
GPU Accelerated Structure-Exploiting Matched
Forward and Back Projection for Algebraic
Iterative Cone Beam CT Reconstruction

Thompson, William M and Lionheart, William RB

2014

MIMS EPrint: 2016.48

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


GPU Accelerated Structure-Exploiting Matched
Forward and Back Projection for Algebraic Iterative

Cone Beam CT Reconstruction
William M. Thompson and William R. B. Lionheart

Abstract—Algebraic iterative reconstruction algorithms have

been the subject of much research into problems of limited data

CT reconstruction. However, their use for practical problems,

particularly for high resolution systems and corresponding large

volume sizes, has often been considered unfeasible due to their

high computational demands. For cone beam geometry, we

present a highly parallel adaptation of Siddon’s algorithm for

discrete forward and back projection, based on exploitation of

structure in the pattern of the cone beam rays. The proposed

algorithm has been implemented for nVidia GPUs using CUDA,

resulting in speedup of an order of magnitude when tested against

a non-structure exploiting parallel CPU implementation of Ja-

cobs’ algorithm. The work is presented in the context of circular

scan, flat panel detector micro CT, but could easily be adapted

to other scanning trajectories and detector configurations.

I. INTRODUCTION

Cone beam x-ray micro CT is now a widely-used imaging
technique in materials science [1], and also in other appli-
cations such as non-destructive testing, oil exploration and
semiconductor manufacture for example. In such applications,
there is currently a drive towards faster acquisition times,
motivated by a variety of reasons including higher through-
put scanning, dose reduction and higher temporal resolution
four dimensional imaging. To this end, the use of algebraic
iterative reconstruction algorithms involving total variation
(TV) minimisation (e.g. [2], [3]) is the subject of much
current research. Such algorithms have particularly high utility
in these applications, as objects of interest often consist of
homogeneous materials with a piecewise constant structure. A
typical problem may involve calculating distribution of pore
sizes based on analysis of a segmented volume, for example.

At the core of any algebraic iterative reconstruction algo-
rithm are the projection matrix A, and its transpose, represent-
ing back projection; these are formed from a discrete model
of the projection process, for which many choices exist. A
common choice is to represent the rays as straight lines, and
to consider the lengths of intersection with a regular grid of
voxels. Then the discrete forward projection of the nth ray is
given by

pn =
�

i,j,k

ln(i, j, k)x(i, j, k), (1)

where ln(i, j, k) represents the length of intersection, and
x(i, j, k) is the value of the CT attenuation coefficient function

Henry Moseley X-ray Imaging Facility and School of Mathematics, Univer-
sity of Manchester. Corresponding author: William R. B. Lionheart, E-mail:
bill.lionheart@manchester.ac.uk.

in the voxel with x, y and z indices (i, j, k). All such ln(i, j, k)
together form the projection matrix A; however, due to the
size of the system, these values are usually not stored but are
computed on the fly during forward or back projection.

Siddon’s algorithm [4] gives an efficient way to calculate
the values of ln(i, j, k) by following rays through the volume.
Subsequent work ([5], [6], [7], [8]) has refined Siddon’s
algorithm somewhat, and more recently, a new approach has
been proposed [9]. However, all of these methods are presented
in the general case of a single ray, and do not exploit any
structure in the pattern of multiple rays.

A typical cone-beam micro CT scanner consists of a micro-
focus x-ray source located opposite a square flat panel de-
tector; the object under inspection is rotated in the path of
the beam to change the projection angle. Typical detector
resolutions can be 2048×2048 pixels or higher, with resulting
reconstructed volume size of 20483 voxels; therefore, in order
to enable algebraic iterative reconstruction of realistically sized
experimental data sets within reasonable time scales, it is
essential to make the discrete forward and back projection
operations as fast as possible. For this reason, in practical ap-
plications it is often the case that a different discrete model is
used for back projection than that used for forward projection.
In such cases, the matrix representing back projection is not
the exact transpose of the projection matrix, which may have
a negative impact on algorithm convergence. Our work has
focused on implementations where the same model is used
for both, creating a matched forward and back projector pair.

