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If a family of piecewise smooth systems depending on a real parameter is defined on two different regions
of the plane separated by a switching surface then a boundary equilibrium bifurcation occurs if a stationary
point of one of the systems intersects the switching surface at a critical value of the parameter. We derive the
leading order terms of a normal form for boundary equilibrium bifurcations of planar systems. This makes
it straightforward to derive a complete classification of the bifurcations that can occur. We are thus able
to confirm classic results of Filippov5 using different and more transparent methods, and explain why the
‘missing’ cases of Hogan et al7 are the only cases omitted in more recent work.

The dynamics of a piecewise smooth system are
determined by different equations according to
which regions of phase space the solutions pass
through. In each region the evolution is defined
by a smooth dynamical system, but the defin-
ing system changes as solutions cross boundaries
between regions (‘switching surfaces’). Piece-
wise smooth systems arise naturally in mechan-
ics, biology, control theory and electronics. Even
so, the conceptual framework for understanding
changes in dynamics as parameters are varied, i.e.
bifurcation theory, is still being developed. The
simple cases for planar systems in which an equi-
librium of one system intersects a switching sur-
face at a critical parameter value were described
by Filippov in his seminal book5. More recent
accounts have often been incomplete, and Hogan
et al identify two ‘missing’ cases7. In this paper
a lowest order normal form is derived that make
the systematic classification of cases much easier
to analyze and demonstrates that Filippov’s list
is indeed complete. An important codimension
two case that arises repeatedly in the analysis is
also described.

I. INTRODUCTION

Suppose that a surface divides phase space (the Eu-
clidean plane in the analysis below) into two regions,
and that within each region a smooth differential equa-
tion describes the evolution of trajectories in that region.
The standard theory of differential equations applies to
a trajectory until it strikes the boundary between the re-
gions. Here one of three conditions holds. If the vector
fields of both differential equations are transverse to the
surface with normal components in the same direction
then the trajectory crosses the surface continuously, but
with a possible jump in the tangent. If the vector fields
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of both differential equations are transverse to the sur-
face with normal components in the opposite directions
then the trajectory ‘sticks’ to the surface and a new rule
(or rules) for its evolution need to be determined. Fi-
nally, the trajectory may be tangential to the surface at
the intersection; this is called grazing and may result in
non-unique solutions either following the solution back
into the region from which it came, or into the surface
as in the previous case, or through the surface into the
other region, depending on a more detailed description of
the tangency. One possible strategy to treat the ‘stick-
ing’ solutions on the surface is to assume that a linear
combination of the two vector fields is taken so that the
transverse component of this combination is zero. This
defines the sliding, or Filippov, flow.

At first sight this may look outlandish, but many prob-
lems in control theory (where interventions are switched
off and on in different parts of phase space), mechan-
ics (where impacts lead to jumps in phase space), elec-
tronic circuits and biological modelling all use piecewise
smooth systems of the type described above or their
generalizations1. Filippov5 wrote a seminal description
of the theory of these systems, although many results are
stated without complete explication. As a result, many
of the phenomena described by Filippov5 have been re-
discovered independently in the past few years, often in
partial form.

The codimension one bifurcations of planar piece-
wise smooth systems involving a stationary point on the
switching manifold is one such example. Filippov5 states
that there are eight codimension one flows of this type
and sketches the vector fields without detailed derivation
of the cases. He goes on (Filippov5 pp. 246–250) to
give a detailed analysis of the different cases for general
systems. The approach below is designed to be much
clearer about how the different cases arise by using a
normal form (or more precisely the lowest order terms
of a normal form) on which the analysis is more trans-
parent. Kuznetsov et al8 give an excellent description of
some of the bifurcations that can occur, but their list is
incomplete. Guardia et al6 skip past the simple cases,
referring to Kuznetsov et al8 for details, and concentrate
on unfolding singularities in more than one parameter.
Codimension two bifurcations are also the focus of other
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studies2,4. Recently Hogan et al7 have made a careful
study of the results of Filippov and produce a complete
list of the bifurcations, including two that had been over-
looked by many authors. They also provide an example
in which all the known bifurcations are realized. How-
ever, there is still no systematic development of the the-
ory of these codimension one bifurcations of boundary
equilibria that makes it clear why there are eight non-
hyperbolic cases, nor why Filippov’s list of bifurcations
is exhaustive.
This paper presents a new framework for the system-

atic analysis of these bifurcations. An affine change of
variable and a change of the direction of time in some
cases is used to simplify the linear part of the vector field
on one side of the switching manifold in such a way that
the Filippov sliding flow is also preserved (this is the ex-
tra subtlety that is needed to ensure that the analysis
is correct). These simplified equations, essentially the
lowest order truncations of a normal form for the prob-
lem, are then analyzed, and there are few enough cases
that this can be done without a huge effort. This yields
the bifurcations of Filippov. The change of variable is
reminiscent of the approach taken by Nusse and Yorke
in their derivation of the border collision normal form9.
The linear part we use is also essentially that of Carvalho
and Tonon3, with the addition of a parameter to unfold
the bifurcations.
The remainder of the paper is organized as follows. In

the next section the formal description of the systems
discussed is given, together with the definition of the Fil-
ippov flow. The general conditions for a codimension one
boundary equilibrium bifurcation are also given. In sec-
tion III a series of coordinate changes is used to rewrite a
general system locally in a particularly simple form which
has hyperbolic behaviour away from the bifurcation point
making it possible to concentrate on the local truncation
to determine the dynamics near the bifurcation. This
local truncation is

(
ẋ
ẏ

)
=


Lk

(
x

y − µ

)
if y > 0(

c

1

)
if y < 0.

(1)

with k ∈ {0, 1} and

L0 =

(
a b
b a

)
and L1 =

(
a −b
b a

)
. (2)

Here the signs of the constants a and b (both non-zero),
and c can be chosen in various ways (in particular not
all cases need to be considered and, for example, without
loss of generality b > 0) and µ is the parameter. The
choice of L0 gives real eigenvectors a ± b and the choice
of L1 gives complex eigenvalues a ± ib. In the following
sections the different possibilities arising from (1) are de-
scribed, leading to the identification of the codimension
one bifurcations which are summarized in section X. Sec-

tion XI describes a codimension two case that recurs as a
boundary condition in the analysis of the earlier sections.

