
The Discontinuous Galerkin Method for
Conservation Laws

Michael, Crabb

2010

MIMS EPrint: 2015.63

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

THE DISCONTINUOUS GALERKIN

METHOD FOR CONSERVATION LAWS

A dissertation submitted to the University of Manchester

for the degree of Master of Science

in the Faculty of Engineering and Physical Sciences

2010

Michael Crabb

School of Mathematics

Contents

Abstract 8

Declaration 9

Copyright Statement 10

Acknowledgements 11

Abbreviations 12

1 Introduction 13

1.1 Conservative PDEs in one dimension 13

1.2 Abstract system of conservative PDEs 14

1.3 Report Outline . 15

2 Preliminaries 17

2.1 A discontinuous Galerkin formulation 17

2.2 Numerical Flux . 19

2.2.1 Central Flux . 20

2.2.2 Lax-Friedrichs Flux . 20

2.2.3 Roe average Flux . 21

2.3 Elemental linear system . 22

2.3.1 Element coupling and boundary conditions 23

2.4 Evaluation of Integrals . 24

2.5 Orthogonal polynomial basis . 25

2.6 Runge-Kutta Time Discretization . 26

2.6.1 Explicit RK-4 Method . 26

2

2.6.2 Explicit RK-TVD Method . 27

2.7 1D Slope Limiting . 29

2.7.1 Stability and sign conditions 29

2.7.2 Minmod slope limiter . 30

2.7.3 High Order Approximation . 31

2.7.4 TVDM-property . 31

2.7.5 TVBM-property . 32

2.7.6 CFL timestep condition . 33

2.8 Norms and convergence . 34

2.8.1 Broken L2 and L1 norms . 34

2.8.2 Linear Problems . 35

3 Continuous Problems in 1D 37

3.1 Flux transport equation . 37

3.2 Advection equation . 38

3.3 1D shallow water equations . 41

3.3.1 Numerical Solution . 42

4 Discontinuous Problems in 1D 46

4.1 Inviscid Burgers’ equation . 46

4.1.1 Shock Formation . 46

4.1.2 Shock Propagation . 49

4.2 Shallow water equations . 54

4.2.1 Rankine Hugoniot conditions 54

4.2.2 Characteristic Curves . 55

4.2.3 1D Dam-Break Setup . 56

4.2.4 Importance of shocks and conserved forms 58

4.2.5 Field Conservation . 63

5 2D Dam-Break Problem 64

5.1 Shallow water equations . 64

5.2 Discontinuous Galerkin Method in 2D 65

5.2.1 2D Slope Limiting . 66

3

5.3 2D Dam-Break Problem . 68

5.3.1 Smoothed 2D Dam-Break Problem 69

6 Conclusion 77

6.1 Further Work . 78

A Shallow Water numerical flux 80

B Numerical Flux Implementation 82

B.1 Numerical flux at knot points . 82

B.2 Flux Constant . 84

C Slope Limiting Implementation 85

C.1 Limiting over all elements . 85

C.2 Limiting over single element . 86

C.3 Limit function . 88

D RK-TVD3 Implementation 91

E 1D Shallow Water Code 93

Bibliography 101

Word count 15653

4

List of Tables

3.1 1D advection - Broken L2-errors with h-refinement for different poly-

nomial orders . 40

3.2 1D shallow water - Broken L2-errors for continuous problem with h-

and p- refinement . 44

4.1 1D Burgers’ - Broken L2-errors with h- and p- refinement 52

4.2 1D Burgers’ - Broken L2-errors with h-refinement for RK-4 and RK-

TVD3 timesteppers . 54

4.3 1D dam-break - Broken L1 and L2-errors for a Roe average and Lax-

Friedrichs flux . 61

4.4 1D dam-break - Computation times with a Roe average and Lax-

Friedrichs flux . 61

4.5 1D dam-break - L1-errors with h- and p- refinement 62

4.6 1D dam-break - Computation times for high order approximation . . 62

4.7 1D dam-break - Integrated height and momentum fields 63

5

List of Figures

2.1 Illustration of the outer unit normals and interior and exterior fields,

on a common edge of two adjacent elements 19

2.2 A rectangular element with it’s nearest neighbours 23

3.1 1D advection - Solution with sinusoidal initial condition 39

3.2 1D advection - Broken L2-errors with h-refinement for different poly-

nomial orders . 40

3.3 1D shallow water - Continuous problem height and velocity solution . 43

3.4 1D shallow water - Broken L2-errors for continuous problem with h-

refinement for different polynomials orders 44

3.5 1D shallow water - Comparison of central and Lax-Friedrichs flux for

continuous problem . 45

4.1 1D Burgers’ - Shock formation from smooth initial condition 48

4.2 1D Burgers’ - Spurious oscillations in numerical solution near shock . 51

4.3 1D Burgers’ - Numerical solutions with h- and p- refinement 51

4.4 1D Burgers’ - Numerical solutions with MUSCL slope limiting 53

4.5 1D Burgers’ - Comparison of RK-4 and RK-TVD3 timesteppers . . . 53

4.6 1D dam-break - Initial height distribution 56

4.7 1D dam-break - Exact height solution at T = 0.4 57

4.8 1D dam-break - Height and momentum solution without slope limiting 58

4.9 1D dam-break - Height solution with MUSCL slope limiting 59

4.10 1D dam-break - Height solution with the correct and incorrect con-

served field . 60

4.11 1D dam-break - Comparison of broken L1 and L2-errors 61

6

4.12 1D dam-break - Broken L1-errors with h-refinement for different poly-

nomial orders . 62

5.1 Illustration of unknowns within an element for 2D slope limiting . . . 67

5.2 2D dam-break - Initial height distribution 70

5.3 2D dam-break - Average DGFEM height solution with a MUSCL lim-

iter and with no slope limiting . 71

5.4 2D dam-break - Average DGFEM height density plots for different

spatial resolutions . 73

5.5 2D dam-break - h-refinement of DGFEM average height solution on

line y = x . 73

5.6 Axisymmetric dam-break - FVM height solution for high resolution

problem . 74

5.7 2D dam-break - Average height density plots of the difference between

the high resolution FVM axisymmetric dam-break solution and the

DGFEM 2D dam-break solution . 74

5.8 2D dam-break - Comparison of average height solutions using the FVM

and DGFEM for elements lying on the x-axis 75

5.9 2D dam-break - Comparison of average height solutions using the FVM

and DGFEM for elements lying on the y-axis 75

5.10 2D dam-break - Comparison of average height solutions using the FVM

and DGFEM for elements lying on the line y = x 75

5.11 2D dam-break - Comparison of the average DGFEM height solution,

near the shock, along the x-axis, y-axis and line y = x 76

7

The University of Manchester

Michael Crabb
Master of Science
The Discontinuous Galerkin Method For Conservation Laws
October 14, 2010

The aim of this project is to study discontinuous Galerkin methods applied to coupled
systems of partial differential equations in conservative form in 1D and 2D.

In 1D, a formulation was successfully implemented to solve continuous problems
for the advection and shallow water equations. Discontinuous problems for the in-
viscid Burgers’ equation and a breaking dam problem were also investigated and the
effectiveness of h- and p-refinement discussed. An alternate set of shallow water equa-
tions were derived yielding equivalent results for a continuous problem but different
numerical solutions for the breaking dam problem. These anomalous results highlight
the importance of enforcing conservation of the correct conserved physical variables
in cases when solutions exhibit shocks.

A 2D slope limiter, applicable to quadrilateral elements, is implemented and nu-
merical results obtained for a smoothed breaking dam problem in 2D. A comparison
is made between these results and those from a finite volume method (results by
Chris Johnson) and indicate that, for this particular problem, both methods resolve
the shock over the same length scale.

8

Declaration

No portion of the work referred to in this dissertation has

been submitted in support of an application for another

degree or qualification of this or any other university or

other institute of learning.

9

Copyright Statement

i. Copyright in text of this dissertation rests with the author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with

instructions given by the author. Details may be obtained from the appropriate

Graduate Office. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions

may not be made without the permission (in writing) of the author.

ii. The ownership of any intellectual property rights which may be described in

this dissertation is vested in the University of Manchester, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

iii. Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of the School of Mathematics.

10

Acknowledgements

A special thank you to my supervisor, Dr. Andrew Hazel, for developing my under-

standing of the oomph-lib and for his useful discussions and comments during the

past five months. I would also like to thank Prof. Matthias Heil for his help during

the project and Chris Johnson for his two dimensional dam-break results, which were

essential for validation of my computational results.

11

Abbreviations

The following abbreviations are commonly used in this report:

• DG - Discontinuous Galerkin.

• FEM - Finite element method.

• FVM - Finite volume method.

• PDE - Partial differential equation.

• ODE - Ordinary differential equation.

• GLL - Gauss-Lobatto-Legendre.

• RK - Runge-Kutta.

• CFL - Courant-Friedrichs-Levy.

• TVDM - Total variation diminishing in the means.

• TVBM - Total variation bounded in the means.

12

Chapter 1

Introduction

1.1 Conservative PDEs in one dimension

In this report, coupled systems of partial differential equations (PDEs) in conservative

form will be studied. First, consider a system of one conserved field, w, in one spatial

dimension, x. A simple conservation law for this single field states that “the rate

of change of the total amount of w inside a region [L,R] equals the amount of w

that flows into [L,R] minus the amount that flows out of [L,R]”. This statement is

expressed mathematically below, where f represents the flux, or flow, and t is the

time:

d

dt

∫ R

L

w(x, t) dx = f(L, t)− f(R, t). (1.1)

If f is continuously differentiable, then the integral form (1.1) can be written

d

dt

∫ R

L

wdx = −
∫ R

L

∂f

∂x
dx,

and if the field, w, is continuously differentiable we can write∫ R

L

(∂w
∂t

+
∂f

∂x

)
dx = 0.

The integral above is true for any control region [L,R] and this is only possible if the

integrand equals 0. We recover the PDE form of the conservation law,

∂w

∂t
+
∂f

∂x
= 0. (1.2)

13

CHAPTER 1. INTRODUCTION 14

1.2 Abstract system of conservative PDEs

Systems of PDEs relating m conserved fields in n spatial dimensions will be consid-

ered. In the spirit of the 1D conservation law (1.2), a general system of conserved

PDEs can be written in the form,

∂w(x, t)

∂t
+∇.F (w(x, t),x, t) = 0 x ∈ Ω, (1.3)

where Ω ⊂ Rn is the problem domain, x ∈ Ω is a spatial location, t is the time,

w ∈ Rm is a vector of the unknown fields and F ∈ Rm×n is the flux matrix. The

vector of partial derivatives, ∇ = (∂
∂x1
, . . . , ∂

∂xn
), is defined to operate across rows of

the flux matrix.

Conserved PDEs will be considered with Dirichlet initial conditions (1.4) and

either periodic boundary conditions or Dirichlet boundary conditions (1.5) where ∂Ω

is the boundary of the domain and t0 is the starting time of the system,

w(x, t0) = f(x) x ∈ Ω, (1.4)

w(x, t) =g(x, t) x ∈ ∂Ω. (1.5)

For specific initial and boundary conditions, solutions to PDEs in conservative form

are known to develop shocks, in which the solution becomes multi valued at a single

point [1]. A classic finite element method, which imposes continuity through the do-

main, is destined to fail because the exact solution lies outside the space of continuous

functions. A number of methods have been implemented to overcome these discon-

tinuities such as the finite volume method (FVM) [2]. In this method, the domain

is split into individual cells, and in each of these cells, a constant approximation is

imposed for the field. A flux function, defined on the cell boundary, is then used to

distribute information from the cell to its neighbours. During the timestepping, “spu-

rious” oscillations can appear near discontinuities of the solution due to the Gibbs

phenomenon, where errors occur due to approximating a discontinuous function by

a continuous function [3, 4]. A number of methods have been devised to remove the

spurious oscillations in the approximate solution after each timestep. If the mesh has

been appropriately refined to accommodate the local physical features of the solution,

then the FVM is known, through numerical experiments, to perform well. However,

CHAPTER 1. INTRODUCTION 15

the method does not allow high order polynomial approximation within a cell, which

could be a useful property for the approximate solution to exhibit in smooth regions.

A discontinuous Galerkin finite element method (DGFEM) is the natural successor

to the finite volume method. In this method the domain is split into elements and

in each element a polynomial approximation is used. Continuity of the approximate

solutions is not enforced between neighbouring elements. Instead, a numerical flux

function is defined on the element edges to distribute information between the element

and its neighbours. A timestepping scheme is then used to progress the approximate

solution in each element at discrete points in time. Numerical schemes have been

developed, including aliasing, filtering and limiting [3], to remove oscillations that

appear due to the Gibbs phenomenon at each timestep. In this report, slope limiting

will be used to stabilise the solution by enforcing the approximate solution to lie in

the space of functions with bounded variation.

The slope limiting process works by altering the approximation within each ele-

ment after each timestep. If an element requires limiting, high order approximation

in an element will be replaced with a linear approximation. If the gradients of the el-

ement and its neighbours differ in sign, a constant approximation will be used within

an element, and, if not, a linear approximation is used with the smallest gradient

in absolute value. A modified limiter can also be implemented to ensure that the

solution remains high-order accurate in regions where smooth extrema are present.

1.3 Report Outline

A discontinuous Galerkin formulation of the general system of conservative PDEs

(1.3) will be derived in chapter 2, including space and time discretization. This

includes a discussion of slope limiting in one spatial dimension and the concept of

total variation bounded solutions. In chapter 3, computational results will be given

for problems with continuous analytic solutions for the one dimensional advection

equation and one dimensional shallow water equations. Chapter 4 has a theoretical

discussion of one dimensional shock propagation and formation with specific exam-

ples relating to the inviscid Burgers’ equation. Theoretical discontinuous analytic

solutions will be compared to computational results highlighting the importance of

CHAPTER 1. INTRODUCTION 16

a slope limiter to remove oscillations. A one dimensional dam-break problem of the

shallow water equations (see section 5.1) will be analysed, which has a known analytic

solution. The analysis will include looking at two different fluxes, the Roe average

and Lax-Friedrichs flux, and the effectiveness of performing h- and p-refinement with

slope limiting. This chapter will include a discussion on the importance of enforc-

ing conservation of the correct conserved physical variables when solutions exhibit

discontinuities. See section 4.2.4 for further details.

Finally, in chapter 5, a two dimensional dam-break problem will be studied, in-

cluding a discussion of a two dimensional slope limiter applicable to rectangular

elements with a linear approximation. The discontinuous Galerkin finite element

method results obtained will be compared to those obtained using a finite volume

method devised by Jiang et al. [5].

Unless otherwise specified, computational results are obtained using the object

oriented multi physics library (oomph-lib), written in C++. For more details of the

library see [6]. The implementation of the numerical flux function for the shallow

water equations is described in Appendix B, a two dimensional slope limiter in Ap-

pendix C and a third order Runge-Kutta timestepper in Appendix D. Appendix E

also describes a stand-alone original C++ code to solve a continuous test problem of

the shallow water equations in one dimension.

The computations are performed on an AMD Turion(tm) X2 Dual-Core Mobile

RM-74 550MHz processor, running Ubuntu Linux 10.04 LTS, and code is compiled

with the GCC 4.5.1 compiler.

Chapter 2

Preliminaries

2.1 A discontinuous Galerkin formulation

To model a set of coupled PDEs in conservative form we consider a weak formulation

of (2.1),

∂w(x, t)

∂t
+∇.F (w(x, t),x, t) = 0 x ∈ Ω, (2.1)

where Ω ⊂ Rn is the domain, w ∈ Rm is a vector of the unknown fields and F ∈ Rm×n

is the flux matrix. The vector of partial derivatives, ∇ = (∂
∂x1
, . . . , ∂

∂xn
), is defined

to operate across rows of the flux matrix. The computational domain, Ωh, is split

into K geometry conforming elements, indexed by e. We look for an approximation,

wh(x, t), to the true solution, w(x, t), by a direct sum of local solutions, we
h(x, t),

defined in each element,

w(x, t) ≈ wh(x, t) =
K⊕
e=1

we
h(x, t) ∈ Vh =

K⊕
e=1

span{Ψl(D
e)}Np

l=1 ,

where an n-dimensional polynomial basis, {Ψl(D
e)}Np

l=1, is defined in each element.

The local approximation, we
h(x, t), is then expressed as

we
h(x, t) =

Np∑
i=1

we
h(x

e
i , t)l

e
i (x) =

Np∑
i=1

(wh)
e
i l
e
i (x), (2.2)

where lei (x) is the Lagrange interpolating polynomial defined on a set of grid points,

xei , in element De. The normal interpolation property (2.3) holds in element e:

lei (x
e
j) =

 1 if i = j

0 otherwise.
(2.3)

17

CHAPTER 2. PRELIMINARIES 18

The choice of the position of the grid points or nodes is not unique and although

equidistant grid points are the most simple to imagine, more complex positioning

of nodes can lead to better computational performance, as discussed in section 2.5.

For now, assume the nodal positions have been fixed, and in each element form the

residual,

Re
h(x, t) =

∂we
h

∂t
+∇.F e

h(we
h,x, t).

If Re
h(x, t) = 0 ∀x ∈ Ω and ∀t then the PDE (2.1) is satisfied. The residual is enforced

to be orthogonal to all test functions veh ∈ Ve
h, resulting in the local statement:∫

De

Re
h(x, t)v

e
h(x)dx = 0.

In a Galerkin formulation, the test functions are precisely the Lagrange polynomials

used to interpolate the unknowns∫
De

(∂we
h

∂t
+∇.F e

h(we
h,x, t)

)
lei (x)dx = 0 i = 1 : Np.

To simplify notation, it is assumed that the element indexed by e is under considera-

tion and that a particular discretization choice has been made, so the labels e and h

can be dropped. Using Green’s Theorem on the second term, on each of the m rows

of the flux matrix∫
De

(∂w

∂t
li(x)− F.∇li(x)

)
dx = −

∫
∂De

F.n̂li(x̂)dx̂ i = 1 : Np,

where n̂ is the outer unit normal on ∂De. The term on the right hand side represents

an integral of the flux function on the boundary of the element so in 2D this will be

a line integral and in 3D a surface integral. In 1D, the analysis is simplified because

the outer unit normal is either +1 on the right hand side of the element or −1 on the

left hand side of the element, and an integration need not be performed.

The essential concept behind a discontinuous formulation is that continuity of the

fields between adjacent elements is not enforced. At an element’s edge, the field can

be multivalued and so the flux at the edge can also be multivalued. Consider two

elements with a common edge, then the surface integral of the normal flux along the

edge of one element can be different to the neighbouring element’s surface integral of

the flux along the same edge. A choice must be made to which flux, or combination

CHAPTER 2. PRELIMINARIES 19

of fluxes, is the best approximation to the true flux at an element’s edge. In the

discontinuous Galerkin formulation, at an element’s edge, the flux in the direction of

the outer unit normal, F.n̂, is replaced by a numerical flux, f∗. This results in a weak

formulation, find w ∈ Ve
h such that:∫

De

(∂w

∂t
li(x)− F.∇li(x)

)
dx = −

∫
∂De

f∗li(x̂)dx̂ i = 1 : Np. (2.4)

2.2 Numerical Flux

Before constructing a numerical flux, the geometry of the field at element edges must

be understood. Consider two adjacent elements, K+ and K−, a point x on their

common edge, and let nK± be the outer unit normal from element K±. The limits

of the approximate solution at the edge of each element are

w±h (x) = lim
ε→0±

wh(x− εnK±). (2.5)

The geometry, for rectangular elements, can be seen in figure 2.1 below.

