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1 Introduction
A goodway to understand the underlying problem that Inductive Logic addresses
is as follows: Imagine an agent who inhabits a �rst order structure M for a lan-
guage Lwith relation symbols R1, R2, . . . , Rq and constants a1, a2, a3, . . . but no
function symbols nor equality. Everything in the universe of M is the interpreta-
tion of at least one of the an so we may assume that the set of an actually is the
universe of M with each of the constants interpreted as itself. The agent knows
s/he is in such a structure for L but that is the sum total of the agent’s knowledge.

The question now is: Given θ ∈ SL, where SL is the set of �rst order sentences
of L (and for future reference QFSL is the set of quanti�er free sentences of L),
what degree of belief, as subjective probability, should the agent give to θ being
true inM? Or to take this a step further, what probability function w : SL → [0, 1]
should the agent adopt to re�ect his/her beliefs, where by a probability function
on L we mean here that w satis�es for θ, ϕ, ∃x ψ(x) ∈ SL,

(P1) � θ ⇒ w(θ) = 1

(P2) θ � ¬ϕ ⇒ w(θ ∨ ϕ) = w(θ) + w(ϕ)
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(P3) w(∃x ψ(x)) = limn→∞ w(
∨n
i=1 ψ(ai))

Althoughwe assume that the agent has no further knowledge ofM we should
allow that the agent might further consider ‘What probability should I give to θ
were I to learn that ϕ was true in M?’ The standard convention in the subject is
that the agent should in that case take the resulting conditional probability of θ
given ϕ, to be

w(θ |ϕ) = w(θ ∧ ϕ)
w(ϕ)

.

(A problem seems to arise here when w(ϕ) = 0 but we can satisfactorily side step
it by agreeing to the convention that an expression such as w(θ |ϕ) = b is actually
short for w(θ ∧ϕ) = bw(ϕ), so since w(ϕ) = 0 implies w(θ ∧ϕ) = 0, we can in the
case w(ϕ) = 0 assign w(θ |ϕ) an arbitrary value, for the sake of argument say 1.)

Of course the agent is free to choose any probability function to quantify
his/her beliefs. However the name of the game here is that the agent shouldmake
a choice which is logical or rational. What that means is that w should be required
to satisfy certain principles, principles which we feel it is logical or rational to
obey, or more pointedly perhaps which it would be irrational to �out.

For example suppose that θ(ak1 , ak2 , . . . , akn ) ∈ SL, where the notation is in-
tended to indicate that all the constant symbols appearing in θ are amongst the
(distinct) ak1 , ak2 , . . . , akn , and we form θ(aj1 , aj2 , . . . , ajn ) by the obvious simul-
taneous substitution. Then since the agent has no material reason for thinking
that θ(ak1 , ak2 , . . . , akn ) is any more likely to be true inM than θ(aj1 , aj2 , . . . , ajn )
s/he should give them each equal probability.

This principle is, unsurprisingly, referred to as Constant Exchangeability, Ex,
and it is so widely assumed in this subject that from now on we will assume that
all the probability functions we consider satisfy it without further mention. One
simplifying consequence of this is that in stating principles we can take the ‘arbi-
trary’ ak1 , ak2 , . . . , akn to be a1, a2, . . . , an without any loss of generality.

A second principle that we shall assume from the start, both because of its
evident rationality and because its presence simpli�es the results wewish to state
later is:

Regularity, Reg
If θ ∈ QFSL is consistent then w(θ) > 0.

The justi�cation here is that given our agent’s supposed lack of any speci�c
knowledge about the ambient structure M it would be irrational of him/her to
assign probability zero to any consistent quanti�er free sentence, in other words



The Twin Continua of Inductive Methods | 357

to assert that as far as s/he was concerned it was impossible for that sentence to
hold.1

Ex and Reg were principles that W.E.Johnson, [12], and R. Carnap, [1], [2], [3],
[4], [5], founders of the subject as a branch ofmathematical logic, both employed,
Johnson in a period in the late 1920’s early 1930’s and Carnap, independently, a
decade or so later.

