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Preface

This work is about the numerical evaluation of the expression

f(A)b,

where A ∈ CN×N is an arbitrary square matrix, b ∈ CN is a vector and f is a

suitable matrix function. This task is of very high importance in all applied sciences

since it is a generalization of the following problems, to name just a few:

• Solve the linear system of equations Ax = b.

The solution is x = f(A)b, where f(z) = 1/z.

• Solve an ordinary differential equation y ′(t) = Ay(t) with given initial

value y(0) = b. The solution is y(t) = f(tA)b, where f(z) = exp(z).

• Solve identification problems in stochastic semigroups. Here one needs

to compute f(A)b with f(z) = log(z) (see Singer, Spilermann [29]).

• Simulate Brownian motion of molecules. Here one needs to determine

f(A)b with f(z) =
√
z (see Ericsson [9]).

In the first chapter we will define the term f(A). There are different equivalent

approaches. A constructive one is to involve the Jordan canonical form of the

matrix A. Later we shall see that f(A) = pf,A(A), where pf,A is a polynomial of

degree ≤ N−1 that interpolates f at the eigenvalues of A. In practical applications

N is very large and the spectrum of A is not known. Therefore we will determine

an f -interpolating polynomial pf,m of low degree m− 1 � N and hope that

pf,m(A)b ≈ f(A)b.

The resulting methods are called Krylov subspace methods or polynomial methods

and they are considered in Chapter 2.
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Preface

The choice of the interpolation nodes for pf,m is an important issue. If the

interpolation nodes are uniformly distributed on a compact subset of C, we may

analyze the asymptotic convergence behavior of the arising methods using theory of

interpolation and best approximation. This is done in Chapter 3.

Another very popular choice of interpolation nodes are Ritz values. The resulting

Arnoldi approximations converge in many cases very fast to f(A)b. To explain

this, it is necessary to describe the behavior of Ritz values. In Chapter 4 we will

present a theory on the convergence of Ritz values, which was mainly developed

by Beckermann and Kuijlaars (see [1, 18, 19]). This theory involves tools from

potential theory.

Files

Identifier

All computations in this work have been carried out using Mathworks Matlab,

version 6.5 R13. The operating system was Microsoft Windows XP Pro-

fessional, SP 2. The necessary files can be found on the attached CD-ROM.

All figures may be reproduced by the reader and are marked by a symbol and

an identifier at the right margin of the page. A graphical user interface for the easy

access to the corresponding .m-files is provided. It is executed from the command

line of Matlab by typing

>> cd X: % change to CD-ROM drive X

>> cd mat

>> guirun

The .m-files may also be accessed directly from the subfolder FILES/Identifier

by running rundemo.m. Note that some of the examples require the Schwarz-

Christoffel-toolbox written by Driscoll [3], which should be added to the search patch

of Matlab. Moreover, access to the Maple kernel is necessary for some files.

Additionally, the CD-ROM contains this document and two presentations about

the subject of this work as .pdf- and LATEX-files, as well as all the figures shown here.

For a detailed File List we refer to page 97.
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Preface

Some Words about Notation

Throughout this work, matrices are uppercase letters and vectors are bold lowercase

letters. The null matrix is denoted by O and the identity matrix by I. ξm denotes

the m-th unit coordinate vector, whereas em denotes the error and um is a column

of an unitary matrix. Mainly in the first chapter we will use the space-saving toep-

operator. It takes a vector argument and constructs a Toeplitz matrix (i.e., a matrix

with constant diagonal entries) by using the vector entries as diagonal values, where

the main diagonal value is underlined. If the size of the constructed matrix is not

clear from the context, it follows the toep-operator:

toep(1, 2, 3, 4) =


2 3 4

1 2 3 4

1 2 3

1 2

 ∈ C4×4, toep(1, 2, 3, 4) =

[
2 3

1 2

]
∈ C2×2.

The operator diag arranges (block-)diagonal matrices by taking a list of matrices

J1, J2, . . . , Jk:

diag(J1, J2, . . . , Jk) =


J1

J2

. . .

Jk

 .

On page 98 we give a detailed overview about the symbols used here.
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1 Matrix Functions

The aim of this chapter is to give a meaning to the term f(A), where A ∈ CN×N is

a given square matrix and f(z) is a complex-valued function of a complex variable

z ∈ C. We explain which requirements f has to fulfill in order that f(A) is defined

and how it is defined. Since there are different definitions, we have to clarify in which

sense they are compatible to each other: some of them hold only for polynomials,

others hold only if f is analytic in a domain that contains the eigenvalues of A, etc.

The most common and constructive approach involves the Jordan canonical form of

a matrix. Another very important viewpoint, especially for the following chapters,

is to consider f as an interpolation polynomial. At the end of this chapter we list

some properties of matrix functions.

1.1 Polynomial Matrix Functions

Let p(z) be a polynomial of degree m with complex coefficients αj, i.e.,

p(z) = αmz
m + αm−1z

m−1 + · · ·+ α0. This will be denoted by p(z) ∈ Pm(z).

Since the powers I, A,A2, . . . exist, we may insert A in p and the following definition

is justified.

Definition 1.1. p(A) is defined as

p(A) := αmA
m + αm−1A

m−1 + · · ·+ α0I ∈ CN×N . (D1)

We say p is a polynomial matrix function.

We no longer have to distinguish between Pm(z) and the set of polynomials in A

of degree ≤ m. We simply write Pm. In the following lemma we summarize some

important properties of polynomial matrix functions.
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1 Matrix Functions

Lemma 1.2. Let p ∈ Pm be a polynomial, A ∈ CN×N and A = TJT−1, where

J = diag(J1, J2, . . . , Jk) is block-diagonal. Then

(i) p(A) = Tp(J)T−1,

(ii) p(J) = diag (p(J1), p(J2), . . . , p(Jk)),

(iii) If Av = λv then p(A)v = p(λ)v (v ∈ CN),

(iv) Given another polynomial p̃ ∈ Pm̃ then p(A)p̃(A) = p̃(A)p(A).

Proof. (i) By (D1) we have

p(A) = p(TJT−1)

= αm

(
TJT−1

)m
+ αm−1

(
TJT−1

)m−1
+ · · ·+ α0I

= T
(
αmJ

m + αm−1J
m−1 + · · ·+ α0I

)
T−1

= Tp(J)T−1.

(ii) Powers of block-matrices do not alter the block-structure.

(iii) Using (D1) we obtain

p(A)v = αmA
mv + αm−1A

m−1v + · · ·+ α0v

= αmλ
mv + αm−1λ

m−1v + · · ·+ α0v

= p(λ)v .

(iv) holds because powers of A commute: AµAν = AνAµ.

1.2 The Jordan Canonical Form

A factorization A = TJT−1 with J = diag(J1, J2, . . . , Jk) can always be found.

Every square matrix A is similar to a block-diagonal Jordan matrix J , where each

Jordan block Jj = Jj(λj) ∈ Cnj×nj has entries λj on the main diagonal and ‘ones’

on the first upper diagonal (j = 1, 2, . . . , k):

Jj(λj) := toep(λj, 1) =



λj 1

λj 1
. . . . . .

λj 1

λj


.
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1 Matrix Functions

We say J = T−1AT is a Jordan canonical form (JCF) of A. The numbers λj

are the eigenvalues of A and the columns of T are the corresponding generalized

eigenvectors. In general the computation of a JCF is very expensive and unstable.

Nevertheless it will be useful to extend our definition of polynomial matrix functions

to wider function classes.

Assume that the JCF of A consists of one single Jordan block, i.e.,

J := toep(λ, 1) ∈ Cn×n, n = N.

Let pm(z) := zm be the monomial of degree m. Then pm(J) is an upper triangular

Toeplitz matrix and its i-th diagonal1 contains the values
(

m
i

)
λm−i. In other words,

pm(J) = toep

((
m

0

)
λm, . . . ,

(
m

i

)
λm−i, . . . ,

(
m

m

)
λ0

)
∈ Cn×n. (1.1)

To explain this we write J = λI + E with E := toep(0, 1) ∈ Cn×n and note that

E0 = I, E2 = toep(0, 0, 1), E3 = toep(0, 0, 0, 1), . . . and Em = O for m ≥ n.

Because I and E commute we may apply the Binomial Theorem, resulting in

pm(J) = (λI + E)m =
m∑

i=0

(
m

i

)
λm−iEi,

from which the assertion (1.1) follows.

We observe that

p(i)
m (λ) =

m!

(m− i)!
λm−i = i!

(
m

i

)
λm−i.

Here p
(i)
m is the i-th derivative of the function pm. Note that p

(i)
m ≡ 0 if i > m.

Consequently, (1.1) can be rewritten as

pm(J) = toep

(
pm(λ), . . . ,

p
(i)
m (λ)

i!
, . . . ,

p
(n−1)
m (λ)

(n− 1)!

)
.

Finally, we replace pm by a function f : C ⊇ D → C and find that f(J) is well

defined if f(λ), f ′(λ), . . . , f (n−1)(λ) exist. We are led to give the following definition

of f(A) (see Lancaster, Tismenetsky [20]).

1The i-th diagonal of a matrix M = [mµ,ν : 1 ≤ µ, ν ≤ n] contains all entries mµ,ν that satisfy

ν − µ = i. This is Matlab-enumeration of diagonals.
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Definition 1.3. Given A ∈ CN×N with a Jordan canonical form J = T−1AT , where

J = diag(J1, J2, . . . , Jk) and Jj = Jj(λj) ∈ Cnj×nj (j = 1, 2, . . . , k). Let U be an

open subset of C such that {λ1, λ2, . . . , λk} ⊂ U . Let f be a function f : U ⊆ D → C.

We say that f is defined for A if f(λj), f
′(λj), . . . , f

(dλj
−1)(λj) exist, where dλj

is the size of the largest Jordan block associated with the eigenvalue λj.

