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Abstract. Electrical impedance tomography (ur) is a non-invasive imaging technique which 
aims to image the impedance of material within a test volume from electrical measurements 
made on the suf3ce. The reconstruction of impedance images is an ill-posed problem which 
is both extremely sensitive to noise and highly camputationally intensive. This paper defines 
an experimental measurement in EIT and calculates optimal experiments which maximize the 
distinguishability between the region to be imaged and B best estimate conductivity distribution. 
These optima! experiments can be derived from measurements made on the boundary. We 
describe a reconstruction algorithm, known as WMPUS. which is based on the use of optimal 
experiments. We have shown that. given some mild constraints, if POMPUS converges, it 
convexges to a stationary point of our objective function. It is demonstrated to be many 
times faqter than standard. Newton based, reconstruction algorithms. Results using synthetic 
data indicate that the images produced by POMPUS are comparable to those produced by these 
standard algorithms. 

1. Introduction 

Electrical impedance tomography @IT) is a non-invasive imaging technique with widespread 
applications in medicine and industry. It aims to image the conductivity dishibution within 
a test volume by making electrical measurements on the surface of the volume. Typically 
this involves injecting current through electrodes attached to the surface and measuring the 
induced voltage on other, or possibly the same, electrodes. The technique has advantages 
over other functional medical imaging techniques, such as MRI, emission and radiative 
imaging, of being fast, inexpensive, portable and relatively harmless but it also has the 
disadvantage of poor image resolution. The electrode voltages induced by the application 
of currents are a highly nonlinear function of the conductivity distribution. Consequently, 
inversion of the current-voltage data to produce an image of the conductivity distribution is 
often performed using an iterative process. Breckon +nd Pidcock [3,4] describe an iterative, 
full matrix method for the inversion of EIT data. 

Iterative reconstruction techniques proceed by comparing a set of voltage measurements 
predicted by a model using an assumed conductivity distribution with physical measurements 
made on the volume to be imaged. At each iteration the model conductivity distribution is 
updated to reduce some measure of $e difference between the two sets of measurements. 
Both of these stages in reconstruction are computationally intensive. The amount of 
computation and the effectiveness of an iteration are strongly determined by the experimental 
measurements used for reconstruction. It is important to make the measurements which 
minimize the computation and which yield the most information upon which to base the 
reconstruction. 
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2. Experimental measurements in EIT 

In EIT, a volume Q with boundary an and unknown conductivity distribution U is imaged 
by applying electric current to a finite number of electrodes fixed to the boundary. Within 
a source free conductor the potential @ is governed by the equation: 

V.oV@=O i n n  

This is a second-order partial differential equation in @ which, for arbitrary conductivity 
distributions, can only be solved numerically. In the quasi-static case for alternating cwents, 
the potential and conductivity can be complex. For a unique solution to exist a complete set 
of boundary conditions needs to be known. These may be Dirichlet conditions in the form 
of potentials on the boundary, Neumann conditions in the form of current densities on thd 
boundary or a combination of both. There must be at least one constraint on the potential 
for a unique solution to exist. The boundary conditions associated with the injection of 
current through a finite number of electrodes are explored in Cheug eta1 [6] and Paulson et 
al [13]: In EIT the inverse problem is solved; the conductivity distribution U is calculated 
from knowledge of the currents injected into the region and measurements of the boundary 
voltages. 

The voltage, V ,  induced on the boundary of a region with conductivity cr can be 
expressed in terms of the transfer impedance operator, R(u), acting on the applied current 
pattern, J, by the equation V = R(u)J. To include all current patterns of finite power 
the transfer impedance operator acts on current patterns in the Sobolev space H-'/* and 
yields voltage patterns in the space H+'/'. If the transfer impedance operator is restricted 
to ,?(U): H o  + Ho,  it is self-adjoint and compact and, thus, not continuously invertible. 

As there are no sources or sinks in the interior of the region, the net current crossing the 
boundary is zero. This is a constraint on the current patterns we can apply. Similarly, as the 
potential is only defined up to an additive constant we can eliminate the ambiguity so that 
the average potentia1 on the boundary is zero. This is a constraint on the voltage patterns 
we can measure. These constraints remove one dimension from the spaces of current and 
voltage patterns. Thus, for quantities defined on the boundary, Hs is understood to be the 
subspace of H q  orthogonal to 1. 

