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Abstract—The Real Time Tomography (RTT) system is a new
type of fast cone beam CT scanner, using fixed rings of multiple
sources and detectors in an offset geometry. We demonstrate the
potential of this system for use in the imaging of high speed
dynamic processes, such as moving fluid flows. Through the use
of a simple temporal regularisation term, we show that temporal
resolution can be further increased, at the expense of a slight
loss in spatial resolution.

Index Terms—Cone beam CT, dynamic imaging, real-time
tomography

I. INTRODUCTION

Conventionally, X-ray tomographic imaging systems have
used a single X-ray source and an array of detectors which
together rotate around the object of interest to form a set of
X-ray projections through the object. These projections can
be reconstructed to form an image of the object in 2D or 3D,
depending on whether the detector configuration is single row
fan beam or multi-row cone beam.

Due to the mechanical motion involved in this scanning
process, scan rates are restricted to only a few source revolu-
tions per second. The latest dual source medical CT scanners
are able to perform just over 3 per second [1]; this gives a
reconstructed image frame rate of less than 10 per second. In
some applications, such frame rates are too slow to provide the
required temporal resolution; for example in the visualisation
of the flow of liquids in pipes.

The main factor limiting the speed of conventional rotating
gantry cone beam CT scanners is the physical rotation of
the source [2]. To address this problem, it is necessary to
eliminate the mechanical scanning motion, replacing this with
an electronic equivalent comprising a circular array of X-ray
sources which can be selected individually under computer
control. Through the choice of a suitable source scanning
sequence, the impression of movement can be generated
without physical motion of any component of the system.

A Real-Time Tomography (RTT) system has been devel-
oped to solve this technological problem ([3], [4]), in which
an approximately circular array of X-ray sources over an
angular distribution of 180 degrees plus fan angle is matched
with a corresponding array of X-ray detectors to provide
a no-moving-parts X-ray tomographic scanning system. The
plane containing the X-ray sources is offset from the plane
containing the X-ray detectors to avoid attenuation of the
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primary beam before it is transmitted through the object under
inspection.

The X-ray sources comprise an array of electron guns,
each of which is controlled by an independent electronic
switching circuit. These switching circuits can be pulsed in
microsecond timescales. The electron beam from a given
source is accelerated through a high potential difference to a
tungsten coated anode to produce X-rays. A single distributed
anode is arranged in a circular arrangement such that each
electron gun irradiates a different region of the anode around
the circumference of a circle or polygon, each resulting in
an effective X-ray focus when viewed from the detectors
of typically 1mm2. The electron gun control electronics can
be programmed to irradiate the electron guns in any given
sequence. Therefore, this is a flexible data acquisition platform
and is capable of generating tomographic scan data at theo-
retical source rotation rates of up to 480 frames per second.

II. THE RTT20 SYSTEM

RTT20 is a small-scale prototype RTT system which has
been acquired by the University of Manchester. A two-
dimensional cross-section of the RTT20 geometry is shown
in figure 1; the sources are arranged in 8 blocks of 32, with
two ‘missing’ blocks of sources at the bottom, creating an
incomplete source ring. The incomplete ring is part of the
original design to enable a small scanner to be easily fixed onto
pipes for imaging flowing fluids. The two blocks adjacent to
the gap also do not use their outermost 4 sources, giving a total
of 248 sources. There is one full ring of detectors arranged
in 21 blocks of 16, giving 336 detectors in total; this is offset
from the source plane by 5.48mm in the z direction. The tunnel
diameter is 20cm (hence RTT20) giving the reconstruction
region of interest (ROI) as a circle of diameter 200mm.

The machine is capable of acquiring a complete set of
projections from all 248 sources 60 times per second, enabling
imaging of very fast moving processes. Sources may be fired
in almost any order we desire; for a general RTT system with
N sources, this is defined by a bijective function

φ : [1, N ] −→ [1, N ], (1)

known as a firing order. The firing order used for collection
of the RTT20 experimental data is defined for 256 sources by
the function

φ(i) =
[(
32(i− 1) +

⌊
(i− 1)/8

⌋)
mod 248

]
+ 1. (2)

The first and last 4 sources in the sequence are simply removed
to reduce this to 248 sources.
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Fig. 1: The RTT20 geometry

III. THE RECONSTRUCTION PROCESS

The reconstruction of an RTT20 dynamic data set forms
a sequence of images, each of which is referred to as a
frame. The simplest method of reconstruction is to regard each
complete set of 248 projections as representing a frame and
reconstruct each one of these independently. For applications
where the motion of the object is slow compared to the
data collection rate this should be adequate. However, if the
firing order is chosen appropriately, so that the distribution of
projection angles is even for smaller subsets of projections,
then we may divide each full set of projections to represent
multiple frames. This effectively trades spatial for temporal
resolution. The firing order described by equation (2) satisfies
this condition.