K−
nK−

K+

nK+

w−
h (x) w+

h (x)

Figure 2.1: Illustration of the outer unit normals and interior and exterior fields, w−h (x)
and w+

h (x) on a common edge of two adjacent elements K− and K+.

Cockburn et al. [7] construct the numerical flux, f∗, an approximation to the true flux

in the direction of the outer unit normal at an element’s boundary, by considering

the following:

1. The numerical flux is taken to be a function only of the limits (2.5). This defines

a numerical flux at the boundary regardless of the polynomial space chosen for

CHAPTER 2. PRELIMINARIES 20

the solution,

f∗(wh)(x) = f∗(w+
h (x),w−h (x)).

2. For continuous problems, the numerical flux must be equivalent to the normal

flux at the boundary: f∗(w,w) = F (w).n.

3. If a piecewise constant approximation is used, the discretization results in a

monotone finite volume scheme. This is ensured if we have a conservative flux,

f∗(w+
h (x),w−h (x)) + f∗(w−h (x),w+

h (x)) = 0,

the mapping w 7→ f∗(w, .) is non decreasing and the mapping w 7→ f∗(.,w) is

non increasing.

A number of fluxes exist that display the properties above including the Lax-Friedrichs,

Godunuv and Engquist-Osher fluxes [3, 7, 8]. For the following definitions, assume

that w−h (x), w+
h (x) are the fields on the interior and exterior of the element boundary

and n is the outward unit normal.

2.2.1 Central Flux

The central flux at an element boundary is defined as the average of the fluxes at the

element boundary in the direction of the outer unit normal,

f∗CEN(w−h (x),w+
h (x)) =

1

2
(F(w−h (x)) + F(w+

h (x))).n. (2.6)

Although this is the simplest and perhaps most intuitive flux, it does not necessarily

satisfy the third desired property of a numerical flux and is generally only useful for

continuous problems.

2.2.2 Lax-Friedrichs Flux

The Lax-Friedrichs flux, defined in (2.7), is the flux average in the direction of the

outer unit normal plus a term that is a constant multiplied by the difference between

the internal and external fields,

f∗LF (w−h (x),w+
h (x)) = f∗CEN(w−h (x),w+

h (x))− CLF
2

(w+
h (x)−w−h (x)),

CLF = max
w∈(w−h (x),w+

h (x))
|λ(B)|, (2.7)

CHAPTER 2. PRELIMINARIES 21

where B = n. ∂F
∂w
∈ Rm×m is the contraction of the Jacobian of the flux matrix, a rank

3 tensor, with the outer unit normal. Using the Einstein summation convention, the

components are

Bik =
∂Fij
∂wk

nj i, k = 1 : m, j = 1 : n.

The eigenvalues of the normal matrix, B, are computed and the Lax-Friedrichs con-

stant, CLF , is chosen as the largest eigenvalue in absolute value over all possible

choices of the field between w−h (x) and w+
h (x).

The flux adds an extra diffusive term to the central flux in an attempt to smear

out discontinuities and shocks arising from the solution of the conserved PDEs.

2.2.3 Roe average Flux

The Roe average flux is an alternative method to assign numerical fluxes at element

boundaries. Consider the conservative initial value problem in one spatial dimension

∂w

∂t
+
∂f

∂x
= 0, (2.8)

w(x, 0) = w0(x). (2.9)

The Riemann problem is the initial value problem with discontinuous data

w(x, 0) = wL (x < 0), w(x, 0) = wR (x > 0). (2.10)

Roe [9] solved a linearised version of the Riemann problem, at each element edge,

to find a field that approximately solves the Riemann problem and hence determine

a numerical flux. He introduced so called Roe average states, and used the jump

conditions at the discontinuity (see equation (4.17)), to find approximate solutions

to the Riemann problem. Specifically, for the shallow water equations in 1D (3.9),

this flux can be written in the form,

f∗RA(w−h (x),w+
h (x)) = f∗CEN(w−h (x),w+

h (x))− CRA
2

(w+
h (x)−w−h (x)), (2.11)

where CRA is the Roe average constant. For the shallow water equations, the con-

served field is w = (h, hu)T , and by introducing the Roe average states at each edge,

h̄ =
h− + h+

2
, ū =

√
h−u− +

√
h+u+√

h− +
√
h+

, (2.12)

CHAPTER 2. PRELIMINARIES 22

the constant is calculated as

CRA = maxh̄,ū|ū±
√
gh̄|, (2.13)

which is a simple optimization problem over two different values. For further details

of the theoretical justification of this numerical flux see [4, 9, 10].

A general implementation of the numerical flux into the oomph-lib is described in

more detail in Appendix B.

2.3 Elemental linear system

Returning to the weak form (2.4) and substituting the local solution approximation

in element e (2.2), there are Np equations to be solved for each component of the

field corresponding to the values at the Np grid points,∫
De

∂wj

∂t
lj(x)li(x)dx =

∫
De

F.∇li(x)dx−
∫
∂De

f∗li(x̂)dx̂ i = 1 : Np, (2.14)

where wj is a vector of the unknown fields at the nodal position xj. Using the Einstein

summation convention, it is useful to define an element mass matrix, M , flux matrix,

F , and numerical flux matrix, F ∗:

Mki =

∫
De

lk(x)li(x)dx k, i = 1 : Np (2.15)

Fki =

∫
De

Fkj
∂li(x)

∂xj
dx i, j = 1 : Np k = 1 : m (2.16)

F ∗ki =

∫
∂De

f ∗k li(x̂)dx̂ i = 1 : Np k = 1 : m (2.17)

Equation (2.14) is equivalent to a system of m × Np ordinary differential equations

(ODEs), that must be solved in every element. These ODEs can be written in the

form, 
M 0 0

0
. . . 0

0 0 M




ẇ1

...

ẇm

 =


f1

...

fm

+


g∗1
...

g∗m

 , (2.18)

where M is the element mass matrix defined in (2.15) and the vectors fi and g∗i are

the ith column of the flux and numerical flux matrices defined in (2.16) and (2.17)

CHAPTER 2. PRELIMINARIES 23

respectively. wi is a vector of the nodal values across the element corresponding to

the ith field1.

2.3.1 Element coupling and boundary conditions

In the elemental linear system (2.18) the only communication between elements is

through the evaluation of the numerical flux matrix (2.17). The entries of this matrix

are line integrals of the numerical flux along the element boundary and so coupling

is required between adjacent faces in the mesh.

In the implementation, for 2D rectangular elements, every element in the mesh,

named a bulk element, is assigned an index e. Every bulk element is assigned a

pointer to each of the four faces, named face elements, and on each of these faces, a

pointer is assigned to the neighbouring face. In every bulk element the entries of the

numerical flux matrix are computed by moving to one of the faces, finding this face’s

neighbour, and then evaluating the numerical flux at every integration knot point

along the face as illustrated in figure 2.2. See section 2.4 for integration scheme.

Figure 2.2: The figure illustrates a rectangular (bulk) element in the mesh, O, and it’s
neighbours N , E, S and W . One of the faces F (OS) and its neighbouring face F (SO) are
illustrated along with the numerical flux integration knot points (squares) along the edge for
a Q4 finite element (bi-cubic approximation).

1The superscript notation for the unknowns, wi i = 1 : m, corresponds to a vector of unknowns
across the nodal positions of the element for a given field component i, whereas the subscript
notation, wj j = 1 : Np, corresponds to a vector of the unknown fields at a given nodal point xj

CHAPTER 2. PRELIMINARIES 24

Boundary Conditions

For an element lying on the domain boundary, one or more of the faces also lies on the

domain boundary and so there is no neighbouring face to assign a pointer to. This

is not a problem for periodic boundary conditions because the neighbouring face is

simply set as the face on the opposite side of the mesh.

For Dirichlet boundary conditions the field at the boundary is known. The pointer

to the neighbouring face is set to point to the face element itself. This ensures the

numerical flux function will return the physical normal flux, f∗(w,w) = F (w).n,

because of the second property of a numerical flux in section 2.2. The field value

itself is fixed, as required by the boundary condition.

2.4 Evaluation of Integrals

In general, the integrals in equations (2.15)-(2.17) are computed numerically. For 2D

rectangular elements, the standard procedure of mapping element e to the reference

element [−1, 1] × [−1, 1], is achieved through an isoparametric mapping. For more

details of reference elements and mappings see [4, chapter 4]. The mass matrix (2.15)

and flux matrix (2.16) will then be computed through an appropriate quadrature

rule. For the flux and mass matrix, the P × P Gauss-Lobatto-Legendre (GLL) rule

will be used, ∫ 1

−1

∫ 1

−1

f(ε, η)dηdε ≈
P∑

l,m=1

f(εl, ηm)ωlωm,

where εm and ηl are the GLL knot points associated with the weights wm and wl

respectively [4]. The P × P GLL rule (which has P × P integration points) has the

property that it exactly integrates all tensor product polynomials, f , up to order

2P − 3 [4].

The numerical flux matrix, (2.17), is a line integral, and a 1D quadrature rule can

be used. In the same spirit as the surface integrals, each element edge will be mapped

to the reference line segment [−1, 1], and the integrals computed through the P GLL

quadrature rule, ∫ 1

−1

f(ε)dη ≈
P∑
l=1

f(εl)ωl, (2.19)

CHAPTER 2. PRELIMINARIES 25

where εl are the Gauss knot points associated with the weights wl and is exact for

polynomials f up to order 2P − 3.

For a 1D method the analysis is simplified because only a 1D GLL quadrature

rule is required for the mass and flux matrix. Integration is not even required for the

numerical flux matrix because this is just a function evaluation at either side of the

element.

2.5 Orthogonal polynomial basis

Previously, it was stated that different choices of the basis functions, and hence nodal

positions, can lead to improved computational performance. To solve the set of ODEs

(2.18) numerically, the inverse of the block diagonal mass matrix must be computed.

At high orders, equidistant node polynomials are nearly orthogonal, resulting in ill

conditioned mass matrices and hence reducing the accuracy of a computed solution

[3]. Also, using non-diagonal mass matrices mean that solving the linear system of

ODEs (2.18) can be slower than using a diagonal system.

Consider a scalar field, in one spatial dimension, with the Legendre polynomials

as basis functions. It is possible to use their L2-orthogonality condition,∫ 1

−1

Pl(s)Pl′(s)ds =
2

2l + 1
δll′ ,

by representing the approximate solution, in element j, as:

wjh(x, t) =

Np∑
i=1

wjiψ
j
i (x), ψji (x) = Pi(2(x− xj+1/2)/∆j), ∆j = xj+1 − xj. (2.20)

The mass matrix is diagonal, Mij = 2l+1
∆j

δij, and so the matrix inversion, for this

particular choice of basis, is trivial by inverting each of the diagonal components

in turn. In the oomph-lib, an orthonormal polynomial basis, with the Lagrange

interpolation nodes (2.3) defined on the GLL quadrature points, is implemented.

For any sensible choice of basis functions, the matrix inversion is always possible,

and the system of ODEs (2.18) can be written in the form (2.21), where w is a

vector of the nodal values across an element over the fields and Lh is the discretized

CHAPTER 2. PRELIMINARIES 26

approximation to −M−1∇h.F , where M is the total mass matrix,

ẇ = Lh(w). (2.21)

2.6 Runge-Kutta Time Discretization

To solve the system of ODEs (2.21), the explicit Runge-Kutta class of timesteppers

will be used to march the solution through time. In this report the flux matrix, and

therefore the vector Lh(w) (2.21), will have no explicit time dependence, simplify-

ing the classes of timesteppers required to solve the ODEs. The classic four stage

Runge-Kutta (RK-4) timestepper and a class known as the total variation diminishing

Runge-Kutta (RK-TVD) timesteppers are outlined in this discussion.

A general explicit Runge-Kutta scheme to solve the ODEs (2.21), at step n, with

a fixed step size ∆t, can be written [11]:

1. Set w
(0)
h = wn

h

2. For i = 1 : k compute explicit Euler steps

w
(i)
h =

i−1∑
l=0

αilv
il
h where vilh = w

(l)
h +

βil
αil

∆tLh(w
(l)
h))

3. Set wn+1
h = w

(k)
h (2.22)

The initial condition for the timestepping, w0
h, at t=t0, is the projection of the actual

initial condition, f(x), onto the nodal values of the fields across the element.

2.6.1 Explicit RK-4 Method

The classic four stage explicit Runge-Kutta (RK-4) method is perhaps the most

popular explicit method for numerically solving ODEs and is described in (2.23)

below:

wn+1 = wn +
∆t

6
(k1 + 2k2 + 2k3 + k4), tn+1 = tn + ∆t, (2.23)

where wn+1 is an approximation to w(tn+1) and the intermediate evaluations are

CHAPTER 2. PRELIMINARIES 27

k1 = Lh(w
n), k2 = Lh(w

n +
1

2
∆tk1),

k3 = Lh(w
n +

1

2
∆tk2), k4 = Lh(w

n + ∆tk3). (2.24)

For stable timesteps, this method has total accumulated error of O(∆t4) [12, p.969].

2.6.2 Explicit RK-TVD Method

The RK-4 method, however, does not have a property of bounding the growth of

spurious oscillations that can occur in the numerical solution during the timestep-

ping for discontinuous problems. To overcome this, an alternative class of explicit

timesteppers, known as the total variation diminishing explicit Runge-Kutta class

(RK-TVD), is introduced.

An RK-TVD scheme restricts the general Runge-Kutta coefficients (2.22), to sat-

isfy the three conditions [7]:

βil 6= 0 =⇒ αil 6= 0

αil ≥ 0 (2.25)

i−1∑
l=0

αil = 1

To discuss stability of an RK-TVD scheme, the concept of a semi-norm must be

introduced. A semi-norm on a vector space W is a real valued function, |.| : W → R,

such that ∀a,b ∈ W , the following conditions hold for any scalar s:

|a| ≥ 0

|sa| = |s|.|a|

|a + b| ≤ |a|+ |b| (2.26)

Assume in some arbitrary semi-norm that the following bound can be achieved at

each explicit Euler step of the general Runge Kutta scheme (2.22),

|vilh | ≤ |w
(l)
h |, (2.27)

CHAPTER 2. PRELIMINARIES 28

then the following argument gives a bound on w
(i)
h

|w(i)
h | = |

i−1∑
l=0

αilv
il
h |

≤
i−1∑
l=0

|αilvilh | semi-norm triangle inequality (2.26)

≤
i−1∑
l=0

αil|vilh | RK-TVD assumption 2 (2.25)

≤
i−1∑
l=0

αil|w(l)
h | semi-norm bound assumption (2.27)

≤ max
0≤l≤i−1

|w(l)
h | RK-TVD assumption 3 (2.25) (2.28)

By induction, |wn
h| ≤ |w0

h| ∀n ≥ 0, and so the solution remains bounded at step n in

this arbitrary semi-norm and the RK-TVD scheme is said to be stable.

If the total variation semi-norm is used (2.31) then the approximate solution is

said to be total variation diminishing in the means and physically this condition

means that spurious oscillations of the numerical solution are bounded at step n of

the timestepping.

However, the underlying assumption that |vilh | ≤ |w
(l)
h | at each explicit Euler step

is by no means naturally satisfied. This is enforced by slope limiting the solution

after each intermediate Euler step, as discussed in section 2.7.

Gottlieb et al. [11] describe second and third order RK-TVD schemes, satisfying the

conditions on the coefficients αil, βil:

RK-TVD2

w(1) = wn + ∆tLh(w
n),

wn+1 =
1

2
wn +

1

2
w(1) +

1

2
∆tLh(w

(1)).

For stable timesteps, this method has total accumulated error of O(∆t2).

CHAPTER 2. PRELIMINARIES 29

RK-TVD3

w(1) = wn + ∆tLh(w
n),

w(2) =
3

4
wn +

1

4
w(1) +

1

4
∆tLh(w

(1)),

wn+1 =
1

3
wn +

2

3
w(2) +

2

3
∆tLh(w

(2)). (2.29)

For stable timesteps, this method has total accumulated error of O(∆t3) and the

implementation of this scheme into the oomph-lib is described in Appendix D.

2.7 1D Slope Limiting

2.7.1 Stability and sign conditions

In the previous section, it was stated that an RK-TVD method ensures the approxi-

mate solution remains bounded in an arbitrary semi-norm, |wn
h| ≤ |w0

h| ∀n ≥ 0, if the

intermediate explicit Euler steps, w
(l)
h → vilh , remain bounded at every intermediate

step in this arbitrary semi-norm, |vilh | ≤ |w
(l)
h |.

Consider an explicit Euler step, wnh → vnh , in 1 spatial dimension. Cockburn et

al. [7] show that if polynomials of degree 0 are used, the discontinuous Galerkin

method results in a monotone scheme and stability is ensured in the total variation

semi-norm,

|vnh |TV ≤ |wnh |TV , (2.30)

where the TV semi-norm is defined as,

|wh|TV =
N∑
e=1

|w̄e+1 − w̄e|. (2.31)

It is natural to ask for such a property for general approximation orders in one spatial

dimension. Cockburn et al. [7, p.192] show that the intermediate explicit Euler steps

are stable in the TV semi-norm, if the timestep is sufficiently small (see section 2.7.6)

and the following sign conditions on the fields at the edge of an element can be

achieved,

sign(wj+1,L − wj,L) = sign(w̄j+1 − w̄j),

sign(wj,R − wj−1,R) = sign(w̄j − w̄j−1), (2.32)

CHAPTER 2. PRELIMINARIES 30

where wj,R/L is the value of the field on the right or left edge of element j, and w̄j

is the average value of the field in element j. These sign conditions are enforced by

applying the slope limiter, denoted ΛΠh, after each explicit Euler timestep.

2.7.2 Minmod slope limiter

A slope limiter must be constructed such that conservation is not violated, the sign

conditions given by (2.32) are obeyed and high order accuracy of the method remains

in smooth regions of the solution (see section 2.7.4).

Consider, in one spatial dimension, piecewise linear approximation of the solution

w in element j, where w̄j is the field at the central coordinate of the element, xj+1/2,

and (wj)x is the approximate solution gradient,

wj = w̄j + (x− xj+1/2)(wj)x, (2.33)

and define the minmod function,

m(a1, a2, a3) =

 s min |ai| if s = sign(a1) = sign(a2) = sign(a3)

0 otherwise.
(2.34)

In this report the MUSCL limiter, introduced by VanLeer [13], denoted ΛΠMUSCL
h ,

will be used,

ΛΠMUSCL
h wj = w̄j + (x− xj+1/2)m

(
(wj)x,

w̄j+1 − w̄j
∆xj

,
w̄j − w̄j−1

∆xj

)
, (2.35)

where ∆xj is the width of element j. The limiter operates by using the three argument

minmod function. The first argument is the gradient of the solution in element j. The

other two arguments are an “average” gradient between element j-1 and j and an

“average” gradient between element j and j+1. If any of the signs of these gradients

differ, the minmod function returns 0, and a piecewise constant approximation is

used, resulting in a local finite volume method. If the signs of the gradients are

the same, a linear approximation is used in element j, with the smallest gradient in

absolute value.

Cockburn et al. [7] show that if the MUSCL limiter is used, the sign conditions

(2.32) are indeed met. The approximate solution is thus stable in the TV semi-norm

at each explicit Euler step and the approximate solution is total variation diminishing

in the means for an RK-TVD timestepper, from the argument in (2.28).

