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Abstract:  The aim of this study is to propose a useful method for exploring regional ventilation

and  perfusion  in  the  chest.  The  paper  describes  two  methods  based  on  Singular  Value

Decomposition (SVD) and Fourier Transform (FT) respectively.  This work shows that Power

Spectral Density (PSD) and phase images (derived from the Fourier transform) are easier to

interpret and more useful tools for exploiting in vivo EIT data in healthy volunteers in order to

explore the cardiovascular and respiratory systems.

1. Introduction

The  EIT (1)  reconstruction  method  inherently  smoothes  changes  across  the whole  image
making it difficult to resolve changes from different sources. The SVD method described below takes
spatial and temporal data and analyses them together. In order to understand ventilation or perfusion in
the lungs we have to re-integrate more  than one principal  time series and corresponding principal
image. An alternative method is to treat each pixel of an image as independent and to analyse the
conductivity of the pixel sequence using the Fourier Transform (FT).
Since  the  main  impedance  changes  in  the  chest  are  cyclical,  the  FT  will  highlight  the  principal
temporal  changes.  As  long  as  physiological  changes  occur  at  different  frequencies,  the  related
conductivity  changes  can  be  observed  as  images  of  those  Fourier  components.  Images  of  both
magnitude and phase of any component can be made. The interpretation will still be subjective since
there are no independent data to verify the measurements.

2. Materials and Method

The data being analysed in this presentation were  obtained from an Electrical  Impedance
Tomograph (OXBACT-3) [1]  comprising  32  independently  programmable  current  sources  and  32
voltage measurement channels attached respectively to separate electrodes around the chest of a male
volunteer. The 64 (ECG) electrodes were equally spaced on the skin in a saggital plane approximately
2 cms. below the level of the nipples. Each image was obtained by applying -in sequence- the first 10
spatial trigonometric current patterns. The 40kHz excitation current was used, a frequency at which a
maximum value  of  1mA could  be  applied  safely.  Voltages  were  measured  on  each  channel  to  a
resolution exceeding 14 bits.

Two sequences of images were made, the first  during normal  breathing at  a frame rate of  15 per
second; 160 images cover two and a half breaths. The second sequence was made while the subject
held  his  breath,  thus  removing  the  respiratory  element  from  the  data  and  allowing  the  cardiac-
synchronous  component  to  be  more  obvious.  Independent  respiratory  and  cardiovascular
measurements were made with a ‘Respitrace’ monitor (Studley Data Systems, Oxford) and an Ohmeda
‘Finapres’ monitor respectively. These monitors provide only gross timing information of the cycles;



there is no simple means of ascertaining regional ventilation or perfusion data which could be related
to changes which might appear in the EIT data.

The  reconstruction  problem  for  EIT  is  non-linear  and  highly  ill-posed  [2].   Consequently  the
reconstructed images are at best highly smoothed pictures of the true conductivity. Current also strays
out of the plane of the electrodes but the images were reconstructed on a two dimensional model.

Each image sequence consisted of N=160 images represented on a M=450 finite element mesh adapted
to the subject's body shape. The (temporal) mean is removed from each image and these are assembled
into a M N×  matrix A.  

2-1. The singular value decomposition

The singular value decomposition of the matrix A is calculated (using MATLAB 5) 
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components. However in contrast  to the case where our  data consists of samples from a vector of
random variables we have a vector of time series. In this case the right singular vectors also carry
useful information.
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This  corresponds  to  truncating  the  singular  value  decomposition.  Defining  the  matrix  norm
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of the total variance.

If for example we can only justify including the first principal component, that is k = 1, then we can
regard the entire time series of images as being one image u1  with each nodal value multiplied by the

time series  v1  scaled by  λ1.  Instead of having  MN items of data we have in fact only M N+ +1
which are significant.

2-2 The Fourier transform

From the EIT reconstruction algorithm the following outputs are available:-
1. Reconstructed raw EIT image,
2. Time series for each pixel,



Then the power spectral density (PSD) and phase of the matrix A are calculated using the FFT function
of MATLAB 5 to generate the following outputs:-

1. PSD per pixel 
2. A magnitude image at each frequency
3. Phase spectrum per pixel 
4. A phase image at each frequency.