The process of reconstructing each two-dimensional frame
is simple and well-understood; however, the construction of
RTT20 presents some problems. Firstly, the polygonal nature
of the source and detector rings means that the distribution of
projection angles, and the angles of rays within each projec-
tion, are highly uneven. This, combined with the incomplete
source ring, causes an uneven sampling of the two-dimensional
Radon transform; this is shown in figure 2. Secondly, the offset
detector means that we do not really measure rays in a plane
through the object. However, compared to the x-y resolution of
the system, the effect of the offset is considered small enough
to ignore within the reconstruction region of interest.

IV. RECONSTRUCTION ALGORITHMS

A. Analytical Algorithms

Analytical reconstruction algorithms based on filtered back
projection (FBP) for the 2D fan beam geometry are well-
known [5]. However, these assume an equal spacing of the
projection angles, and either an equiangular or equally spaced
linear sampling scheme for the rays within each projection.
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Fig. 2: Distribution of sampling points in the 2D Radon
transform domain

Due to the construction of RTT20, with its polygonal source
and detector rings, neither of these conditions are satisfied.
For applications where low reconstruction time is important,
such as real time observation of flow through an oil pipe
for example, taking all 248 projections per frame and using
a simple interpolation to the parallel beam geometry gives
adequate results. However, for fast moving objects, motion
artefacts will be observed.

B. Algebraic Reconstruction

For applications where the data acquisition and image anal-
ysis processes are separate, such as the scientific applications
the machine will be used for at the university, the problem
is small enough to enable solution by algebraic methods in
a reasonable amount of time. Algebraic methods make no
assumptions at all about the system geometry, so in theory
should be capable of better reconstructed image quality. Per-
formance of algebraic algorithms with reduced numbers of
projections is also better, which should allow fewer projections
per frame, resulting in better temporal resolution.

We let the matrix A represent the projection process for
each complete set of 248 projections; this may represent more
than one frame, and is simply re-used for each projection set.
Elements of A are calculated using the ray tracing algorithm
of Jacobs et al. [6], which is itself a development of Siddon’s
algorithm [7]. In order to take the offset geometry into account,
ray tracing is performed in 3D; to ensure only a single slice
is considered, the voxels are simply defined to be long in
the z direction. This has been implemented in MATLAB
as a C .mex routine, with output in the MATLAB double
precision sparse matrix format. Using 1 × 1mm pixels and
covering the entire circular ROI, storage requirements for A
are approximately 100MB.

For each complete set of projections, the system of equa-
tions Ax = b is solved using the conjugate gradient least
squares (CGLS) algorithm. We use the MATLAB implemen-
tation of CGLS provided in Hansen’s Regularisation Tools
package [8].



C. Regularisation

Although with CGLS, the number of iterations plays the role
of a regularisation parameter, it is unclear how many iterations
should be performed in order to provide the correct degree of
regularisation. We may therefore apply additional systematic
regularisation by solving the augmented system[

A
αL

]
x =

[
b
0

]
, (3)

in the least squares sense, where α is a regularisation parame-
ter, L is some finite difference approximation to a differential
operator, for example the Laplacian, and 0 is the zero vector
of length equal to the total number of image pixels. This gives
the least squares solution

argmin
x
{‖Ax− b‖22 + α2‖Lx‖22}. (4)

D. Temporal Regularisation

By considering the data set as a whole, rather than as a set
of discrete independent frames, we can also add regularisation
in the temporal dimension. The matrix Atotal, representing the
whole system, is formed from A by a Kronecker product with
the identity matrix of size equal to the number of complete
projection sets. We can then solve an augmented system of
equations as in (3). This is a simple process and can be
implemented efficiently.