If f is defined for A we set

f(A) := T diag (f(J1), f(J2), . . . , f(Jk))T
−1, (D2)

where

f(Jj) := toep

(
f(λj), . . . ,

f (i)(λj)

i!
, . . . ,

f (nj−1)(λj)

(nj − 1)!

)
. (D2’)

Remarks 1.4.

(i) f(A) is uniquely determined by (D2).

Proof. The JCF is unique up to a permutation of the Jordan blocks (see

Meyer [22]). Given another JCF J̃ = T̃−1AT̃ . Then there exists a permu-

tation matrix P ∈ {0, 1}N×N , P TP = I, such that J̃ = PJP T and T̃ = TP T .

Therefore

T̃ f(J̃)T̃−1 = f(T̃ J̃ T̃−1) = f(TP TPJP TPT−1) = f(TJT−1) = f(A).

(ii) By Λ(A) we denote the spectrum of A. The minimal polynomial of A is defined

as

ψA(z) :=
∏

λ∈Λ(A)

(z − λ)dλ .

ψA is the monic polynomial of smallest degree d :=
∑

λ∈Λ(A) dλ that

annihilates A (i.e., ψA(A) = O)2. ψA is uniquely determined.

Proof. T is invertible. Therefore ψA(A) = TψA(J)T−1 = O if and only if

ψA(J) = O. Let J?(λ) be a largest Jordan block to an eigenvalue λ. Then

all other Jordan blocks Jj to the same eigenvalue are leading submatrices

2Indeed, this is an equivalent definition of the minimal polynomial.
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1 Matrix Functions

of J? and all matrices ψA(Jj) are leading submatrices of ψA(J?). Hence, it is

sufficient to prove that ψA(J?) = O. But this is obvious since ψA has a root λ

of multiplicity dλ:

ψA(J?(λ)) = toep

(
ψA(λ), . . . ,

ψ
(i)
A (λ)

i!
, . . . ,

ψ
(dλ−1)
A (λ)

(dλ − 1)!

)
= toep(0, . . . , 0, . . . , 0).

Conversely, we assume that λ is only a root of multiplicity ν ≤ dλ − 1. Then

ψ
(ν)
A (λ) 6= 0 and ψA(J?(λ)) 6= O. Therefore ψA is not annihilating A and thus

not a minimal polynomial of A, which is a contradiction.

Now we prove the uniqueness of ψA. Assume that ψ̃A is another minimal

polynomial of A. Then by definition deg(ψ̃A) = d. Consequently, β(ψ̃A − ψA)

is a monic polynomial (for some scaling constant 0 6= β ∈ C) of degree < d

that annihilates A. This is a contradiction to ψA and ψ̃A having the minimal

degree d. Thus, uniqueness is proven.

(iii) By χA we denote the characteristic polynomial of A,

χA(z) := det(zI − A) =
k∏

j=1

(z − λj)
nj .

Obviously, ψA is a divisor of χA, i.e.,

ψA | χA . (1.2)

(iv) If all the λj are pairwise distinct (i.e., each eigenvalue occurs in exactly one

Jordan block) then

ψA(z) =
k∏

j=1

(z − λj)
nj = χA(z).

Such matrices are called nonderogatory.

(v) By construction it is clear that for monomials pm(z) = f(z)

(D1) = (D2).

But the equivalence of both definitions also persists for all p ∈ Pm. Given

p(z) =
∑m

j=0 αjz
j then by Lemma 1.2 we obtain

p(A) =
m∑

j=0

αjpj(A) = T

(
m∑

j=0

αjpj(J)

)
T−1 = Tp(J)T−1.

10
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1.3 Polynomial Interpolation I

The following theorem clarifies the connection between matrix functions and

interpolation polynomials.

Theorem 1.5.

(i) There holds

f(A) = p(A)

if and only if

f (i)(λ) = p(i)(λ) for all λ ∈ Λ(A), i = 0, 1, . . . , dλ − 1. (HIP)

These are d := deg(ψA) interpolation conditions on p.

(ii) There exists a uniquely determined polynomial pf,A ∈ Pd−1 that satisfies (HIP).

We say pf,A is the Hermite interpolating polynomial satisfying (HIP).

(iii) Every polynomial p that satisfies (HIP) can be represented in the form

p(z) = pf,A(z) + ψA(z)h(z)

for some polynomial h(z).

Proof. (i) Let J = T−1AT be a JCF of A, J = diag(J1, J2, . . . , Jk). Clearly, f(A) =

p(A) if and only if f(J) = p(J). By definition,

f(Jj) = toep

(
f(λj), . . . ,

f (i)(λj)

i!
, . . . ,

f (nj−1)(λj)

(nj − 1)!

)
(HIP)
= toep

(
p(λj), . . . ,

p(i)(λj)

i!
, . . . ,

p(nj−1)(λj)

(nj − 1)!

)
= p(Jj),

where the second equality holds for all j = 1, 2, . . . , k if and only if the interpolation

conditions (HIP) are satisfied.

(ii) Given another polynomial p̂f,A that satisfies (HIP). Then p̂f,A − pf,A has d

roots (counted by multiplicities) and thus p̂f,A − pf,A ≡ 0. Hence pf,A is unique.

Now existence follows from uniqueness: With

pf,A(z) = αd−1z
d−1 + αd−2z

d−2 + · · ·+ α0,

11
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(HIP) is a system of d linear equations for d unknowns αi and can be written as

Mα = f , where M ∈ Cd×d, f ∈ Cd and α = [α0, α1, . . . , αd−1]
T . M is invertible

because of the already proven uniqueness of pf,A. Hence α = M−1f exists.

(iii) Set r(z) := p(z) − pf,A(z). Since p(A) = pf,A(A) due to (i), we have

r(A) = O. Thus, r must contain a factor ψA, i.e., r(z) = ψA(z)h(z). Conversely,

if p(z) = pf,A(z) + ψA(z)h(z) then p(A) = pf,A(A) + ψA(A)h(A) = pf,A(A) + O =

pf,A(A).

Example 1.6. Let A = [α] for some constant α ∈ C. Then ψA(z) = z − α and

deg(ψA) = 1. Therefore f(A) = pf,A(A) with deg(pf,A) = 0, namely pf,A(z) =

f(α)I. This is a degenerate case.

Example 1.7. Find a polynomial p such that p(A) = exp(A), where

A =



1 6 4 0 −8

0 7 4 0 −8

2 0 −1 −1 −2

2 −4 0 0 2

2 6 3 −1 −9


.

A Jordan canonical form of A is J = T−1AT , where

T =



1 −4 2 −4 1

0 −4 2 −4 1

0 −2 −1 −1 0

2 2 2 1 0

0 −5 2 −4 1


and J =



1 0 0 0 0

0 −1 1 0 0

0 0 −1 0 0

0 0 0 0 0

0 0 0 0 −1


.

We read off: J has k = 4 Jordan blocks Jj to the associated eigenvalues λ1 =

1, λ2 = −1, λ3 = 0, λ4 = −1. The sizes nj of the blocks are n1 = n3 = n4 = 1 and

n2 = 2. Thus, d1 = d0 = 1 and d−1 = 2. The minimal polynomial of A is

ψA(z) = (z − 1)(z + 1)2z .

We have to determine a polynomial p(z) that satisfies the following d = 4 Hermite

interpolation conditions:

12
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p(λ1) = p(1)
!
= exp(1) = e,

p(λ2) = p(−1)
!
= exp(−1) = 1/e,

p′(λ2) = p′(−1)
!
= exp(−1) = 1/e,

p(λ3) = p(0)
!
= exp(0) = 1.

A solution is

p(z) =
e2 − 4e + 5

4e
z3 +

(e− 1)2

2e
z2 +

e2 + 4e− 7

4e
z + 1

and there holds

p(A) = exp(A).

Because p ∈ Pd−1 we already found the unique Hermite interpolating polynomial.

Remarks 1.8.

(i) Every matrix function f(·) can be represented pointwise (i.e., for a fixed A)

as a polynomial pf,A(A) ∈ Pd−1, d = deg(ψA).

(ii) f(A) depends only on the values of f, f ′, . . . on Λ(A). Thus, f(A) and f(B)

have the same polynomial representation if A and B have the same minimal

polynomial (e.g., if A and B are similar matrices).

(iii) If all Jordan blocks have size 1×1 and thus J is a diagonal matrix (this happens

if and only if A has n linearly independent eigenvectors, e.g., if A is normal)

then (HIP) reduces to a Lagrange interpolation problem:

f(λ) = p(λ) for all λ ∈ Λ(A). (LIP)

1.4 The Components of a Matrix

We want to derive a (more or less) explicit formula for the Hermite interpolating

polynomial pf,A ∈ Pd−1 that fulfills (HIP) for a function f (see Theorem 1.5). By the

way, this will lead us to another definition of f(A) generalizing the Cauchy integral

formula. The following derivation has been adapted from Gantmacher [11].

13
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Let

ψA(z) =
∏

λ∈Λ(A)

(z − λ)dλ

denote the minimal polynomial of A. We represent the rational function

pf,A(z)/ψA(z), where deg(pf,A) < deg(ψA) = d, as a sum of partial fractions:

pf,A(z)

ψA(z)
=
∑

λ∈Λ(A)

(
αλ,0

(z − λ)dλ
+

αλ,1

(z − λ)dλ−1
+ · · ·+ αλ,dλ−1

(z − λ)

)
, (1.3)

where αλ,i are certain constants we want to determine for λ ∈ Λ(A) and

i = 0, 1, . . . , dλ − 1. Therefor we multiply both sides of (1.3) by (z − λ)dλ and set

ψA,λ(z) := ψA(z)/(z − λ)dλ . We obtain

pf,A(z)

ψA,λ(z)
= αλ,0 + αλ,1(z − λ) + · · ·+ αλ,dλ−1(z − λ)dλ−1 + (z − λ)dλRλ(z),

where Rλ(z) is a rational function with Rλ(λ) 6= ∞.

