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Abstract
Genome-scale kinetic models of metabolism are important for
rational design of the metabolic engineering required for in-
dustrial biotechnology applications. They allow one to predict
the alterations needed to optimize the flux or yield of the
compounds of interest, while keeping the other functions of the
host organism to a minimal, but essential, level. We define a
pipeline for the generation of genome-scale kinetic models
from reconstruction data. To build such a model, inputs of all
concentrations, fluxes, rate laws, and kinetic parameters are
required. However, we propose typical estimates for these
numbers when experimental data are not available. While little
data are required to produce the model, the pipeline ensures
consistency with any known flux or concentration data, or any
kinetic constants. We apply the method to create genome-scale
models of Escherichia coli and Saccharomyces cerevisiae. We
go on to show how these may be used to expand a detailed
model of yeast glycolysis to the genome level.

Introduction

I
n recent years, two major (and divergent) modeling
methodologies have been adopted to increase our under-
standing of metabolism and its regulation. Models contain
either a large set of reactions with no kinetic detail (known

as constraint-based models), or a few reactions described to high
kinetic detail (kinetic models).

Constraint-based modeling uses physicochemical constraints
such as mass balance, energy balance, and flux limitations to
describe the potential behavior of an organism.1,2 The consensus
metabolic network of the model organism S. cerevisiae contains
thousands of reactions and metabolites.3–5 From the steady state
solution space of all possible fluxes, a number of techniques
have been proposed to deduce network behavior, including flux
balance and extreme pathway or elementary mode analysis. In
particular, flux balance analysis (FBA) highlights the most ef-
fective and efficient paths through the network in order to
achieve a particular objective function.6 The key benefit of FBA

lies in the minimal amount of biological knowledge and data
required to make quantitative inferences about network behav-
ior. However, constraint-based modeling is concerned only with
fluxes through the system and does not make any inferences or
predictions about cellular metabolite concentrations.

By contrast, kinetic modeling aims to characterize fully the
mechanics of each enzymatic reaction in terms of how changes
in metabolite concentrations affect local reaction rates. Many
metabolic models are available at BioModels.net.7 However,
they typically do not extend beyond central carbon metabolism
and contain only tens of reactions, which is insufficient to
deduce global metabolic behavior. Moreover, a considerable
amount of data are required to parameterize a mechanistic
model; if complex reactions like phosphofructokinase are in-
volved, a single enzyme kinetic formula may have ten or more
kinetic parameters.8 The determination of such parameters is
costly and time consuming and, moreover, many may be diffi-
cult or impossible to determine experimentally.

Attempts have been made to combine the two research par-
adigms to create large-scale kinetic models.9–11 Starting with a
network stoichiometry, they typically define generic rate laws
such as linlog or Michaelis-Menten-like kinetics, before esti-
mating those kinetic constants for which no experimental data
are available.12–16 However such methods do not take into ac-
count known steady state flux or concentration data, nor do they
ensure thermodynamic constraints.17

Here we propose a pipeline for generation of thermodynamically
consistent kinetic models using limited steady-state concentration
and flux data, applied to E. coli and yeast, two major host organ-
isms for industrial biotechnology. We go on to ask how these
models may be improved with the availability of time-course data.

Materials and Methods
The pipeline is displayed schematically in Fig. 1, and de-

scribed in detail below. The five models developed below are
available at BioModels.net:7

. E. coli, linlog:
http://identifiers.org/biomodels.db/MODEL1302140001

. E. coli, modular:
http://identifiers.org/biomodels.db/MODEL1302140002

. yeast, linlog:
http://identifiers.org/biomodels.db/MODEL1302140003

. yeast, modular:
http://identifiers.org/biomodels.db/MODEL1302140004

. yeast, Pritchard:
http://identifiers.org/biomodels.db/MODEL1302140005
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NETWORK
Version 6 of the yeast consensus network was taken from

http://yeast.sf.net/.3–5 This is a comprehensive reconstruction of
yeast metabolism made available in Systems Biology Markup
Language (SBML).18 We map all variables to either the intra- or

extracellular space. This reduces the
size of the network (Table 1); more-
over, since all variables are now in
one compartment, this transforma-
tion removes the need to know the
(relative) compartment sizes.