The work presented here discusses acceleration of Siddon’s
algorithm in the cone beam case, by exploiting structure
in the rays. Although the work is presented in the specific
case of a flat panel detector, the method is also equally
applicable to curved detectors. The work is presented in the
context of forward projection, but it should be noted that the
implementation of the corresponding matched back projector
uses the same method for the calculation of the ray-voxel
intersection lengths, but with obvious differences in how these
are used.

II. SIDDON’S ALGORITHM

Siddon noted that since most of the ln(i, j, k) are zero,
rather than summing (1) over all voxels, it is much more
efficient to follow the path of each ray through the volume,
summing over only the non-zero values.

Considering only the two-dimensional case initially, and
adopting the notation of [5], let a ray have end points



p1

p2

αmin

αmax

l(i, j)

αy(0)

αy(1)

αx(0)

αx(1)

αx(Nx)

αy(Ny)

Fig. 1: Parametric representation of rays in Siddon’s algorithm

p1 = (p1x, p1y) and p2 = (p2x, p2y), and assume p1x �= p2x
and p1y �= p2y; the degenerate cases can be handled trivially.
Let p = (px, py) be any point along the ray; then we have the
parametric representation

px(α) = p1x + α(p2x − p1x), (2)
py(α) = p1y + α(p2y − p1y), (3)

where α ∈ R and α ∈ [0, 1] for points on the ray between p1
and p2.

Without loss of generality, assume that the reconstruction
grid consists of isotropic cubic voxels of unit size, with the
grid origin at the lower left corner. In reality, the source and
detector geometry can be simply scaled and translated to fit.
Define the grid by its edges, the surfaces x = i and y = j,
where i ∈ {0, . . . , Nx} and j ∈ {0, . . . , Ny}, and denote these
respectively as the x and y planes.

Let αx(i) and αy(j) represent the α values at the intersec-
tion points of the ray with the ith x plane and jth y plane, as
shown in figure 1; then

αx(i) =
i− p1x

p2x − p1x
, αy(j) =

j − p1y
p2y − p1y

. (4)

Note that these points are not restricted to intersections lying
within the grid.

Denote the values of α at the ray’s grid entry and exit points
by αmin and αmax. These may be calculated easily from the αx

and αy values at the grid extremities. Denote the indices of
the first intersected x and y planes after the ray enters the grid
by respectively imin and jmin. Similarly, denote the indices of
the last intersected x and y planes, up to and including the
grid edge, by respectively imax and jmax. Again, these may be
calculated from the αx and αy values at the grid extremities.

Using these calculated indices, we now form arrays αx[.]
and αy[.] containing the α values of every intersection point
of the ray with the x and y planes:

αx[imin, . . . , imax] = [αx(imin), . . . ,αx(imax)], (5)
αy[jmin, . . . , jmax] = [αy(jmin), . . . ,αy(jmax)]. (6)

We then sort the elements of
�
αmin,αx[.],αy[.]

�
in ascending

order, forming the single array αxy[.], containing the α values
of every intersection point of the ray with the grid edges, in
monotonically increasing order. Note that in the construction

of the αxy[.] array, duplicate values of αx and αy are not
included. These values correspond to intersections of the ray
with the corner (or in 3D, also an edge) of a voxel.

Now we loop through all points in the αxy[.] array and
calculate the x and y voxel indices and intersection lengths.
For each m ∈ {1, . . . , Nv}, where Nv is the total number of
intersections, the x and y indices im and jm are given by

im =

�
px

�
αxy[m] + αxy[m− 1]

2

��
, (7)

jm =

�
py

�
αxy[m] + αxy[m− 1]

2

��
. (8)

Then the intersection length for each voxel is given by

l(im, jm) =
�
αxy[m]− αxy[m− 1]

�
.dconv, (9)

where dconv is the Euclidean length of the ray.
The algorithm can be generalised to 3D by following

essentially the same procedure to create an αz[.] array, and
then forming the total sorted array αxyz[.].