CHAPTER 2. PRELIMINARIES 31

2.7.3 High Order Approximation

The MUSCL limiter thus operates on a solution that is piecewise linear and ensures

stability in the TV semi-norm. However, it is a desirable property for limiters to

be applicable to higher order polynomial approximation. Consider element j, with

degree n polynomial approximation, w
(n)
j , and define the following boundary fields

on the left and right of the element,

uj(xl) = w̄j −m(w̄j − w(n)
j (xl), w̄j − w̄j−1, w̄j+1 − w̄j), (2.36)

uj(xr) = w̄j +m(w
(n)
j (xr)− w̄j, w̄j − w̄j−1, w̄j+1 − w̄j). (2.37)

Hesthaven et. al [3, p.152] use the following algorithm to perform slope limiting in

element j, Πh : w
(n)
j → vj, as is implemented in the oomph-lib:

• The edge values, uj(xl) and uj(xr) are calculated through (2.36) and (2.37).

• If uj(xl) = w
(n)
j (xl) and uj(xr) = w

(n)
j (xr), the solution requires no limiting and

the high order accuracy is retained, vj = w
(n)
j .

• Otherwise it is assumed a spurious oscillation has been detected. The numerical

solution requires limiting, vj = ΛΠh(w
1
j), using the MUSCL limiter. w1

j is the

projection of the polynomial function w
(n)
j onto a piecewise linear function,

achieved by constructing a linear function, w1
j , by constructing a gradient from

the edge values, w
(n)
j (xr) and w

(n)
j (xl), of element j.

Looping over all the elements, and over each of the conserved fields, gives a slope

limited solution after each explicit Euler timestep.

2.7.4 TVDM-property

As argued in (2.28), since the explicit Euler steps of the RK-TVD scheme are bounded

in the TV semi-norm, the solution at step n also remains bounded in the TV semi-

norm. Hesthaven et al. [3, p.160] summarise this important result in the theorem

below:

CHAPTER 2. PRELIMINARIES 32

Theorem 2.7.1. If the limiter ΛΠh ensures the TVDM property,

vh = ΛΠh(wh) =⇒ |vh|TV ≤ |wh|TV ,

then the DG method with the RK-TVD timestepper is TVDM,

|wnh |TV ≤ |w0
h|TV ∀n. (2.38)

2.7.5 TVBM-property

Although the arguments above imply that the approximate solution diminishes in

the TV semi-norm, the slope limiter still has one main failing point. Consider a

solution with a smooth maximum or minimum. The solution gradient in elements

near this region will change sign and the minmod slope limiter will return 0, resulting

in piecewise constant approximation. Thus, high order accuracy is lost near regions

containing smooth local extrema. One way to recover the high order accuracy is to

alter the minmod function.

Shu [14] considered a modified minmod function below, where the parameter M

is an approximation to the second derivative near the smooth extrema,

m̄(a1, a2, a3) =

 a1 if |a1| ≤Mh2
j

m(a1, a2, a3) otherwise.
(2.39)

This modified minmod function has the effect of retaining the high order accuracy

near regions with smooth extrema. The slope limiter is changed by replacing the oc-

currence of the minmod function in (2.35), by the modified minmod function (2.39).

A-priori, determining the value of M is difficult, since this would assume prior knowl-

edge of smooth extrema, however, for now, this parameter is incorporated into the

slope limiters via an extra label M: ΛΠh → ΛΠh,M .

The modified MUSCL limiter, however, does not now ensure the TVDM property

from theorem 2.7.1 between successive Euler steps. A weaker property of total vari-

ation bounded in the means (TVBM), can be found. If we consider an explicit Euler

step wh → vh in the RK-TVD scheme (2.22), and vh = ΛΠh,Mwh, then Cockburn et

al. [7, p.197] show that,

|vh|TV ≤ |wh|TV + CM∆x, (2.40)

CHAPTER 2. PRELIMINARIES 33

where C is a constant dependent only on the approximation order and M is the

modified minmod function constant. Through a similar argument to (2.28), the

TVBM property ensures that the approximate solution remains bounded after T

timesteps in the TV semi-norm and again spurious oscillations of the solution are

bounded. Hesthaven et al. [3, p.160] summarise this as a new theorem for the RK-

TVD DG method:

Theorem 2.7.2. If the limiter ΛΠh,M ensures the TVBM property,

vh = ΛΠh,M(wh) =⇒ |vh|TV ≤ |wh|TV + CM∆x,

then the DG method with the RK-TVD timestepper is TVBM:

|wnh |TV ≤ |w0
h|TV + CMQ n = 1 : T, (2.41)

where T∆x ≤ Q.

The minmod slope limiters are powerful objects, as they not only detect and perform

limiting where required in an element, but also retain high order accuracy in regions

of smooth extrema. When the slope limiter is used in conjunction with an RK-

TVD timestepper, spurious oscillations that can occur in the numerical solution of a

discontinuous problem are bounded.

2.7.6 CFL timestep condition

An extra condition on the size of the timestep must also be satisfied, a Courant-

Friedrichs-Levy (CFL) condition, to ensure the explicit Euler timesteps have the

TVDM or TVBM property,

|c|∆t
∆x
≤ CFL,

where |c| is the largest wave speed, ∆x is the smallest element width, and ∆t is a

stable timestep. Physically this condition bounds the size of the timestep to ensure

the physical features of the solution are resolved over the mesh. Cockburn et al. [7]

argue in practice that the CFL number is given by

CFL =
1

2k + 1
,

CHAPTER 2. PRELIMINARIES 34

where k is the degree of the approximating polynomial. Unless otherwise stated, any

computational results presented will have timesteps chosen small enough to satisfy

the CFL condition. The following algorithm describes the complete DG RK-TVD

method that will be used for one dimensional problems in this report:

1. Set w
(0)
h = ΛΠh,Mw0

h

2. For n = 0 : T − 1 - Perform T timesteps

(a) Set wn
h = w

(0)
h

(b) For i = 1 : k - Perform explicit TVBM steps

w
(i)
h = ΛΠh,M

(i−1∑
l=0

αilv
il
h

)
where vilh = w

(l)
h +

βil
αil

∆tLh(w
(l)
h)

(c) Set wn+1
h = w

(k)
h (2.42)

A similar algorithm will be used for two dimensional problems but with an alternative

slope limiter applied at each explicit Euler step. This will be discussed in more detail

in section 5.2.1.

2.8 Norms and convergence

2.8.1 Broken L2 and L1 norms

In this report, problems are considered on a computational domain Ωh ∈ Rn that is a

good approximation to the physical domain Ω ∈ Rn. The domain, Ωh, is broken into

K geometry conforming elements, Dm. In each of these elements, the approximation

is piecewise continuous, and norms can be defined in each of these. Summing con-

tributions over all the elements defines broken norms over the whole computational

domain, Ωh, whereas global norms are considered over the physical domain Ω. Con-

sider a conserved field, w(x, t), then global and broken norms can be defined on the

individual components of the conserved field, wi. The global and broken L2-norms

are defined in (2.43) and (2.44) respectively,

||wi||2Ω,L2 =

∫
Ω

w2
idx, (2.43)

||wi||2Ω,h,L2 =
K∑
m=1

||wi||2Dm,L2 where ||wi||2Dm,L2 =

∫
Dm

w2
i dx, (2.44)

CHAPTER 2. PRELIMINARIES 35

and the space of functions, wi ∈ L2(Ω), is defined for which ||wi||Ω,L2 and ||wi||Ω,h,L2

are bounded. The global and broken L1-norms are defined in (2.45) and (2.46) re-

spectively:

||wi||Ω,L1 =

∫
Ω

|wi|dx, (2.45)

||wi||Ω,h,L1 =
K∑
m=1

||wi||Dm,L1 where ||wi||Dm,L1 =

∫
Dm

|wi|dx. (2.46)

The literature on the DGFEM appears to suggests that concrete a-priori error anal-

ysis for problems with genuine discontinuities is unknown, but some qualitative anal-

ysis is possible. Assuming a consistent conservative numerical flux, such as the Lax-

Friedrichs flux, and a limiter ensuring the TVBM property of the solution, it seems

reasonable to expect that performing h-refinement (increasing the number of ele-

ments), should result in a convergent numerical solution, as any discontinuity present

in the exact solution will be resolved in fewer elements. Errors will be measured in

the broken L2 and L1 norms when performing h-refinement.

In a conventional finite element method with smooth solutions, p-refinement,

where the number of elements is fixed and the degree of the approximating polyno-

mial space is increased, is generally known to provide convergence [4, 15]. However,

for discontinuous solutions, errors are created when approximating a discontinuous

function by members of a continuous function space, the Gibbs phenomenon. These

errors manifest themselves as oscillations near the discontinuity and the oscillations

are not removed by increasing the order of the polynomial approximation. Removing

these oscillations numerically, through a slope limiter, has made convergence results

very difficult to construct for p-refinement in the DGFEM.

2.8.2 Linear Problems

Although the convergence of the DGFEM is an open problem for genuine discontinu-

ous problems with non linear fluxes, error bounds are possible for problems involving

a linear flux, f(u) = cu. Consider a problem, in one spatial dimension, with a linear

flux and a smooth initial condition at t=0. If an orthogonal polynomial basis is used,

the initial condition, w0, is smooth, timestepping errors are negligible, and an upwind

CHAPTER 2. PRELIMINARIES 36

numerical flux is used, then Hesthaven et. al [3, p.88] show that at time T,

||w(T)− wh(T)||Ω,h,L2 ≤ C(Np)h
Np(1 + C1(Np)T),

where h is the smallest element width, Np is the number of nodes per element and C,

C1 are constants independent of h. Although linear fluxes have limited application,

the error bound does provide useful validation to code that has been written.

Chapter 3

Continuous Problems in 1D

3.1 Flux transport equation

Consider the 1D flux transport equation (3.1), consisting of a single field w(x, t) ∈ R,

with a scalar flux f(w(x, t)) ∈ R:

∂w

∂t
+
∂f(w)

∂x
= 0 x ∈ [A,B]. (3.1)

For a sufficiently smooth flux it is possible to write this in the form (3.2), the 1D

kinematic wave equation, where c(w) = df(w)
dw

:

∂w

∂t
+ c(w)

∂w

∂x
= 0 x ∈ [A,B]. (3.2)

To give insight into the behaviour of solutions to the 1D kinematic wave equation, as-

sume an initial distribution w(x, 0) = w0(x). A characteristic curve of the differential

equation is defined as

dx

dt
= c(w), (3.3)

and along these characteristics curves, the 1D advection equation becomes:

∂w

∂t
+ c(w)

∂w

∂x
=
∂w

∂t
+
dx

dt

∂w

∂x
=
dw

dt
= 0.

So w is a constant on the characteristics curves defined by (3.3) and these curves

represent straight lines in spacetime (x, t). Consider a point (x, t) in spacetime,

and project back along the characteristic to a point (η, 0). The equation of the

37

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 38

characteristic, from (3.3), is

x− η = c(w0(η))t, (3.4)

and since w is a constant on the characteristic, the following is true:

w(x, t) = w(η, 0) = w0(η). (3.5)

If a solution exists to the 1D kinematic wave equation, then it is given by (3.5), where

η is found implicitly through (3.4). Logan [1, p.70] writes this result as a uniqueness

theorem:

Theorem 3.1.1. If c, w0 ∈ C1(R) and are both either non-decreasing or non-

increasing on R, then a unique solution for the initial value problem (3.2) exists

for all t > 0, given implicitly through (3.4) and (3.5).

3.2 Advection equation

If the function c(w) is taken to be constant, c(w) = C > 0, this is known as the 1D

advection equation. From the characteristic equation (3.4), x − η = Ct, and η can

be directly computed giving the solution at time t as

w(x, t) = w0(x− Ct).

The effect of 1D advection is thus to move an initial distribution, with speed C, in the

positive x direction. To solve the advection equation numerically, the Lax-Friedrichs

flux was chosen as the numerical flux. The Jacobian of the flux for a single field in

one dimension is a scalar, and specifically for 1D advection

df

du
=
d(Cu)

du
= C. (3.6)

Using the definition of the Lax-Friedrichs flux (2.7), where a and b are the internal

and external fields at an element edge

f ∗(a, b) =
1

2
(f(a) + f(b))− CLF

2
(b− a)

=
1

2
(Ca+ Cb)− C

2
(b− a) = Ca. (3.7)

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 39

Thus, for 1D advection, the Lax-Friedrichs flux is an upwind flux that passes infor-

mation solely from the direction in which it is coming. Setting C = 1, the domain

x ∈ [0, 1] and a sinusoidal initial distribution, an exact solution can be found through

the method of characteristics,

w(x, 0) = sin(2πx) =⇒ w(x, t) = sin(2π(x− t)).

To test the validity of the DGFEM code, the initial distribution above was imple-

mented, along with periodic boundary conditions, w(0, t) = w(1, t). A grid of N

equally spaced elements was set up, with linear approximation, and figure 3.1 illus-

trates the computed and exact solution at T = 0.4. Visually, it appears that with

only 40 linear elements, the computed solution is a good approximation to the exact

solution.

Figure 3.1: 1D advection - Computed and exact solution at T=0.4s with N = 40 linear
elements. An RK-4 timestep of dt = 10−3 with a Lax-Friedrichs flux was used. The initial
sine wave distribution is also illustrated.

It was discussed in section 2.8.2 for the 1D advection equation, solved numerically

with an upwind flux, that the error measured in the L2-norm should be of the form,

||u(T)− uh(T)|| ≤ C(T)hNp ≈ (C1 + C2T)hNp . (3.8)

To test the validity of the code, the broken L2-error (2.44) of the difference between

the numerical and exact solution across the domain was computed, using the Np GLL

quadrature rule (2.19) over each element. Table 3.1 displays the broken L2-errors,

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 40

N d = 1 d = 2 d = 3 d = 4
20 3.24× 10−2 4.16× 10−4 6.98× 10−6 9.90× 10−8

40 8.40× 10−3 5.21× 10−5 4.37× 10−7 3.15× 10−9

80 2.12× 10−3 6.51× 10−6 2.73× 10−8 9.85× 10−11

160 5.31× 10−4 8.14× 10−7 1.71× 10−9 3.08× 10−12

Rate 1.98 3.00 4.00 4.99

Table 3.1: 1D Advection equation - Broken L2-errors at T = 0.4 for a sinusoidal initial
condition, with an RK-4 timestep of dt = 10−4 and a Lax-Friedrichs (upwind) flux. The data
represents different numbers of elements, N , and different polynomial orders, d = Np − 1.
The columns and rows represent h- and p-refinement respectively.

at T = 0.4, as a function of the number of elements, N , and polynomial degree,

d = Np − 1, in one spatial dimension.

Table 3.1 demonstrates that greater accuracy can be achieved by either increasing

the polynomial order or increasing the number of elements in the domain. The

convergence rates were estimated by fixing the polynomial degree, and measuring the

broken L2-error as a function of the number of elements. Assuming a relationship of

the form

||w(T)− wh(T)||Ω,h,L2 = C(T)hRate,

the convergence rate is estimated as the best fit gradient of ln ||w(T)− wh(T)||Ω,h,L2

against lnN for each polynomial degree, as demonstrated in figure 3.2. The graphs

indicate rate ≈ Np, in agreement with the estimate (3.8).

Figure 3.2: 1D advection - Broken L2-errors at T = 0.4 for a sinusoidal initial condition,
RK-4 timestep of dt = 10−4 and Lax-Friedrichs flux. The individual lines represent h-
refinement for a fixed polynomial degree, d = Np − 1. The convergence rate ≈ Np = d + 1.

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 41

3.3 1D shallow water equations

The shallow water equations in one spatial dimension are a special case of the two

dimensional equations derived in section 5.1. No variation is assumed in the y-

direction, so that the partial derivative, ∂
∂y

, and the y-velocity, v(x, t), can be set

to 0. For a domain x ∈ [A,B], the governing equations are (3.9), where u(x, t) and

h(x, t) are the water velocity and height respectively and G is the constant of gravity,

∂h

∂t
+
∂hu

∂x
= 0,

∂hu

∂t
+

1

2

∂Gh2

∂x
+
∂u2h

∂x
= 0. (3.9)

The system of PDEs can be written in conservative form (2.1), with the corresponding

field and flux,

w =

 h

hu

 , f(w) =

 hu

1
2
Gh2 + u2h

 =

 hu

1
2
Gh2 + (hu)2

h

 . (3.10)

Consider the equation for conserved field hu in (3.9), and using the product rule

h
∂u

∂t
+ u

∂h

∂t
+ h

∂Gh

∂x
+ hu

∂u

∂x
+ u

∂uh

∂x
= 0,

and substituting the equation for the conserved field h from (3.9) into the above

h
∂u

∂t
− u∂hu

∂x
+ h

∂Gh

∂x
+ hu

∂u

∂x
+ u

∂uh

∂x
= 0.

Cancelling terms, and absorbing the velocity term into the x partial derivative,

h
∂u

∂t
+ h

∂Gh

∂x
+

1

2
h
∂u2

∂x
= 0.

Assuming h 6= 0, we can divide by h above, yields an alternative form for the shallow

water equations,

∂h

∂t
+
∂hu

∂x
= 0,

∂u

∂t
+
∂Gh

∂x
+ u

∂u

∂x
= 0,

written in conservative form, with the corresponding field and flux below,

w =

 h

u

 , f(w) =

 hu

Gh+ 1
2
u2

 . (3.11)

Although this is seemingly just an algebraic trick, the two different forms will become

relevant when analysing a discontinuous problem in section 4.2.4.

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 42

3.3.1 Numerical Solution

The conservative forms (3.10) and (3.11) of the equations will be used to solve a

continuous problem of the shallow water equations with the Lax-Friedrichs flux pre-

scribed at element edges (2.7).

The definition of the Lax-Friedrichs flux constant is the largest magnitude eigen-

value of the Jacobian of the flux vector over all possibilities of the field across the

boundary. To save solving an optimization problem at each element edge, the max-

imum is taken only over the internal or external field, wi or we. Unless otherwise

stated, this assumption will be used for all future numerical calculations of the Lax-

Friedrichs constant.

For the conservative form (3.10), the Jacobian, corresponding eigenvalues and

Lax-Friedrichs constant are calculated as

∂f

∂w
=

 0 1

−u2 +Gh 2u

 , λ = u±
√
Gh, CLF = max

wi,we

|u±
√
Gh|, (3.12)

and for the conservative form (3.11), the Jacobian, the corresponding eigenvalues and

the Lax-Friedrichs constant are

∂f

∂w
=

 u h

G u

 , λ = u±
√
Gh, CLF = max

wi,we

|u±
√
Gh|. (3.13)

Thus the optimization problem to find the Lax-Friedrichs constant is identical for

both conserved forms of the shallow water equations. The algorithm to compute the

Lax-Friedrichs constant at an element edge can be seen below and further details of

the implementation can be seen in Appendix B.

1 Find wi and we

2 Compute C+
i = ui +

√
Ghi, C−i = ui −

√
Ghi, C+

e = ue +
√
Ghe, C−e = ue −

√
Ghe

3 Take CLF = max(C+
i , C

−
i , C

+
e , C

−
e)

A continuous exact solution (3.14) is known to the shallow water equations [3, p.165],

where H represents the steady state water height, that can be validated by direct

substitution into the governing PDEs (3.9):

h(x, t) = ε(x, t)2, u(x, t) = 2
√
G(ε(x, t)−

√
H), ε(x, t) =

x+ 2
√
GHt

1 + 3
√
Gt

. (3.14)

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 43

The shallow water equations were modelled numerically by setting the domain to

x ∈ [0, 1], and parameters to G = 10, H = 1. The initial height and velocity

distribution were set at T = 0.1 in (3.14), and Dirichlet boundary conditions used at

the domain edge. These boundary conditions are set, after each explicit timestep, by

setting the pointer to the neighbouring face of a boundary face as itself. This overloads

the numerical flux at the boundary by the exact flux, as described in section 2.3.1.