Version 1 of the E. coli network
was taken from http://ecoli
.sf.net/. This is structured identically
to the yeast model and derives from a
recently published reconstruction.19

FLUXES
A number of methods exist to

measure the fluxes through the net-
work. Experimentally, one may use
isotope labeling, for example, to
measure some fluxes. In the absence
of such data, we can estimate un-
known system fluxes using FBA,
which allows the identification of an
optimal path through the network in
order to achieve a particular objec-
tive.6 The techniques may be com-
bined, with computational techniques
used to choose a specific flux from the
space of all solutions consistent with
experimental data.

Here, we use geometric FBA to
identify a unique reference flux from
the space of all solutions to the FBA
problem.20 This algorithm, in partic-
ular the minimization of total flux,
produces a flux distribution that is
free from cycles and is thus thermo-
dynamically feasible.11

Reactions with zero fluxes are re-
moved from the network; the reac-
tion directionality of negative fluxes

is reversed, so that the predicted flux distribution is strictly
positive. The resultant E. coli model has 402 reactions and 399
variables, while the yeast model has 303 reactions and 282
variables.

CONCENTRATIONS
To build a kinetic model, concentration values must be

provided for all metabolites. Typically these will come
from metabolomics measurements, or databases such as
The Human Metabolome Database (HMDB).21 In the ab-
sence of such data, typical values may be used. Here, ex-
tracellular nutrients were set to initial concentrations of
1 mM and intracellular metabolites were set to 0.1 mM
(Table 2); these values are typical orders of magnitude.10,11

KINETIC RATE LAWS
Kinetic rate laws may be derived from knowledge of

the mechanism underlying the enzymatic process, or
taken from databases such as Sabio-RK.22 In many cases

Table 1. Size of Models Used in This Study

ORGANISM TYPE VARIABLES REACTIONS COMPARTMENTS

E. coli Reconstruction 1,806 2,583 6

E. coli No comps 1,132 1,801 2

E. coli Model 402 399 2

Yeast Reconstruction 1,456 1,887 16

Yeast No comps 764 1,159 2

Yeast Model 303 282 2

Fig. 1. Pipeline for the generation of a genome-scale kinetic model from a genome-scale
reconstruction. The model may be populated with data from experiments or existing, small-
scale models. Initial estimates may be provided for unknown entities by assigning them
typical values.
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these are not known, particularly at the relevant physiological
pH; we must instead resort to approximations such as the linlog
or common modular rate laws that can be applied to any reaction
stoichiometry.11–13,16

Consider the reaction A + B # 2C. Drawing ideas from
metabolic control analysis, linlog defines the rate15

v = v0 (1 + eA log (A=A0) + eB log (B=B0) + eC log (C=C0)),

where v0 is the initial flux; A0, B0, and C0 are the initial con-
centrations; and eA, eB, eC are the elasticities.

The common modular rate instead defines

v = (Vmax=KAKB)(A B - C2=Keq)=((1+ A=KA)(1+B=KB)

+ (1 + C=KC)2 - 1)

where Vmax is the maximum flux; KA, KB, and KC are the Mi-
chaelis constants; and Keq is the equilibrium constant.

The linlog rate law suffers from a lack of saturation when its
substrates tend to infinity. By contrast, the modular rate law is
saturative and, moreover, includes thermodynamic properties
via the equilibrium constant. Nonetheless, it may be preferable
to use linlog kinetics, as systems of linlog equations contain
fewer parameters and may be more numerically robust.13

PARAMETERIZATION
The kinetic formulae above lead to a range of kinetic parame-

ters. Ideally, these would be measured under the conditions of
interest using an enzymatic assay; when this is not possible, da-
tabases such as Brenda, Sabio-RK, or TECRdb (for equilibrium
constants) can be used.22–24 Again, in the absence of such data,
first estimates must be provided. These are summarized in Table 2.