The principles Ex and Reg of course give no particular signi�cance to the arity
of the relation symbols R1, R2, . . . , Rq. However, both Johnson and Carnap con-
centrated almost exclusively on unary L, that is when the Ri were all predicates
or unary relations. (Indeed it has only been in this millenium that signi�cant ad-
vances have been made in Polyadic Inductive Logic, see for example [13].) Like
these founding fathers we shall henceforth assume that the Ri are all unary.

2 Carnap’s Continuum of Inductive Methods
A thirdprinciplewhichboth JohnsonandCarnapproposedbecame in timeknown
as Johnson’s Su�cientness Postulate, JSP after a suggestion by I.J.Good (it started
life as Johnson’s Su�ciency Postulate but that threatened being confused with
the notion of a ‘su�cient statistic’). In order to state this principle, and for future
use, we �rst need to introduce a little notation.

Since all our relation symbols are now being taken as unary it follows that
everything there is to know about a single constant ai is given by the atom it sat-
is�es, where the atoms of L are those 2q formulae α1(x), α2(x), . . . , α2q (x) of the
form

±R1(x) ∧ ±R2(x) ∧ . . . ∧ ±Rq(x)

(±R(x) stands for R(x) or ¬R(x)). In turn everything there is to know about
ak1 , ak2 , . . . , akn is determined by the state description

n∧
i=1

αhi (aki )

that they satisfy.

1 The question ofwhether Regularity should also hold for quanti�ed sentences, in particular con-
sistent sentences of the form ∀x θ(x) with θ quanti�er free, has sparked a considerable literature,
as a lead in see [6, page 87], [10].
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Johnson’s Su�cientness Postulate, JSP

w
(
αj(an+1) |

n∧
i=1

αhi (ai)
)

should only depend on n andmj = |{i | hi = j}|, i.e. the number of times that αj(x) is
instantiated in the state description

∧n
i=1 αhi (ai).

One might �nd an intuitive justi�cation for this postulate by imagining
that M was formed by repeated picking (with replacement) copies of atoms
αh1 (x), αh2 (x), αh3 (x), . . . from an urn and requiring that

M |= αh1 (a1), αh2 (a2), αh3 (a3), . . .

With that picture it would seem reasonable that the probability that atom αj(x)
would be picked at the n+1’st stagewould only depend on the number of previous
picks which had beenmade and the number of those which had yielded a copy of
αj(x).

A reasonably straightforward consequence2 of JSP, which we mention be-
cause it will �gure in what follows, is:

Atom Exchangeability, Ax

w
( n∧
i=1

αhi (ai)
)

depends only on themultiset {m1,m2, . . . ,m2q}wheremj = |{i | hi = j}| (as usual).

Equivalently, if σ is a permutation of {1, 2, . . . , 2q} then

w
( n∧
i=1

αhi (ai)
)

= w
( n∧
i=1

ασ(hi)(ai)
)
.

Interestingly Ax would normally be seen as a principle based on, and indeed
rationally justi�ed by, considerations of symmetrywhereas JSP is based on irrele-
vance.

What really makes JSP a major principle in the subject however is the follow-
ing result which was �rst proved3 by Johnson in [12] and later by Kemeny [11].

2 For details of the proofs of the results stated in this paper collected together in one place see
[16] or the forthcoming [18].
3 See [23] for the history of this result and its more general versions.
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Theorem 2.1. Provided L has at least 2 relation symbols (i.e. q ≥ 2) the only prob-
ability functions on L satisfying JSP + Reg are the cLλ for 0 < λ ≤ ∞, the so called
Carnap’s Continuum of Inductive Methods, given by:

cLλ

(
αj(an+1)

∣∣∣∣∣
n∧
i=1

αhi (ai)
)

=
mj + 2−qλ
n + λ (1)