If the boundary voltage and current patterns are approximated in bases of functions, 
{xi] c H+'/' and [ti] c H-''2 respectively, then the transfer impedance operator can be 
represented as a matrix: 

v = R(u)J 

where 

We shall be considering finite dimensional subspaces spanned by the first n and m of 
these functions respectively. The domain and range of the transfer impedance matrix 
are the spaces spanned by the bases for the current and voltage patterns. If xi = ti, 
i = 1, . . . , m = n then the restricted transfer impedance matrix is self-adjoint. 

If the bases are orthonormal and orthogonal to 1, i.e. 

( ~ i , ~ j ) = ( t i , t j ) = & j  and ( x i , I ) = & , I ) = O  
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then the dual pairing of two functions, F and G, approximated in the same basis may be 
written as a vector dot product, ( F ,  G) = F .  G .  If F and G are both smooth functions 
then 

A full description of Sobolev spaces and dual pairings is given in Folland [8]. 
For real EIT systems, currents are applied and voltages are measured via electrodes 

attached to the boundary of the region. If current is applied through m electrodes and 
voltage is measured on n electrodes then the transfer impedance matrix can be defined 
using a current and voltage basis function associated with each electrode: 

v = R(u)I. 

If n = m then the matrix is invertible. The transfer impedance matrix belongs to a space 
of complex matrices. R(u)  E C(m-')x(n-'). V E C("-') and I E C("-') are vectors of 
the voltages and currents measured on the electrodes. The current and voltage on the last 
current driving and voltage measuring electrodes are determined via the constraints: 

If current and voltage are measured on different sets of electrodes the transfer impedance 
matrix need not be square and is not symmetric. Under special conditions, see Somersalo 
et al [16], the transfer impedance matrix may be self-adjoint if measurements are made on 
the same set of electrodes. 

An experiment in EIT can be defined as a measurement of a component of the difference 
between the voltage pattern induced on the surface of the region to be imaged and that 
predicted by a numerical model, by the application of a current pattern to the surface. Each 
experimental measurement involves the application of a current pattern to the boundary of 
the region. A component of the resultant boundary voltage pattern is measured with respect 
to a particular basis of the space of measurements. An experimental measurement thus 
results in a single number: 

E i j ( d  = (Mi, D ( u d J j )  (1) 

where um is the model conductivity distribution, ue is the test volume conductivity 
distribution, R(u)  is the transfer impedance operator, D(u,,,) = R(um) - R(ue) is the 
difference in the transfer impedance operators, Mi is a measurement pattern, J;. is an applied 
current pattern, (., .) is the appropriate dual pairing, Q is the volume to be imaged and 8 0  
is its boundary. 

The subscripts i and j on the measurement and current patterns range over the patterns 
used. The number of independent experiments will be determined by the number and 
position of electrodes used to apply current to the region and the number used to make 
voltage measurements on the region. 

Three different forms of current pattern, J j ,  are in common use. The back projection 
reconstruction algorithm of Barber and Brown [l, 21 assumes current patterns approximating 
dipoles on the surface. Their AFT current patterns achieve this by driving current through 
adjacent electrodes attached to the surface. Isaacson [12] derived an algorithm for 
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calculating optimal current patterns which maximize the norm of the difference between the 
voltages measured on the region to be imaged and those predicted by the numerical model. 
These current patterns vary smoothly around the surface of the region and are approximated 
by driving current through all the electrodes simultaneously. Some researchers, including 
Isaacsou and our group at Oxford Brookes University, have used trigonometric current 
patterns, I? = cos(k6';) or sin(kOi) k = 1,2,3,. . ., where I,"" is the current on the ith 
electrode and 0; is its angular position. 

All other researchers known to this group use measurement patterns corresponding 
to measuring the voltage between pairs of electrodes. Most groups measure the 
voltage difference between adjacent electrodes. In this paper we consider trigonometric 
measurements and optimal measurementi defined in section 3. In practice, smooth 
measurement patterns, such as trigonometric and optimal measurements, are calculated from 
a linear combination of voltage measurements made between pairs of electrodes. Thus, these 
measurements have a larger noise component than'the physical measurements made between 
pairs of electrodes. Unless this noise component becomes vey large, the benefits of using 
measurement patterns and the POMPUS algorithm described in section 4 outweigh the small 
increase in the noise in the data. Paulson et a1 [IS] consider current patterns optimized for 
voltage measurements between pairs of electrodes. 