For the linlog rate law and example reaction A + B #2C, the
initial flux v0 is calculated in step 2, and the initial concentra-
tions A0, B0, and C0 are calculated in step 3. Elasticities are
estimated following the tendency modeling approach and taken
to be the negative of their corresponding stoichiometric coeffi-
cient; thus eA = eB = 1 and eC = -2.12

Michaelis constants KA are typically of the same order of
magnitude as the metabolite concentration to which they refer.11

Thus, for the common modular rate law, we take as initial es-
timates KA = A0, KB = B0, and KC = C0. To ensure that the re-

action is initially thermodynamically favorable in the forward
direction, we take Keq = Keq,0 C0

2/A0 B0 for some Keq,0 > 1.
Following Ao9, we take Keq,0 = 2, though alternatives are ex-
plored below. The only remaining unknown is Vmax which may
be simply calculated by equating the flux calculated in step 2
with the kinetic rate law, whose terms are all strictly positive.

With these choices of v0 and Vmax for the linlog and common
modular rate laws, respectively, we ensure that the initial state is
a steady state (though this state is not necessarily stable).

COMPUTATIONAL RESOURCES
At each stage of the pipeline, SBML files are manipulated

using libSBML; this library may be accessed from a variety of
programming languages.25 Geometric FBA is performed using
the Cobra toolbox, which is available for Matlab and python.26

Steady state solutions, stiffness, and metabolic control analysis
calculations are carried out using COPASI.27

Results
The methodology outlined above defines a pipeline for gen-

eration of genome-scale kinetic models from reconstruction
data. As an example, we produce four models that do not

Table 2. Estimated Parameter Values for the Example
Reaction A + B < - > 2 C.

PARAMETER DESCRIPTION VALUE

A0, B0, C0 Initial concentration 0.1 mM (intracellular)

1 mM (extracellular)

V0 Initial flux Calculated in step 2

eA, eB Elasticity -1x stoichiometry

Vmax Maximum flux Calculated from V0

KA, KB, KC Michaelis constant KA = A0; KB = B0; KC = C0

Keq,0 Equilibrium constant 2

Fig. 2. Change in energy charge in the E. coli models, following a
perturbation in extracellular glucose from 1 mM to 2 mM. Shown
are the models with both modular (solid line) and linlog (dashed
line) rate laws.

Table 3. Model Robustness Characteristics

ORGANISM TYPE kmax (10 - 8/s) STIFFNESS (1011)

E. coli Linlog - 3.91 1.21

E. coli Modular - 2.75 1.89

Yeast Linlog - 4.14 0.367

Yeast Modular 540 7.59
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incorporate any data beyond what are available from the meta-
bolic reconstructions, using two organisms (E. coli and yeast) and
two generic rate laws (linlog and common modular). Once such a
genome-scale metabolic model has been produced, in silico ex-
periments may be performed and compared to experimental data.
For example, Fig. 2 illustrates the temporal evolution of E. coli
energy charge [adenosine triphosphate (ATP); adenosine diphos-
phate (ADP); adenosine monophosphate (AMP)]:

([ATP] + [ADP]=2)=([ATP] + [ADP] + [AMP])

The energy charge, which reflects the extent to which there are
anhydride-bound phosphate groups per adenosine moiety, varies
between 0 (all AMP) and 1 (all ATP).28 Atkinson argued that the
energy charge is the main effector of enzymes that are sensitive to
the energy status of the cell.28 Following a change in extracellular
glucose from 1 mM to 2 mM, we see that both E. coli models
demonstrate a drop in energy charge in response to the pertur-
bation. The modular (solid line) exhibits an oscillatory response,
while the linlog (dashed line) model does not oscillate. Hy-
potheses such as this may be validated through and improved by
comparison to extant experimental time-course data.