From the last equation the following can be easily verified:

αλ,i =
1

i!

[
pf,A(z)

ψA,λ(z)

](i)

z=λ

. (1.4)

By (HIP) we know that p
(i)
f,A(λ) = f (i)(λ) (λ ∈ Λ(A); i = 0, 1, . . . , dλ − 1).

Furthermore no higher derivatives of pf,A occur in (1.4). Therefore we may replace

pf,A by f :

αλ,i =
1

i!

[
f(z)

ψA,λ(z)

](i)

z=λ

. (1.5)

Hence all the αλ,i can be obtained and we may determine pf,A(z) by multiply-

ing (1.3) by ψA(z):

pf,A(z) =
∑

λ∈Λ(A)

(
αλ,0 + αλ,1(z − λ) + · · ·+ αλ,dλ−1(z − λ)dλ−1

)
ψA,λ(z) . (1.6)

By substituting in (1.6) the expressions (1.5) for the coefficients αλ,i and gath-

ering the terms that contain the same factor f (i)(λ), we may represent pf,A(z) in

the form

pf,A(z) =
∑

λ∈Λ(A)

(
f(λ)ϕλ,0(z) + f ′(λ)ϕλ,1(z) + · · ·+ f (dλ−1)(λ)ϕλ,dλ−1(z)

)
, (1.7)

14
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where ϕλ,i ∈ Pd−1 (λ ∈ Λ(A); i = 1, 2, . . . , dλ − 1) are d polynomials that are

completely determined when ψA(z) is given and do not depend on the function f .

Choosing functions fλ,i(z) such that

f
(ν)
λ,i (z) =

{
1, z = λ, i = ν;

0, otherwise,

for all z ∈ Λ(A), then the associated Hermite interpolating polynomials pλ,i ful-

fill (HIP) by definition, i.e., p
(ν)
λ,i (λ) = f

(ν)
λ,i (λ). Therefore (1.7) yields

ϕ
(ν)
λ,i (z) =

{
1, z = λ, i = ν;

0, otherwise,
(1.8)

for all z ∈ Λ(A).

Hence all the ϕλ,i(z) are linearly independent (f ≡ 0 ⇒ pf,A ≡ 0 ⇒ f (i)(λ) = 0).

Thus, {ϕλ,i(λ) : λ ∈ Λ(A); i = 0, 1, . . . , dλ−1} is a basis of Pd−1, the Hermite basis .

Definition 1.9. With the polynomials ϕλ,i from above the matrices Cλ,i := ϕλ,i(A)

define the components of A.

We summarize some properties of the components of a matrix:

Theorem 1.10. Let Cλ,i ∈ CN×N (λ ∈ Λ(A); i = 0, 1, . . . , dλ−1) be the components

of A ∈ CN×N and let J = T−1AT = diag (J1, J2, . . . , Jk) be a JCF of A, where

Jj = Jj(λj) ∈ Cnj×nj for j = 1, 2, . . . , k. Then there holds

(i) {Cλ,i : λ ∈ Λ(A); i = 0, 1, . . . , dλ−1 } ⊂ CN×N is a set of linearly independent

matrices,

(ii)

f(A) =
∑

λ∈Λ(A)

dλ−1∑
i=0

f (i)(λ)Cλ,i , (1.9)

(iii)
∑

λ∈Λ(A)Cλ,0 = I and
∑

λ∈Λ(A) λCλ,0 + Cλ,1 = A,

(iv) Cλ,iCµ,j = Cµ,jCλ,i ,

15
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(v) Cλ,i = T diag(D1, D2, . . . , Dk)T
−1, where Dj ∈ Cnj ,nj (j = 1, 2, . . . , k) and

Dj =


I, λj = λ, i = 0;

toep(0, . . . , 0︸ ︷︷ ︸
i-times

, 1/i!), λj = λ, 0 < i ≤ nj − 1;

O, otherwise.

Proof. (i)
∑

λ,i cλ,iCλ,i = 0 ⇒ O =
∑

λ,i cλ,iϕλ,i(A) ∈ Pd−1 ⇒ cλ,i = 0, otherwise we

would have found a minimal polynomial of degree d − 1, which is a contradiction.

(ii) results from (1.7) using the Definition 1.9. (iii) follows from (ii) setting f(z) = 1

or f(z) = z, respectively. The components are polynomials in A. Thus, (iv) is an

implication of Lemma 1.2, (iv). (v) Definition 1.3 yields

Cλ,i = ϕλ,i(A) = Tϕλ,i(J)T−1 = T diag (ϕλ,i(J1), ϕλ,i(J2), . . . , ϕλ,i(Jk))T
−1,

where

ϕλ,i(Jj) = toep

(
ϕλ,i(λj), . . . ,

ϕ
(ν)
λ,i (λj)

ν!
, . . . ,

ϕ
(nj−1)
λ,i (λj)

(nj − 1)!

)
.

The values ϕ
(ν)
λ,i (λj) are given by (1.8): ϕ

(ν)
λ,i (λj) = δi,ν , which yields ϕλ,i(Jj) = Dj

and therefore the assertion.

Remark 1.11. Equation (1.9) is often referred to as the spectral resolution of A

for f .

1Hermite

Example 1.12. The components of the matrix A from Example 1.7 are

C−1,0 = T



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1


T−1, C−1,1 = T



0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


T−1,

C0,0 = T



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0


T−1, C1,0 = T



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


T−1.

There holds exp(A) = e−1C−1,0 + e−1C−1,1 + e0C0,0 + e1C1,0.
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Figure 1.1: The Hermite basis polynomials ϕλ,i of the matrix A from Example 1.7.

1.5 Cauchy Integral Formula

We begin with some fundamental definitions from complex analysis as they are

needed for what follows. For further studies the reader may consult Walsh [32] and

Henrici [16].

Definitions 1.13. A path γ is a continuous function γ : [a, b] → C. A closed

path γ is a path that satisfies γ(a) = γ(b). A simple path γ is a path that satisfies

γ(s) = γ(t) ⇒ s = a and t = b for all a ≤ s < t ≤ b. For a closed path γ we define

the winding number around z ∈ C as

windz(γ) := [arg(γ(b)− z)− arg(γ(a)− z)]/2π,

where arg has to be chosen continuous along γ. The interior of a closed path γ is

defined as

int(γ) := {z ∈ C : windz(γ) 6= 0}.

The exterior of a closed path γ is

ext(γ) := {z ∈ C : windz(γ) = 0}.

An open set Ω is connected if any two points of it can be joined by a path that

is contained in Ω. Ω is a domain if it is nonempty, open and connected.

17
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The image of a path γ is a curve Γ, i.e.,

Γ = γ([a, b]) := {γ(t) ∈ C : t ∈ [a, b]}.

A curve is closed (simple) if it is the image of a closed (simple) path. A simple

closed curve is called Jordan curve. The winding number of a curve Γ around z ∈ C
is defined as the winding number of γ around z, where γ is a path whose image is

Γ. The interior (exterior) of a curve Γ is defined as the interior (exterior) of a path

whose image is Γ. By the Jordan Curve Theorem it is known that the exterior of

a Jordan curve is an unbounded domain (i.e., nonempty, connected and open) and

its interior is a simply connected bounded domain. The latter is often called Jordan

domain.

Theorem 1.14 (Cauchy). Let f(z) be a function that is analytic within the interior

of a Jordan curve Γ and extends continuously to it. Then the Cauchy integral

formula

f (i)(z) =
i!

2πi

∫
Γ

f(ζ)

(ζ − z)i+1
dζ (CIF)

holds for i = 0, 1, . . . and any z ∈ int(Γ).

Proof. See, for example, Henrici [16, p. 211].

Lemma 1.15. Let A ∈ CN×N , ζ 6∈ Λ(A) and Cλ,i be the components of A. There

holds

Rζ(A) := (ζI − A)−1 =
∑

λ∈Λ(A)

dλ−1∑
i=0

i!

(ζ − λ)i+1
Cλ,i. (1.10)

Rζ(A) is the resolvent of A to ζ.

Proof. For ζ 6∈ Λ(A), (ζI−A) is invertible because N (ζI−A) = {0}. The spectral

resolution (1.9) of A for fζ(λ) = 1/(ζ − λ) (defined for all λ 6= ζ) yields the desired

equivalence in (1.10).

Theorem 1.16. Let A ∈ CN×N and Γ be a Jordan curve such that Λ(A) ⊂ int(Γ).

Let f(z) be analytic in int(Γ) and continuous on Γ, then

f(A) =
1

2πi

∫
Γ

f(ζ)(ζI − A)−1 dζ =
1

2πi

∫
Γ

f(ζ)Rζ(A) dζ. (D3)

18
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Proof. By multiplying both sides of (1.10) by f(ζ)/(2πi) and integrating along Γ

we obtain∫
Γ

f(ζ)

2πi
(ζI − A)−1 dζ =

∫
Γ

f(ζ)

2πi

∑
λ∈Λ(A)

dλ−1∑
i=0

i!

(ζ − λ)i+1
Cλ,i dζ

=
∑

λ∈Λ(A)

dλ−1∑
i=0

(
i!

2πi

∫
Γ

f(ζ)

(ζ − λ)i+1
dζ

)
Cλ,i

(CIF)
=

∑
λ∈Λ(A)

dλ−1∑
i=0

f (i)(λ)Cλ,i

(1.9)
= f(A).

1.6 Polynomial Interpolation II

We have a look at more general interpolation polynomials. Let

ω(z) = (z − µ1)
n1(z − µ2)

n2 · · · (z − µk)
nk

be an arbitrary monic polynomial, µj pairwise distinct.