3. Optimal experimental measurements 

A set of experimental measurements is the data used to calculate the update to the model 
conductivity; U,,, + U,,, + Au. The update, Au, is chosen so as to minimize a measure 
of the size of D ,  the difference in the tiansfer impedance matrices,' such as the Frobenius 
norm of D: 

An important question is: 'What are the best experiments to perform?' For measurements 
with a background random error of fixed amplitude, such as thermal or digital quantization 
noise, the measurements of highest precision are those for which Eij is largest. Clearly, 
experimental measurements which are small compared to the background noise yield little 
information upon which to base a reconstruction. Following the work of Isaacson [12] 
it is instructive to find which experimental measurements maximize the distinguishability 
between the two regions. 

An understanding of the relationship between current and measurement patterns and 
the resulting experimental measurements can be gained by considering the singular value 
decomposition, SVD, of the difference in the transfer impedance operators. The SVD of 
operators is described in detail in Groetsch [IO], and the SVD of matrices is described in 
Golub and Van Loan [9]. There exist functions, U; and Vj, and positive real numbers Ai 
such that 

DU; = A;V; D*K = h;U; 

A, > Aj > 0 Vi c j (U;, U j )  = (vi. V;.) = &, 

where D* is the adjoint of D.  The U;s and the Ks are the right and left singular functions of 
D(u,,,) and form orthonormal bases for the space of applicable current patterns and voltage 
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pattems respectively. The his are singular values of the current to voltage difference map. 
Equation (1) can be rewritten in terms of this singular decomposition: since 

k 

we see that 

If Mi = V, and Jj = Uj then the experimental measurement made using the ith singular 
measurement pattern and the jth singular current pattem is 

(3) 

It is cle,ar from this that the ‘best’ experimental measurement that can be made, meaning 
the one that produces the largest number, is E l l ,  the next best is E22 etc. All Eij with 
i # j are zero. Using the discrete quantities, equation (2) may be written more concisely 
as 

Eij = c ( K ,  Vk)hk(Uk, uj) = hj8iJ. 
k 

E;j = K V A U * J j  

where U and V are basis matrices in which the columns are orthonormal vectors and 
A = Diag(h1, Az, 1 3 , .  . . , Amin(m,n)-~). 

Isaacson et al 1121 define the distingguishabiliiy between two conductivity distributions, 
W ) ,  as 

IlDJllo 6(J) = - 
IlJllo 

and the ‘best’ current patterns in terms of maximizing the distinguishability as the 
eigenfunctions of the restricted, self-adjoint operator IDI: Ho -+ Ho. ID[ is the operator 
with eigenvalues that are the modulus of the eigenvalues of D. If the SVD is performed on 
the restricted operator then 

It is clear that the U;s are eigenfunctions of this operator and so Isaacson’s optimal current 
patterns are the same as those calculated earlier in this section. The analysis using the 
SVD has the advantage that it makes clear the properties of different voltage measurement 
schemes and has led to the development of more efficient reconstruction algorithms. 

4. Reconstruction algorithms 

Newton-based reconstruction algorithms improve the initial estimates of the conductivity 
distribution by finding the least-squares solution to linearized forms of the inverse problem: 

JAu = E  (4) 
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where E is a vector of experimental measurements and J = [aE/as]  is the Jacobian 
matrix with elements that are the derivatives of the measurements with respect to the model 
conductivity parametrization. The conductivity and the conductivity update are expressed 
in a finite basis of continuous functions E;, Au = AsiBi = As . B. Thus the ij, kth 
element of this matrix is aEjj/as, where i j  indexes the experimental measurement made 
using the ith measurement pattem and the j th  current pattem. Any selection of experimental 
measurements may be used for reconstruction. 

RECON is a typical, regularized, adaptive reconstruction algorithm developed by our 
group at Oxford. It applies trigonometric current patterns and the measurement patterns 
are fixed to be either trigonometric or adjacent electrode pair measurements. The number 
of experimental measurements used for reconstruction is determined by the number and 
location of the electrodes used for cunent driving and voltage measurement. Typically, 
the number of experimental measurements used will be (m - 1)(n - 1) where n and m 
are the number of current driving and voltage measuring electrodes respectively. Not all 
of these experimental measurements will be independent. The number of conductivity 
parameters which can be determined will be less, therefore, than the number of independent 
experimental measurements used for reconstruction. The RECON algorithm can be described 
schematically as 

RECON 

WHILE E’E > E DO 
measure R(u,,,) 
calculate D(u,) and hence calculate optimal Jj 
make the measurements Eij: 1 < i < n - I ,  1 < j < m - 1 
find the regularized least-squares solution to (4) 

AS = (JfJr + p2L2r)-’J:E 

ENDWHILE. 