As implied already by the statement of this theorem just the identities a�orded by
(1) are enough to determine cLλ on thewhole of SL (though the �nal extension from
QFSL to SL requires a later result due to Gaifman, see [7], or [16, Theorem 7]). We
should mention here that if we drop the assumption of Regularity in this theorem
then a further solution4 appears, cL0, de�ned by

cL0

( n∧
i=1

αhi (ai)
)

=

 2−q if h1 = h2 = . . . = hn ,

0 otherwise.
(2)

Going to the other extreme, when λ = ∞, we have that

cL∞

( n∧
i=1

αhi (ai)
)

= 2−nq ,

so cL∞ treats all the Rj(ai) as stochastically independent, each with probability
1/2. For0 < λ < ∞ the right hand side of (1) looks like the proportion of αj amongst
the αhi moderated by �xed terms in λwhose in�uence tends to zero as n → ∞. (For
a fuller discussion on this and related points see the account by Zabell in [23].)

Theorem 2.1 must be considered one of the most important results in the sub-
ject. For it seems to go very far along the road of justifying the idea that consider-
ations of rationality will determine a very tightly restricted choice of probability
functions for our agent, indeed a single choice if only λ could be �xed unequiv-
ocally. Although no generally persuasive argument for any particular value for λ
has ever emerged, nevertheless we might rightly claim that the continuum of cLλ
are logical on the grounds that any other rational being will be led inexorably as
Johnson and Carnap were to these same choices.

The in�uence of this position on the later developments of Inductive Logic
has been enormous. Most subsequent proposals for logical probability functions
to satisfy additional rationality principles not immediately satis�ed by the cLλ have
been based on taking combinations, or adaptations, of the cLλ . And in justi�cation

4 Sometimes also included in Carnap’s Continuum, though not here in this note.
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of this position the cLλ do have some attractive features in the context of rational
belief.

For example a property that the cLλ for 0 < λ < ∞ satisfy (directly from (1)) is5:

Reichenbach’s Axiom, RA
If αh1 (x), αh2 (x), αh3 (x), . . . is an in�nite sequence of atoms of L and mj(n) is

the number of times that αj(x) appears amongst αh1 (x), αh2 (x), . . . , αhn (x) then

lim
n→∞

(
w
(
αj(an+1)

∣∣∣∣∣
n∧
i=1

αhi (ai)
)
−
mj(n)
n

)
= 0

In spirit then, as a recommendation, RA asserts that in the limit the subjective
probabilities should converge to frequency. In other words if 34% of the many
people I have ever met have had blue eyes then I should give probability close to
34/100 to the next new person I meet having blue eyes.

A second attractive property is that for �xed λ the cLλ form a Language Invari-
ant family6, meaning that if L ⊆ L′ (so SL ⊆ SL′) then the restriction of cL

′

λ to SL
is cLλ .

This seems clearly justi�ed on the grounds that whilst at any one time our
agent might be inhabiting a structure for L with relation symbols R1, R2, . . . , Rq
there is no reason to say that these are all the relation symbols there could ever
be, and if at a later time the language L was expanded to L′ then this should not
require the agent to revise his/her beliefs about the truth or otherwise of the sen-
tences of the original language L.

A �nal attractive property of the cLλ which we mention7 is:

The Principle of Instantial Relevance, PIR
For an atom αj(x) and state description Θ(a1, a2. . . . , an),

w(αj(an+2) | αj(an+1) ∧ Θ(a1, a2, . . . , an)) ≥ w(αj(an+1) |Θ(a1, a2, . . . , an))

5 Attributed to H.Reichenbach after a suggestion by H.Putnam, see [4, p120].
6 This notion is usually employed in the polyadic context when we do not restrict our attention
to unary predicates so strictly speaking we should be talking here about Unary Language Invari-
ance.
7 This is a slight simpli�cation of a principle of the same name proposed by Carnap, [3].
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This principle re�ects the very heart of what we understand in the real world
by ‘induction’: That themore times I have observed something in thepast themore
times I should expect to observe it in the future. For example suppose I arrive in
a foreign country late at night and waking at 6.00 the next morning I �nd that it
is raining. Shouldn’t this increase my belief, or at least not diminish it, that it will
also be raining at 6.00 tomorrow morning?