A complete, original C++ code to solve this problem, using linear approximation

for the equations in conservative form (3.11), is described in Appendix E. Figure 3.3

illustrates the exact and computed solution for the height and velocity at T = 0.5

for both the conservative form (3.10) and (3.11). The figure appears to show the

numerical solutions for both conservative forms are, within errors from the numerical

integration schemes, equivalent.

Figure 3.3: 1D shallow water - Continuous problem height and velocity solution at T = 0.5
with N = 40 linear elements, the Lax-Friedrichs flux and an RK-4 timestep of dt = 10−4.
The figure shows the solution with both the [h, u]T and [h, hu]T form of the equations.

Using the conservative form of the equations (3.11), errors were measured in the

broken L2-norm, for each of the field components hh(x, t) and uh(x, t). A single

measure for the broken L2-error of the field w = [h, u]T is obtained by summing the

squares of the L2-errors of the components

||w −wh||2Ω,h,L2 =
m∑
i=1

||wi − wi,h||2Ω,h,L2 , (3.15)

where the index m represents the number of fields. Table 3.2 illustrates the L2-errors

as a function of the number of elements, N , and approximating polynomial degree,

d = Np − 1. Convergence rates were estimated by fixing the polynomial degree and

finding best fit gradients of ln ||w −wh||Ω,h,L2 against lnN . The rates for linear and

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 44

N d = 1 d = 2 d = 3
10 2.23× 10−3 9.70× 10−4 4.91× 10−14

20 5.24× 10−4 2.18× 10−4 4.93× 10−14

40 8.97× 10−5 4.62× 10−5 4.86× 10−14

80 1.88× 10−5 9.69× 10−6 3.25× 10−13

Rate 2.33 2.22 N/A

Table 3.2: 1D shallow water - Broken L2-errors for continuous problem at T = 0.5, with
an RK-4 timestep of dt = 10−4 and a Lax-Friedrichs flux. The conserved field [h, u]T is used
and the errors are shown as a function of the number of elements, N , and the polynomial
order, d = Np − 1. The columns and rows represent h- and p-refinement respectively.

quadratic approximation were found to be 2.33 and 2.22 respectively, so increasing

the polynomial order did not increase the convergence rate. As discussed in section

2.8.1, error analysis for non-linear problems is difficult to achieve, but the solutions

are converging when performing h-refinement.

Figure 3.4: 1D shallow water - Continuous problem broken L2-errors at T = 0.5, with an
RK-4 timestep of dt = 10−4 and a Lax-Friedrichs flux with the conserved field [h, u]T . The
lines represent h-refinement for fixed polynomial degrees 1 and 2 respectively.

Using a cubic approximation, the errors have dramatically decreased to O(10−13).

This is explained by considering the numerical flux matrix (2.17) and flux matrix

(2.16), evaluated at each explicit Euler timestep, in turn:

• Numerical Flux Matrix - For a continuous problem the field jumps between

boundaries are 0 and so the coefficients of the numerical flux matrix are an

evaluation of the flux at an element’s edge. The exact height and velocity are

quadratic and linear, so at cubic approximation the flux is evaluated exactly

CHAPTER 3. CONTINUOUS PROBLEMS IN 1D 45

and hence the numerical flux matrix coefficients are evaluated exactly.

• Flux Matrix - The flux matrix has a highest order term, uhdψ
dx

, that must

be integrated across each element. At cubic approximation, ∂ψ
∂x

is a degree 2

polynomial and the exact solutions of u and h are degree 1 and 2 polynomials.

Thus the highest order flux term represents a polynomial of degree 5. At

cubic approximation, the GLL quadrature scheme has Nk = 4 knot points

and integrates degree 2Nk − 3 = 5 polynomials exactly.

The flux and numerical flux matrices are calculated exactly at each timestep, and the

errors of magnitude 10−13 are due to timestepping errors of the RK-4 scheme and the

finite machine precision.

It was also worth noting how a different flux affects the accuracy of the numer-

ical solution. Figure 3.5 displays the numerical solutions at T = 0.4 with linear

approximation obtained with the central (2.6) and Lax-Friedrichs (2.7) flux. At lin-

ear approximation, the central flux is clearly inferior to the Lax-Friedrichs flux, with

large discontinuities in the approximate solution present.

Figure 3.5: 1D shallow water - Central and Lax-Friedrichs flux comparison at T = 0.4s
with an RK-4 timestep of dt = 10−4 and 40 linear elements.

Chapter 4

Discontinuous Problems in 1D

4.1 Inviscid Burgers’ equation

The 1D inviscid Burgers’ equation is an example of a 1D flux transport equation,

with non-linear flux f(w) = 1
2
w2, leading to the PDE

∂w

∂t
+

1

2

∂w2

∂x
=
∂w

∂t
+ w

∂w

∂x
= 0 x ∈ [A,B]. (4.1)

The PDE is useful to understand some of the basic theory behind shocks. In particu-

lar, shock formation, where a solution becomes multivalued at a single spatial point,

from continuous initial conditions, and shock propagation, where a discontinuous ini-

tial condition propagates through time.

4.1.1 Shock Formation

We revisit the the 1D kinematic wave equation

∂w

∂t
+ c(w)

∂w

∂x
= 0 x ∈ [A,B]. (4.2)

As described in section 3.1, exact solutions can be found using the method of charac-

teristics. The solution at a point (x, t) is given by w(x, t) = w(η, 0) where η is found

implicitly through x − η = c(w0(η))t. However, from theorem 3.1.1, for some initial

conditions unique solutions to the kinematic wave equation can not be guaranteed

for all time and a shock can develop in finite time.

Consider the kinematic wave equation (4.2), and find the total time derivative of

wx(x(t), t), the gradient of w along the characteristic x = x(t). Using the chain rule

46

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 47

and dx
dt

= c(w) along a characteristic (3.3),

d

dt
wx(x(t), t) = wtx +

dx

dt
wxx = wtx + c(w)wxx.

Take the partial derivative with respect to x of the kinematic wave equation (4.2)

wtx + c(w)wxx +
dc(w)

dw
w2
x = 0,

and combining the above equations, leads to a first order differential equation,

d

dt
wx = −c′(w)(wx)

2.

Using the boundary condition x = η at t = 0, and that w is constant on a character-

istic, the solution is

wx =
w′0(η)

1 + w′0(η)c′(w0(η))t
. (4.3)

For the inviscid Burgers’ equation (4.1), since c(w) = w is a strictly increasing func-

tion, then if the initial condition is not, the denominator of (4.3) will be equal to

zero in a finite time, the breaking time. The breaking point of the wave will thus be

on the characteristic in which the denominator first vanishes. Let

G(η) = c(w0(η)) =⇒ G′(η) = w′0(η)c′(w0(η)), (4.4)

the breaking point will be on the characteristic η = ηB, with the conditions that (i)

G′(ηB) < 0 and (ii) |G′(ηB)| is a maximum, with the time

TB = − 1

G′(ηB)
. (4.5)

As an example, consider the 1D inviscid Burgers’ equation with initial condition (4.6),

for x ∈ [0, 2π], with Dirichlet boundary conditions, w(0, t) = w(2π, t) = 0,

w(x, 0) = sin(x). (4.6)

For this initial condition, G(η) = sin(η), G′(η) = cos(η) and so |G′(η)| is a maximum

at η = 0, π, 2π. Using the further condition that G′(ηB) < 0, then the breaking point

is given by ηB = π and using (4.5), the breaking time is given by TB = 1.

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 48

To model the inviscid Burgers’ equation numerically, the Lax-Friedrichs flux was

used. The Jacobian of the flux is w, and from the definition of the Lax-Friedrichs

flux (2.7)

CLF = max
wi,we

w, (4.7)

where wi and we are the internal and external fields at an element boundary. The

algorithm to compute the Lax-Friedrichs constant at an element edge can be seen

below and further details of the implementation can be seen in Appendix B.

1 Find wi and we

2 Compute Ci = wi, Ce = we

3 Take CLF = max(Ci, Ce)

Figure 4.1 represents the evolution of the numerical solution from T = 0 − 1.5,

at regular intervals of 0.5, with the sine wave initial condition and fixed boundary

conditions. As t → 1, the gradient of the solution at x = π becomes unbounded,

Figure 4.1: Burgers’ equation - Shock formation from smooth sinusoidal initial condition.
An RK-4 timestep of dt = 5 × 10−4 is used with N = 400 linear elements and a Lax-
Friedrichs flux. The left graphic illustrates the solution at regular time intervals of 0.5 and
the right graphic indicates that oscillations are removed with the MUSCL limiter.

and a shock develops. The approximation space, which is the space of linear func-

tions, is not adequate to deal with this discontinuity in the solution, resulting in the

oscillations of the solution near x = π at T = 1.5. In section 2.7, slope limiters

were constructed to remove such oscillations from a numerical solution. The MUSCL

slope limiter (2.35) was implemented, using the modified minmod function (2.39)

with smoothness parameter set to M = 5. The right hand graphic of figure 4.1 shows

the computed solution at T = 1.5 and the oscillatory behaviour has been removed.

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 49

4.1.2 Shock Propagation

As mentioned previously, another effect common in conservation laws is the effect

of shock propagation, in which a discontinuous initial condition propagates through

time. To understand this, we re-examine the integral form of a scalar conservation

law for a field, w, and flux, f , in one dimension (1.1),

d

dt

∫ R

L

w(x, t) dx = f(L, t)− f(R, t). (4.8)

It was shown in Section 1.1 that if w and f are continuously differentiable the familiar

PDE form for the conservation law can be recovered:

∂w

∂t
+
∂f

∂x
= 0.

However, for a discontinuous initial condition, w0, the assumption that w is con-

tinuously differentiable is not true, and the method of characteristics to determine

solutions can not be directly used. Assume there is a smooth curve, x = s(t), in

which w has a simple discontinuity, so that w, and its derivatives, have well defined

limits as x→ s(t)− and x→ s(t)+ [1]. Consider the integral form (4.8)

d

dt

∫ s(t)

L

w(x, t) dx+
d

dt

∫ R

s(t)

w(x, t) dx = f(L, t)− f(R, t),

with L < s(t) and R > s(t). Applying Leibniz’ rule [12, p.125], to evaluate the

derivative of an integral whose integrand and limits depend on the differentiation

parameter, on the first two terms∫ s(t)

L

∂

∂t
w(x, t) dx+

∫ R

s(t)

∂

∂t
w(x, t) dx+ w−(t)s′ − w+(t)s′ = f(L, t)− f(R, t), (4.9)

where the following notation change has been used,

w±(t) = lim
x→s(t)±

w(x, t) and s′ =
ds

dt
.

Taking the limits L → s(t)−, R → s(t)+, the integral terms disappear, since w and

its derivatives are continuous away from the shock and (4.9) simplifies to the Rankine

Hugoniot condition

−s′[w] + [f(w)] = 0, (4.10)

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 50

where the curve s(t) is the shock path, and the propagating discontinuity in w is the

shock wave. The square bracket notation is the difference in the field across the dis-

continuity, [w] = w+(t)−w−(t). We write this shock condition as the correspondence

(...)t ↔ −s′[(...)], (...)x ↔ [(...)],

between a conservative PDE and its shock condition. Thus, for simple shocks, the

Rankine Hugoniot conditions determine not only the shock velocity, through (4.10),

but also the shock path, since s = x(t).

Consider the 1D inviscid Burgers’ equation, the shock velocity is given by

s′ =
1

2

[w2]

[w]
=

(w+(t)2 − w−(t)2)

2(w+(t)− w−(t))
=
w+(t) + w−(t)

2
, (4.11)

the average value of w before and after the shock. For a general initial condition

this can be difficult to determine analytically, but consider the discontinuous initial

condition below, for x ∈ [−1, 1] = Ω, and Dirichlet boundary conditions w(−1, t) = 3

and w(1, t) = 1:

w(x, 0) =

 3 if x < 0

1 if x > 0
(4.12)

The initial condition (4.12) is piecewise constant and from (4.11) the shock speed is

s′ =
3 + 1

2
= 2. (4.13)

The shock moves with speed 2 in the positive x-direction. The characteristics are

straight lines either side of the shock, because the initial condition is piecewise con-

stant, and so the exact solution, for 0 < t < 0.5, is

w(x, t) = w(x− 2t, 0). (4.14)

Burgers’ equation was modelled with the above initial condition and Dirichlet bound-

ary conditions, w(−1, t) = 3 and w(1, t) = 1, consistent with the exact solution (4.14).

Figure 4.2 displays the solution at T = 0.25 without using a slope limiter. There

is oscillatory behaviour of the solution near the discontinuity and the behaviour for

h- and p-refinement is investigated. The left hand graphic of figure 4.3 displays the

solution with linear, quadratic and quartic approximation. Although using higher

order approximation appears to localise the oscillatory behaviour nearer to the shock

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 51

Figure 4.2: Burgers’ equation - Discontinuous solution with 160 linear elements at T =
0.25 with an RK-4 timestep of dt = 10−4 and Lax-Friedrichs flux. The solution is exhibiting
oscillatory behaviour near the shock.

region at x = 0.5, the oscillations are still clearly present. The number of elements

in the domain was also increased, with linear approximation. The right hand graphic

of figure 4.3 demonstrates that oscillatory behaviour is localised nearer to the shock

region, but again has not been removed.

Figure 4.3: Burgers’ equation - Discontinuous solutions with h- and p-refinement at T =
0.25 without slope limiting. An RK-4 timestep of dt = 10−4 and Lax-Friedrichs flux were
used. The left hand figure represents N = 160 elements with linear, quadratic and quartic
approximation and the right hand figure is linear approximation with N = 80, 160 and 320
elements for a domain x ∈ [−1, 1] and the figures show a zoom for x ∈ [0.4, 0.6].

Table 4.1 shows the broken L2-errors, at T = 0.25, as a function of the number

of elements, N , and polynomial degree, Np − 1. For this particular problem, the

errors are decreasing when performing h- and p-refinement. However, convergence is

slow, and using high order approximation has no effect on the convergence rate. It

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 52

remains a priority to remove the oscillatory behaviour present in figure 4.3 as this

could represent non-physical fluctuations in the field. For example, if the physical

process was modelling temperature or pressure, it is fundamental that these fields

remain positive.

N d = 1 d = 2 d = 3 d = 4
20 2.33× 10−1 1.81× 10−1 1.26× 10−1 8.73× 10−2

40 1.66× 10−1 1.27× 10−1 8.89× 10−2 6.17× 10−2

80 1.19× 10−1 8.98× 10−2 6.28× 10−2 4.36× 10−2

160 8.38× 10−2 6.35× 10−2 4.44× 10−2 3.08× 10−2

Rate 0.49 0.50 0.50 0.50

Table 4.1: Burgers’ equation - Discontinuous problem broken L2-errors as a function of
the number of elements, N , and polynomial degree, d, at T = 0.25. An RK-4 timestep of
dt = 10−4 and the Lax-Friedrichs flux were used.

To remove the oscillations observed in figure 4.3, the MUSCL limiter, using the

modified minmod function, was applied to the numerical solution after each explicit

timestep of the RK-4 algorithm. Figure 4.4 represents the solution with the parameter

in the modified minmod function set to M = 0 and M = 5. Firstly, it can be seen

that the limiter does indeed do its job by removing the oscillations near the shock.

The errors are not sensitive to the parameter choice M , because this parameter was

designed to retain high order accuracy near regions of smooth extrema, as discussed

in section 2.7.5, which are not present in the exact solution (4.14).

Figure 4.5 displays the solution with linear, quadratic and quartic approximation.

The RK-4 timestepper and the RK-TVD3 timestepper were used to progress the

solution through time (see Appendix D for RK-TVD3 algorithm description). In both

cases the slope limiter is indeed removing the oscillatory behaviour for the different

polynomial orders. In section 2.7, the MUSCL limiter was shown to enforce each

explicit Euler timestep of the RK-TVD3 algorithm to be bounded in the TV semi-

norm (2.40). As a consequence, this gave us a bound on the growth of the numerical

solution in the total variation semi-norm in (2.28) leading to theorem 2.7.2. A similar

bound is not possible for the RK-4 timestepper, but the numerical results for both

timesteppers appear similar.

Table 4.2 shows the L2-errors with the MUSCL limiter, with M = 5, for the RK-4

and RK-TVD3 timestepper. It can be seen that the L2 errors are converging with

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 53

h-refinement and the RK-TVD3 and RK-4 method have almost identical measures

of the error in the L2 norm. However, since the use of the RK-TVD timestepper

ensures the solution remains bounded in the TV semi-norm, and hence bounds the

growth of spurious oscillations in the numerical solution, then this timestepper will

be used throughout the rest of the analysis.

Figure 4.4: Burgers’ equation - Linear solutions with MUSCL slope limiting at T = 0.25
with 160 linear elements, an RK-4 timestep of of dt = 10−4 and a Lax-Friedrichs flux for a
domain x ∈ [−1, 1]. The figures show a zoom x ∈ [0.4 : 0.6].

Figure 4.5: Burgers’ equation - Limited solutions with p-refinement at T = 0.25 with 160
elements and a Lax-Friedrichs flux for a domain x ∈ [−1, 1]. The left and right figures
illustrate the RK-4 and RK-TVD3 timestepper solutions respectively, both with a timestep
of dt = 10−4 and a zoom x ∈ [0.4 : 0.6].

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 54

N RKTVD3 RK4
20 3.32× 10−1 3.32× 10−1

40 2.35× 10−1 2.35× 10−1

80 1.67× 10−1 1.67× 10−1

160 1.18× 10−1 1.18× 10−1

Table 4.2: Burgers’ equation - Broken L2-errors with h-refinement and linear approxima-
tion, with a Lax-Friedrichs flux. The RK-4 and RK-TVD3 timestepper are used to march
the solution through time with MUSCL (M=5) slope limiting with a timestep of dt = 10−4.

4.2 Shallow water equations

We move onto a one dimensional discontinuous problem for the shallow water equa-

tions. In section 3.3 it was shown that these equations can be written in conservative

form, with field and flux

w =

 h

hu

 , f(w) =

 hu

1
2
Gh2 + u2h

 , (4.15)

from which an alternative conservative form below was derived,

w =

 h

u

 , f(w) =

 hu

Gh+ 1
2
u2

 , (4.16)

which were both used successfully to solve a continuous test problem for the shallow

water equations. In this chapter, we will discover that for a discontinuous problem

different numerical solutions are obtained, using the same initial conditions, for the

two different conservative forms. This result, which is not well documented in the

literature, is explained in section 4.2.4. To understand how exact solutions are de-

termined for discontinuous problems, it is essential to revisit the discussion on the

Rankine Hugoniot conditions for shock propagation discussed in section 4.1.2.

4.2.1 Rankine Hugoniot conditions

In section 4.1.2, the integral form of a conserved PDE was considered and the velocity

of a simple discontinuity was determined from the Rankine Hugoniot conditions. The

conditions for a conserved vector field turn out to be very similar to that of a scalar

field, but, this time there is a shock condition for each component of the field. To

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 55

be more precise, assuming a simple shock, and a conserved field u ∈ Rm, with

corresponding flux f(u) ∈ Rm, the Rankine Hugoniot conditions [1, p.180] are

−ds
dt

[ui] + [f(u)i] = 0 i = 1 : m.