In CPU implementations of Siddon’s algorithm, or any of
its derivatives, we can parallelise by simply distributing the
rays among available threads. However, this approach treats all
rays independently, and as such does not exploit any structure.
It is also not ideal for GPU implementations, since these
algorithms necessitate a high level of conditional branching.
This causes the GPU threads to take different execution
paths, a phenomenon known as warp divergence, which can
have serious consequences for performance. Memory access
patterns are also unlikely to be well-structured, with similar
impact on performance.

III. STRUCTURE-EXPLOITING CONE BEAM ALGORITHM

Defining the cone beam geometry as in figure 2, the key to
our approach for accelerating Siddon’s algorithm in the cone
beam case is the observation that for any projection angle
and u coordinate on the detector, the projection of this ray in
the z direction onto the x-y plane is completely independent
of the detector v coordinate. Hence, for any such ray, the
values of αx and αy , and the x and y voxel indices, are also
independent of the detector v coordinate. Therefore, we seek
to decompose the ray tracing algorithm into a component in
x-y and a component in z.

As a first step, we order the volume so that z is the
fastest increasing dimension, and order the projections with
detector v coordinate fastest increasing. Then the loop over
detector v coordinate can be brought into the core of the
ray tracing algorithm, resulting in far more localised memory
access patterns. This approach leads to significant performance
increase, but the calculation of the ray tracing parameters in
the z direction is still dependent on components in x and y, and
the algorithm still needs a high level of conditional branching.

In order to make the z component completely independent,
we first make the additional assumption that the cone angle
is less than or equal to 45◦. By cone angle here, we mean
the angle that the rays corresponding to the minimum and
maximum detector v coordinates make with the x-y plane,
assuming the detector is symmetric. Note that, at least in the



case of most laboratory based micro CT scanners, this is a
realistic assumption. The effect of this is that, if we consider
the reconstruction volume as being composed of columns of
voxels in the z direction for constant x and y, then any ray
will intersect either one or two voxels in each column it passes
through.

Consider any ray with p1z < p2z , and let the projection of
this ray in the z direction onto the x-y plane have associated
αxy[.] array as in the 2D version of Siddon’s algorithm. Now
consider the mth entry in this array; then the parametric value
of the next intersection with a z plane, αz , and the z index of
the first intersected voxel in the currently intersected column,
k, are given by

αz =
k + 1− p1z
p2z − p1z

, k =
�
pz(αxy[m])

�
, (10)

where
pz(α) = p1z + α(p2z − p1z). (11)

Figure 3 shows the locations of the points αxy[m], αxy[m+
1] and αz along the ray in each of the two possible cases.
Now let αmin = min (αxy[m+ 1],αz); then in both cases, the
intersection lengths with the intersected voxel or voxels are
given by

l(im, jm, k) =
�
αmin − αxy[m]

�
.dconv, (12)

l(im, jm, k + 1) =
�
αxy[m+ 1]− αmin

�
.dconv, (13)

where im and jm are the x and y indices of the currently
intersected column of voxels. Note that in the single voxel
case, the length assigned to the second voxel is simply zero.

For rays with p1z > p2z , we have the similar formulae

αz =
k − p1z
p2z − p1z

, k =
�
pz(αxy[m])

�
, (14)

l(im, jm, k) =
�
αmin − αxy[m]

�
.dconv, (15)

l(im, jm, k − 1) =
�
αxy[m+ 1]− αmin

�
.dconv. (16)

Rays with p1z = p2z are a trivial two-dimensional sub-case
and can be handled separately in situations when they arise.
However, for the CT systems this work has been developed

Source Detector

x y

z

u

v

Fig. 2: The flat panel cone beam geometry, showing the
exploited structure in the rays

k

k + 1

k + 2

αxy [m]

αxy [m + 1]
αz

αz

αxy [m + 1]

αxy [m]

Two voxel case One voxel case

Fig. 3: Ray tracing parameters in the z direction for the one
voxel and two voxel cases

for, the detector usually has an even number of pixels and this
case need not be considered.