In fact as it turns out the cLλ can hardly be said to be particularly distinguished
by satisfying PIR since by a result of Gaifman, [8]:

Theorem 2.2. For θ(an+1), ψ(a1, a2, . . . , an) ∈ QFSL and w satisfying Ex,

w(θ(an+2) | θ(an+1) ∧ ψ(a1, a2, . . . , an)) ≥ w(θ(an+1) |ψ(a1, a2, . . . , an))

Whilst this does not particularly promote the primacy of the cLλ as such it is an
important result because its discovery suggested that rational principles are not
only consistent with each other but even to some extent interderivable (and so
obliquely that the cLλ are their embodiment).

Viewing the above results we might well be led to conclude that in Carnap’s
Continuum we had uncovered some universal truth about rationality. It all �ts
together simply and elegantly, isn’t that just what we expect of a true theory?
Furthermore another characteristic we associate with ‘fundamental truths’ is that
they reoccur as the result of seemingly di�erent approaches (take for example the
explication of ‘e�ective process’). That is the casehere, there are several principles
other than JSP which characterize the cLλ , see for example [18].

3 Another Continuum
Given so many positive features it is scarcely surprising then that for many
decades Inductive Logic largely saw Carnap’s Continuum as the base camp from
which to explore further. In the early 2000’s however C. J. Nix and the �rst author,
[14], made a somewhat unexpected discovery.

To explain the background recall the example we gave of observing rain at
6.00 to motivate PIR but now suppose instead that I oversleep and waking at 7.00
note that the streets are wet, though it is not actually raining. Shouldn’t that also
increase my belief, or at least not diminish it, that it will be raining at 6.00 tomor-
row morning? In other words observing a consequence of rain, if not actual rain
itself, should still be viewed as supporting evidence for rain tomorrow.

This sentiment might be captured in a principle generalizing Theorem 2.2:
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The Generalized Principle of Instantial Relevance, GPIR
For θ(an+2), ϕ(an+1), ψ(a1, a2, . . . , an) ∈ QFSL, if θ(x) |= ϕ(x) then

w(θ(an+2) |ϕ(an+1) ∧ ψ(a1, a2, . . . , an)) ≥ w(θ(an+1) |ψ(a1, a2, . . . , an))

(As an aside here we mention that this is the same principle if instead we
require θ(x) to be a consequence of ϕ(x) rather than the other way round.)

The following theorem, which will appear in [18], is simply a reformulation of
results in [14]:

Theorem 3.1. Provided q ≥ 2 the only probability functions on L satisfying GPIR +
Ax + Reg are the wδL for −(2q − 1)−1 < δ < 1 given by:

wδL

( n∧
i=1

αhi (aki )
)

= 2−q
2q∑
j=1

γn−mj (γ + δ)mj (1)

where γ = 2−q(1 − δ) and (as usual) mj is the number of times that αj(x) is instanti-
ated in the state description

∧n
i=1 αhi (aki ).

Interestingly the key power of GPIR here is in allowing additional information to
be present in the form of ψ(a1, a2, . . . , an). Without this GPIR holds for all prob-
ability functions satisfying Ax, see [18].

So here we have another ‘continuum of inductive methods’ sometimes re-
ferred to as the Nix-Paris (see [22]) or NP-Continuum. Aswith Carnap’s Continuum
it is based on rational principles, though the onlymember that both continuahave
in common is cL∞, w0

L.8

For a �xed δ the wδL do not form a Language Invariant family for −(2q − 1)−1 <
δ < 0, this is shown in [15], but they do for 0 ≤ δ < 1 and for this reason it is now
common practice (which we henceforth follow) to take the NP-continuum to be
the wδL with δ restricted to this range.