For the shallow water system in conserved form (4.15), with the field [h, hu]T , the

following Rankine Hugoniot conditions thus hold at a discontinuity:

ds

dt
=

[hu]

[h]
,

ds

dt
=

[hu2 +Gh2/2]

[hu]
. (4.17)

However, in the conserved form (4.16), with the field [h, u]T , the Rankine Hugoniot

conditions below hold at a discontinuity:

ds

dt
=

[hu]

[h]
,

ds

dt
=

[u2/2 +Gh]

[hu]
.

Physically, the conserved form of the equations with field, [h, hu]T , represents the

true conserved properties of the system, the conservation of fluid mass and so (4.17)

are the correct Rankine Hugoniot conditions to use at a discontinuity.

4.2.2 Characteristic Curves

In section 3.1 characteristic curves were explored for a scalar field in 1 spatial dimen-

sion. Along these curves the PDE reduced to a simple ODE, along which the solution

w(x, t) remained constant. For an extension to a system of PDEs, we consider the

conserved form (4.15) and write the shallow water PDEs as

ht + uhx + hux = 0,

ut +Ghx + uux = 0.

Taking a linear combination of the above equations

α1(ht + uhx + hux) + α2(ut +Ghx + uux) = 0,

and grouping the derivatives of h and u

α1

[
ht +

(
u+

Gα2

α1

)
hx

]
+ α2

[
ut +

(
u+

α1

α2

h
)
ux

]
= 0. (4.18)

Consider the linear combination below, with α1 = 1,

α2

α1

= ±
√
h

G
,

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 56

then (4.18) becomes,

ht + (u±
√
Gh)hx ±

√
h

G
[ut + (u±

√
Gh)ux] = 0. (4.19)

If we define the characteristic curves, C±, as

dx

dt
= u±

√
Gh, (4.20)

then the PDE (4.19) reduces to a set of ODEs, defined on the characteristic curves

(4.20) giving the characteristic form:

dh

dt
±
√
h

G

du

dt
= 0 along

dx

dt
= u±

√
Gh. (4.21)

4.2.3 1D Dam-Break Setup

A 1D dam-break problem, where the domain is set to Ω = [−D,D], the constant

G = 10 with Dirichlet boundary conditions h(−D, t) = hL, h(D, t) = hR, hL ≥ hR,

and the initial condition

h(x, 0) =

 hL if x < 0

hR if x > 0
u(x, 0) = 0.0, (4.22)

is studied. We can imagine stationary water of height hL separated by a thin sheet

at x = 0 from stationary water of height hR. At t = 0, the sheet is removed and,

ignoring the time to lift the sheet and any friction, the higher fluid, in the region

x < 0, travels into the region x > 0. The initial distribution is illustrated in figure

4.6 below.

Figure 4.6: Initial height distribution for 1D dam-break problem, h = 1 for x < 0 and
h = 0.12 for x > 0.

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 57

Huang et al. [16] use the Rankine Hugoniot conditions (4.17) at the shock and

the characteristic curves (4.21) away from the shock, to find an exact solution that is

determined from the solution of a non-linear problem. This makes the 1D dam-break

problem ideal to understand how different numerical fluxes and the MUSCL slope

limiter effect the accuracy of the computed solution.

For the specific initial condition hL = 1, hR = 0.12, there are a number of key

features of the solution at time t as a function of the spatial coordinate x, as discussed

below:

• x < −
√
Gt - The water remains undisturbed, and the left hand initial condition,

h = 1, u = 0, is retained.

• −
√
Gt < x < 0.050

√
Gt - At x = −

√
Gt there is a discontinuity in the gradient,

the height decreases parabolically and the velocity increases linearly.

• 0.050
√
Gt < x < 0.977

√
Gt - At x = 0.050

√
Gt there is another discontinuity in

the gradient. This is the shock region and the height and velocity are constant,

hS = 0.423, uS = 0.699
√
G.

• x > 0.977
√
Gt - At x = 0.977

√
Gt, there is a genuine discontinuity in the

height and velocity. After this point, the water remains undisturbed and the

right hand initial condition, h = 0.12, u = 0, is retained.

Figure 4.7: 1D dam-break - Exact height solution at T = 0.4 with G = 10 and the initial
condition (4.22) with hL = 1, hR = 0.12. The discontinuities in the gradients, at x ≈ −1.27
and x ≈ 0.06, the true discontinuity, at x ≈ 1.24, and the shock height, hs = 0.423, are
illustrated.

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 58

The conservative form (4.15), with the field [h, hu]T , is used to solve the 1D dam-

break problem and the Lax-Friedrichs flux used as described in (3.12). Figure 4.8

demonstrates the height and momentum solution at T = 0.4, with linear approxima-

tion. There are two areas where oscillations have been introduced into the solution.

There are large oscillations at x ≈ 0.1, where the exact solution has a discontinuity

in the gradient, and also at x ≈ 1.2, where the exact solution has a shock.

Figure 4.8: 1D dam-break - Height and momentum solution with at T = 0.4 with 1200
linear elements, a Lax-Friedrichs flux and an RK-TVD3 timestep of dt = 10−4. If no
limiting is applied oscillations appear in the solution near discontinuities.

To remove these oscillations, a limiter is applied after each explicit timestep of

the RK-TVD3 algorithm. The MUSCL limiter (2.35) was implemented, using the

modified minmod function (2.39) with the smoothness parameter set to M = 50, and

figure 4.9 demonstrates the height solution, h. At the shock, x ≈ 1.23, the oscillations

have been removed by the MUSCL slope limiter. The solution has been plotted with

5 plot points per element, and so the shock is resolved in approximately 4 elements.

At the gradient discontinuity the MUSCL limiter is removing most of the oscillatory

behaviour, but has not resolved the solution as well as at the shock.

4.2.4 Importance of shocks and conserved forms

The conserved field [h, u]T and its associated flux in equation (4.16), derived in section

3.3, were now used to model the dam-break problem with the Lax-Freidrichs flux.

Figure 4.10 demonstrates the height solution, at T = 0.4, for both the conserved

fields [h, u]T and [h, hu]T . The figure clearly shows that if the conserved field [h, u]T

is used, the numerical solution is not a good approximation to the analytic solution

and is breaking early, at the same spatial resolution. The conserved PDEs with the

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 59

Figure 4.9: 1D dam-break - Height solution with 1200 elements, linear approximation, a
Lax-Friedrichs flux and RK-TVD3 timestep of dt = 10−4 with the domain x ∈ [−2, 2]. The
left hand and right hand figures represent a zoom for x ∈ [−0.3 : 0.3] and x ∈ [1.22 : 1.25]
respectively. The true discontinuity is being resolved in approximately 4 elements and the
oscillations of the solution near the gradient discontinuity are nearly removed.

field [h, u]T were derived directly from the conserved form (4.15). However, these

two forms have different Rankine Hugoniot conditions at the shock, as discussed in

section 4.2.1, yielding different shock velocities. The conserved field [h, hu]T repre-

sents the true conserved properties of the system, the conservation of fluid mass and

linear momentum, and the conserved field [h, u]T yields alternative, but non-physical

solutions. It is thus fundamental to enforce the conservation of the correct physical

variables, height and momentum, for solutions with shocks. The correct conserved

form (4.15), with field [h, hu]T will be used throughout the rest of this chapter.

The Roe average flux, described in section 2.2.3, can also be used to pass information

between elements. This requires the evaluation of a new flux constant, CRA, at

each element edge. Consider the internal and external fields at a boundary: we =

[he, (hu)e]
T and we = [he, (hu)e]

T . The constant is evaluated as:

CRA = maxh̄,ū|ū±
√
gh̄|, (4.23)

h̄ =
hi + he

2
, ū =

√
hiui +

√
heue√

hi +
√
he

. (4.24)

The algorithm to compute the Roe average constant at an element edge can be seen

below and further details of the implementation can be seen in Appendix B.

1 Find wi and we

2 Compute h̄ = hi+he
2 , ū =

√
uihi+

√
uehe√

ui+
√
ue

, C− = |ū−
√
Gh̄|, C+ = |ū +

√
Gh̄|

3 Take CRA = max(C−, C+)

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 60

Figure 4.10: 1D dam-break - Height solution with 600 elements, linear approximation,
Lax-Friedrichs flux and RK − TV D3 timestep of dt = 10−4 at T=0.4s. The numerical
solutions are using the conserved forms [h, hu]T and [h, u]T of the shallow water equations,
given by (4.15) and (4.16) respectively.

To measure errors, both the broken L1 and L2-norm were used to measure the height

and momentum field respectively. To combine these in a single measure for the L2

norm, equation (3.15) is used, and for the L1 norm, equation (4.25) below is used,

||w −wh||Ω,h,L1 =
m∑
i=1

||wi − wi,h||Ω,h,L1 . (4.25)

Table 4.3 demonstrates the errors, measured at T = 0.4, with linear approximation

using the Roe average (RA) and Lax-Friedrichs (LF) flux. The rates were estimated

through best fit plots of ln(Error) against ln(N), as seen in figure 4.11 for the L1 and

L2 norm. The graphs also show the errors without limiting, using a Roe average flux,

are large and are converging very slowly, if it all.

The errors are smaller in the L1-norm than the L2-norm and the convergence

rate is also faster. There is little known about convergence rates for discontinuous

problem using the DGFEM, but since the L1 errors are consistently smaller than the

L2 errors, and are generally used in the literature to measure errors for discontinuous

problems, then this norm will be chosen for future convergence analysis.

Table 4.3 and figure 4.11 indicate that the errors using a Lax-Friedrichs flux and

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 61

Roe average flux are almost identical, with the Lax-Friedrichs flux converging at

a marginally faster rate. The computational times for the Roe average and Lax-

Friedrichs flux can be seen in table 4.4, and the Roe average flux also takes slightly

more time to compute. For these reasons, the Lax-Friedrichs flux will be used for

future computations.

N LF L2 LF L1 RA L2 RA L1

150 5.87× 10−2 4.00× 10−2 5.85× 10−2 3.93× 10−2

300 3.53× 10−2 1.94× 10−2 3.49× 10−2 1.92× 10−2

600 2.51× 10−2 1.02× 10−2 2.50× 10−2 1.06× 10−2

1200 2.62× 10−2 6.27× 10−3 2.70× 10−2 6.30× 10−3

Rate 0.40 0.90 0.38 0.88

Table 4.3: 1D dam-break - Broken L1 and L2 errors at T = 0.4 with linear approximation
and MUSCL limiting. The results are with an RK-TVD3 timestep of dt = 10−5 with the
Lax-Friedrichs (LF) and Roe average (RA) fluxes.

Figure 4.11: 1D dam-break - Broken L1 and L2 errors at T = 0.4 with linear approxima-
tion and a timestep of dt = 10−5 as a function of the number of elements. The results are
shown with Lax-Friedrichs and Roe average flux with MUSCL, M = 50, limiting. Errors
with the Roe average flux, without limiting, are also shown.

N 150 300 600 1200
LF Time/s 38.0 82.4 191.2 385.7
RA Time/s 38.5 86.0 199.8 402.8

Table 4.4: 1D dam-break - Computation times, in seconds, with linear approximation,
with a Lax-Friedrichs and Roe average flux, at T = 0.4 using the MUSCL, M = 50, limiter
and an RK-TVD3 timestep of dt = 10−5.

The effect of higher order approximation on the L1-errors using the Lax-Friedrichs

flux is shown in table 4.5, for linear, quadratic and cubic approximation, with the

number of elements varied from N = 150− 1200. The height and momentum errors

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 62

are combined using (4.25). Figure 4.12 represents h-refinement for the 1D dam-

break problem for different polynomial orders. For a fixed element size, increasing

the polynomial order does not reduce the error and similar convergence rates are

obtained for the different polynomial orders. The computation times are displayed

in table 4.6. Increasing the polynomial order increases the number of nodes in an

element, the mass matrix is larger, and so the timestepping algorithm (2.42) takes

longer to complete. These observations suggest that there is no advantage to be

gained from using higher order bases for the dam-break problem in the DGFEM.

N d = 1 d = 2 d = 3
150 4.00× 10−2 3.94× 10−2 4.45× 10−2

300 1.94× 10−2 1.83× 10−2 2.57× 10−2

600 1.02× 10−2 1.04× 10−2 1.22× 10−2

1200 6.27× 10−3 7.11× 10−3 7.40× 10−3

Rate 0.90 0.82 0.88

Table 4.5: 1D dam-break - L1 errors, with N = 150 − 1200 elements, at T = 0.4 with
linear approximation and the MUSCL, M = 50, limiting. The results shown are using
linear, quadratic and cubic approximation.

Figure 4.12: 1D dam-break - Broken L1-errors for the Height and Momentum solution
with MUSCL, M = 50, limiter, Lax-Friedrichs Flux and RK-TVD3 timestep of dt = 10−5.
The results shown are with linear, quadratic and cubic approximation.

N d = 1 d = 2 d = 3
150 38.0 47.5 61.4
300 82.4 107.8 141.8
600 191.2 261.8 300.6
1200 385.7 690.0 814.2

Table 4.6: 1D dam-break - Computation times, in seconds, with a Lax-Friedrichs flux and
RK-TVD3 timestep of dt = 10−5, for N = 150− 1200 elements, with linear, quadratic and
cubic approximation.

CHAPTER 4. DISCONTINUOUS PROBLEMS IN 1D 63

4.2.5 Field Conservation

Consider the PDEs (4.15) and integrate each of the conserved fields over the domain,∫ 2

−2

(∂h
∂t

+
∂hu

∂x

)
dx = 0 =⇒ d

dt

∫ 2

−2

hdx+ [hu]2−2 = 0,∫ 2

−2

(∂hu
∂t

+
∂(1

2
Gh2 + u2h)

∂x

)
dx = 0 =⇒ d

dt

∫ 2

−2

hudx+ [u2h+
1

2
Gh2]2−2 = 0,

=⇒ d

dt

∫ 2

−2

hdx = 0,
d

dt

∫ 2

−2

hudx− 4.928 = 0.

For small times, the dam-break does not reach the boundary, and the field remains

unchanged, so that h(−2) = 1, h(2) = 0.12, u(−2) = u(2) = 0, which are also

enforced by the Dirichlet boundary conditions. The integral of the height field, h,

should stay constant, and the momentum field, hu, depend linearly on time. From

the initial condition,∫ 2

−2

h(x, 0)dx =

∫ 0

−2

1dx+

∫ 2

0

0.12dx = 2.24,∫ 2

−2

hu(x, 0)dx =

∫ 2

−2

0dx = 0.

So, for small enough times, the integrals should satisfy,∫ 2

−2

h(x, t)dx = 2.24,

∫ 2

2

hu(x, t)dx = 4.928t. (4.26)

Table 4.7 illustrates the integral average of the fields, with linear approximation at

times T = 0 − 0.4. It can be seen that the height field, h, remains unchanged, and

the momentum field, hu, is linearly increasing in time. The results are in excellent

agreement with the expected values (4.26).

T L1 h field L1 hu field
0 2.24 0

0.1 2.24 0.4928
0.2 2.24 0.9856
0.3 2.24 1.4784
0.4 2.24 1.9712

Table 4.7: 1D dam-break - The integral of the height and momentum field across the
domain, measured in the broken L1-norm, as a function of the integration time, T. The
Lax-Friedrichs flux, an RK-TVD3 timestep of dt = 10−4 with N = 1200 equally spaced
linear elements are used.

Chapter 5

2D Dam-Break Problem

5.1 Shallow water equations

For a domain Ω ⊂ R2, the shallow water equations model water waves under the

condition that a horizontal length scale is much larger than a vertical length scale

i.e. waves that have a wavelength much greater than the water depth. The equations

can be derived by considering fluid mass and momentum conservation in a control

volume of fluid [17].

The fluid is assumed to be of constant density, ρ, and any frictional, viscous or

Coriolis forces are ignored. The topographic height is also set constant, so the fluid

flows on a flat surface and hydrostatic equilibrium is assumed in the vertical direction.

These assumptions imply the velocity of the fluid is constant at a given point x in the

domain, so there is no variation with the fluid height. Defining the height, h(x, t),

and the velocities u(x, t) and v(x, t) in the x and y direction respectively, the shallow

water equations can be written,

∂

∂t
(h) +

∂

∂x
(hu) +

∂

∂x
(hv) = 0,

∂

∂t
(hu) +

∂

∂x
(u2h+

1

2
Gh2) +

∂

∂y
(uvh) = 0,

∂

∂t
(hv) +

∂

∂x
(uvh) +

∂

∂y
(v2h+

1

2
Gh2) = 0,

and in conservative form (2.1), by defining the conserved field w = (h, hu, hv)T ∈ R3

64

CHAPTER 5. 2D DAM-BREAK PROBLEM 65

and the flux matrix F ∈ R3×2

F =


uh vh

u2h+ 1
2
Gh2 uvh

uvh v2h+ 1
2
Gh2

 . (5.1)

As discussed in a 1D specialisation of these equations in section 4.2, these equations

pose a challenge numerically because solutions can have discontinuities present.

5.2 Discontinuous Galerkin Method in 2D

A discontinuous Galerkin method in 2D, with rectangular finite elements, is more

complex than in a single spatial dimension, for the following reasons:

• Neighbouring Scheme - An element in the mesh now has four neighbours, as

opposed to two neighbours in one spatial dimension and the elemental linear

system (2.18) requires coupling between adjacent faces in the mesh, as discussed

in section 2.3.1.

• Numerical Flux matrix- The contributions to this matrix are line integrals of the

numerical flux along the edge of the 2D element, instead of function evaluations

at the edge points of an element in one spatial dimension. The numerical

integration scheme was discussed in section 2.4.

• Mass and Flux matrix - The contributions to these matrices are 2D surface

integrals over the element, instead of line integrals across the element in one

spatial dimension. The numerical integration scheme was also discussed in

section 2.4.

• Slope Limiting - The process of slope limiting, to remove spurious oscillations

appearing in numerical solutions, needs to be addressed. This will be discussed

in the following section for rectangular finite elements aligned with the coordi-

nate axes.

CHAPTER 5. 2D DAM-BREAK PROBLEM 66

5.2.1 2D Slope Limiting

In section 2.7, slope limiting was introduced in the context of 1D problems. For the

MUSCL slope limiter, a TVBM property for the solution, where the solution remains

bounded in the TV semi-norm, was obtained by considering values of the field at

element edges in 1D grids (see theorem 2.7.2).

From the literature, it appears that a rigorous proof of 2D stability remains largely

unknown for general meshes. In this analysis a 2D limiter will be implemented that

will operate on piecewise bilinear approximation, of the form w = (a + bx)(c + dy),

in each element.

A slope limiter essentially attempts to remove spurious oscillations from the ap-

proximate solution by suitably replacing the approximate solution gradient in each

element. However, since a bilinear approximation has a twist term, Cxy, then a

single measure for the x and y gradient across an element does not exist, making the

limiting process less intuitive.

A rectangular domain will be considered, aligned with the coordinate axes. Con-

sider a rectangular element [xi, xi+1]×[yj, yj+1], where i, j are indices for the elements

in the x and y direction. After each explicit Euler timestep, before the limiter is im-

plemented, the approximate solution in element (i, j) will be converted from bilinear

to pure linear approximation of the form

w(x, t) = w̄i,j(t) + wx(t)
(x− xi+1/2

∆xi/2

)
+ wy(t)

(y − yj+1/2

∆yj/2

)
, (5.2)

where wx(t), wy(t) are the average gradients in the x and y direction and w̄i,j(t) is

the integral average of the field in element (i, j),

w̄i,j(t) =

∫ xi+1

xi

∫ yj+1

yj
(a+ bx)(c+ dy)dxdy

∆xi∆yj
.