Let pf,ω be a polynomial such that

f (i)(µj) = p
(i)
f,ω(µj) for j = 1, 2, . . . , k; i = 0, 1, . . . , nj − 1. (gHIP)

These are d := deg(ω) interpolation conditions to pf,ω. We say pf,ω ∈ Pd−1 is

the Hermite interpolating polynomial to f at the nodes ω. ω is often referred to as

the nodal polynomial to the nodes µ1, µ2, . . . , µk.

Remark 1.17. Since we can always construct a matrix A such that ω is the minimal

polynomial of A, (gHIP) is nothing but a generalization of (HIP), page 11.

The following theorem provides an analytic representation of pf,ω.

Theorem 1.18 (Hermite Formula). Let Γ be a Jordan curve such that

{µ1, µ2, . . . , µk} ⊂ int(Γ) and let f be analytic in int(Γ) and extend continuously

to Γ. There holds

pf,ω(z) =
1

2πi

∫
Γ

ω(ζ)− ω(z)

ζ − z

f(ζ)

ω(ζ)
dζ.
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Proof. ω(ζ)− ω(z) is a polynomial in z of degree d with a root in ζ. Hence ζ − z is

a divisor of it. For this reason we may write

pf,ω(z) =
1

2πi

∫
Γ

(
d−1∑
j=0

αj(ζ)z
j

)
f(ζ)

ω(ζ)
dζ =

d−1∑
j=0

(
1

2πi

∫
Γ

αj(ζ)
f(ζ)

ω(ζ)
dζ

)
zj,

which is obviously a polynomial of degree d− 1.

pf,ω(z) also fulfills the interpolation conditions (gHIP):

p
(i)
f,ω(µj) =

i!

2πi

∫
Γ

ω(ζ)− ω(µj)

(ζ − µj)i

f(ζ)

ω(ζ)
dζ = f (i)(µj),

where we used (CIF) and the fact that ω(µj) = 0.

By Theorem 1.5 it follows that pf,ω is the Hermite interpolating polynomial

satisfying (gHIP).

From the last formula we can immediately derive the interpolation error formula

due to Hermite:

Lemma 1.19 (Interpolation error). Let Γ be a Jordan curve such that

{µ1, µ2, . . . , µk} ⊂ int(Γ) and let f be analytic in int(Γ) and extend continuously

to Γ. There holds

f(z)− pf,ω(z) =
1

2πi

∫
Γ

f(ζ)

(ζ − z)

ω(z)

ω(ζ)
dζ.

Proof. Represent f(z) using (CIF).

1.7 Power Series

We examined polynomials in A ∈ CN×N of degree m < +∞. We may also consider

matrix functions f that are defined by power series:

f(A) :=
+∞∑
j=0

αjA
j = lim

m→+∞

m∑
j=0

αjA
j. (1.11)

We have to take care about the convergence behavior of this expression. Let ||| · |||
denote an arbitrary matrix norm on CN×N that satisfies %(A) ≤ |||A |||. The Cauchy

convergence criteria is

+∞∑
j=0

αjA
j converges ⇔ ∀ε > 0 ∃nε ∈ N0 :

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

+∞∑
j=nε

αjA
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ < ε.
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We assume that f is analytic around 0 and has convergence radius τ (i.e.,

|f(z)| < +∞ for |z| < τ). Then∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

+∞∑
j=nε

αjA
j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

+∞∑
j=nε

|αj| |||A |||j ,

thus, %(A) ≤ |||A ||| < τ would be a sufficient criteria for the convergence of (1.11)

because Taylor series converge absolutely. Here %(A) := max{|λ| : λ ∈ Λ(A)}
denotes the spectral radius of A.

Theorem 1.20. Let f be analytic in an open set U 3 0 and let f(z) =
∑+∞

j=0 αjz
j

be the Taylor expansion of f in 0 with convergence radius τ ∈ (0,+∞]. Then f is

defined for every matrix A with %(A) < τ and

f(A) =
+∞∑
j=0

αjA
j = lim

m→+∞

m∑
j=0

αjA
j. (D4)

Example 1.21. Let f(z) = exp(z). f has convergence radius τ = +∞. Thus, f is

defined for every A ∈ CN×N and there holds

f(A) = exp(A) =
+∞∑
j=0

Aj

j!
.

Remark 1.22. (i) If f is of the form

f(z) =
+∞∑
j=0

αj(z − z0)
j

and for all eigenvalues λ ∈ Λ(A) there holds |f(λ)| < +∞ then

f(A) :=
+∞∑
j=0

αj(A− z0I)
j

is well defined.

(ii) If J = toep(z0, 1) ∈ CN×N then by definition of a matrix function

f(J) = toep

(
f(z0), . . . ,

f (i)(z0)

i!
, . . . ,

f (N−1)(z0)

(N − 1)!

)
= toep

(
α0, . . . , αi, . . . , αN−1

)
,

i.e., we can read off the coefficients of the truncated power series of f in the

first row of f(J).
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1.8 Properties of Matrix Functions

Firstly, we may extend Lemma 1.2 to general matrix functions:

Lemma 1.23. Let A = TJT−1 ∈ CN×N , where J = diag(J1, J2, . . . , Jk) is block-

diagonal and let f be defined for A. There holds

(i) f(A) = Tf(J)T−1,

(ii) f(J) = diag (f(J1), f(J2), . . . , f(Jk)),

(iii) If Av = λv then f(A)v = f(λ)v ,

(iv) Given another function f̃ that is defined for A. Then f(A)f̃(A) = f̃(A)f(A).

Proof. Apply Lemma 1.2 to the polynomial representation of f(A) and f̃(A).

Given two scalar functions f and g that are defined for A. By pf,A and pg,A we

denote the corresponding Hermite interpolating polynomials that satisfy pf,A(A) =

f(A) and pg,A(A) = g(A). Clearly, this polynomials fulfill

pαf,A = α pf,A (α ∈ C),

pf+g,A = pf,A + pg,A,

pfg,A = pf,A pg,A,

where the polynomials pαf,A, pf+g,A and pfg,A Hermite-interpolate the functions αf ,

f+g and fg at the roots of ψA. These three identities imply that any scalar rational

identity will be fulfilled by the corresponding matrix functions.

Example 1.24. The following equations hold, provided that all the involved terms

are defined:

sin2(A) + cos2(A) = I,

sin(A) (cos(A))−1 = tan(A),

exp(iA) = cos(A) + i sin(A),

log(αA) = log(α)I + log(A),

(I − A)−1 = I + A+ A2 + · · · (if %(A) < 1),

A = <(A) + i=(A),
...
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Given a matrix A ∈ CN×N and a vector b ∈ CN , our task is the computation of

f(A)b

for a given matrix function f that is defined for A. This should be accomplished in

an elegant and efficient way, with regard to computation speed as well as memory

requirements.

In most cases, N is very large and A is sparse. In general, f(A) is not sparse

and thus it would not be reasonable to first determine f(A) and then multiply the

result by b.

Definition 2.1. The m-th Krylov subspace of A and b is defined as

Km(A, b) := span{b, Ab, A2b, . . . , Am−1b} (m ≥ 1),

where span{. . .} is the set of all linear combinations of the vectors in braces. For

ease of notation we abbreviate Km(A, b) by Km.

In Chapter 1 we proved that

f(A) = pf,A(A),

where pf,A is a polynomial of degree d − 1 that interpolates the function f in the

Hermite sense at the roots of ψA. Hence

f(A)b = pf,A(A)b ∈ Kd(A, b).

Krylov subspace methods for the approximation of matrix functions are iterative

methods that choose their iterates xm from Krylov spaces K1,K2, . . . In other words,

xm = pm(A)b ∈ Km(A, b)
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for some polynomial pm of degree m − 1. For obvious reasons such methods are

also known as polynomial methods . The element xm is called Krylov approximation

of order m. How the polynomial pm is chosen, depends on the concrete method

at hand.

A ‘good’ Krylov subspace method should return the exact result xm = f(A)b if

the Krylov subspace Km contains it. One might claim that such Krylov subspace

methods are not iterative methods since they terminate after a finite number of steps.

This is true provided that we ignore rounding errors. In practical applications we

will start the iteration and run until some stopping condition is fulfilled. Note that

finding such a stopping condition is not always a trivial task for general matrix

functions: a residual or error norm may not be available. This is one of our main

motivations to seek convergence estimates of Krylov subspace methods.

In the following sections we will list important properties of Krylov subspaces,

introduce the Arnoldi process and some Krylov subspace methods, where we con-

centrate on the Arnoldi method and a generalized interpolation method.

2.1 Properties of Krylov Subspaces

Lemma 2.2. By ψA we denote the minimal polynomial of A. There exists an index

L = L(A, b) ≤ deg(ψA) such that

K1(A, b) $ K2(A, b) $ · · · $ KL(A, b) = KL+1(A, b) = · · ·

KL(A, b) is the first of the nested Krylov subspaces that is invariant to A.

Proof. It is obvious with Definition 2.1 that the Krylov subspaces are nested sub-

spaces of CN , i.e.,

K1 ⊆ K2 ⊆ · · · ⊆ Km ⊆ · · · ⊆ CN .

This chain must become stationary because of the finite dimension of CN . Thus,

there exists a minimal index L = L(A, b) with KL = KL+1 = · · ·

Now assume that Km = Km+1 for some index m. This means that Amb ∈ Km,

or equivalently

Amb = α0b + α1Ab + · · ·+ αm−1A
m−1b
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for some coefficients α0, α1, . . . , αm−1 ∈ C. We multiply this equation by A and

obtain

Am+1b = α0Ab + α1A
2b + · · ·+ αm−1A

mb.

Therefore Am+1b ∈ Km+2 is a linear combination of elements from Km+1. Thus,

Km+1 = Km+2. Continuing by induction on m→ m+ 1 yields the assertion.

From ψA(A)b = 0 it follows that L ≤ deg(ψA).

Corollary 2.3. There holds

dim(Km) = min{m,L}.