The least-squares system is regularized by the addition of pzZ, the Tikhonov factor 
multiplied by the identity matrix. The computational cost of solving the least-squares 
system increases as the cube of the dimension of the RECON Jacobian matrix J,. For a 
system that drives current and makes voltage measurements on the same set of n electrodes 
the number of independent measuements that can be made is n(n - l)/Z, or less with 
some symmetries. This figure is essentially half the number of independent current patterns 
multiplied by the number of independent measurement patterns as a consequence of the 
reciprocity theorem [4]. This sets a limit on the number of conductivity parameters that 
can be imaged with a given system of electrodes. For typical electrode configurations the 
number of independent measurements that can be made is O(n2) and so the computational 
cost of solving the least squares system is O((n2)3) = O(n6). 

The authors propose an algorithm, that has come to be known as POMPUS, to circumvent 
this staggering increase in computgional cost with increasing numbers of electrodes and 
resolution. The method is based on the use of the optimal current and measurement patterns 
defined in section 3. The major advantage of this algorithm is the reduction in the size of 
system (4) from O(n2) to O(n) and so the computational cost is reduced from O(n6) to 
O(n3).  This is accomplished by not including the equations for experimental measurements 
Eij: i + j in equation (4) and hence using a much smaller POMPUS Jacobian matrix, J,. 
The algorithm can be stated as 
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POMPUS 

WHILE E11 = - E  DO 
measure R(u,,,) 
calculate D(u,,,) and hence calculate optimal Mt and Jj 

find the regularized least-squares solution to (4) for experimental 
make the measurements Eii: Eii > E 

measurements Eli: Eii > E using 

U,,, + U,,, + Aa 
ENDWHILE. 

In RECON the Jacobian system, equation (4) is overdetermined and the conductivity 
update is the one which best fits the experimental measurements. By contrast, in POMPUS, 
the Jacobian system is underdetermined and so the least-squares solution is the consistent 
conductivity update with the minimum norm. 

It is not clear whether this algorithm will converge. A conductivity update which 
reduces the size of the experimental measurements Eii could introduce larger variation into 
the, much more numerous, experimental measurements Eij, i # j .  This issue is discussed 
further in the next section. 

5. Convergence of reconstruction algorithms 

For a convergent reconstruction algorithm with exact data, the norm of the difference 
in the transfer impedance operators tends to a local minimum of the function IID(u,,,)m)ll 
or to the global minimum, IID(u,,,)ll = 0, where no experimental measurements can 
distinguish the model and experimental conductivity distributions. Typically there will 
be some noise level, E ,  within the measurement process. Conductivity updates calculated 
using experimental measurements smaller than E are determined by the noise rather than 
the signal and consequently, reconstruction algorithms generally terminate if IID(um)ll < E .  

Recall that the steepest descent direction of a function G at the point x is -VG(n). 
A vector in a direction within 90" of the steepest descent direction is known as a 
descent direction. Iterative algorithms for minimizing a function, G, by repeatedly adding 
corrections along descent directions have been studied by Fletcher [7]. Fletcher gives 
conditions which, while not guaranteeing convergence, do ensure that an accumulation 
point of this sequence of approximations is a stationary point of the objective function. 
These conditions are that the gradient of G, VG, must be uniformly continuous on the 
level set {n: G(x)  < C(XO)) ,  where no is the initial approximation of the position of the 
minimum, and the size of the update must satisfy the Wolfe-Powell conditions [7]. 

To show that the continuous objective function G(u,,,,) = [lD(u,,,)Il~ is uniformly 
continuous on level sets it is sufficient to show that the level sets are bounded. First note 
that the transfer impedance matrix, R(U) ,  is positive definite and an analytic function of the 
conductivity parameters si, [5] .  It also satisfies a positivity constraint; if U, ( x )  > u&)Vx E 
52 then R(u2) - R ( q )  is positive definite. The model conductivity is parametrized in terms 
of Nb basis functions; U, = uo + sibi where uo is a strictly positive constant and the 
basis functions are chosen to satisfy 
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Local bases, such as the finite element basis, do not satisfy this condition but any basis 
with inf(bi) > 0 does. From these conditions it can be shown that the objective function 
llD(~,,,)[1~ + IIR(ue)1l2 as Ilumll + CO. For any 0 < K < I I R ( U , ) ~ ~ ~  the level set 
(U:  11D(~)11~ < K ]  is bounded and the objective function is uniformly continuous. 