3 Results

3-1 Singular value decomposition

The SVD is obtained using the command [u,s,v]=svd(A) where: 
u: left singular vectors (images), 
v: right singular vectors (time series) and 
s: decreasing singular values.
The choice of truncation level is somewhat subjective in this case as it is hard to estimate the error in
the reconstructed images. There is a noticeable drop between the first and second singular values in
both cases (they are plotted on a logarithmic scale in the figures).

a) Breath Holding

The breath holding image sequence shows clearly the thirteen cardiac cycles over this period
(figure 2-3). The lungs are visible as low conductivity regions in the mean image (figure 5). The
second principal component is at the cardiac frequency and by definition orthogonal to the first (figure
3). It can be seen to be out of phase. 
The singular values are λi = 0 .0075, 0.0033, 0.0014, 0.0011, 0.0011, 0.0008 ….

Figure1: Singular values log10 λ i Figure 2: Principal time series v1

Figure 3: Principal time series v2 Figure 4: Principal time series v3



Figure 5: Temporal mean image

 

 

Figure 6: Principal image u1

Figure 7: Principal image u2 Figure 8: Principal image u3

b) Breathing

The breathing study has a similar mean (figure 13), but this time the first principal time series
follows the respiratory cycle (figure 10). The first principal image (figure 14) indicates that both lungs
change conductivity simultaneously. The second principal time series (figure 11) is mainly the first
harmonic  of  the  respiratory  cycle  but  also  includes  a  significant  cardiac  frequency  component.
However, note that λ2 is ≅ 1/40 λ1.

The singular values are λi=0.3421, 0.0091,0.0054,0.0037,…

Figure 9: Singular values log10 λ i Figure 10: Principal time series v1

Figure 11: Principal time series v2 Figure 12: Principal time series v3



Figure 13: Temporal mean image Figure 14: Principal image u1

Figure 15: Principal image u2
Figure 16: Principal image u3

3-2 Fourier Transform

a) Breath Holding

The time series of a heart pixel shows clearly the cardiac component (figure 17-18). However
a lung pixel shows a slow component greater than the component at the heart frequency (figure 19-20).
At the heart frequency there is a phase difference between the region of the heart and the rest of the
chest (figure 22) 

Figure 17: Time series of a heart pixel Figure 18: PSD of a heart pixel

Figure 19: Time series of a lung pixel Figure 20: PSD of a lung pixel



Figure 21: PSD at the heart frequency Figure 22: Phase at the heart frequency

Figure 23:PSD at the low frequency Figure 24:Phase at the low frequency

b) Breathing

The breathing sequence shows a very large harmonic peak at 0.2 Hz -breathing component-
(figure 26) in every pixel with the maximum amplitude in the region of the lungs (figure 29) and a less
significant heart component as well.
The conductivity of pixels taken from a lung and from the respitrace are as expected in anti phase
(figure  25).  The  time  series  of  a  heart  pixel  shows  changes  due  to  the  activity  of  the  heart
superimposed  on  changes due  to  breathing  (figure  27).  The breath  holding  sequence  shows more
clearly a heart related FFT peak at 1.28 Hz than the breathing sequence does (figure 18 referred to
figure 28).

Figure 25: Time series of a lung pixel Figure 26: PSD of a lung pixel

Figure 27: Time series of a heart pixel Figure 28: PSD of a heart pixel



Figure 29: PSD at the breathing frequency Figure30:Phase at the breathing frequency

Figure 31: PSD at the heart frequency Figure 32: Phase at the heart frequency

4 Discussion

The interpretation of EIT chest images is a new skill, having, in common with ultrasound images and
the  occasionally  performed  X-ray  fluoroscopy,  to  take  account  of  both  temporal  and  spatial
information. Normal vision detects both, but the spatial resolution is much superior to the temporal
resolution. An example is the comparison of the rotation speed of two objects which are not in the
same field of view.
From  raw  images  -  which  have  relatively  poor  spatial  definition-  an  observer  can  resolve  large
anatomical features and both respiratory- and cardiac- synchronous changes. The magnitudes of these
changes in different parts of a sequence of images are hard to determine; the choice of colour or grey
scale can improve the measurement but it is clear  that objective processing of the whole data will
improve understanding of the images.