This integral average over the element, is the field at the central point (xi+1/2, yj+1/2)

of the element, as the argument below shows:

w̄i,j(t) =

∫ xi+1

xi
(a+ bx)dx

∫ yj+1

yj
(c+ dy)dy

∆xi∆yj

=
∆xi(a+ b/2(xi+1 + xi))∆yj(c+ d/2(yj+1 + yj)

∆xi∆yj

=
(
a+ b

(xi+1 + xi)

2

)(
c+ d

(yj+1 + yj)

2

)
= wi+1/2,j+1/2.

CHAPTER 5. 2D DAM-BREAK PROBLEM 67

The choice for the average gradients wx(t), wy(t) is not unique and in the implemen-

tation the conversion to pure linear approximation is achieved through the following

algorithm, for each field component:

• Find the approximate solution at the four corner (nodal) points of the element:

wi,j, wi+1,j, wi,j+1, wi+1,j+1.

• Find the gradients along bottom, top, left and right edge of element:

wx(t)Bottom =
wi+1,j − wi,j

∆xi
wx(t)Top =

wi+1,j+1 − wi,j+1

∆xi

wx(t)Left =
wi,j+1 − wi,j

∆yj
wx(t)Right =

wi+1,j+1 − wi+1,j

∆yj
(5.3)

• Take arithmetic averages of quantities to find the gradients:

wx(t) =
wx(t)Bottom + wx(t)Top

2
wy(t) =

wy(t)Left + wy(t)Right
2

(5.4)

wi,j wi+1,j

wi+1,j+1wi,j+1

w̄i,j
∆yj

∆xi

wy,Left wy,Right

wx,Bottom

wx,Top

Figure 5.1: A rectangular element illustrating the data required to perform 2D limiting on
bilinear approximation. The figure illustrates the approximate solution at the four nodes,
the element widths, the approximate gradients given by (5.3) and the element average (at
the central point).

After the true bilinear approximation has been converted to linear approximation of

the form (5.2), without a twist term, the limiting process is similar to the 1D case.

A variant of the original 1D modified minmod function (2.39) is used,

m̄(a1, a2, a3) =

 a1 if |a1| ≤M∆h2

m(a1, a2, a3) otherwise.
(5.5)

CHAPTER 5. 2D DAM-BREAK PROBLEM 68

The x and y directions are treated independently, and in each element, for each field,

wx(t) and wy(t) are limited separately using the 2D modified minmod function (5.5).

Consider the x direction, the gradient wx(t) is replaced, using the 2D modified

minmod function (5.5) with h = ∆xi, to

w
′

x(t) = m̄
(
wx(t),

w̄i+1,j(t)− w̄i,j(t)
∆xi

,
w̄i,j(t)− w̄i−1,j(t)

∆xi

)
, (5.6)

where w̄i,j is the average in element (i, j) and w̄i+1,j and w̄i−1,j are the averages in

elements (i+ 1, j) and (i− 1, j), the west and east neighbours.

Similarly for the y direction, the gradient wy(t) is replaced using the modified

minmod function (5.5), with h = ∆yj, to

w
′

y(t) = m̄
(
wy(t),

w̄i,j+1(t)− w̄i,j(t)
∆yj

,
w̄i,j(t)− w̄i,j−1(t)

∆yj

)
, (5.7)

where w̄i,j+1 and w̄i,j−1 are the averages in elements (i, j+ 1) and (i, j−1), the north

and south neighbours.

To ensure conservation of the field, the average value, w̄(t), is forced to remain

invariant by the limiting process. This average value, for linear approximation, is the

field at the central point of the element and so the new unknowns, at the four nodal

positions, are reconstructed through the following formulae:

wi,j = w̄i,j(t)−∆xiw
′

x/2−∆yjw
′

y/2,

wi+1,j = w̄i,j(t) + ∆xiw
′

x/2−∆yjw
′

y/2,

wi,j+1 = w̄i,j(t)−∆xiw
′

x/2 + ∆yjw
′

y/2,

wi+1,j+1 = w̄i,j(t) + ∆xiw
′

x/2 + ∆yjw
′

y/2. (5.8)

The implementation of this 2D slope limiter into the oomph-lib is explained in more

detail in Appendix C. This includes a discussion of the process to find an element’s

neighbour and the actual implementation of the algorithm above.

5.3 2D Dam-Break Problem

A discontinuous problem in 2D can now be implemented, that of a 2D dam-break.

The Lax-Friedrichs flux will be used, using the definition (2.7), to define numerical

fluxes at element edges. This requires maximising the eigenvalues of the Jacobian

CHAPTER 5. 2D DAM-BREAK PROBLEM 69

of the flux matrix in the direction of the outer unit normal at an element edge.

Letting the general outer unit normal be (nx, ny)
T , it is shown in Appendix A that

the eigenvalues are,

λ1 = û1nx + û2ny +
√
Gû0, λ2 = û1nx + û2ny, λ3 = û1nx + û2ny −

√
Gû0,

where the variables û0 = h, û1 = u, û2 = v. For rectangular meshes, with outer unit

normals aligned with the x and y axes, the eigenvalues simplify to:

• n = ±(0, 1)T - Normal parallel to y-axis:

λ1 = ±û2 +
√
Gû0, λ2 = ±û2, λ3 = ±û2 −

√
Gû0.

• n = ±(1, 0)T - Normal parallel to x-axis:

λ1 = ±û1 +
√
Gû0, λ2 = ±û1, λ3 = ±û1 −

√
Gû0.

In both cases the second eigenvalue can never be the largest in absolute value, and the

Lax-Friedrichs constant will be the maximum in absolute value of the first and third

eigenvalue across all possibilities of the field over the boundary. Assuming that this

maximum is taken only over the internal or external field, the resulting optimization

problem is almost identical to that of a 1D dam-break (3.13). The only difference

is what velocity to use in the optimization algorithm. If the outer unit normal is

parallel to y-axis, the y-velocity will be used in the optimization algorithm, and if

the outer unit normal is parallel to the x-velocity, the x-velocity will be used in the

optimization algorithm. See Appendix B for further details of the Numerical Flux

implementation.

5.3.1 Smoothed 2D Dam-Break Problem

For the smoothed 2D dam-break problem, the domain is set to (x, y) ∈ [−1, 1] ×

[−1, 1], with the initial condition

h(x, y, 0) = 0.75− 0.25 tanh(200((x2 + y2)− 0.25)),

u(x, y, 0) =v(x, y, 0) = 0. (5.9)

This is clearly not a genuine discontinuity, since the tanh function is smooth. How-

ever, tanh(x) changes very rapidly about x = 0 from −1 to +1. If x2 + y2 < 0.25,

CHAPTER 5. 2D DAM-BREAK PROBLEM 70

h(x, y, 0) ≈ 1, and if x2 + y2 > 0.25, h(x, y, 0) ≈ 0.5. The nearly discontinuous initial

condition is illustrated in figure 5.2, where the height distribution is plotted as a

function of the x-coordinate over the entire mesh.

Figure 5.2: 2D dam-break - Initial height distribution plotted as a function of the x-
coordinate. The initial condition (5.9) is strictly smooth, but the height changes rapidly
near the region x2 + y2 = 0.25, making the initial distribution close to a true discontinuity.

From the literature, it appears that no analytic exact solution exists to this initial

value problem and validation of the results was performed by comparing the results

with code written by Chris Johnson [18]. He uses a finite volume method, devised by

Jiang et al. [5], which used a piecewise constant approximation within each element

and a limiter, called MinMod1, to slope limit the solution after each explicit timestep

of the Runge-Kutta algorithm.

The dam-break problem was modelled using the Lax-Friedrichs flux, periodic

boundary conditions, and the slope limiter described in section 5.2.1, for a linear

approximation. Figure 5.3 illustrates the average height solution in each element, for

elements lying on the y-axis, for both a non-limited and MUSCL limited solution.

The plot shows that different height solutions are obtained with and without a slope

limiter, with the non-limited solution oscillating in the region x ∈ ±[0.35 : 0.70]. For

a 100 × 100 grid the oscillations were so severe that no computational results were

obtainable without a slope limiter at T = 0.4.

CHAPTER 5. 2D DAM-BREAK PROBLEM 71

Figure 5.3: 2D dam-break - Illustration of the DGFEM average height solution for the
dam-break problem on a 50 × 50 grid with an RK-TVD3 timestep of dt = 0.01 and Lax-
Friedrichs flux for elements lying on the y-axis. Oscillatory behaviour can be observed in
the numerical solution without slope limiting but disappear with the 2D slope limiter.

Figure 5.4 is an illustration of the height density for different resolutions of the

grid, by plotting the average height in each element over the domain. This illustration

shows that as the resolution is increased, the shock, at r =
√
x2 + y2 ≈ 0.73, is better

resolved and circular symmetry is generally preserved. However, in the 50× 50 plot,

the height density is slightly greater at a radial distance of r ≈ 0.5 in the x and y

direction than at the same radial distance in directions 45o to the coordinate axes,

indicating a potential asymmetry of the 2D slope limiter.

Figure 5.5 is a plot of the average heights along the line y = x for different

resolutions of the grid. It can be clearly seen that the shock at r ≈ 0.73 is better

resolved as the mesh resolution is increased.

The DGFEM 2D dam-break results and an axisymmetric dam-break problem,

obtained by Chris Johnson [18], are compared. The axisymmetric dam-break prob-

lem implicitly assumes circular symmetry so only the radial direction is considered

and solutions can be found at a high spatial resolution. Figure 5.6 illustrates the

axisymmetric solution using a high resolution 12800 element 1D grid. The density

plot is the axisymmetric solution mapped onto a 12800 × 12800 2D grid and a plot

CHAPTER 5. 2D DAM-BREAK PROBLEM 72

of the axisymmetric solution as a function of the radial distance, r, is also shown.

Figure 5.7 illustrates a series of height density plots of the difference between

the element average from the 2D dam-break DGFEM results and the high resolution

axisymmetric FVM solution. As the DGFEM resolution is increased, the difference

between the solutions appears to be diminishing in the smoother regions of the solu-

tion. The discontinuous Galerkin method is also resolving where the shock location

is, to a high degree of accuracy, as the spatial resolution is increased. However, near

the discontinuity, the differences in the solution are still large.

Results for the actual 2D dam-break problem using the finite volume method were

obtained from Chris Johnson [18]. A better understanding of the DGFEM accuracy

was obtained by plotting the average height solution at different cross sections through

the domain for the FVM and DGFEM solutions, solved at the same spatial resolution.

The average height solutions, along the x-axis, y-axis and the line y = x, are plotted

in figures 5.8, 5.9 and 5.10 respectively. These graphs illustrate that the FVM and

DGFEM are both resolving the shock in approximately 6 elements on a 400 × 400

grid.

A plot of average height solutions of the DGFEM along the x-axis, y-axis and the

line x = y is illustrated in figure 5.11 along with the high resolution axisymmetric

dam-break solution. Along the x and y-axis the average height solutions are identical

and are also very similar to the average height solution along the line y = x.

CHAPTER 5. 2D DAM-BREAK PROBLEM 73

 x

y

Average Height DGFEM 50 x 50 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

 x

y

Average Height DGFEM 100 x 100 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

 x

y

Average Height DGFEM 200 x 200 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 x

y

Average Height DGFEM 400 x 400 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5.4: 2D dam-break - Density plots of the average height field in each element,
at T = 0.5, with a Lax-Friedrichs flux and the 2D slope limiter. The figures represent a
50 × 50, 100 × 100, 200 × 200 and a 400 × 400 grid with RK-TVD3 timesteps of dt =
0.01, 0.005, 0.0025, 0.00125 respectively. A shock at r =

√
x2 + y2 ≈ 0.73 can be observed

in the plots.

Figure 5.5: 2D dam-break - Average height solution along the line y = x for h-refinement.
The figures represent data from a 50×50, 100×100, 200×200 and a 400×400 grid with RK-
TVD3 timesteps of dt = 0.01, 0.005, 0.0025, 0.00125 respectively. As the mesh resolution is
increased the shock at r ≈ 0.73 is better resolved.

CHAPTER 5. 2D DAM-BREAK PROBLEM 74

 x

y

Average Height FVM Interpolated 12800 x 12800 Cells

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5.6: Axisymmetric dam-break - The left hand figure illustrates an axisymmetric
dam-break problem solution, h(r, t), mapped into the (x, y) plane. The solution resolution
is on a 12800 element grid and is deemed a good approximation to the exact 2D dam-break
problem solution. The right hand figure illustrates the height as a function of the radius,
illustrating a shock at r ≈ 0.73.

 x

y

Average Height Error DGFEM 50 x 50 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 x

y

Average Height Error DGFEM 100 x 100 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 x

y

Average Height Error DGFEM 200 x 200 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 −0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 x

y

Average Height Error DGFEM 400 x 400 Elements − MUSCL

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Figure 5.7: 2D dam-break - Density plots of the difference in the average height in each
element, at T = 0.5, between a finite volume method and discontinuous Galerkin method.
The figures represent a 50× 50, 100× 100, 200× 200 and a 400× 400 grid with RK-TVD3
timesteps of dt = 0.01, 0.005, 0.0025, 0.00125 respectively. The difference near the shock
at r =

√
x2 + y2 ≈ 0.73 is large, but the solutions are approximately the same in smooth

regions.

CHAPTER 5. 2D DAM-BREAK PROBLEM 75

Figure 5.8: 2D dam-break - Illustration of the average DGFEM height solution for the 2D
dam-break problem on a 400× 400 grid with an RK-TVD3 timestep of dt = 0.00125 along
the x-axis. The comparison with the finite volume method shows that the two methods have
very similar shock resolutions, from the zoom of the solution x ∈ [0.70 : 0.76], although the
DGFEM appears marginally sharper.

Figure 5.9: 2D Dam-Break - Illustration of the average DGFEM height solution for the
2D dam-break problem on a 400 × 400 grid with an RK-TVD3 timestep of dt = 0.00125
along the y-axis. The FVM and DGFEM again have very similar shock resolutions.

Figure 5.10: 2D Dam-Break - Illustration of the average DGFEM and FVM height solution
for the 2D dam-break problem on a 400 × 400 grid with an RK-TVD3 timestep of dt =
0.00125 along the line y = x. Again, the DGFEM and FVM have very similar resolutions
of the shock.

CHAPTER 5. 2D DAM-BREAK PROBLEM 76

Figure 5.11: 2D Dam-Break - Illustration of the average DGFEM height solution for the
2D dam-break problem on a 400 × 400 grid with an RK-TVD3 timestep of dt = 0.00125
along the y-axis, x-axis and line y = x. The figure represents a zoom of the solution with
r ∈ [0.70 : 0.76]. The FVM axisymmetric high resolution solution is also shown. The three
directions show very similar solutions near the shock, as one would expect from a circularly
symmetric dam-break problem.

Chapter 6

Conclusion

A discontinuous Galerkin formulation for a system of conserved PDEs was derived,

with a discussion of different types of numerical flux that can be assigned at the edges

of adjacent elements. In 1D, an analysis of the total variation diminishing explicit

Runge-Kutta class of timesteppers was undertaken to enforce numerical solutions to

be bounded in the total variation semi-norm by using MUSCL slope limiting.

Exact solutions were found, using the method of characteristics, for the advec-

tion equation. Using the Lax-Friedrichs flux, L2-errors were computed for a smooth

problem and these agreed well with theoretical convergence bounds in this norm. A

continuous problem for the 1D shallow water equations was implemented and the

Lax-Friedrichs flux was a superior choice to the central flux.

A theoretical discussion of shock formation and propagation was carried out

relating to the 1D inviscid Burgers’ equation. Numerical simulations, using the

Lax-Friedrichs flux at element edges, without slope limiting displayed oscillatory be-

haviour for discontinuous problems. These oscillations were completely removed when

the MUSCL limiter was applied to the numerical solutions.

A discontinuous dam break problem of the shallow water equations was also solved

numerically with MUSCL slope limiting. The numerical solutions converged when

performing h-refinement at different polynomial orders. However, for a fixed element

size, higher order approximation did not decrease the broken L1-errors. This sug-

gested, for this particular problem, that there there is no advantage in using high

order bases in the DGFEM. However, convergence analysis in strictly smooth regions

77

CHAPTER 6. CONCLUSION 78

of the solutions was not undertaken. It also appeared that the Lax-Friedrichs flux

was marginally more accurate, and quicker, than the Roe average flux.

A different conserved form for the shallow water equations was derived and used

to compute solutions to a continuous problem and the dam-break problem. For the

continuous problem, the two forms of the equations led to equivalent results. However,

for the dam-break problem, one of the forms was converging to a non physical solution.

For problems with shocks, it is essential to enforce conservation of the correct physical

variables. So, for the shallow water equations, it is necessary to use a form of the

equations that describe the conservation of fluid mass and momentum.

In 2D, a slope limiter applicable to quadrilateral finite elements aligned with the

coordinate axes was implemented into the oomph-lib. This limiter operates by re-

placing an average solution gradient in the x and y directions separately, using the

modified minmod function. Numerical results for a 2D dam break problem were ob-

tained using the DGFEM, with a Lax-Friedrichs flux, and shocks were being resolved

when performing h-refinement. A comparison was made with results from a finite

volume method [18] and suggested that at the same spatial resolution both methods

were resolving the shock over the same length scale.

6.1 Further Work

In the current implementation, the method of finding neighbouring bulk elements

through the face elements in 2D slope limiting is inefficient and could be modified by

storing direct pointers to neighbouring bulk elements. The current execution time

could also be reduced by using variable timesteps. At each Runge-Kutta timestep,

the fastest wave speed in the system could be calculated over the mesh and this used

to find a timestep satisfying the CFL condition within a desired tolerance.

For the shallow water equations, a slope limiter for general quadrilateral elements

that are not aligned with the coordinate axes could also be devised so that problems

over irregular domains could be computed. Also, a modification of the governing

equations could be achieved to model flow other bumpy terrains so that more realistic

problems for shallow water flow could be investigated.

The 2D slope limiter was devised by essentially performing 1D MUSCL slope

CHAPTER 6. CONCLUSION 79

limiting in two orthogonal directions. The 1D MUSCL limiter ensured that numerical

solutions were total variation bounded at each explicit timestep and it would be

interesting to see if an analogous property could be found for the 2D slope limiter

developed in this report. It would also be of interest to construct slope limiter in 2D

that operate on pure bilinear and biquadratic approximation.

A further theoretical investigation could be carried out into the 1D shallow water

equations with the conserved field [h, u]T . An exact solution for this set of equations

could be obtained by using the Rankine Hugoniot conditions at the discontinuity.

It would be reassuring to see if the non physical solution obtained in the numerical

experiments agreed with such an analytic exact solution.

Appendix A

Shallow Water numerical flux

Lax-Friedrichs constant

In section 2.2 it was stated that the eigenvalues of the matrix B = n. ∂F
∂w

must be

calculated to find the Lax-Friedrichs flux constant. In component form, this matrix

is given by

Bik =
∂Fij
∂wk

nj. (A.1)

Flux Jacobian

The Jacobian of the flux matrix is a rank-3 tensor

Jijk =
∂Fij
∂wk

so J ∈ RNf×Np×Nf , (A.2)

where the indices j = 0 : Np − 1, i, k = 0 : Nf − 1, run over the spatial dimensions

and fields repectively. The flux for the 2D shallow water equations (5.1) is

F =


uh vh

u2h+ 1
2
Gh2 uvh

uvh v2h+ 1
2
Gh2

 ,

and the unknown field is w = [h, hu, hv]T = [u0, u1, u2]T . It is convenient to introduce

the notation, û1 = u1/u0 and û2 = u2/u0. From the definition of the Jacobian (A.2)

80

APPENDIX A. SHALLOW WATER NUMERICAL FLUX 81

the 18 entries are computed as below:

J000 = 0.0 J001 = 1.0 J002 = 0.0

J010 = 0.0 J011 = 0.0 J012 = 1.0

J100 = −û2
1 +Gu0 J101 = 2û1 J102 = 0.0

J110 = −û1û2 J111 = û2 J112 = û1

J200 = −û1û2 J201 = û2 J202 = û1

J210 = −û2
2 +Gu0 J211 = 0.0 J212 = 2û2

Jacobian eigenvalues in normal direction

The definition of the matrix B (A.1) requires the contraction of the tensor above

with the outer unit normal n = (nx, ny)
T at an element’s edge,

B =


0.0 nx ny

(−û2
1 +Gu0)nx − (û1û2)ny (2û1)nx + (û2)ny (û1)ny

−(û1û2)nx + (−û2
2 +Gu0)nx û2nx (û1)nx + (2û2)ny

 .