Definition 2.4. By ψA,b(z) we denote the monic polynomial of smallest degree for

which ψA,b(A)b = 0 . We say ψA,b is the minimal polynomial of b with respect

to A.

Lemma 2.5. ψA,b is uniquely determined and of the form

ψA,b(z) =
∏

λ∈Λ(A)

(z − λ)cλ . (2.1)

Proof. First we prove the uniqueness of ψA,b . Assume that ψ̃A,b is another minimal

polynomial of b with respect to A. Then by definition deg(ψ̃A,b) = deg(ψA,b).

Consequently, p := β(ψ̃A,b −ψA,b) is a monic polynomial (for some scaling constant

0 6= β ∈ C) that satisfies p(A)b = 0 and is of lower degree than ψA,b . This is a

contradiction.

We turn to (2.1). Assume that ψA,b contains a factor (z − λ̃), where λ̃ 6∈ Λ(A).

Then (A− λ̃I) is invertible and by definition of ψA,b we have

(A− λ̃I)−1ψA,b(A)b = 0 .

Hence (z−λ̃)−1ψA,b(z) is a minimal polynomial of b with respect to A and its degree

is lower than deg(ψA,b). This is a contradiction.

Lemma 2.6. There holds L = deg(ψA,b).

Proof. By Lemma 2.2, L = L(A, b) is the smallest integer for which ALb is lin-

early dependent on b, Ab, . . . , AL−1b. Therefore we will find uniquely determined

coefficients α0, α1, . . . , αL−1 ∈ C such that

ALb = α0b + α1Ab + · · ·+ αL−1A
L−1b.
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Thus,

ψA,b(z) := zL − αL−1z
L−1 − · · · − α0

is the minimal polynomial of b with respect to A and deg(ψA,b) = L.

Theorem 2.7. Let f be defined for A and let

ψA,b(z) =
∏

λ∈Λ(A)

(z − λ)cλ

be the minimal polynomial of b with respect to A. By pf,A,b ∈ PL−1 we denote the

unique Hermite interpolating polynomial satisfying

p
(i)
f,A,b(λ) = f (i)(λ) for all λ ∈ Λ(A), i = 0, 1, . . . , cλ − 1.

Then

f(A)b = pf,A,b(A)b.

Proof. Let J = T−1AT = diag(J1, J2, . . . , Jk) be a JCF of A. We note that

ψA,b(A)b = 0 if and only if

ψA,b




J1

J2

. . .

Jk



a = 0 , where a := T−1b =


a1

a2

...

ak

 .

The length of each of the aj corresponds to the size of the Jordan block Jj (j =

1, 2, . . . , k). By reading the above equation block-wise we obtain

ψA,b(Jj)aj = 0 .

Let Jj ∈ Cn×n be a fixed Jordan block associated with the eigenvalue λ. ψA,b has a

root of multiplicity cλ in λ. With the definition of a matrix function it follows that

ψA,b(Jj) = toep

0, . . . , 0︸ ︷︷ ︸
cλ-times

, ∗, . . . , ∗

 ,

where all the ∗ are nonzero entries. This implies

aj = [∗, . . . , ∗︸ ︷︷ ︸
cλ-times

, 0, . . . , 0]T .
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Hence, for f(Jj)aj = pf,A,b(Jj)aj to hold, it is sufficient that in

f(Jj) = toep

(
f(λ), . . . ,

f (i)(λ)

i!
, . . . ,

f (n−1)(λ)

(n− 1)!

)
only f(λ), f ′(λ), . . . , f (cλ−1)(λ) are interpolated by pf,A,b .

Remark 2.8. From the last proof it is easy to see that for all λ ∈ Λ(A) there

holds cλ ≤ dλ, where dλ is the multiplicity of the root λ in ψA. Together with (2.1)

and (1.2) this yields

ψA,b | ψA | χA . (2.2)

2.2 Nonderogatory Matrices

For the fast convergence of Krylov subspace methods it would be advantageous if

the subspaces Km(A, b) were to become stationary very early. In other words: we

hope that L is small. Unfortunately, this is not always the case. At least we have a

complete characterization of the worst-case, namely L = N .

It is clear that

L = N ⇐⇒ deg(ψA,b) = N
(2.2)
=⇒ ψA ≡ χA.

Definition 2.9. A matrix A ∈ CN×N for which ψA ≡ χA is said to be

nonderogatory. A vector b ∈ CN for which L(A, b) = N is said to be cyclic for A.

Remark 2.10. A matrix A is nonderogatory if and only if its Jordan canonical

form contains one and only one Jordan block to each eigenvalue λ ∈ Λ(A). This is

equivalent to the following assertions:

(i) All eigenvectors of A associated with the same eigenvalue are linearly

dependent.

(ii) The JCF of A is (up to a permutation of the Jordan blocks) uniquely

determined by the characteristic (=minimal ) polynomial of A.

Moreover, two nonderogatory matrices are similar if and only if their

characteristic polynomials agree.
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Lemma 2.11. Let

χA(z) = zN + αN−1z
N−1 + · · ·+ α0

be the characteristic polynomial of A ∈ CN×N . Then A is nonderogatory if and only

if it is similar to the companion matrix Cα of its characteristic polynomial,

Cα :=



0 −α0

1 0 −α1

1 0 −α2

. . . . . .
...

. . . 0 −αN−2

1 −αN−1


∈ CN×N .

Proof. [⇐] First it has to be shown that χA is the characteristic polynomial of Cα.

This can be done by expanding det(zI −Cα) along the first column and proceeding

by induction on the dimension of Cα. For a detailed proof see Meyer [22, p. 648].

Secondly, we show that Cα is nonderogatory: Assumed there is a monic polyno-

mial ψ(z) = zd + βd−1z
d−1 + · · ·+ β0 of degree d < N that annihilates Cα. Then

0 = ψ(Cα)ξ1 = Cd
αξ1 +βd−1C

d−1
α ξ1 + · · ·+β0ξ1 = ξd+1 +βd−1ξd + · · ·+β0ξ1, (2.3)

i.e., ξd+1 is linearly dependent on ξ1, ξ2, . . . , ξd, which is impossible and therefore a

contradiction. Consequently, the minimal and the characteristic polynomial of Cα

coincide and Cα is nonderogatory.

Being nonderogatory is invariant under a similarity transformation. Since A is

similar to Cα, it is nonderogatory.

[⇒] A and Cα are nonderogatory matrices with the same characteristic polyno-

mial. Therefore they are similar.

Lemma 2.12. There exists a vector b ∈ CN that is cyclic for A ∈ CN×N if and

only if A is nonderogatory.

Proof. [⇐] By Lemma 2.11 there exists an invertible matrix T ∈ CN×N such that

Cα = T−1AT , where Cα is the companion matrix to the characteristic polynomial

of A. ξ1 is cyclic for Cα because of (2.3). Equivalently, b := Tξ1 is cyclic for T−1A.

There holds N = dim(TKN(T−1A, b)) = dim(KN(A, b)). Thus, b is cyclic for A.
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[⇒] Assume that A is not nonderogatory, i.e., deg(ψA) < N . Because of (2.2)

this implies L = deg(ψA,b) < N and thus b is not cyclic for A.

2.3 The Arnoldi Process

Let m ≤ L. We will construct an orthonormal basis {v1, v2, . . . , vm} ⊂ CN of the

m-th Krylov subspace Km(A, b) with span{v1, v2, . . . , vj} = Kj(A, b) for any j ≤ m.

This is done by a Gram-Schmidt procedure, which for Krylov matrices is known as

the Arnoldi process. ‖ · ‖ denotes always the 2-norm of a vector or a matrix.

Definition 2.13. A matrix Hm = [hi,j : 1 ≤ i, j ≤ m] is said to be an upper

Hessenberg matrix if j + 1 < i⇒ hi,j = 0, i.e.,

Hm =



h1,1 h1,2 · · · h1,m−1 h1,m

h2,1 h2,2 · · · h2,m−1 h2,m

h3,2 · · · h3,m−1 h3,m

. . .
...

...

hm,m−1 hm,m


.

If hj+1,j 6= 0 (j = 1, 2, . . . ,m− 1) then Hm is said to be unreduced.

Algorithm 2.14: Arnoldi process

Input: A ∈ CN×N , b ∈ CN , m ≤ L.

Output: V := [v1, v2, . . . , vm], vm+1, Hm := [hi,j : 1 ≤ i, j ≤ m], hm+1,m.

v1 := b/‖b‖1

for j = 1, 2, . . . ,m do2

w := Avj3

for i = 1, 2, . . . , j do /* orthogonalize w */4

hi,j := vH
i w5

w := w − hi,jvi6

hj+1,j := ‖w‖ /* hj+1,j = 0 iff j = L */7

if hj+1,j > 0 then8

vj+1 := w/hj+1,j9

else10

vj+1 := 011
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Theorem 2.15 (Arnoldi decomposition). Given A ∈ CN×N , b ∈ CN and m < L.

There exists a matrix Vm ∈ CN×m with orthonormal columns, a vector vm+1 ∈ CN

satisfying V H
m vm+1 = 0 , an unreduced upper Hessenberg matrix Hm ∈ Cm×m and

hm+1,m ≥ 0 such that

AVm = VmHm + hm+1,mvm+1ξ
T
m . (2.4)

For m = L this reduces to

AVL = VLHL . (2.5)

Proof. Let j ∈ {1, 2, . . . ,m} and v1, v2, . . . , vj be an orthonormal basis of Kj(A, b).

Lines 3–6 of Algorithm 2.14 read as

w := Avj −
j∑

i=1

hi,jvi , (2.6)

where

hi,j := vH
i w ,

i.e., w is orthogonal to Kj. Because of Corollary 2.3 we have Avj ∈ Kj (and thus

w = 0 ) only if j = L.

By Lines 7–11 we set

hj+1,j := ‖w‖ (2.7)

and define vj+1, which is orthogonal to Kj and satisfies

hj+1,jvj+1 = w . (2.8)

Only if j = L we have hj+1,j = 0 and vj+1 = 0 .