When D(um) is expressed in the optimal bases, defined by the matrices U(u,) 
and V(o,), it is a diagonal matrix, D = Diag(EII, Ezz, . . . , Epp). When current and 
measurement patterns are expressed in these bases'the optimal patterns are the standard 
basis vectors, e;. Using these bases to define D allows the experimental measurements to 
be written Eij = e;Dej .  Thus as long as D is expressed in the local coordinate system 
defined by U(u,,,) and V(um), the Frobenius norm of D is determined by its leading diagonal: 

Once a descent direction has been determined an update can be found which satisfies the 
Wolfe-Powell conditions in a finite number of steps. Thus, to show that any accumulation 
point ofthe reconstruction algorithm is stationary it is sufficient to show that the conductivity 
update is along a descent direction and to allow the appropriate amount of the update to be 
added at each iteration. In the remainder of this section it is shown that the POMPUS update 
is along a descent direction. 

5.1. The steepest descent direction 

The direction of steepest descent of the Frobenius norm of D, expressed in the singular 
bases, is 

P 

2 = -V,,llD(um)ll; = -2xEi iV ,Ei i  = -2J,*E (5) 
i = l  

where V, is the gradient operator with respect to the conductivity parametrization. The 
Jacobian matrix in this expression is the one used by the POMPUS algorithm and E is a 
vector of experimental measurements: 

aEii 
(Jp1ii.k = - and E = -(&I, ED, E33,. . . , EPpfT.  

ask 

Breckon [5] has shown that, to a linear approximation, the change in the voltage 
AS& = measurement uij = (Mi, R(um)Jj), Aujj, due to a conductivity change ACT = 

A S . B i s  

where & and q j  are the potential fields induced in the conductivity distribution U, by 
boundary current densities Mi and Jj respectively. As the voltage measurement, ui,i, differs 
from the experimental measurement Eij by a constant additive factor, the elements of the 
Jacobian matrix may be written: 
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5.2. The POMPUS direction 
The POMPUS direction, that is the direction of the POMPUS update, is defined by the least- 
squares system: 

AS = -J,"(J,J,* + p21)-'E. 

The angle, o, between the POMPUS update and the steepest descent direction satisfies 

A s . Z  cos(0) = 
Il Asll llzll 

The denominator of this expression is positive as it is the product of the norms of two 
vectors. The numerator may be rewritten: 

A S .  Z = As'Z = (-J:(JpJ; + p21)-'E)*(-2J:E) 
2 -1 *J J*E =~E*((J,J,: + P  I )  , , 

= m * ( r  + p 2 ( ~ p ~ ; ) - 1 ) - 1 ~ .  

Thus A s  . Z > 0, since the eigenvalues of the symmetric matrix ( I  + p2(JpJ;)-')-' are 
all non-negative. The condition that cos(@) > 0 implies that the angle between the POMPUS 
update direction and the steepest descent direction /@I < 90". Thus the POMPUS update 
must decrease the Frobenius norm of D if the size of the update is sufficiently small. In 
practice the conductivity update is As. B unless this results in an increase in the norm of 
D in which case a smaller step can be made or the Tikhonov factor can be increased. 

For the unregularized case, p = 0, equation (6) can be written: 

where K(J,) is the condition number of the matrix J,. Thus the POMPUS direction diverges 
from the steepest descent direction as the Jacobian matrix becomes more ill conditioned. 
As the Tikhonov factor is increased the POMPUS direction converges to the steepest descent 
direction. As p -+ cc 

1 - J;(JpJ; + pzI) - 'E = --JTE + 0 
k2 

Thus, the POMPUS update is always in a descent direction and Fletcher's result holds. 

6. Experimental results 

In this section two reconstruction algorithms are compared. RECON is a full matrix 
reconstruction algorithm based on trigonometric current and measurement patterns. Due 
to the constraints of our system a variant of POMPUS was used which applied trigonometric 
current patterns but used optimal measurement patterns. We would expect this algorithm to 
be less effective than POMPUS as the Frobenius norm of the transfer impedance operator is 
no longer determined only by the diagonal elements. 
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Table 1. A comparison of the execution times, in sewnds, of the stages in a single iteration of 
RECON and POMPUS. 