II. BOUNDARY EQUILIBRIUM BIFURCATIONS

In general the switching manifold is a function
H(x, y, µ) = 0 and we assume that at the bifurcation
value of the parameter an equilibrium of one of the defin-
ing vector fields lies on the switching manifold. This
is itself a codimension one condition and so to analyze
the codimension one bifurcations of such points all the
other properties of the flow must be generic. Provided
the defining functions are sufficiently smooth a change
of variable can be made so that the bifurcation occurs
at the origin in phase space when µ = 0, and that the
switching manifold is y = 0. Thus after these changes of
variable the system is(

ẋ
ẏ

)
=

{
f+(x, y, µ) if y > 0

f−(x, y, µ) if y < 0
(3)

where f± : R2 × R → R2 are smooth functions (in par-
ticular both can be extended to the whole plane) and

f+(0, 0, 0) = (0, 0)T , (4)

where a simple shift in the x-direction has been used
so that the intersection of the stationary point with the
switching manifold y = 0 at µ = 0 is at the origin. Ex-
panding about the origin

f+(x, y, µ) =

(
V1
V2

)
µ +

(
A B
C D

)(
x
y

)
+O(|(x, y, µ)|2),

(5)

and

f−(x, y, µ) =

(
U1

U2

)
+O(|(x, y, µ)|). (6)

For generic systems the constant U2 is non-zero, the ma-

trix

(
A B
C D

)
has distinct eigenvalues with non-zero real

parts and

C ̸= 0. (7)

The first of these conditions ensures that the lower flow is
not tangential to the x-axis locally, the second is a stan-
dard genericity assumption, and the third, (7), implies
that the flow in the y-direction does not decouple from
the x-variable to lowest order; geometrically it implies
that neither eigenvector of the linear part of the equa-
tions is parallel to the x-axis. The direction of time can
be chosen so that

U2 > 0 (8)

and so there is a neighbourhood of the origin for which all
trajectories of the lower dynamical system point upwards
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across y = 0 and so the section of the switching manifold
y = 0 in this neighbourhood on which sliding motion is
defined (if it exists) is that for which the y-component of
f+ points downwards (i.e. f+(x, 0, µ).(0, 1)T < 0).
Write f± in component form as (f±1 , f

±
2 )T . Suppose

that there is a line segment on which f+2 (x, 0, µ) < 0 for
some fixed µ (and f−2 (x, 0, µ) > 0 by assumption). The
Filippov construction suggests defining the evolution on
this stable switching surface by setting

ẋ = qf−1 (x, 0, µ) + (1− q)f+1 (x, 0, µ) (9)

where q is chosen so that the net y evolution is zero, i.e.

qf−2 (x, 0, µ) + (1− q)f+2 (x, 0, µ) = 0. (10)

Solving for q and substituting back into (9) gives

ẋ =
f−2 (x, 0, µ)f+1 (x, 0, µ)− f+2 (x, 0, µ)f−1 (x, 0, µ)

f−2 (x, 0, µ)− f+2 (x, 0, µ)
(11)

which is called the Filippov or sliding flow on the switch-
ing manifold1,5. Assuming that f+2 (x, 0, µ) < 0, i.e.
V2µ + Cx + O(|(x, µ)|2) < 0 then the Filippov flow for
(3) is (ignoring the higher order terms in both numerator
and denominator)

ẋ =
U2(Ax+ V1µ)− (V2µ+ Cx)U1

U2 − (V2µ+ Cx)
. (12)

A stationary point of the sliding flow will be called a
pseudo-stationary point of the full system. We will refer
to the linear type of a pseudo-stationary point in the
obvious way (pseudo-saddle, pseudo-node...).
There are other conventions for defining flows on and

through the switching manifold, for example using dif-
ferential inclusions on convex combinations of the vector
field, but here we restrict attention to the standard choice
of (11).

III. COORDINATE TRANSFORMATIONS

To simplify the form of the map we will use invertible
affine coordinate transformations. These need to be cho-
sen so that the positive and negative y half-planes map
to themselves, so that the switching surface is preserved,
and also such that the Filippov flow on any sliding sur-
faces are also preserved.
Consider the change of variable(

X
Y

)
=

(
α β
0 γ

)(
x
y

)
(13)

with inverse(
x
y

)
=

1

αγ

(
γ −β
0 α

)(
X
Y

)
. (14)

The upper and lower half planes are mapped to them-
selves if

γ > 0 (15)

and a short calculation shows that equation (5) for the
vector field in y > 0, or equivalently Y > 0, becomes(
Ẋ

Ẏ

)
=

(
αV1 + βV2

γV2

)
µ+ L

(
X
Y

)
+O(|(X,Y, µ)|2)

(16)
where L is the matrix

1

αγ

(
γ(αA+ βC) αβ(D −A) + α2B − β2C

γC γ(αD − βC)

)
. (17)

This matrix will have equal entries on the diagonal as
required by (1) if α(D − A) = 2βC. By assumption (7)
C ̸= 0 and so

β =
α(D −A)

2C
. (18)

The off-diagonal terms of the normal form (1) in y > 0
have equal modulus and if the eigenvalues of the linear
part are real then they are equal. In the case of real
distinct eigenvalues

∆ = (A+D)2 − 4(AD −BC) > 0 (19)

and equality of the off-diagonal coefficients of (17) implies

γ =
α2∆

4C2
, (∆ > 0), (20)

which is greater than zero as required. So γ determines
α and β by (20) and (18) up to a sign which is fixed by
choosing α > 0 so that the x-axis is mapped to itself
preserving orientation. If the eigenvalues are non-zero
and purely imaginary then ∆ < 0 and the off-diagonal
elements have opposite signs provided

γ = −α
2∆

4C2
, (∆ < 0), (21)

which is again positive and once again γ determines α
and β up to a sign. Note that L does not depend on the
signs chosen.