In addition to Language Invariance the wδL satisfy two other arguably attrac-
tive properties. Firstly they satisfy:

TheWeak Irrelevance Principle, WIP

8 In some accounts (1) is extended to the case δ = 1, at which point w1
L = cL0, so meeting again

the ‘extended Carnap’s Continuum’ referred to earlier.
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If θ, ϕ ∈ QFSL have no relation or constant symbols in common then

w(θ |ϕ) = w(θ).

The intended justi�cation for this principle seems clear: If θ and ϕ come from
di�erent languages whyever should knowing the truth of ϕ in�uence one’s belief
in θ?

This property does not provide a characterization of the wδL, there are other
probability functions satisfying Ax + Li which satisfy WIP though they are in a
sense all built from the wδL, see [17]. A property which does however characterize
the wδL is:

Recovery
A probability function w on L satis�es Recovery, or is Recoverable, if when-

ever Ψ(a1, a2, . . . , an) is a state description then there is another state description
Φ(an+1, an+2, . . . , ah) such that w(Φ ∧ Ψ) ̸= 0 and for any quanti�er free sentence
θ(ah+1, ah+2, . . . , ah+g),

w(θ(ah+1, ah+2, . . . , ah+g) |Φ ∧ Ψ) = w(θ(ah+1, ah+2, . . . , ah+g)). (2)

In other words w is Recoverable if given any ‘past history’ as a state descrip-
tion Ψ there is a possible ‘future’ state descriptionΦwhich will take us right back
to where we started, at least as far as the quanti�er free properties of the currently
unobserved constants ah+1, ah+2, . . . are concerned.

It is debateable whether Recoverability is an obviously desirable property of
a rational probability function, though if we think of it as a manifestation of sim-
plicity or at least ‘simpli�ability’, of being able to wipe out the in�uence of the
past, then that could perhaps be argued for. The following result from [20] shows
that even a weak form of Recovery (in suitable company at least) actually charac-
terizes the NP-continuum:

Theorem 3.2. Suppose that the probability functionswL satisfy Reg+Axand forma
Language Invariant family. ThenwL has the property that for some state description
Φ(a1, a2, . . . , an) with n > 0, and for all θ(an+1, an+2, . . . , an+g) ∈ QFSL,

w(θ(an+1, an+2, . . . , an+g) |Φ(a1, a2, . . . , an)) = w(θ(an+1, an+2, . . . , an+g))

just if wL = wδL for some 0 ≤ δ < 1.
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4 Two Rationalities?
We have seen that we now have two continua, the very well established Carnap’s
Continuum and themuchmore recent NP-continuum. Both are ‘justi�ed’ by satis-
fying several apparently desirable properties. Indeed it currently seems that most
rational properties that we might propose are satis�ed by at least one of them.

Comparing these two continua9, they have in common that they both satisfy
Ax, Reg and Language Invariance. As for their di�erences the cLλ satisfy Johnson’s
Su�cientness Postulate, which of course the wδL do not, and similarly the cLλ do
not satisfy the Generalized Principle of Instantial Relevance except at λ = ∞.

A further di�erence is that apart from the endpoint cL∞where the twocontinua
meet the cLλ do not satisfy the Weak Irrelevance Property, WIP. As a particular in-
stance of this latter failure one can check that for 0 < λ < ∞,

cLλ (R2(a3) ∧ R2(a4) | R1(a1) ∧ R1(a2)) > cLλ (R2(a3) ∧ R2(a4)). (1)

So according to cLλ , R1(a1) ∧ R1(a2) adds support to R2(a3) ∧ R2(a4) despite
these two sentences having no relation nor constant symbols in common. How-
ever one might argue that this is actually a manifestation of induction which cLλ
recognizes. Namely the information R1(a1) ∧ R1(a2) suggests that the constants
lookalike, sinceboth a1 and a2 havebeen found to satisfyR1(x), and this supports
belief in a3, a4 also being alike and so both satisfying R2(x). [Actually it turns out
that we will always have ≥ in (1) for any probability function that is a member of
a Language Invariant family of functions satisfying Ax, see [9], so from this point
of view the wδL might be criticized for not picking up this version of relevance.]