RECON POMPUS 

Calculate the M and I mahices 

Forward modelling 

2.03 

Calculate system mahix 1.25 1.25 
Solve finite element system ~ 14.2 11.3 

Calculate conductivity update 

CIMESH 
Construct least-squares  system^ 212 6.72 
Solve least-squares system 3.18 0.04 

C Z M U H  
Construct least-squares system 565 9.02 
Solve least-squares system 203 0.04 

In each case synthetic data were calculated from a finite element model for 20 current 
patterns. The region to be imaged was circular and driven by 32, symmetrically placed 
electrodes covering 50% of the boundary. Voltage measurements were made on point 
electrodes placed mid-way between current driving electrodes. Synthetic voltage data was 
calculated using a finite element model with 1157 nodes. The reconstruciton used a finite 
element model of 761 nodes. RECON used 31 Fourier components of each voltage pattem 
as data for reconstruction. POMPUS used the one optimal measurement. 

In table 1 the execution times of different stages in a single iteration of RECON and 
POMPUS are compared. POMPUS requires the calculation of the optimal experiments defined 
by the matrices M and J .  This can be achieved by a singular value decomposition of the 
relatively small matrix D. Performing a SVD on an n x n matrix takes O(n3) operations 
which could be significant if a large number of experimental measurements were to be 
used for reconstruction. Typically this is unnecessary and reconstruction can be based on a 
small number of experiments using the most significant current patterns. Both algorithms 
require the calculation of a forward model, using the present ‘best estimate’ conductivity 
distribution, to predict the voltage measurements that will be made on the experimental 
region. This is accomplished in two stages: first a finite element system stiffness matrix is 
constructed and, second, the finite element system is solved for a number of right-hand sides 
corresponding to the number of e x p e h n t a l  measurements used for reconstruction. The 
time required to solve the finite element system is dominated by factorization of the system 
stiffness matrix and relatively independent of the number of right-hand sides. For this 
reason POMPUS requires slightly less time than RECON for this stage as fewer experimental 
measurements are needed for reconstruction. The second stage of reconstruction involves 
the construction and solution of the least-squares system to calculate the conductivity update. 
For RECON this requires the construction and factorization of a matrix of dimension equal to 
the number of conductivity parameters in the image while for POMPUS a much smaller matrix 
of dimension equal to the number of experimental measurements used for reconstruction. 
The times required for this stage with two different conductivity parametrizations are shown. 
CIMESH has 93 conductivity parameters while UMESH has 381 conductivity parameters. 
These times clearly show the computational advantages of the POMPUS algorithm especially 
where higher resolution images are to be calculated. 
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Fiure 1. The reconstructed images of a uniform disk of radius 15 cm with three subregions of 
radius 4 cm and conductivity contrasts of 0.5,Z.O and 4.0, image l(a). Image l(b) was produced 
after five iterations of RECON and image l(c) after Seven iterations of POMPUS. 

Figure 1 compares reconstructions produced by RECON and POMPUS for a region with a 
complicated conductivity field. The imaged region is circular with three circular sub-regions 
with conductivity contrasts of 0.5, 2.0 and 4.0. These regions are clearly distinguished by 
both POMPUS and RECON although RECON shows higher resolution. It is perhaps surprising 
that the inferior variant of the POMPUS algorithm that we used performed as well as it did. 

In figure 2 the convergence of RECON and POMPUS are compared as a function of 
iteration. RECON generally achieves more than POMPUS with each iteration but a RECON 
iteration requires considerably more computation. For the images in figure 1, RECON 
required approximately fifteen times the computation of POMPUS. A fast reconstruction 
algorithm could be constructed using several iterations of POMPUS as a pre-processor to 
RECON. 

I. Conclusion 

POMPUS can quickly locate conductivities close to the required image with considerably less 
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Iteration 
Figure 2. The convergence of RECON and FQMPUS as B function of iteratinn. The distance 
from the ideal image i s  measured by the Frobenius nnrm of lhe difference in the model and 
experimental transfer impedance operators I1 D(nm)IIp. 

calculation than algorithms previously used. It has massively reduced the computational 
effort required to calculate the conductivity update. The speed of forward modelling is 
now the limiting factor in the speed of multi-iteration, reconstruction algorithms. The use 
of POMPUS will greatly reduce one of  the barriers presently hindering research into three- 
dimensional EIT imaging. 
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