(2.6) and (2.8) yield

Avj =

j+1∑
i=1

hi,jvi ,

which for j = 1, 2, . . . ,m can be written in matrix form

A[v1, v2, . . . , vm] = [v1, v2, . . . , vm, vm+1]H̃m+1,m (2.9)
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with

H̃m+1,m =



h1,1 h1,2 · · · h1,m−1 h1,m

h2,1 h2,2 · · · h2,m−1 h2,m

h3,2 · · · h3,m−1 h3,m

. . .
...

...

hm,m−1 hm,m

hm+1,m


.

We define Hm := [hi,j : 1 ≤ i, j ≤ m] by removing the last row of H̃m+1,m. Then

Hm is an unreduced upper Hessenberg matrix and (2.9) can be rewritten as

A[v1, v2, . . . , vm] = [v1, v2, . . . , vm]Hm + hm+1,mvm+1ξ
T
m .

By setting V := [v1, v2, . . . , vm] the assertion is obtained.

A Vm Vm

Hm

= +

N ×N N ×m m×m N ×m

hm+1,mvm+1

Figure 2.1: Scheme of the Arnoldi decomposition

Corollary 2.16. For 1 ≤ m ≤ L there holds

Hm = V H
m AVm .

Remark 2.17. We say Hm is the compression of A onto Km(A, b). Hm represents

the operation of A on Km with respect to the Arnoldi basis {vj : j = 1, 2, . . . ,m}.
We shall see that this representation is free of redundance in the sense that Hm is

nonderogatory.

Lemma 2.18. Hm is a nonderogatory matrix (1 ≤ m ≤ L).

Proof. Otherwise there would exist two linearly independent eigenvectors x ,y to

the same eigenvalue λ. Define z := αx + βy , z = [z1, z2, . . . , zm]T 6= 0 such that

zm 6= 0. Hmz = λz and Hm unreduced yield zm−1 = 0, zm−2 = 0, . . . inductively.

Therefore z = 0 , which is a contradiction.
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Lemma 2.19. There hold

(i) Hm has strictly positive entries on its lower subdiagonal, i.e.,

hj+1,j > 0 for j = 1, 2, . . . ,m− 1.

Furthermore, hm+1,m > 0 for m < L and hL+1,L = 0.

(ii)

ξT
mH

k−1
m ξ1 =

{
0, k < m;∏m−1

j=1 hj+1,j, k = m.

Proof. (i) This is an immediate consequence of the definition of hj+1,j given in (2.7).

(ii) Direct multiplication HmH
k−1
m shows that ξT

kH
k−1
m ξ1 = hj+1,jξ

T
k−1H

k−2
m ξ1 for

k = 2, 3, . . . ,m. By recursively applying this equation to itself the assertion is

obtained.

2.4 Arnoldi Approximation to f (A)b

Lemma 2.20. Let m < L be fixed and p(z) = αmz
m + αm−1z

m−1 + · · ·+ α0 ∈ Pm.

With the notation from Theorem 2.15 there holds

p(A)b = ‖b‖Vmp(Hm)ξ1 + ‖b‖αmγmvm+1, (2.10)

where γm =
∏m

j=1 hj+1,j. In particular, for any p ∈ Pm−1 this reduces to

p(A)b = ‖b‖Vmp(Hm)ξ1. (2.11)

Proof. It is sufficient to prove

Ajb = ‖b‖VmH
j
mξ1 for j < m (2.12)

and Amb = ‖b‖VmH
m
mξ1 + ‖b‖γmvm+1. (2.13)

By construction of the Algorithm 2.14 there holds b = ‖b‖Vmξ1. Therefore the

assertion (2.12) is true for j = 0:

A0b = b = ‖b‖Vmξ1 = ‖b‖VmH
0
mξ1.
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Let (2.12) hold for j = 0, 1, . . . , k − 1. Then by induction,

Akb = A(Ak−1b)
(2.12)
= A(‖b‖VmH

k−1
m ξ1)

= ‖b‖(AVm)Hk−1
m ξ1

(2.4)
= ‖b‖(VmHm + hm+1,mvm+1ξ

T
m)Hk−1

m ξ1

= ‖b‖VmH
k
mξ1 + ‖b‖hm+1,m(ξT

mH
k−1
m ξ1)vm+1.

By setting γm := hm+1,mξT
mH

k−1
m ξ1 and applying Lemma 2.19, (ii), we obtain the

assertion (2.12) if k < m or (2.13) if k = m, respectively.

Definition 2.21. Let f be defined for Hm. The Arnoldi approximation of order m

to f(A)b is defined as

fm := ‖b‖Vmf(Hm)ξ1.

The algorithm to obtain the Arnoldi approximation fm can be summarized

as follows.

Algorithm 2.22: Arnoldi method I

Input: A ∈ CN×N , b ∈ CN , m ≤ L.

Output: Arnoldi approximation fm.

Determine Vm, Hm using the Arnoldi process 2.14.1

Set fm := ‖b‖Vmf(Hm)ξ1.2

Remark 2.23. (i) We are still left with the problem of evaluating f(Hm) (actu-

ally, we need only the first column f(Hm)ξ1). The dimension of this problem

has been reduced from N to m.

(ii) Even though we assume that f is defined for A, Hm may have eigenvalues in

points where f is not defined. In this case, f(Hm) is not defined and therefore

the Arnoldi approximation of order m remains undefined too. For the solution

of linear systems of equations (i.e., f(z) = 1/z), this problem is known as

Galerkin breakdown.
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2.5 Ritz Values

Let 1 ≤ m ≤ L. The eigenvalues of the matrix Hm are called Ritz(m) values of A.

With χm(z) we denote the characteristic polynomial ofHm. χm is also called Ritz(m)

polynomial of A.1 Since Hm is nonderogatory by Lemma 2.18, we have that χm(z)

is the minimal polynomial of Hm.

Lemma 2.24. There holds

χL = ψA,b .

This implies

fL = f(A)b.

Proof. We know that χL and ψA,b are monic polynomials of degree L. Set p :=

ψA,b − χL ∈ PL−1 and assume p 6≡ 0. Note that p(HL) = ψA,b(HL). Since HL is

nonderogatory, p has to fulfill L interpolation conditions and therefore p ≡ ψA,b .

But this is a contradiction to deg(ψA,b) = L.

Theorem 2.7 asserts that f(A)b = pf,A,b(A)b, where pf,A,b ∈ PL−1 interpolates f

at the roots of ψA,b = χL. Moreover we know from Theorem 1.5 that f(HL) ∈ PL−1

is a polynomial pf,HL
(HL), where pf,HL

interpolates f at the eigenvalues of HL.

Therefore pf,HL
= pf,A,b and the assertion is obtained.

Lemma 2.25. There holds

V H
m χm(A)b = 0 .

Proof. Let m < L. Multiply (2.10) by V H
m from the left setting p := χm. For m = L

the assertion follows from Lemma 2.24, because χL(A)b = ψA,b(A)b = 0 .

Remark 2.26. Let m < L. Then χm(A)b is an element of Km+1(A, b) that satisfies

χm(A)b ⊥ Km .

In what follows, we denote the set of monic polynomials of degree m by P∞
m .

1Both Hm and χm depend also on the vector b. For ease of notation, this will not be mentioned

explicitly in the sequel.
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Lemma 2.27. χm minimizes the norm ‖p(A)b‖ among all p ∈ P∞
m .

Proof. Lemma 2.25 yields VmV
H
m χm(A)b = 0 . Note that VmV

H
m is the orthogonal

projector onto Km(A, b). From this it follows

(VmV
H
m χm(A)b,x ) = 0 for all x ∈ Km,

or equivalently,

(χm(A)b, VmV
H
m x ) = 0 for all x ∈ Km.

Writing χm(z) = zm − q(z), where q ∈ Pm−1, we obtain

(Amb − q(A)b, Ajb) = 0 for j = 1, 2, . . . ,m− 1.

These are the normal equations for minimizing the 2-norm of Amb − q(A)b among

all q ∈ Pm−1.

Amb

Km(A,b)

Amb +Km(A,b)

χm(A)b

Km+1(A,b)

0

Figure 2.2:

Km(A, b) is a hyperplane of Km+1(A, b) and χm(A)b can be interpreted as the best

approximation to the origin 0 out of the linear manifold Amb +Km(A, b).

With the notion of Ritz values we may reformulate Algorithm 2.22. Instead

of evaluating f(Hm), we determine the polynomial pf,m that interpolates f at the

Ritz(m) values of A. By Theorem 1.5 there holds

f(Hm) = pf,m(Hm).

Since pf,m is a polynomial of degree m− 1, equation (2.11) yields

fm = pf,m(A)b.
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Algorithm 2.28: Arnoldi method II

Input: A ∈ CN×N , b ∈ CN , m ≤ L.

Output: Arnoldi approximation fm.

Determine Vm, Hm using the Arnoldi process 2.14.1

Determine the Ritz(m) values of A, i.e., determine the eigenvalues of Hm.2

Determine pf,m ∈ Pm−1 that interpolates f (in the Hermite sense) at the3

Ritz(m) values.

Set fm := ‖b‖Vmpf,m(Hm)ξ1 (= ‖b‖Vmf(Hm)ξ1 = pf,m(A)b).4

To summarize, it has become apparent that the Arnoldi method is simply an in-

terpolation process, where the nodes for the f -interpolating polynomial pf,m are the

Ritz(m) values of A. This interpolation nodes are implicitly chosen by the method

independently of the function f . Although χm fulfills the minimizing property from

Lemma 2.27, there is no guarantee that the Ritz(m) values of A are a good choice

to achieve a fast decrease of the approximation error ‖f(A)b − fm‖.