Interpretation of SVD results

The principal components of the data are extracted as (a scale factor λ) x (a principal time series) x (a

principal  image) in  a  completely objective  process.  Each component  will  be orthogonal  to all  the
others.

During breath holding, the first two principal time series are at the cardiac frequency and
must be 90° out of phase in order to be orthogonal. They represent cardiac synchronous changes in

impedance at different phases and a full understanding of the temporal relationships in blood volume
across the image would require a recombination of these two components. The third and subsequent
singular values are much smaller. The random nature of the third time series suggests that noise is the
main feature - electronic, experimental and reconstruction.

During breathing a very clear respiratory time series is seen in the first principal component.
It shows values which are highest in the lung regions and non-zero where no breathing signal could be
expected. This effect is inherent in the method as EIT smoothes regional changes. The first time series
follows the Respitrace signal perfectly. Regional ventilation information can be obtained from the first
principal image with some confidence as the scale of change on the key shows a ratio of about 1:1.5
inside the lungs and 1:2.5 from smoothing.
The second principal time series is approximately 1/40 the size of the first and demonstrates that the
SVD method is capable of extraction small components from noisy data. Both respiratory and cardiac



synchronous changes are seen; no cardiac component was obvious in the raw animation. The largest
values on this principal image are seen in the region of the heart. However, the respiratory and cardiac
contributions are not separable in this method.
The  third  principal  image  shows  some  left-right  changes  with  timing  at  some  non-respiratory
frequency. It is possible that this an experimental artefact; the low level of the changes allows little
confidence in its interpretation.

Interpretation of FT results

During breath holding the most significant temporal change is seen over the whole image at
the heart frequency. Lung conductivity is a function of the local blood volume. The PSD of the lung
pixel time series shows two components, one very slow and the second at the heart frequency. The first
may be related to the change in intra-thoracic pressure at the onset of breath holding. This aspect of the
experimental  protocol  was  not  controlled.  The  second  component  at  the  heart  frequency,  can  be
examined in the images of PSD and phase. Here it is clear that the largest PSD is around the heart - the
amplitude being more than 100 times the amplitude in the lung region. The phase image shows that the
cardiac synchronous blood volume changes in the heart are more than 90° out of phase with much of

the lungs. Magnitude and phase information must be taken together to understand the blood volume
changes. Independent verification of the timing of lung tissue blood volume changes in humans is
unavailable. 

During breathing a clear respiratory time series is seen on both lung and heart  pixels. As
mentioned, the EIT method smoothes changes across the image. By examining the magnitude and the
phase at that frequency alone it can be seen that the magnitude of change in the lungs is several times
larger  than in other regions, and that regional ventilation differences in the lungs can be seen. The
phase image is almost uniform (<10° over the image).

By selecting the heart  frequency,  the image of cardiac-synchronous changes can be extracted.  The
magnitude shows a 5:1 ratio between the change in the heart and outside it. The phase information is
resolvable and shows typically 90° difference between the heart and lung regions.

Conclusion

Raw EIT  images  demonstrate  respiratory  and  cardiac  related  conductivity  changes.  SVD and FT
analyses  of  these  changes  has  enabled  the  separation  of  different  components  and  demonstrated
changes which would be  expected  in  normal  physiology.  The SVD method integrates  spatial  and
temporal changes in its analysis which makes its outputs more complex to interpret. The FT method is
sensitive only to temporal changes and therefore is more appropriate where the region being imaged
has parts which stay in place. The extra precision offered by the FT has been shown to enhance the
diagnostic power of the EIT method when used to study physiological changes in the thorax.
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