With these choices,

L =

(
1
2 (A+D) ±C/γ
C/γ 1

2 (A+D)

)
(22)

and the new variables evolve under the vector field F+

defined by (16), whilst in these new coordinates the lower
vector field becomes F− which is(

Ẋ

Ẏ

)
=

(
αU1 + βU2

γU2

)
+O(|(x, y, µ)|). (23)

One degree of freedom remains in the choice of γ, revers-
ing time has already been used to fix the sign of U2, see
(8), and it will also be possible to shift and/or reverse
the sign of X if needed.

First consider the sign of the components transverse to
y = 0. By definition Y = γy and so Ẏ = γẏ and so the
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time derivative of the transformed second coordinate has
the same sign as the original coordinate. More precisely
ẋ = f±(x) with the choice of sign on f± determined by

the sign of y and hence Y , and Ẋ = F±(X) = Sf±(x)
where x = S−1X. Taking the second coordinate shows
Ẏ |(X,Y ) = γf±2 (x). In other words the Y derivative in
the new coordinates is γ times the y derivative at the
preimage of that point in the old coordinates and so γ >
0 ensures that the signs are the same at corresponding
points.
On the stable portions of the switching manifold, which

are images of each other under the argument of the pre-
vious section, the Filippov sliding flows (11) are

ẋ =
f−2 f

+
1 − f+2 f

−
1

f−2 − f+2
, Ẋ =

F−
2 F

+
1 − F+

2 F
−
1

F−
2 − F+

2

.

Now we have already seen that F±
2 = γf±2 at the corre-

sponding points, and F±
1 = αf±1 + βf±2 so on the sliding

surface

Ẋ =
γf−2 (αf+1 + βf+2 )− γf+2 (αf−1 + βf−2 )

γ(f−2 − f+2 )

i.e.

Ẋ = α
f−
2 f+

1 −f+
2 f−

1

f−
2 −f+

2

(24)

where the right hand side is evaluated at x = X/α. This
is exactly the equation required to preserve the flow on
the sliding manifold. To see this suppose that ẋ = g(x)
is the sliding flow in the original coordinates. Then the
coordinate transformation (13) restricted to the sliding

manifold y = 0 is X = αx and hence Ẋ = αg(X/α) is
the conjugate flow, and this is precisely (24). This result
is not new and can be found for example in Filippov’s
book5 (Corollary to Theorem 4, p. 105).
By choosing

γ = 1/U2 (25)

the second component of the lower vector field is set to
unity to leading order.
With this choice we are one step away from completing

the derivation of the leading order normal form (1). To
be clear, in the new coordinates the piecewise smooth
system is

F+(X,Y, µ) =

(
αV1 + βV2
V2/U2

)
µ

+

(
1
2 (A+D) ±U2C
U2C

1
2 (A+D)

)(
X
Y

)
+O(|(X,Y, µ)|2),

(26)

and

F−(X,Y, µ) =

(
αU1 + βU2

1

)
+O(|(X,Y, µ)|). (27)

The final freedom remaining is to choose the direction
of X so that the sliding manifold is always on the left;

this will make comparisons between different cases much
easier to understand. Since the lower vector field always
has an upwards component, the switching manifold will
lie on the side which has F+

2 < 0 when Y = 0 (i.e. on
the switching manifold). Thus we need to consider the
sign of

(V2/U2µ+ U2CX)

for large |X| and make sure this is negative. If U2C > 0
(i.e. C > 0) then write a = 1

2 (A +D) and b = U2C > 0
and do not change the orientation of X. If U2C < 0 set
b = −U2C > 0 and reverse the direction of X, setting
X̃ = −X and then dropping the tilde immediately. The
effect of this is that in the new coordinates

F+(X,Y, µ) =

(
σ(αV1 + βV2)

V2/U2

)
µ

+

(
a ±b
b a

)(
X
Y

)
+O(|(X,Y, µ)|2),

(28)

and

F−(X,Y, µ) =

(
σ(αU1 + βU2)

1

)
+O(|(X,Y, µ)|)

(29)

where σ = +1 if C > 0 and σ = −1 if C < 0. Finally, a
shift in the X-direction of order µ can be used to write
the parameter dependence as in (1). To see this simply
note that if Z = X − pµ for some constant p and

Ẋ = aX + σbY + rµ, Ẏ = bX + aY + sµ

where σ ∈ {+1,−1} and r and s are constants then

Ż = aZ + σbY + (ap+ r)µ, Ẏ = bZ + aY + (bp+ s)µ

and if p is chosen so that (bp + s)/(ap + r) = a/b then
(bp + s)/a = (ap + r)/b = k ,say and so ap + r = kb,
bp+ s = ka and the equation becomes

Ż = aZ + σbY + kbµ, Ẏ = bZ + aY + kaµ

or (
Ż

Ẏ

)
=

(
a σb
b a

)(
Z

Y + kµ

)
(30)

from which we obtain the truncated normal form by re-
defining µ by a factor of −k and relabelling the variables
in the obvious way. Note that this order |µ| shift does not
change the form of the leading order terms of the lower
vector field.

A great advantage of this formulation is that in the
real case the stationary point is at (0, µ0, the eigenvalues
of the linear part are simply a± b and the corresponding
eigenvectors are the lines y = µ±x. This makes the con-
ditions for intersections of these lines with the switching
manifold particularly easy to describe: if µ > 0 it they
are simply the points (±µ, 0).
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IV. FILIPPOV’S EIGHT