We recall the formula for the interpolation error from Lemma 1.19 and assume

that f is sufficiently smooth. In our context the error formula takes the form

f(z)− pf,m(z) =
1

2πi

∫
Γ

f(ζ)

(ζ − z)

χm(z)

χm(ζ)
dζ,

where Γ is a Jordan curve such that all Ritz(m) values are contained in its interior.

We obtain

f(A)b − pf,m(A)b =

(
1

2πi

∫
Γ

f(ζ)(ζI − A)−1χm(A)

χm(ζ)
dζ

)
b,

or equivalently

f(A)b − fm =

(
1

2πi

∫
Γ

f(ζ)(ζI − A)−1 1

χm(ζ)
dζ

)
χm(A)b.

Therefore we get for the error of the Arnoldi approximation of order m,

‖f(A)b − fm‖ ≤
1

2π

∥∥∥∥∫
Γ

f(ζ)(ζI − A)−1 1

χm(ζ)
dζ

∥∥∥∥ ‖χm(A)b‖.

Lemma 2.27 asserts that χm is the minimizer of ‖p(A)b‖ among all p ∈ P∞
m .

Hence ‖χm(A)b‖ is as small as possible and in this sense, choosing the Ritz(m)

values of A as interpolation points seems reasonable. On the other hand, we do not
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know how the integral term behaves. Clearly, we would like |χm| to be large on Γ,

especially in regions where |f | is large. But this is beyond our influence since χm is

only determined by A and b and not by f .

Example 2.29. This example demonstrates that the Ritz values may be ‘blind’ until

the end of the Arnoldi process, i.e., none of the eigenvalues of A is approximated by

a Ritz(m) value as long as m < N .

We approximate f(A)b for f(z) = 1/(β−z), where A = Cα is the nonderogatory

companion matrix introduced in Lemma 2.11. We set b := ξ1 and note that Aξj =

ξj+1 for j = 1, 2, . . . , N−1. Therefore the matrix Vm produced by the Arnoldi process

is simply Vm = [ξ1, ξ2, . . . , ξm] and by Corollary 2.16 we have

Hm =

{
toep(1, 0), m < N ;

A, m = N.

It is obvious what happens while m < N : all the Ritz(m) values are equal to 0.

Let β = 0 6∈ Λ(A). Then f is defined for A but none of the functions f(Hm) is

defined. The Arnoldi method will break down.

Let β 6= 0 and β 6∈ Λ(A). For all m < L the functions f(Hm) are defined and

for the Arnoldi approximation fm there holds fm = pf,m(A)b, where pf,m ∈ Pm−1

interpolates f, f ′, . . . , f (m−1) at the point 0. On the other hand, the eigenvalues of A

are the roots of χA(z) = zN +αN−1z
N−1 + · · ·+α0 which may be chosen arbitrarily.

Therefore we cannot expect fm to be a good approximation to f(A)b.

2.6 The Lanczos Process

Let A ∈ CN×N be a Hermitian matrix. By Corollary 2.16 we have Hm = V H
m AVm.

Therefore Hm is Hermitian and moreover symmetric since it has only real values on

its lower subdiagonal (Lemma 2.19). Thus, we may write

Hm =


α1 β2

β2
. . . . . .
. . . . . . βm

βm αm

 ,
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where αj, βj are real numbers. If we let VL = [v1, v2, . . . , vL] we have by (2.5)

Avj = βjvj−1 + αjvj + βj+1vj+1

for j = 2, 3, . . . , L − 1. This three-term recurrence for vj+1 is used by the Lanczos

process to construct the orthonormal basis vectors of KL. The Lanczos process

is mathematically equivalent to the Arnoldi process (Algorithm 2.14) applied to a

Hermitian matrix (see Saad [26, p. 185–187]).

Algorithm 2.30: Lanczos process

Input: A ∈ CN×N Hermitian, b ∈ CN , m ≤ L.

Output: V := [v1, v2, . . . , vm], vm+1, Hm, βm+1.

v0 := 01

β1 := 02

v1 := b/‖b‖3

for j = 1, 2, . . . ,m do4

w := Avj5

w := w − βjvj−1 /* orthogonalize w */6

αj := vH
j w7

w := w − αjvj8

βj+1 := ‖w‖ /* βj+1 = 0 iff j = L */9

if βj+1 > 0 then10

vj+1 := w/βj+111

else12

vj+1 := 013

Now let A have the eigenvalues

λmin := λ1 ≤ λ2 ≤ · · · ≤ λN =: λmax .

By θ1 ≤ θ2 ≤ · · · ≤ θm we denote the Ritz(m) values of A, i.e., the real eigenvalues

of the symmetric matrix Hm. The following theorem is often referred to as the

interlacing property of Ritz values of Hermitian matrices.

38



C
ha

pt
er

2

2 Krylov Subspace Methods

Theorem 2.31. For m < L there holds

λmin ≤ θ1 < θ2 < · · · < θm ≤ λmax,

and each of the intervals

(−∞, θ1], [θ1, θ2], . . . , [θm−1, θm], [θm,+∞)

contains at least one eigenvalue of A.

Proof. See Golub, Van Loan [12, Chapter 9].

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

m = 7

m = 8

m = 9

m = 10

λ
min

λ
max

Figure 2.3:

The blue dots show the Ritz(m) values of a Hermitian matrix A of size 10× 10 for

m = 1, 2, . . . , 9. The magenta dots and the vertical dotted lines indicate the eigenvalues of A that

coincide with the Ritz(10) values. Note that two Ritz(m) values are separated by at least one

vertical dotted line.

2Lanczos

An immediate consequence of the last theorem is

Corollary 2.32. In any interval (−∞, x] (x ∈ R) the number of Ritz(m) values

does not exceed the number of eigenvalues.

Remark 2.33. If a function f is defined on the interval K := [λmin, λmax] then

f(Hm) is defined for every m ≤ L since all the Ritz(m) values are contained in K.

Hence it is assured that no (Galerkin) breakdown will occur in the Arnoldi method,

Algorithm 2.28.
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2.7 Residual and Error Minimizing Methods

In all the previous algorithms for the approximation of f(A)b we are still faced with

one of the tasks

• determine f(Hm)ξ1,

• determine the eigenvalues of Hm and an f -interpolating polynomial.

In case of the function f(z) := 1/z we can avoid this problems, since f = f−1 is

self-inverse. This can be exploited to construct a ‘control-equation’ for the Krylov

approximations. We consider the problem

Ax = b, (2.14)

where A is an invertible matrix. Hence f(A) is defined and x = f(A)b solves the

linear system (2.14).

For an arbitrary vector xm we define the residual rm by

rm := b − Axm.

We assume that xm ∈ Km(A, b), since we dare to construct a Krylov subspace

method. Then xm has the representation

xm = pm(A)b,

where pm is a polynomial of degree m− 1. Moreover, the last two equations yield

rm = b − Apm(A)b

= (I − Apm(A))b.

By defining p̃m(z) := 1− zpm(z), we may write

rm = p̃m(A)b. (2.15)

Obviously, p̃m is a polynomial of degree m that satisfies p̃m(0) = 1. We say that

p̃m is a residual polynomial of degree m and denote this by p̃m ∈ P0
m. There is an

immediate connection between the polynomials pm and p̃m. Because of

pm(z) =
1− p̃m(z)

z
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it is easy to see that pm interpolates the function 1/z in the Hermite sense at the

roots of the associated residual polynomial p̃m, and this holds for every Krylov

subspace method.

A residual minimizing method is characterized by a minimizing property for the

residual, i.e., p̃m is chosen such that |||rm ||| is minimized, where ||| · ||| denotes a fixed

vector norm of CN . In other words,

|||rm ||| = ||| p̃m(A)b ||| = min
p∈P0

m

|||p(A)b ||| .

Note that |||rm ||| = 0 if and only if the associated Krylov approximation xm

solves (2.14). Since A−1b ∈ KL, the above minimizing property assures that xL

solves (2.14) in exact arithmetic. Practical implementations of minimal residual

methods make use of the Arnoldi decomposition (2.4): since xm ∈ Km can be

represented in the form Vmym for some ym ∈ Cm, we have

rm = b − AVmym = b − Vm+1H̃m+1,mym .

Now let ‖ · ‖ denote the 2-norm. The resulting method is then called generalized

minimal residual method (GMRES). Note that b = ‖b‖Vm+1ξ1 and therefore

‖rm‖ =
∥∥∥‖b‖ξ1 − H̃m+1,mym

∥∥∥ = min
y∈Cm

∥∥∥‖b‖ξ1 − H̃m+1,my
∥∥∥ .

This is a least squares problem. Once we obtained the minimizer ym, we set

xm := Vmym.

If A is Hermitian, we can make further simplifications by using the Lanczos

process (Algorithm 2.30) instead of the Arnoldi process. The resulting method is

called minimal residual method (MINRES).

Now we turn to error minimizing methods. For an arbitrary vector xm we define

the error em by

em := A−1b − xm.

Note that Aem = rm. By assuming xm ∈ Km(A, b), equation (2.15) yields

em = p̃m(A)A−1b

for some p̃m ∈ P0
m. An error minimizing method is characterized by a minimizing

property for the error, i.e., p̃m is chosen such that |||em ||| is minimized. In other

41



C
ha

pt
er

2

2 Krylov Subspace Methods

words,

|||em ||| =
∣∣∣∣∣∣ p̃m(A)A−1b

∣∣∣∣∣∣ = min
p∈P0

m

∣∣∣∣∣∣p(A)A−1b
∣∣∣∣∣∣ .

For the same reasoning as above, it is assured that xL solves (2.14).

Let A be a symmetric positive definite matrix. We may minimize the A-norm

‖em‖A := (eH
mAem)1/2 of the error, resulting in the widely used CG method (see

Stiefel [17]). The iterates x1,x2, . . . of the CG method are characterized by

‖A−1b − xm‖A = ‖em‖A = min
p∈P0

m

‖p(A)A−1b‖A.