From the solutions of the eigenvalue equation det(B − λI) = 0, the eigenvalues are:

λ1 = û1nx + û2ny +
√
Gu0, λ2 = û1nx + û2ny, λ3 = û1nx + û2ny −

√
Gu0.

The constant in the Lax-Friedrichs flux is taken as the maximum of the three eigen-

values above, over all possibilities of the field at an element boundary. For simplicity,

as with the 1D problem, the maximum is taken to be either on the internal or external

face, to save solving a potentially expensive optimisation problem.

Appendix B

Numerical Flux Implementation

B.1 Numerical flux at knot points

As was described in section 2.3.1, finite elements in the DGFEM communicate with

their neighbours through numerical fluxes defined at the element edges or faces.

The class DGShallowWaterFaceElement, describing a face element contains a

function that performs numerical integration of a numerical flux function along the

edge of two neighbouring elements. To perform this integration, a numerical flux

function must be defined at all the integration knot points on the 1D edge of an

element.

A function numerical_flux() outputs the numerical flux at each of the integra-

tion knot points. This function takes as input the outer unit normal, n_out, the

internal and external fields, u_int and u_ext, and outputs the numerical flux at

a knot point, flux. The function bulk_element_pt() returns a pointer to a bulk

element in the mesh.

1 void numerical_flux(const Vector <double > &n_out ,

2 const Vector <double > &u_int ,

3 const Vector <double > &u_ext ,

4 Vector <double > &flux)

5 {

6 // Pointer to a bulk element

7 ELEMENT* cast_bulk_element_pt =

8 dynamic_cast <ELEMENT*>(this ->bulk_element_pt ());

9

10 //Find spatial dimension and number of fluxes

11 const unsigned dim = this ->dimension ();

12 const unsigned n_flux = this ->required_nflux ();

82

APPENDIX B. NUMERICAL FLUX IMPLEMENTATION 83

13

14 // Storage for internal/external fluxes

15 DenseMatrix <double > flux_int(n_flux ,dim);

16 DenseMatrix <double > flux_ext(n_flux ,dim);

17

18 // Internal and external fluxes at knot point

19 cast_bulk_element_pt ->flux(u_int ,flux_int);

20 cast_bulk_element_pt ->flux(u_ext ,flux_ext);

21

22 //Find the flux average over boundary

23 DenseMatrix <double > flux_av(n_flux ,dim);

24 for(unsigned i=0;i<n_flux;i++) {

25 for(unsigned j=0;j<dim;j++) {

26 flux_av(i,j) = 0.5*(flux_int(i,j) + flux_ext(i,j));

27 }

28 }

29

30 // Inner product of flux matrix with outer normal

31 flux.initialise (0.0);

32 for(unsigned i=0;i<n_flux;i++) {

33 for(unsigned j=0;j<dim;j++) {

34 flux[i] += flux_av(i,j)*n_out[j];

35 }

36 }

37

38 //Find the field jump over boundary

39 Vector <double > field_jump(n_flux);

40 for(unsigned i=0;i<n_flux;i++)

41 {

42 field_jump[i] = u_int[i] - u_ext[i];

43 }

44

45 // Initialise C_LF and find gravitational cosntant in bulk

46 double C_LF =0.0; const double G = cast_bulk_element_pt ->g();

47

48 if(dim == 1) { //1D case - Numerical flux constant

49

50 // Return C_LF by extracting components of u_int and u_ext

51 //(i) Central Flux (C_LF =0)

52 //(ii) Lax -Friedrichs flux

53 //(iii) Roe -Average flux

54

55 } else if(dim ==2) { //2D case - Numerical flux constant

56

57 // Return C_LF by extracting components of u_int and u_ext

58 //(i)Lax -Friedrichs flux

59

60 }

61

62 // Final Numerical Flux : flux_av + 0.5* C_LF*field_jump

APPENDIX B. NUMERICAL FLUX IMPLEMENTATION 84

63 for(unsigned i=0;i<n_flux;i++) {

64 flux[i] += 0.5* C_LF*field_jump[i];

65 }

66

67 }//End Numerical Flux function

B.2 Flux Constant

All the numerical fluxes in this report require a calculation of a flux constant and

an if statement on line 48 distinguishes between a 1D and 2D problem. In 1D the

constant is calculated through either a central, Lax-Friedrichs or Roe average flux

and in 2D the constant is calculated through a Lax-Friedrichs flux. See section 2.2

for the defintions of the constant in each case.

Appendix C

Slope Limiting Implementation

C.1 Limiting over all elements

The limit_slopes(slope_limiter_pt) function is a mesh level function that limits

the slopes of all the elements in the mesh for a given slope limiter.

This function takes as input a pointer to a slope limiter slope_limiter_pt. In

the function, all the element averages of the field in the mesh are calculated by looping

over the elements. The elements are looped over again and the element level function

slope_limit is applied to each element (see section C.2.)

The following are used in the code extract:

• nelement() - returns the number of elements in the mesh.

• element_pt - vector of pointers to elements in the mesh.

• calculate_average() - computes the integral average of a field in an element.

1 // Inherit new class MYDGMesh from DGMesh

2 class MYDGMesh : public DGMesh

3 {

4 public:

5

6 // Constructor

7 MYDGMesh () : DGMesh () {}

8

9 // Redefine limit_slopes function

10 void limit_slopes(SlopeLimiter* const &slope_limiter_pt);

11 };

12

85

APPENDIX C. SLOPE LIMITING IMPLEMENTATION 86

13 void MYDGMesh :: limit_slopes(SlopeLimiter* const &

slope_limiter_pt)

14 {

15 //Loop over elements and calculate the averages

16 const unsigned n_element = this ->nelement ();

17 for(unsigned e=0;e<n_element;e++)

18 {

19 dynamic_cast <DGElement*>(this ->element_pt(e))

20 ->calculate_averages ();

21 }

22

23 //Loop over again and limit the values

24 for(unsigned e=0;e<n_element;e++)

25 {

26 dynamic_cast <DGElement*>(this ->element_pt(e))

27 ->slope_limit(slope_limiter_pt);

28 }

29 }

C.2 Limiting over single element

This function will limit the slope in an element by setting up the neighbouring element

information. To perform limiting, an element in the mesh must know about its

neighbours and a vector of pointers to neighbouring elements, required_element_pt,

is created for every bulk element.

In each element, one of the pointers to a face is found, the neighbouring face of this

face is found and the pointer to this face’s corresponding bulk element is returned.

This neighbour finding process is repeated for each of the faces in the element. It

would be more efficient to store the pointers to neighbouring bulk elements directly,

but due to time constraints this was not possible.

All the fluxes are looped over and the limit function is called, defined in section

C.3. The following are used in the code extract:

• face_element_pt is a vector of pointers to each of the faces of an element. The

numbering convention is to label the north, east, south and west faces 0, 1, 2

and 3 respectively.

• required_element_pt is a vector of pointers to the neighbouring elements in

a given element. The numbering convention is to label 0 as the current element

APPENDIX C. SLOPE LIMITING IMPLEMENTATION 87

and 1, 2, 3 and 4 as the north, east, south and west neighbours respectively.

• neighbour_face_pt is a vector of pointers to the integration knot points on

the neighbouring face of a face.

• bulk_element_pt() returns a pointer to a bulk element in the mesh.

• required_nflux() returns the number of fields for the problem.

1 // Redefine slope_limit function

2 template <unsigned NNODE_1D >

3 void DGSpectralShallowWaterElement <2,NNODE_1D >:: slope_limit(

SlopeLimiter* const &slope_limiter_pt)

4 {

5 // Number of fluxes

6 const unsigned n_flux = this ->required_nflux ();

7

8 // Storage for the element and its neighbours (5 in total)

9 Vector <DGElement*> required_element_pt (5);

10 required_element_pt [0] = this;

11

12 //Get the pointer to NORTH element

13 required_element_pt [1] = dynamic_cast <DGElement*>(

14 dynamic_cast <DGFaceElement *>(this ->face_element_pt (0))

15 ->neighbour_face_pt (1) ->bulk_element_pt ());

16

17 //Get the pointer to EAST element

18 required_element_pt [2] = dynamic_cast <DGElement*>(

19 dynamic_cast <DGFaceElement *>(this ->face_element_pt (1))

20 ->neighbour_face_pt (1) ->bulk_element_pt ());

21

22 //Get the pointer to SOUTH element

23 required_element_pt [3] = dynamic_cast <DGElement*>(

24 dynamic_cast <DGFaceElement *>(this ->face_element_pt (2))

25 ->neighbour_face_pt (1) ->bulk_element_pt ());

26

27 //Get the pointer to WEST element

28 required_element_pt [4] = dynamic_cast <DGElement*>(

29 dynamic_cast <DGFaceElement *>(this ->face_element_pt (3))

30 ->neighbour_face_pt (1) ->bulk_element_pt ());

31

32 //Loop over the fluxes

33 for(unsigned i=0;i<n_flux;i++)

34 {

35 //Call limiter , takes the current element and required

36 // neighbours as the function arguments

37 slope_limiter_pt ->limit(i,required_element_pt);

38 }

39 }

APPENDIX C. SLOPE LIMITING IMPLEMENTATION 88

C.3 Limit function

This function contains the mathematical details of the limiting within a single ele-

ment. This takes as input i, the component of the flux, and required_element_pt

the vector of pointers to an element’s neighbours.

The algorithm to limit the slopes is described in section 5.2.1. The following are

used in the code extract:

• node_pt is a vector of pointers to the nodes of an element. For linear approxi-

mation the components 0, 1, 2, 3 correspond to the bottom left, bottom right,

top left and top right nodes of the element.

• x is a vector of coordinates at a given node.

• value is a vector of field values at a given node.

• set_value(i,val) sets the ith field the value val, at a given node.

• minmodB(G,h) the modified minmod function described in equation (2.39). G

is a vector of the three required gradients and h is the element width.

1 class MYMinModLimiter : public MinModLimiter

2 {

3 // Minmod constant for properties near smooth extrema

4 double M;

5

6 ///Boolean flag to indicate a MUSCL limiter

7 bool MUSCL;

8

9 public:

10

11 // Constructor

12 MYMinModLimiter(const double &m=0.0, const bool &muscl=false):

13 MinModLimiter (), M(m), MUSCL(muscl) {}

14

15 ///Redefine limit function

16 void limit(const unsigned &i,

17 const Vector <DGElement*> &required_element_pt);

18 };

19

20 ///Overload limit function - Linear Only

21 void MYMinModLimiter :: limit(const unsigned &i,

22 const Vector <DGElement*> &required_element_pt)

23 {

APPENDIX C. SLOPE LIMITING IMPLEMENTATION 89

24 // Pointers to nodes - Bottom Left/Right , Top Left/Right

25 Node* nod_ptbl = required_element_pt [0]-> node_pt (0);

26 Node* nod_ptbr = required_element_pt [0]-> node_pt (1);

27 Node* nod_pttl = required_element_pt [0]-> node_pt (2);

28 Node* nod_pttr = required_element_pt [0]-> node_pt (3);

29

30 //Find nodal coordinates

31 Vector <double > x_bl (2), x_tl (2), x_br (2), x_tr (2);

32 x_bl [0] = nod_ptbl ->x(0); x_bl [1] = nod_ptbl ->x(1);

33 x_br [0] = nod_ptbr ->x(0); x_br [1] = nod_ptbr ->x(1);

34 x_tl [0] = nod_pttl ->x(0); x_tl [1] = nod_pttl ->x(1);

35 x_tr [0] = nod_pttr ->x(0); x_tr [1] = nod_pttr ->x(1);

36

37 // Widths of element

38 const double hx = x_tr[0]-x_tl [0]; //x direction

39 const double hy = x_tr[1]-x_br [1]; //y direction

40

41 //Find nodal unknowns (ith field component)

42 double u_bl , u_br , u_tl , u_tr;

43 u_bl = nod_ptbl ->value(i); u_br = nod_ptbr ->value(i);

44 u_tr = nod_pttr ->value(i); u_tl = nod_pttl ->value(i);

45

46 //Find gradients across top and bottom

47 double u_xB = (u_br -u_bl)/hx; double u_xT = (u_tr -u_tl)/hx;

48 //Find gradient along left and right

49 double u_yL = (u_tl -u_bl)/hy; double u_yR = (u_tr -u_br)/hy;

50

51 //Find average gradients in x/y direction

52 double u_xapp = 0.5*(u_xB + u_xT);

53 double u_yapp = 0.5*(u_yL + u_yR);

54

55 // Average values of elements (This ,Top ,Right ,Bottom ,Left)

56 const double u_av =required_element_pt [0]-> average_value(i);

57 const double u_avT =required_element_pt [1]-> average_value(i);

58 const double u_avR =required_element_pt [2]-> average_value(i);

59 const double u_avB =required_element_pt [3]-> average_value(i);

60 const double u_avL =required_element_pt [4]-> average_value(i);

61

62 // Gradient adjustment for MUSCL or alternative limiter

63 double gradient_factor = 0.5;

64 if(MUSCL) {gradient_factor = 1.0;}

65

66 // Average gradients in y-direction

67 double u_yT = (u_avT - u_av)/(hy*gradient_factor);

68 double u_yB = (u_av - u_avB)/(hy*gradient_factor);

69

70 // Average gradients in x-direction

71 double u_xL = (u_av - u_avL)/(hx*gradient_factor);

72 double u_xR = (u_avR - u_av)/(hx*gradient_factor);

73

APPENDIX C. SLOPE LIMITING IMPLEMENTATION 90

74 // Storage for gradients to minmod functions

75 Vector <double > argx (3), argy (3);

76

77 // Minmod function for the x and y direction

78 argx [0] = u_xapp; argx [1] = u_xL; argx [2] = u_xR;

79 argy [0] = u_yapp; argy [1] = u_yT; argy [2] = u_yB;

80

81 // Limited gradients through minmod function

82 double u_xN = this ->minmodB(argx ,hx);

83 double u_yN = this ->minmodB(argy ,hy);

84

85 // Reconstruct element - element has lost "twist" term

86 //and average (centre) point the same by conservation

87 u_bl = (u_av - u_xN*(hx /2.0) - u_yN*(hy /2.0));

88 u_br = (u_av + u_xN*(hx /2.0) - u_yN*(hy /2.0));

89 u_tl = (u_av - u_xN*(hx /2.0) + u_yN*(hy /2.0));

90 u_tr = (u_av + u_xN*(hx /2.0) + u_yN*(hy /2.0));

91

92 //Set values at the nodal positions

93 required_element_pt [0]->node_pt (0) ->set_value(i,u_bl);

94 required_element_pt [0]->node_pt (1) ->set_value(i,u_br);

95 required_element_pt [0]->node_pt (2) ->set_value(i,u_tl);

96 required_element_pt [0]->node_pt (3) ->set_value(i,u_tr);

97

98 }

Appendix D

RK-TVD3 Implementation

The annotated code describes the algorithm to perform the RK-TVD3 timestepping,

where the degrees of freedom, the unknowns, u, are stored in the pointer object_pt

and dt is the timestep.

The algorithm for the RK-TVD3 timestepping can be seen in (2.29). In the

code below the function get_inverse_mass_matrix_times_residual(k) is a func-

tion that performs the operation Lh (in the algorithm (2.29)) on the current unknowns

u in object_pt and stores this on a new vector k. The function set_dofs(u) sets

the current unknowns in object_pt to u and add_dofs(u) adds u to the current

unknowns in object_pt.

It is essential to call the function actions_after_explicit_timestep() on the

unknowns after each explicit timestep of the Runge-Kutta algorithm. The slope

limiter is applied to the unknowns at this point to ensure the numerical solution is

total variation bounded in the means.

1 template <>

2 void RungeKutta <3>:: timestep(ExplicitTimeSteppableObject*

const &object_pt , const double &dt)

3 {

4 // Store initial values , u, and add to object

5 DoubleVector u;

6 object_pt ->get_dofs(u);

7

8 // Storage for unknown k1 = M^{-1}*R(u0) = L_{h}(u0)

9 DoubleVector k1;

10 object_pt ->get_inverse_mass_matrix_times_residuals(k1);

11

12 //u1 = u0+dt*M{-1}*R(u0)

91

APPENDIX D. RK-TVD3 IMPLEMENTATION 92

13 object_pt ->add_to_dofs(dt ,k1);

14 // Slope Limit after explicit step

15 object_pt ->actions_after_explicit_timestep ();

16

17 // Storage for unknown k2 = M^{-1}*R(u1) = L_{h}(u1)

18 DoubleVector k2;

19 object_pt ->get_inverse_mass_matrix_times_residuals(k2);

20

21 // Reset dofs

22 object_pt ->set_dofs(u);

23 //u2 = u0 + 0.25*dt*M^{-1}*R(u0) + 0.25*dt*M{-1}*R(u1)

24 object_pt ->add_to_dofs (0.25*dt ,k1);

25 object_pt ->add_to_dofs (0.25*dt ,k2);

26 // Slope Limit after explicit step

27 object_pt ->actions_after_explicit_timestep ():

28

29 // Storage for unknown k3 = M{-1}*R(u2) = L_{h}(u2)

30 DoubleVector k3;

31 object_pt ->get_inverse_mass_matrix_times_residuals(k3);

32

33 object_pt ->time() += dt; // Increment time

34 // Reset dofs , construct final vectot and limit

35 //u_n+1 = u_n + dt*k1/6 + dt*k2/6 + 2*dt*k3/3

36 object_pt ->set_dofs(u);

37 object_pt ->add_to_dofs ((dt /6.0),k1);

38 object_pt ->add_to_dofs ((dt /6.0),k2);

39 object_pt ->add_to_dofs ((2.0* dt /3.0),k3);

40 // Slope Limit after explicit step

41 object_pt ->actions_after_explicit_timestep ();

42 }

Appendix E

1D Shallow Water Code

An original C++ code to solve the continuous shallow water in one spatial dimension

is described below. A new class is written that describes a 1D shallow water element,

WaveElement.

The class has functions that return the coordinate and unknowns in an element

at a given local coordinate, a function that takes as input the unknown field and

outputs the flux, a function that uses a 2 point Gauss quadrature rule to numerically

integrate the flux function along an element and a function to return the numerical

flux by calculating the Lax-Friedrichs constant.

Linear approximation is used with the shape functions,

ψ0(s) =
1− s

2
, ψ1(s) =

1 + s

2
, (E.1)

where s is the local elemental coordinate. For this choice of basis, the mass matrix

is not diagonal but is also not ill conditioned since the basis is only of first order.