For the remainder of this paper we assume that the co-
ordinate transformation of the previous section has been
made so that any generic Filippov system has leading
order terms given by (1) with linear parts (2).
Filippov describes the vector fields at a boundary equi-

librium bifurcation as a type 4 singularity of planar piece-
wise smooth systems and identifies eight of these (up to
conjugacy). These are reproduced here in a slightly mod-
ified form for clarity – the convention in this paper that
the sliding manifold is a half-line extending in x < 0
makes the complete classification more obvious. Essen-
tially the local phase portraits of Figure 1 can be un-
derstood from the normal form (1) by considering the
different alternatives for the linear type of the singular
point at µ = 0 of the upper vector field f+ together with
the direction of the Filippov flow on the sliding manifold
at the bifurcation point.
With the convention of the previous paragraph there

are four types of stationary point (stable and unstable
nodes, foci, and saddles – the stability of the focus does
not affect the diagram here) and in each of these the di-
rection of the flow on the sliding manifold may either
be positive or negative in the x-direction. These deter-
mine the eight codimension one vector fields of type 4
described by Filippov5.
Note that in the figure the lower vector field is drawn

as vertical if c may take both positive or negative values
(for appropriate values of the other parameters), whilst
it is drawn in the direction determined by c in the cases
where only one sign of c is possible. This follows what
appears to be Filippov’s convention, although he does not
use it on the saddles. It is a relatively easy exercise to
determine the range of parameters in the normal form (1)
appropriate for the different cases. These are summarized
below in the order that the cases are considered in this
paper. By the calculation of (36) made in the section V if
the linear part of the normal form is given by L0 in (2),
and of (44) in section VIII if the normal form is given
by L1, the sign of the flow on the sliding surface y = 0,
x < 0 is the sign of (a− bc)x if µ = 0. The different cases
reflect the labelling of Figure 1.

• Stable node: a < 0, 0 < b < |a| and c > a
b in case (a)

and c < a
b in case (b). Note that since a < 0 the sign

of c in case (b) must be negative.

• Unstable node: 0 < b < a and c < a
b in case(c); c > a

b
in case (d) and the sign of c must be positive in case
(d).

• Saddle: There are two possible cases for the saddle,
either 0 < a < b or 0 > a > −b. If ẋ > 0 on the
switching surface as in Figure 1e then c > a/b which
may be either positive or negative if 0 > a > −b (and
is always positive if 0 < a < b). Similarly ẋ < 0 on the
switching surface as in Figure 1e then c < a/b which

(a) (b)

( (d)

(e) (f)

(g) (h)

c)

FIG. 1. The eight codimension one phase portraits with the
convention that vertical lines are used in y < 0 if both signs
of c are possible, otherwise the slope indicates the sign of
c. The direction of time has been chosen so that the sliding
manifold is y = 0 with x < 0, so for comparison the cases
(a)-(h) correspond to Figures 91, 93, 94, 92, 89, 90, 95, 96
respectively.

may be either positive or negative if 0 < a < b (and is
always negative if 0 > a > −b).

• Focus: In this case the linear part is given by L1 in
(2) and a < 0 for the stable focus and a > 0 for the
unstable focus. Thus both signs of c are possible in
both cases depending on the sign of a.

V. STABLE NODE

This section will be relatively detailed, but in later
sections the results of routine calculations will be stated
rather than derived. If the hyperbolic stationary point
of f+ is a stable node (SN) then the eigenvalues a± b of
the linear part of the symmetric matrix L0 version of (1)
with (2) must satisfy

a < 0, 0 < b < |a|. (31)

With this choice both eigenvalues of L0, a±b, are negative

and distinct and the eigenvectors are

(
1
±1

)
. The stable

node exists if µ > 0. To understand the dynamics it is
necessary to understand the flow on the Filippov surface
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and how this varies with µ and the other parameters.
Recall from (1) that to lowest order

ẋ = ax+ b(y − µ), ẏ = bx+ a(y − µ), if y > 0 (32)

and

ẋ = c, ẏ = 1, if y < 0. (33)

Since ẏ > 0 if y < 0 the Filippov sliding surface is ob-
tained from the condition ẏ < 0 on y = 0 from the flow
in y > 0 i.e. bx− aµ < 0 and since b > 0 this means

x < xT =
a

b
µ. (34)

It will be useful (to avoid messy equations) to define

s =
a

b
(35)

and note that s < −1 in this section as a < −b < 0.
The Filippov sliding flow of the truncated normal form
in x < sµ is

ẋ =
1

D
((a− bc)x+ (ac− b)µ) (36)

where

D = 1− bx+ aµ (37)

and D > 0 in a neighbourhood of the origin. There is
a pseudo-equilibrium (a solution of ẋ = 0 on the sliding
manifold x < xT ) at

xPS =

(
b− ac

a− bc

)
µ (38)

provided xPS < xT .
First consider the case µ = 0 which corresponds to the

situation described in section IV. Then on the sliding sur-
face ẋ = (a−bc)x and xT = 0 (the degenerate stationary
point, see Figure 1a,b) . Hence if a− bc > 0 solutions on
the sliding manifold with µ = 0 move left (as x < 0 on
the sliding surface) whilst if a− bc < 0 they move to the
right, justifying the first case of the previous section.
To describe the dynamics as µ passes though zero it is

necessary to understand the one-dimensional dynamics
on the sliding manifold as a function of µ and the param-
eters. This depends crucially on the relative positions of
xPS and xT , and sometimes also with the intersection of
the eigenvectors of the stable node with y = 0 in µ > 0.
In this case, the eigenvectors (diagonals through (0, µ))
intersect y = 0 at x = −µ and x = µ. Moreover, at xT
the dynamics on the sliding surface is

ẋ =
1

D
[(a− bc)

a

b
+ (ac− b)]µ =

1

bD
(a2 − b2)µ

and so at x = xT , the tangency on the sliding surface,

ẋ > 0 if µ > 0; ẋ < 0 if µ > 0 (near xT ). (39)

Now the one-dimensional dynamics on the sliding surface
can be assembled using this information near xT and then
reversing the direction of flow as x passes through a point
where the sliding vector field vanishes, i.e. at a standard
pseudo-equilibria. The only candidate for such a reversal
is xPS . To simplify the conditions let

u =
b− ac

a− bc
(40)

so xPS = uµ and xT = sµ using (35), so the relative
positions of each are determined by inequalities between
s and u and also ±1 if µ > 0 and the eigenvectors of the
stable node are important. Since a − b < a + b < 0 al-
most all solutions tend to the node along the eigenvalue
with slope +1. The other eigenvector, which acts as a
separatrix, intersects y = 0 at x = µ if µ > 0. Solutions
starting on y = 0 to the right of this point tend to the
stationary point on the right hand (upper) branch of the
stable manifold and those with x < µ tend to the sta-
tionary point tangential to the left hand (lower) branch
of the eigenvector.