While linlog is a less accurate representation of saturative
enzyme kinetics at the single reaction level, their relative sim-
plicity (being linear in log-space) means they are better behaved
at the genome scale. Table 3 presents the maximum eigenvalue
kmax and stiffness of the four models as calculated using CO-
PASI.27 The linlog models are more stable and less stiff than
their common modular counterparts; indeed the modular yeast
model is unstable. Numerical robustness may be an important
consideration when dealing with models of this size. It should
be noted, however, that for all four models kmax is very small.
Its ‘‘non-zeroness’’ may be a numerical artifact, in which
case linear theory cannot inform us about the stability of the
system.

We may explore how characteristics such as model stability
are affected by choice of parameter estimate. In Fig. 3, we
present the effect of changing the estimated equilibrium con-
stant on kmax. For the E. coli model (solid line), the model be-
comes less stable as the equilibrium constants increase. This
could be expected intuitively: an increase in Keq leads to less
product inhibition. However, the yeast model is most stable at
Keq& 6; it is unstable for all choices of equilibrium constant.

Fig. 3. Variation in the maximum eigenvalue with log(Keq,0–1).
Shown are E.coli (solid line) and yeast (dashed line).

Fig. 4. Pathway level models with detailed kinetics, such as glycolysis, may be expanded to the genome level.
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Up to this point, we have only considered the characteristics
of models built without data. One natural way to add data is to
embed existing small-scale kinetic models into larger genome-
scale models. By running the smaller model to steady state, its
fluxes, concentrations, and kinetics may be used as part of the
above pipeline. Moreover, through use of semantic annotations,
the embedding may be automated. We apply this idea by em-
bedding a model of yeast glycolysis within a genome-scale
model (Fig. 4).29 By construction, the small-scale and large-
scale models must share the same concentrations and fluxes at
steady state.

However, the system-level behavior also remains similar.
Table 4 compares the flux control coefficients over glucose
consumption for the small-scale model of glycolysis, and the
large-scale model of glycolysis embedded within the whole
network.15 The control distributions are similar: they are highly
correlated (r = 0.973) with those reactions with high control in
the small model having similar control in the big model. The
largest discrepancy is found in pyruvate decarboxylase; its
substrate, pyruvate, forms a branch-point to the tricarboxylic
acid cycle in the metabolic network. However, this important
branch is not considered in the small glycolysis model; hence
the reaction has much less control.

Discussion
The methodology outlined in this paper defines a pipeline for

generation of genome-scale kinetic models from reconstruction
data. To build such a model, inputs of all concentrations, fluxes,

rate laws, and kinetic parameters are required. However, we pro-
pose typical estimates for these numbers when experimental data
are not available. The pipeline ensures consistency with a sparse
data set; while no data are required to produce the model, it can
incorporate any known flux or concentration data or any kinetic
constants. For example, the pipeline may be used to expand
pathway level models with detailed kinetics—such as glycolysis—
to investigate its interaction at the genome level. It can also allow
one to make predictions of the effect of cloning a new pathway into
a host, as is often desired in industrial biotechnology.

Genome-scale kinetic models offer possibilities not afforded
by other methodologies. Genome-scale constraint-based mod-
eling is concerned only with fluxes through the system and does
not make any inferences or predictions about cellular metabolite
concentrations. Nor does constraint-based modeling predict
control properties of the network. Small-scale kinetic models
can make predictions about concentrations and control, but only
within their (small) remit. We have seen that genome-scale ki-
netic models can encompass the smaller-scale models while also
allowing investigation of long-distance interactions, as shown in
Fig. 4.

Two issues have arisen in this review. The first is the inherent
stiffness of genome-scale models. Since cells need to produce
some metabolites (such as ATP) at a much higher rate than
others (such as zymosterol), metabolic processes will neces-
sarily be taking place at different timescales. As such, systems
biology tools are needed that can robustly simulate models of
this size and with these numerical instabilities.

The second issue is that the pipeline above is built using data
from a single steady state and, further, is built in such a way that
the model exactly matches these data. However, time-course
data such as that presented in Fig. 2 contains more information
and could be used to further constrain any unknown model pa-
rameters. Repositories of such dynamic data for use in model
parameterization and validation would be of great benefit to the
systems biology community.
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