Unlike the cLλ (for λ < ∞) the wδL do not satisfy Reichenbach’s Axiom, RA. To
give a speci�c example of this failure consider the sequence of atoms αhi (x) where
hi = 1 if i = 0 mod 3 and hi = 2 otherwise. Then with j = 1 and the notation of the
statement of RA, mj(n)/n → 1/3 as n → ∞. However

wδL

(
α1(a3n) |

3n−1∧
i=1

αhi (ai)
)

= γ(γ + δ)2n + γn+1(γ + δ)n + (2q − 2)γ2n+1

(γ + δ)2n + γn+1(γ + δ)n−1 + (2q − 2)γ2n

which tends to γ as n → ∞, so RA fails. (Of course if γ = 1/3 we can just change
the frequency of the α1(x).) In defense of the wδL, there would seem to be no rea-

9 Further comparisons are given in [21].
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son per se for our agent to suppose that the mj(n)/n would be a convergent se-
quence. Such a supposition would seem to be based on the rather unwarranted
assumption that there was some �xed process, such as picking from an urn with
replacement, which was deciding whether or not an satis�ed α1(x). Without this
assumption there would seem to be little, or at least less, reason for the agent to
slavishly attempt to close in on the ‘limit’ of the mj(n)/n.

Overall though the cLλ seem to us to edge it in a straight contest with the wδL.
However that is not the main issue. The main issue is in explaining the alternate
concepts of ‘rationality’ which underpin them.

One might object here that if we accept as our rational probability function
the onlymember that the two continua have in common, i.e. cL∞ = w0

L, thenwe get
the best of both worlds and there needs be no dilemma. Unfortunately it is rather
that we seem get theworst of bothworlds. In particular the failure of RA for thew0

L
is especially dramatic: w0

L does not respond at all to the evidence
∧n
i=1 αhi (ai) and

just gives αj(an+1) probability 2−q regardless. In other words w0
L is entirely devoid

of induction and largely in consequence of this few in the area would nowadays
wish to promote it as ‘the rational choice’.10 ,11

Turning back then to the question of their underlying versions of rationality
one might hazard that the di�erence is this: The principles underlying the cLλ re-
quire the agent to picture his/her ambient structureM as the result of some regular
statistical process. To repeat ourselves, the example of picking balls from an urn
in the case of JSP. So the notion of rationality being taken here is of regularity, pre-
dictability, pattern. On the other hand the version of rationality being exploited,
and subsequently manifest, in the case of the wδL might be seen as simplicity or
economy. For example the consideration that information should be ignored, or
have the potential to be ignored, where possible leads to GPIR, WIP and Recover-
ability.

10 But see [22] for a spirited counter argument.
11 Another possibility is to extend the continua to cL0, w1

L where they again agree and make this
choice. This has certainly been proposed in its time (and is even inevitable if one pushes symme-
try to the limit with purely unary languages, see [19]) but su�ers the opposite defect from cL∞ of
being too much in�uenced by the evidence, as shown already in (2).



366 | J.B.Paris and A.Vencovská

5 Conclusion
In this paper a number of rationality principles have been proposed each of which
is satis�ed by, or even characterizes, the probability functions in one of two ‘Con-
tinua of Inductive Methods’, Carnap’s classical continuum and the recently ex-
plicated NP-continuum. We would suggest that what is signi�cant here is that it
implies that there are at least two separate notions of rationality at work and that
they are essentially incompatible, or at least their common ground does not pro-
vide acceptable rational or logical probability functions to most people’s way of
thinking.