The sliding manifold is x < xT and by assumption
s < −1. Note that bD > 0 implies that near (x, µ) =
(0, 0) the sign of ẋ on the sliding manifold is the sign of
(a2 − b2)µ. The relative positions of the points xT = sµ
and xPS = uµ depend on the sign of µ.

Suppose that µ < 0. Then xT > 0 and a2 > b2 so the
direction of the sliding flow at xT is negative as shown
in Figure 2a. The point xPS does not exist if uµ > sµ,
i.e. if u < s whilst it exists and is a pseudo-stable node
if u > s (as the sign of ẋ on the sliding surface changes
sign at xPS).

Suppose that µ > 0. Then xT < 0 and ẋ on the sliding
manifold is positive at xT . Thus if u < s then xPS exists
and is unstable in the sliding manifold.

Putting this together with the behaviour in y > 0
shows that if u > s there is a stable pseudo-node on
the sliding surface for µ < 0 and a stable node in µ > 0:
stability is not changed. On the other hand if u < s then
if µ < 0 there are no stationary points locally and if µ > 0
the stable node in y > 0 coexists with a pseudo-saddle on
the sliding surface as shown in Figure 2a. This is a gen-
eralized saddle-node bifurcation. Note that u < s < −1
implies that the pseudo-saddle is always to the left of
the intersection of the eigendirection (1, 1)T of the stable
node, which intersects y = 0 at (−µ, 0) and hence the
geometry is completely defined as in the figure. This will
not always be the case below.

VI. UNSTABLE NODE

If the hyperbolic stationary point of f+ is an unstable
node (UN) then the eigenvalues a ± b of the linear part
of the symmetric matrix version of (1) satisfy

0 < b < a (41)
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(a)

(b)

c)(

(d)

m<0 m>0

xPS

xPS

xPS

xPSxPS

xPSxPS

xT xT

xT xT

xT

xT xT

xT

FIG. 2. Three of the four bifurcations of stable and unsta-
ble nodes, (c) and (d) are not topologically distinct, with
µ < 0 on the left and µ > 0 on the right. (a) General-
ized saddle-node bifurcation of pseudo-saddle and stable node.
(b) Transition from stable pseudo-node to unstable node. (c)
and (d) More generalized saddle-node bifurcations (cases with
|s| > 1 shown). Note that in (c) and (d) the stable manifold
of the pseudo-saddle is tangential in negative time to opposite
branches of the leading unstable eigenvector of the unstable
node. In case (c) u > −1 and in case (d) u < −1, with u as
defined in (40).

so that the eigenvalues of L, a ± b, are positive and dis-
tinct. The unstable node exists if µ > 0. From (32) and
(33) the sliding surface is again given by x < xT = sµ
with s = a/b > 1 from (35) and once again the pseudo-
stationary point, xPS , when it exists, is given by xPS =
uµ with u given by (40). As before, the sign of the sliding
flow near xT equals the sign of (a2 − b2)µ and if µ = 0
the flow on the sliding surface is ẋ = (a− bc)x leading to
the same direction of flow as in the stable node for this
degenerate case, confirming the remarks for the unstable
node in section IV.

Thus if µ < 0 and u < s then there are no pseudo-
stationary points on the sliding manifold locally and so-
lutions move away from xT in the negative x-direction. If
µ < 0 and u > s then the pseudo-stationary point exists
and is stable.

If µ > 0 and u > s then there are no pseudo-stationary

points and the unstable node exists in y > 0. Thus if u >
s there is a rather curious bifurcation with a transition
from a stable pseudo-stationary point in µ < 0 to an
unstable node in µ > 0. This is illustrated in Figure 2b.

If µ > 0 and u < s then the pseudo-stationary point
exists and is a saddle, unstable in the direction of the slid-
ing surface (by consistency with the sign of (a2−b2)µ > 0
near xT ). This therefore coexists with the unstable node
in y > 0 and two cases can be distinguished. If u < −1
then the y > 0 branch of the stable manifold of the
pseudo-saddle tends to the unstable node in reverse time
tangential to the negative branch of the weakly unsta-
ble direction, (1,−1)T ; whilst if −1 < u < s it tends
to the unstable node tangential to the positive branch.
This is illustrated in Figure 2c,d respectively. Topologi-
cally there is not a distinction between these two cases, so
they are not divided in Hogan et al7, but the difference
is worth observing nonetheless since the difference can
have significance in applications. The condition u > s
(the strange bifurcation of Figure 2b) is equivalent to

a− bc < 0 or c >
a

b
(42)

whilst the more standard saddle-node bifurcation occurs
if a− bc > 0.

VII. SADDLE

If the eigenvalues of the symmetric matrix L0 of (2)
have opposite signs then

0 < |a| < b. (43)

All the calculations of the previous two sections hold
good here although the interpretation changes, and there
are two cases, a > 0 and a < 0, which will be treated sep-
arately.

A. Case SA: a > 0.

Unlike the previous sections a2 − b2 < 0 and so the
direction of the flow on the sliding manifold near xT is
reversed: if µ < 0 it is positive and if µ < 0 it is negative.
In this case 0 < s < 1, xT = sµ.

If µ < 0 then −|µ| < xT < 0 and the flow on the sliding
surface is positive near xT . There is no pseudo-stationary
point if u < s (recall the definitions of s and u in (35)
and (40), whilst if u > s then there is a pseudo-saddle,
unstable in the sliding direction.

If µ > 0 then 0 < xT < µ and the flow on the sliding
surface is negative near xT . If u > s then there is no
pseudo-stationary point and the saddle in y > 0 exists,
so in this case there is no bifurcation; a pseudo-saddle in
µ < 0 becomes a standard saddle if µ > 0.

