL iterations required to reach a
tolerance of 10−2 as a percentage of pCNL iterations. The relative L2 error graphs are from the
problem in Section 5.1.

the posterior distribution via the weights function. Any large discrepancy in the ap-
proximation will result in a large or small weight being assigned to the relevant chain,
meaning the chain will either pull other chains towards it or be sucked towards a chain
with a larger weight. In this way, the algorithm allows chains to ‘teleport’ to regions
of the posterior which are in need of more exploration. Figure 5.11 shows Problem
BM(2) with initially 1 chain in the positive mode, and 49 chains in the negative mode.
It takes only a handful of iterations for the algorithm to balance out the chains into
25 chains in each mode. The chains switch modes without having to climb the energy
gradient in the middle.

6. Discussion and Conclusions. We have explored the application of par-
allelised MCMC algorithms in low dimensional inverse problems. We have demon-
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Low KL div High KL div

Gaussian

RWMH 14% 14%
pCN 33% -
MALA 41% 42%
pCNL 62% 66%

Bimodal

RWMH 40% 44%
pCN 32% -
MALA 36% 40%
pCNL 56% -

Table 5.4
Iterations for the PAIS algorithms required to achieve a desired tolerance as a percentage of the

number of iterations required by the respective Metropolis algorithms.
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Fig. 5.11. This figure demonstrates the redistribution property of the PAIS algorithm. Initially
there is one chain in the positive mode, and 49 chains in the negative mode.

strated numerically that these algorithms converge faster than the analogous naively
parallelised Metropolis-Hastings algorithms. Further experimentation with the Ran-
dom Walk Metropolis-Hastings (RWMH), Metropolis Adjusted Langevin Algorithm
(MALA) and preconditioned Crank-Nicolson (pCN) proposals has yielded similar re-
sults [28].

Importantly, we have compared the efficiency of our parallel scheme with a naive
parallelisation of serial methods. Thus our increase in efficiency is over and above
an N -fold increase, where N is the number of cores or processors at our disposal.
Our approach demonstrates a better-than-linear speed-up with the number proces-
sors/cores used. Thus, our approach is not only embarrassingly parallel (as coined
by Cleve Moler in [18]), but humiliatingly so, provided that an optimal transport
algorithm can be efficiently implemented in parallel and so does not dominate the
communication costs.

The PAIS has a number of favourable features, for example the algorithm’s ability to
redistribute, through the resampling regime, the chains to regions which require more
exploration. This allows the method to be used to sample from complex multimodal
distribution.
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Another strength of the PAIS is that it can also be used with any MCMC proposal.
There are a growing number of increasing sophisticated MCMC algorithms (HMC,
Riemann manifold MCMC etc) which could be incorporated into this framework,
leading to even more efficient algorithms, and this is another opportunity for future
work.

One disadvantage of parallelised algorithms is that often different processors will com-
plete their tasks in different amount of times, for a number of reasons, often due to
communication between the processors. One approach which could be applied to the
PAIS to avoid this is for each processor to immediately start a new iteration, only
using the last values of the other processors that were communicated to it. This
incomplete approach would still be valid, and could lead to more efficient use of the
computer architecture.

One limitation of the PAIS approach as described above is that a direct solver (such
as FastEMD [22]) has computational cost O(n3 log n), where n is the number of
particles in the ensemble. The use of approximate solutions from iterative solvers
might allow the PAIS to be used in higher dimensional problems, and is an avenue for
future investigation. A second limitation is associated with the problem of accurately
approximating measures with empirical measures in high dimensional phase space.
This is a well-known issue in filtering, where one possible solution is to “localise” the
impact of observations, as rigorously analysed in [23]. An established technique in
Ensemble Kalman filters, localisation has also been incorporated into the Ensemble
Transform Particle Filter [4]. This issue could be addressed in the PAIS by using
localisation when computing the transform, but keeping the unlocalised weights in
the importance sampling for consistency.
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Appendix A. The adaptive PAIS algorithm.

21



x
(0)
j ∼ µ0, for j ∈ L ∪ U , where L = {j}M/2

j=1 , U = {j}Mj=M/2+1.

Choose δ(1) ∈ (0, 2]. Set δ
(1)
L,U = (1± 0.01)δ(1) ∧ 2.

for i = 1, 2, . . . , N do

y
(i)
j ∼ Q(x

(i−1)
j , δ

(i)
L ) for j ∈ L, and y

(i)
j ∼ Q(x

(i−1)
j , δ

(i)
U ) for j ∈ U .

Calculate

w
(i)
j =

π(y
(i)
j )

ν(y
(i)
j ;X(i−1))

,

where

ν(y;X) =
1

M

∑
j∈L

q(y;xj , δL) +
1

M

∑
j∈U

q(y;xj , δU ).

if i is in {nk}k=1 then

For wkj = w
(k)
j , S = nk − nk−1,

TL = SM(
∑S
k=i−S

∑
j∈L wkj)

2/(
∑S
k=i−S

∑
j∈L w

2
kj).

TU = SM(
∑S
k=i−S

∑
j∈U wkj)

2/(
∑S
k=i−S

∑
j∈U w

2
kj).

δ(i+1) = δ(i) −∆t
TU − TL
δ

(i)
U − δ

(i)
L

.

else
δ(i+1) = δ(i).

end if
if i < Nstop then

if i < Njoin then
Resample

(w
(i)
j , y

(i)
j )j∈L → (

1

M
,x

(i)
j )j∈L, (w

(i)
j , y

(i)
j )j∈U → (

1

M
,x

(i)
j )j∈U .

else
Resample (w(i), Y (i))→ ( 1

M 1, X(i)).
end if
δ

(i)
L,U = δ(i) ± 2

√
2δ(i)/

√
NM ∧ 2.

else
Resample (w(i), Y (i))→ ( 1

M 1, X(i)).

δ
(i+1)
L = δ

(i+1)
U = δ(i+1).

end if
end for

Table A.1
A pseudo-code representation of the adaptive PAIS algorithm.
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