Assuming equally spaced elements of width dx, the mass matrix and its inverse are:

M =

 dx
3

dx
6

dx
6

dx
3

 =⇒ M−1 =

 4
dx

−2
dx

−2
dx

4
dx

 . (E.2)

A function timestep(dt) performs Euler timestepping of the nodal values in the

element. Further functions to output the numerical solution and calculate the L2

error are also included. The code for the WaveElement class can be seen below:

1 #include <iostream >

2 #include <fstream >

3 #include <vector >

93

APPENDIX E. 1D SHALLOW WATER CODE 94

4 #include <cmath >

5

6 using namespace std;

7

8 // Number of fields , approximation order and nodes

9 const unsigned Nfield =2; const unsigned Napprox =2;

10 const unsigned Nnode=Nfield*Napprox; const unsigned NLaxFre =4;

11

12 //Set the constant G, H, 2*pi and DomainWidth

13 const double G=10.0; const double H=25.0;

14 const double two_pi =8.0* atan (1.0); const double DomWidth =10.0;

15

16 // Number elements , steps and step size

17 const unsigned N_element =160; const unsigned step_no =20000;

const double dtime =0.0005;

18

19 // Number of plot points and plotting frequency

20 const unsigned inter =10; double stepplot=step_no;

21

22 // exact(x,t) - returns exact solution (u,h)’ at a point (x,t)

23 vector <double > exact(double x, double t) {

24 vector <double > VecSize(Nfield);

25 double eta = (x + 2.0* sqrt(G*H)*t)/(1.0 + 3.0* sqrt(G)*t);

26 VecSize [0] = pow(eta ,2); // Height

27 VecSize [1] = 2.0* sqrt(G)*(eta - sqrt(H)); // Velocity

28 return VecSize;

29 }

30

31 // exactderiv(x,t,dt) - approx derivative of exact solution

32 vector <double > exactderiv(double x, double t, double dt){

33 vector <double > VecSize(Nfield);

34 for(unsigned i=0; i<Nfield; i++) {

35 VecSize[i] = (exact(x,t+dt)[i] - exact(x,t)[i])/dt;}

36 return VecSize;

37 }

38

39 class WaveElement {

40

41 public:

42

43 // Pointer to neighbours of each WaveElement

44 WaveElement *Left_neigh_pt , *Right_neigh_pt;

45

46 // Storage for X (coords), U (unknowns) and Utemp

47 vector <double > X, U, Utemp;

48

49 // Initialise the coordinate and unknowns within element

50 WaveElement () {

51 X.resize(Napprox ,0.0);

52 U.resize(Nnode ,0.0); Utemp.resize(Nnode ,0.0);

APPENDIX E. 1D SHALLOW WATER CODE 95

53 Left_neigh_pt = 0; Right_neigh_pt = 0;

54 }

55

56 // shape(s, psi) function for linear interpolation

57 void shape(double s, vector <double > & psi) {

58 psi.resize(Napprox ,0.0);

59 psi [0] = 0.5*(1.0 -s); psi [1] = 0.5*(1.0+s);

60 } //End shape function

61

62 // inter_x(s) - returns coordianate X at local coordinate s

63 double inter_x(double s) {

64 vector <double > psi;

65 this ->shape(s,psi);

66 double inter = X[0]* psi [0] + X[1]* psi [1];

67 return inter;

68 } //End inter_x function

69

70 // inter_u(s) - returns unknowns U at local coordinate s

71 vector <double > inter_u(double s) {

72 vector <double > VecSize(Nfield);

73 vector <double > psi;

74 this ->shape(s,psi);

75 VecSize [0] = U[0]* psi [0] + U[1]* psi [1]; // Height

76 VecSize [1] = U[2]* psi [0] + U[3]* psi [1]; // Velocity

77 return VecSize;

78 } //End inter_u function

79

80 //flux(u) - returns (u[0]*u[1] , G*u[0]+0.5*u[1]*u[1])

81 virtual vector <double > flux(vector <double > & u) {

82 vector <double > VecSize(Nfield);

83 VecSize [0] = u[0]*u[1]; // Height

84 VecSize [1] = G*u[0] + 0.5*u[1]*u[1]; // Velocity

85 return VecSize;

86 } //End flux function

87

88 // integ_flux () - (2 point Gauss ruler in each element)

89 vector <double > integ_flux () {

90 vector <double > gauss1(Nfield),gauss2(Nfield);

91 vector <double > VecSize(Nfield);

92 gauss1=inter_u(sqrt (1.0/3.0));gauss2=inter_u(-sqrt (1.0/3.0));

93 for(unsigned i=0; i<Nfield; i++) {

94 VecSize[i] = flux(gauss1)[i] + flux(gauss2)[i];}

95 return VecSize;

96 } //End integ_flux function

97

98 // maxvec(u) - returns absolute maximum entry of vector

99 double maxvec(vector <double > & u) {

100 double Maximum = abs(u[0]);

101 for(unsigned i=0; i<NLaxFre; i++) {

102 if (Maximum < abs(u[i])){ Maximum = abs(u[i]); }

APPENDIX E. 1D SHALLOW WATER CODE 96

103 return Maximum;

104 } //End maxvec function

105

106 // num_flux(a,b) - numerical flux function

107 virtual vector <double > num_flux(vector <double > & a, vector <

double > & b) {

108 vector <double > VecSize(Nfield), ua(Nfield), ub(Nfield);

109 vector <double > fluxa(Nfield), fluxb(Nfield);

110 ua[0] = a[1]; ua[1] = a[3]; //Left field

111 ub[0] = b[0]; ub[1] = b[2]; // Right field

112 fluxa = flux(ua); fluxb = flux(ub); //Left/Right flux

113

114 vector <double > LaxFre(NLaxFre); // Possible constants

115 LaxFre [0] = ua[1] + sqrt(abs(G*ua[0]));

116 LaxFre [1] = ua[1] - sqrt(abs(G*ua[0]));

117 LaxFre [2] = ub[1] + sqrt(abs(G*ub[0]));

118 LaxFre [3] = ub[1] - sqrt(abs(G*ub[0]));

119

120 double LaxFreCons = maxvec(LaxFre); //Lax -Friedrichs constant

121 for(unsigned i=0; i<Nfield; i++) {

122 VecSize[i]=0.5*(fluxa[i]+ fluxb[i]-LaxFreCons *(ub[i]-ua[i]));}

123

124 return VecSize; // Numerical flux

125 } //End num_flux function

126

127

128 void timestep(double dt , double time) { // Euler timestep

129 double dx = X[1] - X[0]; // Element width dx

130 //Mass Matrix (Inverse only) as vector of vectors

131 vector <vector <double > > Minv(Nnode);

132 for(unsigned i=0; i<Nnode; i++) { Minv[i]. resize(Nnode); }

133 Minv [0][0] = 4.0/dx; Minv [0][1] = -2.0/dx;

134 Minv [0][2] = 0.0; Minv [0][3] = 0.0;

135 Minv [1][0] = -2.0/dx; Minv [1][1] = 4.0/dx;

136 Minv [1][2] = 0.0; Minv [1][3] = 0.0;

137 Minv [2][0] = 0.0; Minv [2][1] = 0.0;

138 Minv [2][2] = 4.0/dx; Minv [2][3] = -2.0/dx;

139 Minv [3][0] = 0.0; Minv [3][1] = 0.0;

140 Minv [3][2] = -2.0/dx; Minv [3][3] = 4.0/dx;

141

142 //Form residual - integrated flux/numerical flux

143 vector <double > int_f = this ->integ_flux ();

144 vector <double > F(Nnode);

145 F[0] = -0.5* int_f [0];

146 F[1] = 0.5* int_f [0];

147 F[2] = -0.5* int_f [1];

148 F[3] = 0.5* int_f [1];

149

150 vector <double > H(Nnode), Deriv(Nnode);

151 if (Left_neigh_pt == 0) {//Left element

APPENDIX E. 1D SHALLOW WATER CODE 97

152 H[1] = -num_flux(U,Right_neigh_pt ->U)[0];

153 H[3] = -num_flux(U,Right_neigh_pt ->U)[1];

154 H[0] = H[2] = 0.0;

155 Deriv [1] = exactderiv (0.0,time ,dt)[0];

156 Deriv [3] = exactderiv (0.0,time ,dt)[1];

157 Deriv [0] = Deriv [2] = 0.0;

158 Utemp [1] = U[1] + dt*(F[1]+H[1]-dx/6.0* Deriv [1]) *3.0/ dx;

159 Utemp [3] = U[3] + dt*(F[3]+H[3]-dx/6.0* Deriv [3]) *3.0/ dx;

160 Utemp [0] = Utemp [2] = 0.0;

161 } else if (Right_neigh_pt == 0) {//Right element

162 H[0] = num_flux(Left_neigh_pt ->U,U)[0];

163 H[2] = num_flux(Left_neigh_pt ->U,U)[1]; H[1] = H[3] = 0.0;

164 Deriv [0] = exactderiv(DomWidth ,time ,dt)[0];

165 Deriv [2] = exactderiv(DomWidth ,time ,dt)[1];

166 Deriv [1] = Deriv [3] = 0.0;

167 Utemp [0] = U[0] + dt*(F[0]+H[0]-dx/6.0* Deriv [0]) *3.0/ dx;

168 Utemp [2] = U[2] + dt*(F[2]+H[2]-dx/6.0* Deriv [2]) *3.0/ dx;

169 Utemp [1] = Utemp [3] = 0.0;

170 } else { // Central elements - solve left/right nodes

171 H[0] = num_flux(Left_neigh_pt ->U,U)[0];

172 H[1] = -num_flux(U,Right_neigh_pt ->U)[0];

173 H[2] = num_flux(Left_neigh_pt ->U,U)[1];

174 H[3] = -num_flux(U,Right_neigh_pt ->U)[1];

175

176 // Compute product Minv*(F+H) and store as vector p

177 vector <double > p(Nnode ,0.0);

178 for(unsigned k=0; k<Nnode; k++) {

179 for(unsigned j=0; j<Nnode; j++) {

180 p[k] = p[k] + Minv[k][j]*(F[j]+H[j]);

181 }

182 }

183

184 // Perform the Euler timestep

185 for(unsigned j=0; j<Nnode; j++) {

186 Utemp[j] = U[j] + dt*p[j];

187 }

188 } //End if statement for Numerical Flux

189 } //End timestep function

190

191

192 // update function to put temporary to true storage

193 void update () {

194 for(unsigned j=0; j<Nnode; j++) {

195 U[j] = Utemp[j];

196 }

197 } //End Update function

198

199

200 // Coords function to print solution across element

201 void coords(unsigned n_plot , double totaltime) {

APPENDIX E. 1D SHALLOW WATER CODE 98

202 for(unsigned n=0; n<n_plot; n++) {

203 double s = -1.0 + n*(2.0) /((double)n_plot -1);

204

205 //True field at local coordinate s

206 vector <double > TrueField = exact(inter_x(s),totaltime);

207

208 //Output , at coordinate x, the approximate and true fields

209 cout << inter_x(s) << " " << inter_u(s)[0] << " " <<

210 inter_u(s)[1] << " " << TrueField [0] << " " << TrueField [1]

211 << " " << abs(pow((TrueField [0] - inter_u(s)[0]) ,1)) << " "

212 << abs(pow((TrueField [1] - inter_u(s)[1]) ,1)) << "\n";

213 }

214

215 } //End Coords function

216

217 // L2Error(totaltime) - returns L2error for each field

218 vector <double > L2Error(double totaltime) {

219

220 // Approximate/true solutions at Gauss points

221 double GaussP = sqrt (3.0/5.0); // Symmetric local Gauss 3 point

222 vector <double > TrueGauss1 = exact(inter_x(GaussP),totaltime);

223 vector <double > ApprGauss1 = inter_u(GaussP);

224 vector <double > TrueGauss2 = exact(inter_x(-GaussP),totaltime);

225 vector <double > ApprGauss2 = inter_u(-GaussP);

226 vector <double > TrueGauss3 = exact(inter_x (0.0),totaltime);

227 vector <double > ApprGauss3 = inter_u (0.0);

228

229 double dx = X[1] - X[0]; // Constant element width dx

230 vector <double > VecSize(Nfield);

231 for(unsigned i=0; i<Nfield; i++) {

232 VecSize[i] =

233 dx /2.0*(5.0/9.0* pow((TrueGauss1[i]-ApprGauss1[i]) ,2)

234 + 5.0/9.0* pow((TrueGauss2[i]-ApprGauss2[i]) ,2)

235 + 8.0/9.0* pow((TrueGauss3[i]-ApprGauss3[i]) ,2));

236 }

237

238 return VecSize;

239 } //End L2Error function

240

241 }; //End WaveElement class

The main driver code sets up a vector of pointers, Element_pt, whose components

are members of the WaveElement class. The neighbouring information is set up by

assigning a pointer to the left element and a pointer to the right element for each

component of Element_pt so that can numerical fluxes can be assigned at element

boundaries.

After setting the initial condition for both the height and velocity field in each

APPENDIX E. 1D SHALLOW WATER CODE 99

element, the code performs explicit Euler timestepping for each of the elements, using

the function timestep(dt) written in the WaveElement class.

The code outputs the broken L2-errors of both the height and velocity solution at

a given time and the approximate solution across the domain. The driver code can

be seen below:

1 #include <iostream >

2 #include <fstream >

3 #include <vector >

4 #include <cmath >

5

6 #include"Wave1DClass.cc"

7

8 using namespace std;

9

10 main(){

11 // Pointers to elements

12 vector <WaveElement*> Element_pt(N_element);

13 for(unsigned e=0; e<N_element; e++) {

14 Element_pt[e] = new WaveElement;

15 }

16

17 //Set up neighbouring elements (ignore end elements)

18 for(unsigned e=1; e<N_element -1; e++) {

19 Element_pt[e]->Left_neigh_pt = Element_pt[e-1];

20 Element_pt[e]->Right_neigh_pt = Element_pt[e+1];

21 }

22

23 // First/last element only have single neighbour

24 Element_pt [0]-> Right_neigh_pt = Element_pt [1];

25 Element_pt[N_element -1]-> Left_neigh_pt = Element_pt[N_element

-2];

26

27 //Loop over elements , set X coords and intialise U and H at t

=0

28 for(unsigned e=0;e<N_element;e++) {

29 //Set left and right x coordinates 0 < x < DomWidth

30 Element_pt[e]->X[0] = DomWidth*e/((double)N_element);

31 Element_pt[e]->X[1] = DomWidth *(e+1)/((double)N_element);

32 // Unknown U has order of fields (ho ,h1 ,u0 ,u1)’

33 Element_pt[e]->U[0] = exact(Element_pt[e]->X[0] ,0.0) [0]; //

Height

34 Element_pt[e]->U[1] = exact(Element_pt[e]->X[1] ,0.0) [0];

35 Element_pt[e]->U[2] = exact(Element_pt[e]->X[0] ,0.0) [1]; //

Velocity

36 Element_pt[e]->U[3] = exact(Element_pt[e]->X[1] ,0.0) [1];

37 }

38

39 // Output solution across domain at t=0

APPENDIX E. 1D SHALLOW WATER CODE 100

40 for(unsigned e=0;e<N_element;e++) {

41 Element_pt[e]->coords(inter ,0.0);

42 }

43 cout << "\n\n"; unsigned count =0; // Start counter

44

45 // Perform the timesteps

46 for(unsigned i=1; i<(step_no +1); i++) {

47 ++count; // Increment counter

48 //Loop elements - Perform timestep on unknowns

49 for(unsigned e=0;e<N_element;e++) {

50 Element_pt[e]->timestep(dtime , double(i)*dtime); }

51

52 //Loop elements - Update values of unknowns

53 for(unsigned e=0;e<N_element;e++) {

54 Element_pt[e]->update (); }

55

56 // Update BCs at end points for Field and Flux

57 Element_pt [0]->U[0] =

58 exact(Element_pt [0]->X[0], double(i)*dtime)[0];

59 Element_pt [0]->U[2] =

60 exact(Element_pt [0]->X[0], double(i)*dtime)[1];

61 Element_pt[N_element -1]->U[1] =

62 exact(Element_pt[N_element -1]->X[1], double(i)*dtime)[0];

63 Element_pt[N_element -1]->U[3] =

64 exact(Element_pt[N_element -1]->X[1], double(i)*dtime)[1];

65

66 // Output solution across domain and calulate L2 error

67 if(count == stepplot) {

68 count = 0; //Reset counter for next plot

69 double SumHL2err = 0.0; double SumUL2err = 0.0; // L2errors

70 for(unsigned e=0;e<N_element;e++) {

71 // Output the approximate solution with coords function

72 Element_pt[e]->coords(inter ,double(i)*dtime);

73 SumHL2err = SumHL2err

74 + Element_pt[e]->L2Error(double(i)*dtime)[0]; // Height L2

75 SumUL2err = SumUL2err

76 + Element_pt[e]->L2Error(double(i)*dtime)[1]; //Vel L2

77 }

78 SumHL2err = sqrt(SumHL2err); SumUL2err = sqrt(SumUL2err);

79 cout << "\n\n" << "h L2 -Err = " << SumHL2err <<

80 " " << "u L2-Err = " << SumUL2err << "\n\n";

81

82 } //End plotting step

83 } //End timestep

84 } //End Main

Bibliography

[1] J.D. Logan. An Introduction to Nonlinear Partial Differential Equations (2nd

Edition). John Wiley and Sons Inc., Hoboken, New Jersey, 2008.

[2] R.J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge Uni-

versity Press, Cambridge, 2002.

[3] J.S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods -

Algorithms, Analysis and Applications. Springer, New York, 2008.

[4] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for Computa-

tional Fluid Dynamics. Oxford University Press, Oxford, 2005.

[5] G-S Jiang and E. Tadmor. Nonoscillatory Central Schemes for Multidimensional

Hyperbolic Conservation Laws. SIAM J. Sci. Comput., 19(6):1892–1917, 1998.

[6] A. Hazel and M. Heil. OOMPH-LIB. http://oomph-lib.maths.man.ac.uk/

doc/html/index.html.

[7] B. Cockburn and C-W. Shu. Runge-Kutta Discontinuous Galerkin Methods for

Convection Dominated Problems. J. Sci. Comput., 16(3):173–261, 2001.

[8] B.Q. Li. Discontinuous Finite Element Methods in Fluid Dynamics and Heat

Transfer. Springer-Verlag, London, 2008.

[9] P.L. Roe. Approximate Riemann Solvers, Parameter Vectors and Difference

Schemes. J. Comput. Phys., 43:357–372, 1981.

[10] P. Glaister. A Weak Formulation of Roe’s Approximate Riemann Solver to the

St. Venant Equations. J. Comput. Phys., 116:189–191, 1995.

101

BIBLIOGRAPHY 102

[11] S. Gottlieb and C-W. Shu. Total Variation Diminishing Runge-Kutta Schemes.

Math. Comp., 67(221):73–85, 1998.

[12] S.J. Bence, M.P. Hobson, and K.F. Riley. Mathematical Methods for Physics and

Engineering. Cambridge University Press, Cambridge, Second edition, 2008.

[13] B. Van Leer. Towards the ultimate conservation difference scheme V. J. Comput.

Phys., 32:1–136, 1979.

[14] C-W Shu. TVB uniformly high order schemes for conservation laws. Math.

Comp., 49:105–121, 1987.

[15] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative

Solvers: with Applications in Incompressible Fluid Dynamics (2nd Edition). Ox-

ford University Press, Oxford, 2006.

[16] G. Huang, C. Wu, and Y. Zheng. Theoretical Solution of Dam-Break Shock

Wave. J. Hydraul. Eng., 125(11):1210–1215, 1999.

[17] D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press, Oxford,

1990.

[18] C. Johnson. Personal communication, 2010.