If u < s, so there is no pseudo-stationary point if µ < 0,
then µ > 0 implies the existence of a stable pseudo-node,
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(a) (b)

xPSxPS x
T

FIG. 3. Two of the three bifurcations of saddles showing µ > 0
only. (a) Generalized saddle-node bifurcation with −1 < u <
s; the pseudo-node is approached in y > 0 by a trajectory that
comes from y < 0. (b) Generalized saddle-node bifurcation
with u < −1. Here the pseudo-node is approached from y > 0
by a trajectory that stays in y > 0.

so there is a non-standard saddle-node bifurcation with
the creation of a saddle and stable pseudo-node as µ
passes through zero. This bifurcation has two subcases
as illustrated in Figure 3. If −1 < u < s then (since
s < 1) the pseudo-node xPS lies between intersections
of the stable and unstable manifolds of the saddle with
y = 0, and hence the solution that tends to xPS from
y > 0 actually comes from the region y < 0, whilst if
u < −1 then xPS lies to the left of the unstable manifold
of the saddle and comes from y > 0. This reflects a gen-
uine topological difference between the two cases (unlike
the distinction made earlier for the unstable node). The
condition −1 < u < s is a

b < c < 1, and u < −1 implies
c > 1.

B. Case SB: a < 0.

If a < 0 then −1 < s < 0 and the cases are similar.
If µ < 0 then 0 < xT < |µ| and the direction of the

flow on the sliding manifold near xT is positive. As in
Case SA, there is no pseudo-stationary point if u < s
and if u > s then there is a pseudo-saddle, unstable in
the sliding direction. If µ > 0 then the direction of the
flow on the sliding manifold near xT is negative. As in
Case SA there is no pseudo-stationary point if u > s and
a stable pseudo-node if u < s. In the former case there is
a transition from a pseudo-saddle to a standard saddle as
µ passes through zero and the latter case is a generalized
saddle-node bifurcation. The two cases −1 < u < s and
u < −1 are distinguished in the same way as in the case
SA.

VIII. STABLE FOCUS

For the stable focus and the unstable focus of the next
section the linear part of the normal form is antisym-
metric L1 of (2) with b > 0 which implies that the rota-
tion is counterclockwise and so the switching surface is
in x < xT = sµ, s = a/b (as before, see (35)). In this
case the flow on the sliding manifold is

ẋ =
1

D
[(a− bc)x+ (b+ ac)µ] (44)

(a) (b)

(c) (d)

xTxT

xT
xT

xPS xPS

xPS

FIG. 4. Four of the five bifurcations of stable and unstable foci
showing µ > 0 only. (a) Generalized saddle-node bifurcation
of pseudo-saddle and stable focus. (b) Stable sliding orbit
with unstable focus. (c) Stable sliding orbit with pseudo-
saddle and unstable focus. (d) Unstable focus and pseudo-
saddle.

with D given by (37) and so xPS = vµ with

v =
ac+ b

bc− a
(45)

provided xPS < xT . At xT (44) is

ẋ =
1

bD
(a2 + b2)µ (46)

and so, since D > 0 locally, the direction of the sliding
flow near xT is determined by the sign of µ (positive if
µ > 0 and negative if µ < 0).

Thus for the stable focus

a < 0, b > 0, (s < 0) (47)

and so if µ < 0 and v < s then xT > 0 and there is no
pseudo-stationary point and sliding solutions move left,
whilst if µ < 0 and v > s then there is a stable pseudo-
node.

If µ > 0 then xT < 0 and a pseudo-saddle exists if
v < s, whilst no pseudo-stationary points exist if v > s
and all solutions on the sliding manifold move up to xT
and from there to the stable focus in y > 0.

Thus if v > s a stable pseudo-node becomes a stable
focus as the parameter varies through zero. If v < s then
there is a generalized saddle-node bifurcation (or more
accurately, a saddle-focus!) as shown in Figure 4a, in
which a pseudo-saddle and stable focus are created as the
bifurcation parameter is varied through zero. Note that
this latter condition, v < s, is equivalent to a− bc > 0 or
c < a

b .
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IX. UNSTABLE FOCUS

This case is rather more interesting. The linear part
of the normal form is L1 of (2) with parameters

a > 0, b > 0, (s > 0). (48)

The definitions of xT , xPS , s and v are as in section VIII
and the direction of the sliding flow near xT is again
determined by (46).
If µ < 0 then there are two cases. If v < s then there

are no pseudo-stationary points on the sliding manifold
locally and solutions slide to the left. If v > s then there
is a stable pseudo-node on the sliding surface.
If µ > 0 then again there are two possible cases for

the existence of pseudo-stationary points. If v > s then
there are no pseudo-stationary points and solutions slide
to the right, whilst if v < s there is a pseudo-saddle at
xPS = vµ and solutions to the right of this point slide
towards xT .
In previous cases this, together with the linear flow

in y > 0 was enough to determine the behaviour of so-
lutions. In this case solutions that reach the tangency
point xT along the sliding manifold may return to the
sliding manifold and thence slide to xT forming a sliding
periodic orbit. This could not happen in previous cases.
If v > s and µ > 0 then the solution in y > 0 through
(xT , 0) will return to y = 0 with x < xT after a time less
than 2π/b and then slide back to xT creating the sliding
orbit as shown in Figure 4b.
If v < s then the situation is a little more complicated,

see Figure 4c,d. As before, the solution through (xT , 0)
will return to y = 0 for the first time at some point
x = hµ, but this time if h < v then the solution is on the
‘other’ side of the pseudo-saddle and will not return to
xT , whilst if h > v then there will be a sliding periodic
orbit. At the boundary between these two cases, h = v,
there is a homoclinic orbit from xPS to itself that includes
a sliding component. This condition can be expressed
implicitly, and (for the sake of completeness) we give the
rather uninformative expressions.
By simple geometry (using the sine rule) an expression

for the angle ψ subtended at the unstable focus with the
points xPS and xT can be obtained, and the time τh to
pass through 2π − ψ is obtained by dividing by b giving

τh =
1

b

(
2π − sin−1

(
s− v√

v2 + 1
√
s2 + 1

))
. (49)

Thus the special solution exists if the solution in y > 0,
y(t) satisfies y(τh) = 0 and y(t) > 0, 0 < t < τh. The
first of these conditions is (after cancelling a factor of µ)

eaτh
(
cos(bτh)−

a

b
sin(bτh)

)
= 1 (50)

giving the implicit conditions for the existence of the crit-
ical parameter values.