Bibliography
[1] Carnap, R., Logical Foundations of Probability, University of Chicago Press, Chicago, Rout-

ledge & Kegan Paul Ltd., 1950.
[2] Carnap, R., The Continuum of Inductive Methods, University of Chicago Press, 1952.
[3] Carnap, R. & Je�rey, R.C. eds., Studies in Inductive Logic and Probability, Volume I, Uni-

versity of California Press, 1971.
[4] Carnap, R., A Basic System of Inductive Logic, in Studies in Inductive Logic and Probability,

Volume II, ed. R. C. Je�rey, University of California Press, 1980, pp7-155.
[5] Carnap, R. & Stegmüller, W., Induktive Logik und Wahrscheinlichkeit, Springer Verlag,

Wien, 1959.
[6] Earman, J., Bayes or Bust?, MIT Press, 1992.
[7] Gaifman, H., Concerning Measures on First Order Calculi, Israel Journal of Mathematics,

1964, 2:1-18.
[8] Gaifman, H., Applications of de Finetti’s Theorem to Inductive Logic, in Studies in Inductive

Logic and Probability, Volume I, eds. R.Carnap & R.C.Je�rey, University of California Press,
Berkeley and Los Angeles, 1971, pp235-251.

[9] Hill, A. & Paris, J.B., The Counterpart Principle of Analogical Support by Structural Similar-
ity, to appear in Erkenntnis.

[10] Hintikka, J. & Niiniluoto, I., An Axiomatic Foundation of the Logic of Inductive Generaliza-
tion, in Formal Methods in the Methodology of the Empirical Sciences, eds. M.Przelecki,
K.Szaniawski & R.Wójcicki, Synthese Library 103, Kluwer, Dordrecht, 1976, pp57-81.

[11] Kemeny, J.G., Carnap’s theory of probability and induction, in The Philosophy of Rudolf
Carnap, ed. P.A.Schilpp, La Salle, Illinois, Open Court (1963), pp 711-738.

[12] Johnson, W.E., Probability: The deductive and inductive problems,Mind, 1932,
41(164):409-423.

[13] Landes, J., Paris, J.B. & Vencovská, A survey of some recent results on Spectrum Ex-
changeability in Polyadic Inductive Logic, Synthese, 2011, 181(Supplement 1), pp19-47.

[14] Nix, C.J. & Paris, J.B., A Continuum of Inductive Methods arising from a Generalized Princi-
ple of Instantial Relevance, Journal of Philosophical Logic, 2006, 35(1): 83-115.



Bibliography | 367

[15] Nix, C.J., Nix, C.J., Probabilistic Induction in the Predicate Calculus Doctoral Thesis, Manch-
ester University, Manchester, UK, 2005.
See http://www.maths.manchester.ac.uk/~jeff/

[16] Paris, J.B., Guangzhou Winter School course on Pure Inductive Logic, 2010, available at
http://www.maths.manchester.ac.uk/~jeff/lecture-notes/Guangzhou.pdf

[17] Paris, J.B. & Vencovská, A., A Note on Irrelevance in Inductive Logic, Journal of Philosophi-
cal Logic, 2011, 40(3): 357-370

[18] Paris, J.B. & Vencovská, A., Pure Inductive Logic, to appear in the ASL series Perspectives
in Mathematical Logic, Cambridge University Press, 2014.

[19] Paris, J.B. & Vencovská, Symmetry’s End?, Erkenntnis, 2011, 74(1): 53-67.
[20] Paris, J.B. & Waterhouse, P., Atom Exchangeability and Instantial Relevance, Journal of

Philosophical Logic, 2009, 38(3):313-332.
[21] Williamson, J., Inductive Influence, British Journal for the Philosophy of Science, 2007,

58:689-708.
[22] Williamson, J., An Objective Baysian Account of Con�rmation, in Explanation, Prediction,

and Con�rmation. New Trends and Old Ones Reconsidered, Eds. D.Dieks, W.J.Gonzalez,
S.Hartmann, T.Uebel & M.Weber. Volume 2 in the series The Philosophy of Science in a
European Perspective, Springer, 2011, pp53-81.

[23] Zabell, S. L., Carnap and the Logic of Induction, in: Handbook of the History and Philoso-
phy of Logic, Volume 10, eds. D.Gabbay, S.Hartmann & J.Woods, Elsevier, 2011.