Regularisation has been performed by taking L to be the
three-dimensional discrete Laplacian. By incorporating the
regularisation parameter into the matrix L, it is possible to
choose differing amounts of regularisation in the spatial and
temporal dimensions. Letting m and n be the number of image
pixels in the x and y directions respectively, and letting p be
the number of frames, L has the following Kronecker product
decomposition:

L = αsIp⊗In⊗Dm+αsIp⊗Dn⊗Im+αtDp⊗In⊗Im, (5)

where Im is the m × m identity matrix, Dm is the one-
dimensional discrete Laplacian on m points and αs and αt are
respectively the spatial and temporal regularisation parameters.

V. RESULTS

A. Simulated Data

Simulated data were generated for a ball of radius 10mm,
moving horizontally along a line through the centre of the
scanner in a sinusoidal motion of frequency 0.5Hz and am-
plitude 80mm. Ray integrals were calculated analytically, with
the object position being re-calculated for each projection. The
simulation was performed at the scanner’s standard speed of
60 full sets of 248 projections per second, and using the firing
order described by equation (2). 1% Gaussian noise was added
to the calculated data.

Figure 3 shows a frame from reconstructions of the simu-
lated data using differing values of the temporal regularisation
parameter, comparing a full set of projection data per frame
with 31 projections per frame (8 frames per full projection set).
In all cases, the spatial regularisation parameter was chosen
empirically as αs = 5. Figures 4 and 5 show respectively the

Fig. 3: Reconstructed images of a single frame from the
simulated data (left, 248 projections; right, 31 projections; top–
bottom, reference image, αt = 0, αt = 5, αt = 25)
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Fig. 4: Data error for the simulated data reconstructions

2-norms of the data error, and the error from the reference
image at each iteration.

We see that by reducing the number of projections per
frame, the motion between subsequent frames is reduced so
that it makes sense to smooth in the temporal dimension. By
doing this, streak artefacts are reduced and temporal resolution
has increased by a factor of 8.

B. Real Data

Real experimental data were available for a mixture of oil,
water and air moving in a bottle. The data set consists of 61
full projection sets representing 1 second of the motion, and
was collected during the machine’s initial testing process. The
scanner settings used were a voltage of 120keV, and current
of 10mA. Three of the sources in the prototype scanner were
defective, resulting in a total of 245 sources.

Figure 6 shows a frame from reconstructions of the data,
again using differing values of the temporal regularisation
parameter, comparing a full set of projection data per frame
with 49 projections per frame (5 frames per full projection
set). Again, in all cases, the spatial regularisation parameter
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Fig. 5: Image error for the simulated data reconstructions

Fig. 6: Reconstructed images of a single frame from the oil
and water data (left, 245 projections; right, 49 projections;
top–bottom, αt = 0, αt = 5, αt = 25)

was chosen empirically as αs = 5. Figure 7 shows the 2-norm
of the data error at each iteration.

The motion in this case is not as fast as the simulated data,
and reasonable results are obtained by simply using all 245
projections per frame. However, by using only 49 projections
per frame and applying temporal regularisation, temporal
resolution has increased by a factor of 5; this improvement is
very noticeable when viewing the full dynamic reconstruction
as a movie. Although the 49 projection temporally regularised
images are noticeably softer than those using the full set
of projections per frame, they compare well, and in certain
applications the gain in temporal resolution may be more
important.

VI. CONCLUSIONS

The RTT system has the potential to produce some novel
visualisations of rapidly moving processes such as fluid and

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

Iteration number

D
a
ta

 e
rr

o
r 

2
−

n
o

rm

 

 

245 projections, α
t
 = 0

245 projections, α
t
 = 5

245 projections, α
t
 = 25

49 projections, α
t
 = 0

49 projections, α
t
 = 5

49 projections, α
t
 = 25

Fig. 7: Data error for the oil and water data reconstructions

granular flows. Problems caused by the highly uneven sam-
pling generated by the RTT20 geometry have been solved
by using algebraic reconstruction and regularisation, rather
than the more widely used filtered back projection based
algorithms. By implementing a simple temporal regularisation
process, we have shown that temporal resolution can be
increased in real world applications by at least a factor of
5, with only minor impact on reconstructed image quality.
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