X. SUMMARY

In this section the results on codimension one border
equilibrium bifurcations of (1) with either L0 or L1 de-
fined by (2) with a description of the dynamics as µ passes
through zero. The connection to Filippov’s description5

is given along with the relevant case from Hogan et al7

in the order they appear in their Table 1. Following
Hogan et al7 we use the symbols p, n, f , and s to in-
dicate pseudo, node, focus and saddle and add spo for
sliding periodic orbit and subscripts s or u to indicate
stability (stable or unstable). Bifurcation transitions are
indicated by a double arrow.

A. Stable Node (Section V)

In this case the linear part is L0 with a < 0, 0 < b < |a|.

• If c > a
b (i.e. u > s) then a stable pseudo-node exists

in µ < 0 and a stable node in µ > 0. This is described
in Figure 101 of Filippov5 and is the first case of Hogan
et al7 with transition pns ↔ ns.

• If c < a
b then there are no stationary points or pseudo-

stationary points if µ < 0 and a pseudo-saddle coex-
ists with a stable node if µ > 0. This is a generalized
saddle-node bifurcation illustrated in Figure 2a corre-
sponding to an unfolding of Figure 93 of Filippov5 and
is Hogan et al ’s third case7 (one of the two ‘missing’
cases) with transition ∅ ↔ ps+ ns.

B. Unstable Node (Section VI)

In this case the linear part is L0 with 0 < b < a.

• If c > a
b then a stable pseudo-node exists if µ < 0 and

an unstable node if µ > 0, a bifurcation illustrated in
Figure 2b. This is the interesting ’missing’ case of an
unfolding of Filippov’s Figure 925 and is case four of
Hogan et al7 with transition pns ↔ nu.

• If c < a
b then there are no stationary points or pseudo-

stationary points locally if µ < 0 and a pseudo-saddle
and unstable node if µ > 0. This is a generalized
saddle-node bifurcation corresponding to an unfolding
of Figure 94 of Filippov5 and is case 1 of Hogan et
al7 with the transition ∅ ↔ ps + nu. If c > 1 (i.e.
u < −1)then the branch of the stable manifold of the
pseudo-saddle approaches the node in reverse time tan-
gential to the negative (x < 0) branch of the weakly
unstable eigenvector of the node, whilst if c < 1 the
tangential approach is to the positive branch. See Fig-
ures 2c,d. Note that this is not a topological distinc-
tion, but it may be important in examples.
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C. Saddle (Section VII)

In this case the linear part is L0 with 0 < |a| < b.

• If c < a
b (i.e. u > s) then there is a pseudo-saddle if

µ < 0 and a saddle if µ > 0. This corresponds to an
unfolding of Filippov’s Figure 905 and case 7 of Hogan
et al7 with transition ps↔ s.

• If c > a
b and u < −1, i.e. if a

b < c < 1, then there are
no stationary points or pseudo-stationary points if µ <
0 and a stable pseudo-node coexists with a saddle if
µ > 0 so there is a generalized saddle-node bifurcation
and the trajectory that approaches the pseudo-node
from y > 0 lies in y > 0 for all negative time. This is
Filippov’s Figure 1005 and case 5 of Hogan et al7 with
transition ∅ ↔ ps+ s.

• If c > a
b and u > −1, i.e. if c < 1, then there are no

stationary points or pseudo-stationary points if µ < 0
and a stable pseudo-node coexists with a saddle if µ >
0 so there is a generalized saddle-node bifurcation and
the trajectory that approaches the pseudo-node from
y > 0 lies in y < 0 for all sufficiently large and negative
times. This is an unfolding of Filippov’s Figure 895 and
case 6 of Hogan et al7 with transition ∅ ↔ ps+ s.

D. Stable Focus (Section VIII)

In this case the linear part is L1 with a < 0 < b.

• If c > a
b (i.e. v > s) then a stable pseudo-node exists

if µ < 0 and if µ > 0 there is a stable focus. The
transition is thus pns ↔ fs and it is an unfolding of
Filippov’s Figure 955 and case 11 of Hogan et al7.

• If c < a
b then there are no stationary points or pseudo-

stationary points locally if µ < 0 whilst a pseudo-
saddle coexists with the stable focus if µ > 0, so there
is a generalized saddle-node bifurcation. The flow if
µ > 0 is sketched in Figure 4a. The transition is there-
fore ∅ ↔ ps + fs which is an unfolding of Filippov’s
Figure 96 and case 12 of Hogan et al7.

E. Unstable Focus (Section IX)

In this case the linear part is L1 with 0 < a, b.

• If c > a
b (i.e. v > s) then a stable pseudo-node exists if

µ < 0 and if µ > 0 there is a stable sliding periodic or-
bit enclosing an unstable focus as shown in Figure 4b.
The transition is thus pns ↔ spos+fu which is an un-
folding of Filippov’s Figure 955 and case 10 of Hogan
et al7.

• If c < a
b and h < v (see Section IX) then there are no

stationary points or pseudo-stationary points locally if
µ < 0 whilst a pseudo-saddle coexists with the unstable

focus if µ > 0 (Figure 4d). The transition is ∅ ↔ ps+fu
which is Filippov’s Figure 1025 and case 9 of Hogan et
al7.

• If c < a
b and h < v (see Section IX) then there are no

stationary points or pseudo-stationary points locally if
µ < 0 whilst a pseudo-saddle coexists with the unstable
focus and a stable sliding periosic orbit if µ > 0 as
shown in Figure 4c. The transition is ∅ ↔ ps+spos+fu
which is Filippov’s Figure 985 and case 8 of Hogan et
al7.

The boundary between these cases is given implicitly by
(49), (50).