These equations form the basis of CUDA kernels for dis-
crete forward and back projection. For each projection angle,
the kernel is launched with thread blocks allocated for each
detector u coordinate; each thread within a block is then
assigned a detector v coordinate. The 2D αxy[.] arrays and
associated x and y voxel indices for each u coordinate are
calculated as a CPU process, and copied to the GPU memory
asynchronously. In practice, these arrays can often simply
be pre-computed and stored for all projection angle and u
coordinate pairs.

Threads in each block loop through the pre-calculated αxy[.]
array, effectively tracing the rays corresponding to all detector
v coordinates simultaneously in lock-step. This process is
essentially the same for forward and back projection, but the
exact implementation differs in each case. At each point in the
loop, the threads only access volume memory locations corre-
sponding to the same column of voxels, keeping the memory
access patterns localised. For back projection, values for the
whole column of voxels are accumulated in shared memory
before writing to global device memory. Multiplication by
dconv is performed only once; at the end for forward projection,
and at the beginning for back projection. In practice, division
by p2z − p1z is replaced by multiplication by its reciprocal;
since these values depend only on detector v coordinate, the
values may easily be pre-computed and stored. This gives
a significant performance increase, since division in CUDA
maps to 16 instructions, versus a single instruction for a
multiplication.

Note that since both the single voxel and two voxel inter-
section cases are covered by the same update equations, this
results in a CUDA kernel with very few conditional branches;
we need only make a decision before the main loop whether
p2z is greater than or less than p1z to decide which set of
equations to use. The vertical dimension of the detector is
padded to a multiple of the CUDA warp size; hence all threads
follow the same branch and warp divergence is eliminated.

Due to the limited amount of memory available on the GPU,
the controlling host CPU process performs an outer loop over
projection angles. For forward projection, data for the whole
volume are copied to the device before starting the loop, while
for back projection, it is necessary to accumulate the volume
and copy this back at the end. All other host-device and device-
host memory transfers are asynchronous, keeping GPU idle



FP time (s) BP time (s)
Jacobs, CPU, 32 threads 100 200
Inner v loop Jacobs, CPU, single thread 292 367
Inner v loop Jacobs, CPU, 32 threads 18 65
New, GPU 5.9 7.1

TABLE I: Comparison of timings for the GPU implementation

time low.

IV. RESULTS

Our algorithm has been implemented in CUDA, and has
been profiled and tuned for nVidia devices of compute ca-
pability 2.0. Table I shows timings for forward and back
projection for a synthetic data test problem consisting of 720
cone beam projections of size 512×512, into a volume of size
5123. We compared the CUDA implementation of the new
algorithm against a parallel CPU implementation of Jacobs’
algorithm, and serial and parallel CPU implementations of Ja-
cobs’ algorithm with inner loop over the detector v coordinate.
Timings for the GPU code include the time taken for host-
device and device-host memory transfers. The test hardware
was a dual CPU Intel Xeon 3.1GHz machine with 64GB RAM
and nVidia Quadro 6000 GPU, featuring 448 CUDA cores
and 6GB onboard RAM. The operating system was Windows
7 Professional, using CUDA version 5.5. Hyperthreading was
enabled.

Comparing the GPU version of our new algorithm to the
parallel implementation of the Jacobs algorithm, our results
show speedups of approximately 19 and 28 times respectively
for forward and back projection. Comparing the new algo-
rithm against the optimised CPU implementation of Jacobs’
algorithm with inner loop over v, respective speedups of 3
and 9 times are observed. We attribute the comparatively
greater speedup for back projection to the elimination of the
OpenMP atomic operations which are necessary for volume
updates in the parallel CPU implementations. However, back
projection is still significantly slower than forward projection,
since although the volume is updated in columns, the method
is still essentially ray driven.