We have thus isolated twelve topologically distinct
cases (one of which, the generalized saddle-node bifur-
cation of the unstable node) was divided further into
two cases depending on which branch of the weak unsta-
ble manifold of the unstable node the stable manifold of
the pseudo-saddle tends to in reverse time. These twelve
cases are precisely the cases described by Filippov5 and
Hogan et al7. The creation of pairs of stationary (or
pseudo-stationary) points in generalized saddle-node bi-
furcations leads to points that are separated by a distance
of order |µ|, unlike the characteristic

√
|µ| separation of

smooth saddle-node bifurcations. Similarly, the growth
of the amplitude of sliding periodic orbits is again pro-
portional to |µ| rather than the

√
|µ| of standard Hopf

bifurcations.

XI. CODIMENSION TWO BIFURCATIONS

The boundaries between any two of the codimension
one bifurcation regions described above provides a nat-
ural way of discussing some of the codimension two bi-
furcations of planar Filippov systems. For example if
the linear part of the normal form is given by the anti-
symmetric L1 then the boundary between the stable and
unstable focus cases is the codimension two Boundary
Hopf bifurcation described by Dercole et al4.

In this section a codimension two bifurcation will be
considered associated with the condition c = a

b which is
on the boundary between many of the cases described in
previous section. This is not an obvious choice without
having seen the analysis of previous sections. Consider
the two cases of Figure 2b,d: in the former case there is
a transition from a codimension one bifurcation in which
a stable pseudo-node becomes an unstable focus and a
generalized saddle-node bifurcation. To make matters
more complicated the far-field flow on the sliding surface
must change direction, which suggests that higher order
terms become significant.

Both bifurcations are described in section VI with
0 < b < a in L0 of (2). The first has u > s with s and u
defined by (35) and (40), which implies that a < bc and
a2 < b2 (the latter of which is automatically satisfied).
In particular c must be positive. The second has u < s
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FIG. 5. The codimension two parameter space; the existence
of pseudo-equilibria is indicated using the symbols x±. The
loci of the one-dimensional boundary bifurcations BB± are
the half-axes with µ = 0. SN denotes the locus of a pseudo-
saddle-node bifurcation. (a) R < 0: x− is a pseudo-saddle
and x+ a stable pseudo-node. (b) R > 0: x− is a stable
pseudo-node and x+ a pseudo-saddle.

(with u > −1) and has a pseudo-saddle and the unstable
focus coexisting in µ > 0. Thus the codimension two
situation is u = s, i.e. c = a

b , µ = 0, with 0 < b < a.
As noted earlier, section X shows that this is an impor-
tant codimension two situation in many bifurcations, and
the local bifurcation diagram of Figure 5 derived in this
section will be relevant for all these cases, but with a dif-
ferent interpretation of the upper and lower flows. The
condition implies that the linear terms in x of the sliding
flow vanishes and so there is a classic bifurcation in the
sliding manifold itself.
Setting c = a

b + ϵ, the description of the bifurcations
in section VI together with equation (42) shows that if
ϵ > 0 the bifurcation as µ passes through zero has the
interesting transition from a stable pseudo-node to an
unstable node, whilst if ϵ < 0 then there is a more stan-
dard saddle-node bifurcation. To analyze the dynamics
near the codimension two point (µ, ϵ) = (0, 0) first note
that since both the individual flows f± are hyperbolic,
the behaviour off the sliding surface does not change sig-
nificantly. On the sliding surface x < sµ (s = a/b) the
flow (36) becomes

ẋ =
1

bD

(
(a2 − b2)µ− b2ϵx+Rx2 + . . .

)
(51)

where the coefficient R depends on the details of the par-
ticular flow and is typically non-zero. The local bifurca-
tion structure of this equation is simply a matter of cal-
culation with quadratics and some irritating inequalities,
and the results are sketched in Figure 5, where BB±

refers to a boundary bifurcation in which x± coincides
with the tangency point xT = sµ. This creates or de-
stroys a pseudo-equilibrium. The full two-dimensional
flows can be obtained by adding the hyperbolic flows of
the systems f± to this picture. The bifurcation sequence
is different depending on the sign of R.
Suppose R < 0 as shown in Figure 5a. If ϵ > 0 then

as µ increases from a negative value, initially there are
no pseudo-stationary points and orbits slide left, then
a saddle-node bifurcation creates a pair x± of pseudo-
stationary points: x− is a saddle, unstable in the slid-

ing manifold, and x+ is stable. As µ increases further
the stable pseudo-stationary point x+ is destroyed in a
boundary bifurcation BB+ at µ = 0 and the unstable
node in y > 0 is created, so if µ > 0 the unstable node
coexists with the pseudo-saddle, whose role is essentially
to ensure that the stability of the bifurcating solutions is
compatible with the constraints due to the sign of R.

If ϵ < 0 then initially there are no pseudo-stationary
points, and as µ passes through zero a pseudo-saddle, x−
is created by boundary bifurcation and the unstable node
in y > 0 is also created: effectively this is a saddle-node
bifurcation.

Now suppose that R > 0 (Figure 5b). If ϵ > 0 then
for µ < 0 there is a stable pseudo-node x−, and this is
destroyed by a boundary bifurcation at µ = 0 which also
creates the unstable node in y > 0. If ϵ < 0 then as
µ is increased, the stable pseudo-node x− exists and as
µ passes through zero a pseudo-saddle is created by a
boundary bifurcation that also creates the unstable node
in y > 0. This is the standard local picture. As µ in-
creases further the two pseudo-stationary orbits are de-
stroyed by a saddle-node bifurcation on the sliding man-
ifold leaving only the unstable node in y > 0.

Other cases can be considered similarly and those that
involve the criterion c = a

b all have the same local picture
on the sliding surface, but with mild re-interpretations for
the full planar system.

XII. CONCLUSION

By deriving a lowest order normal form for boundary
equilibrium bifurcations it is possible to understand the
list provided by Filippov5 and ensure that all cases have
been considered systematically. The analysis also draws
attention to codimension two points that separate the
different codimension one bifurcations described. This
provides a particularly simple framework within which
to describe the bifurcations of planar systems and it may
be possible to extend these ideas to higher dimensions.
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