Raw performance of the algorithm in terms of the GUPS
metric was measured at 40.1 GUPS for forward projection,
and 28.9 GUPS for back projection. This was calculated by
counting the exact number of updates made in each case to
the volume or projection data, and dividing by the kernel
run time as measured by the nVidia nSight profiler. While
this performance for back projection falls substantially short
of that given by the latest implementations submitted for the
RabbitCT benchmark, it should be noted that back projection
as part of a matched forward and back projector pair is a
fundamentally different problem to that of a highly optimised,
standalone voxel driven back projector.

The new algorithm has also been tested in algebraic iterative
reconstruction methods for real experimental data sets, with
varying numbers of projections of size 1024 × 1024 into
a 10243 volume. Figure 4 compares a slice from an FDK
reconstruction of a 400 projection scan of an Aluminium rod,
at a resolution of 0.7 microns, with a reconstruction using a
combined steepest descent and TV minimisation algorithm.

(a) FDK (b) Iterative

Fig. 4: Example slice from reconstruction of 400 projection
experimental data set

The iterative reconstruction shows clearly lower noise level
while maintaining the main features of interest, resulting in
a volume which is much easier to segment. Using the new
algorithm, iterative reconstruction times for this type of data
set are in the order of minutes, rather than hours for our
original parallel Jacobs implementation.

V. CONCLUSIONS

Due to the computation time, our previous work in applica-
tion of algebraic iterative reconstruction techniques to micro
CT problems has been limited to studying the effects on a
central two-dimensional slice through the volume. The new
algorithm presented here now allows us to apply such methods
to realistic problem sizes with experimental data in full 3D,
within reasonable time scales.

Our plans for future development of this work include im-
plementations designed to cope with larger size reconstruction
volumes, where the entire volume does not fit into the GPU
memory, and testing and optimising the code for the latest
generation of GPU devices.

REFERENCES

[1] E. Maire and P. J. Withers, “Quantitative x-ray tomography,” International
Materials Reviews, vol. 59, no. 1, pp. 1–43, 2014.

[2] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam com-
puted tomography by constrained, total-variation minimization,” Physics
in Medicine and Biology, vol. 53, no. 17, p. 4777, 2008.

[3] X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners
still employ traditional, filtered back-projection for image reconstruc-
tion?” Inverse Problems, vol. 25, no. 12, p. 123009, 2009.

[4] R. L. Siddon, “Fast calculation of the exact radiological path for a 3-
dimensional CT array,” Medical Physics, vol. 12, no. 2, pp. 252–255,
1985.

[5] F. Jacobs, E. Sundermann, B. D. Sutter, and I. Lemahieu, “A fast
algorithm to calculate the exact radiological path through a pixel or voxel
space,” J. Comput. Inform. Technol., vol. 6, pp. 89–94, 1998.

[6] M. Christiaens, B. D. Sutter, K. D. Bosschere, J. V. Campenhout,
and I. Lemahieu, “A fast, cache-aware algorithm for the calculation of
radiological paths exploiting subword parallelism,” in Journal of Systems
Architecture, Special Issue on Parallel Image Processing, 1998.

[7] G. Han, Z. Liang, and J. You, “A fast ray-tracing technique for TCT and
ECT studies,” in Nuclear Science Symposium, 1999. Conference Record.
1999 IEEE, vol. 3, 1999, pp. 1515–1518 vol.3.

[8] H. Zhao and A. J. Reader, “Fast ray-tracing technique to calculate line
integral paths in voxel arrays,” in Nuclear Science Symposium Conference
Record, 2003 IEEE, vol. 4, Oct 2003, pp. 2808–2812 Vol.4.

[9] H. Gao, “Fast parallel algorithms for the x-ray transform and its adjoint,”
Medical Physics, vol. 39, no. 11, pp. 7110–7120, 2012.