For implementations of the mentioned algorithms we refer to the books of

Greenbaum [13] and Saad [26].

2.8 A Generalized Interpolation Method

Given are a nodal matrix

M =


µ1,1

µ2,1 µ2,2

µ3,1 µ3,2 µ3,3

...
...

...
. . .


and the corresponding nodal polynomials

ωm(z) =
m∏

j=1

(z − µm,j) (m = 1, 2, . . .).

We assume that f (and f ′, f ′′, . . . if necessary) is defined on all nodes.

Algorithm 2.34: Generalized interpolation method

Input: A ∈ CN×N , b ∈ CN , nodes µm,1, µm,2, . . . , µm,m.

Output: Krylov approximation gm.

Determine qf,m ∈ Pm−1 that Hermite-interpolates f at µm,1, µm,2, . . . , µm,m.1

Set gm := qf,m(A)b.2
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Remarks 2.35. (i) If the nodes µm,1, µm,2, . . . , µm,m are the Ritz(m) values of A,

this algorithm coincides with the Arnoldi method (Algorithm 2.28).

(ii) We have to clarify for which nodes we can expect that the gm approximate

f(A)b well and how fast the approximation error decreases with m.

(iii) This method has the advantage that, once qf,m is determined, we can evaluate

it for different A and b. Then of course, the quality of the Krylov approxima-

tions gm will vary.

(iv) This algorithm allows to choose the nodes explicitly, i.e., we may adapt the

interpolation nodes to the function f .
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The class of Krylov subspace methods is much too large to discuss each known

algorithm for the approximation of f(A)b. Such algorithms will differ for special f

and A. For example, if A is Hermitian and we use Arnoldi approximations

fm := ‖b‖Vmf(Hm)ξ1,

we will find that Hm is a symmetric tridiagonal matrix. This can be exploited to

improve calculation speed and memory storage need as well.

It seems reasonable to examine Krylov subspace methods as what they are:

polynomial interpolation methods. From now on we will assume that A ∈ CN×N

is a normal matrix, i.e., AHA = AAH . Normal matrices can be written in the

form A = UDUH , where D is a diagonal matrix with the eigenvalues of A as

diagonal entries and U is an unitary matrix. We say: normal matrices are unitarily

diagonalizable. For a matrix function f that is defined for a normal matrix A, the

properties of the 2-norm ‖ · ‖ yield

‖f(A)‖ = ‖f(D)‖ = max{|f(λ)| : λ ∈ Λ(A)}.

More generally, if A is only required to be diagonalizable, i.e., A = XDX−1 with an

invertible matrix X, then

‖f(A)‖ ≤ ‖X‖‖X−1‖max{|f(λ)| : λ ∈ Λ(A)}.

Many of the inequalities developed here hold for normal matrices but can be easily

extended to diagonalizable matrices by involving the term ‖X‖‖X−1‖.
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3.1 Some Approximation Theory

Let Ω be a compact (i.e., closed and bounded) subset of C. By C(Ω) we denote the

set of continuous functions f : Ω → C. For all f ∈ C(Ω) there holds |f | ∈ C(Ω)

and, by Weierstrass’ Theorem, |f | attains a maximum on Ω. We define

‖f‖Ω := max
z∈Ω

|f(z)|.

‖ · ‖Ω is called the uniform norm on Ω. A sequence (fm)m≥1 ⊂ C(Ω) converges

uniformly to f if ‖f − fm‖Ω → 0 for m→ +∞. We denote this by fm ⇒ f .

Definition 3.1. Given a linear space V with norm ||| · ||| and v ∈ V. Let U be an

arbitrary subset of V. We say u∗ ∈ U is an element of best approximation from U

to v if

|||v − u∗ ||| = min
u∈U

|||v − u ||| .

Theorem 3.2 (Existence of best approximations). Let U be a finite-

dimensional normed linear subspace of V. Then for every v ∈ V there exists an

element u∗ ∈ U of best approximation to v.

Proof. We define U0 := {u ∈ U : |||v − u ||| ≤ |||v |||}, which is a closed and bounded

subset of a finite-dimensional space, thus compact. Set d := infu∈U0 |||v − u ||| and

let (ui)m≥1 ⊂ U0 be a minimizing sequence, i.e., |||v − ui ||| → d as i→ +∞. By the

compactness of U0, this sequence has at least one accumulation point u∗ ∈ U0 and

we can assume that |||ui − u∗ ||| → 0. Hence,

|||v − u∗ ||| ≤ |||v − ui |||+ |||ui − u∗ ||| → d = inf
u∈U0

|||v − u ||| .

Because of

inf
u∈U0

|||v − u ||| = inf
u∈U

|||v − u |||

and u∗ ∈ U , the minimum is attained and u∗ is the element of best approximation

to v.

For our purposes we will identify

||| · ||| = ‖ · ‖Ω,

V = C(Ω),

v = f(ζ),

U = Pm−1
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and conclude that the problem

for f ∈ C(Ω) find p∗ ∈ Pm−1 such that ‖f − p∗‖Ω = min
p∈Pm−1

‖f − p‖Ω

has a solution. The following theorem provides us the uniqueness of p∗, which we

refer to as the polynomial uniform best approximation of degree m− 1 to f on Ω.

Theorem 3.3 (Tonelli). Let Ω ⊂ C be compact and contain more than m points.

For a given f ∈ C(Ω) we set

M∗ := min
p∈Pm−1

‖f − p‖Ω

and let p∗ be such a minimizing polynomial. Then

(i) there are at least m+ 1 distinct points z ∈ Ω at which |f(z)− p∗(z)| = M∗,

(ii) p∗ is unique.

Proof. See Davis [2, pp. 143–145].

If Ω is a real compact set and f is real-valued, then (i) from the above theorem

is also a sufficient condition for that p∗ is the best approximation to f , provided

f − p∗ takes on its extreme value with alternating sign on Ω.

Theorem 3.4 (Oscillating property). Let Ω ⊂ R be compact and f ∈ C(Ω)

real-valued. For p ∈ Pm−1 we set

M := ‖f − p‖Ω.

Then p is the polynomial uniform best approximation to f on Ω if and only if there

are m+ 1 distinct points x1 < x2 < . . . < xm+1, xi ∈ Ω, such that

f(xi)− p(xi) = ±M for i = 1, 2, . . . ,m+ 1

with alternating sign (i.e., f(xi)− p(xi) = p(xi+1)− f(xi+1)).

Proof. Let p∗ ∈ Pm−1 be the uniform best approximation to f on Ω. By definition

we have ‖f − p∗‖Ω = M∗ ≤M . Now assume M∗ < M . We set mi := f(xi)− p∗(xi)

and note that |mi| < M for i = 1, 2, . . . ,m+ 1. There holds

p∗(xi)− p(xi) = (f(xi)−mi)− (f(xi)−±M) = ±M −mi.

The polynomial p∗−p ∈ Pm−1 hasm+1 points of alternating sign in x1, x2, . . . , xm+1.

Hence it has m roots and therefore p∗ − p ≡ 0.
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3.2 Chebyshev Polynomials

We will give a brief survey to the classical Chebyshev polynomials. The interested

reader will find more details and proofs on this topic in Davis [2, pp. 60–64].

Chebyshev Polynomials on [−1, 1]

Definition 3.5. The Chebyshev polynomial of degree m is defined as

Tm(x) := cos(m arccos x) (x ∈ [−1, 1]; m = 0, 1, . . .).

We have to prove that Tm is indeed a polynomial, but first we will give the

following recurrence relation.

Lemma 3.6. There holds

Tm+1(x) = 2xTm(x)− Tm−1(x) for m = 1, 2, . . . (3.1)

Proof. By adding the equations

cos(m+ 1)θ = cosmθ cos θ − sinmθ sin θ

cos(m− 1)θ = cosmθ cos θ + sinmθ sin θ

we get

cos(m+ 1)θ = 2 cosmθ cos θ − cos(m− 1)θ.

By setting cos θ = x and cosmθ = Tm(x), the assertion is obtained.

Since T0(x) = 1 and T1(x) = x, the recurrence relation (3.1) yields

Corollary 3.7. Tm is a polynomial of degree m and of the form

Tm(x) = 2m−1xm + terms of lower degree.

The following well known result is easily verified and thus given without proof.

Lemma 3.8. Tm has m simple roots xk in (−1, 1), where

xk = cos
2k − 1

2m
π (k = 1, 2, . . . ,m).

There holds |Tm(x)| ≤ 1 for all x ∈ [−1, 1]. Equality holds for the m+ 1 points

x′k = cos
2k

2m
π (k = 0, 1, . . . ,m),

where the value Tm(x′k) = ±1 is taken with alternating sign.
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−1 0 1

−1

0

1

Figure 3.1: The graph of T5(x) on [−1, 1] with its roots and extreme points.

3T-5

Definition 3.9. The normalized Chebyshev polynomial of degree m is defined as

T̃m(x) :=
1

2m−1
Tm(x) (m = 0, 1, . . .).

Since T̃m is a monic polynomial of degree m, we can write T̃m(x) = xm − p∗(x)

for some p∗ ∈ Pm−1. Furthermore, |T̃m| takes on its extreme value M := 1
2m−1 at

m+ 1 distinct points in Ω := [−1, 1] with alternating sign. Theorem 3.4 yields that

p∗ is the unique best approximating polynomial to f(x) = xm on Ω. We state this

result as a theorem.

Theorem 3.10 (Chebyshev). There holds

‖T̃m‖Ω = min
p∈P∞m

‖ p ‖Ω =
1

2m−1
,

where P∞
m denotes the set of all monic polynomials of degree m and Ω = [−1, 1].

Chebyshev Polynomials in C
Now we let z ∈ C be fixed and set T0(z) = 1, T1(z) = z. The recurrence relation (3.1)

is well defined for complex arguments, i.e.,

Tm+1(z) = 2zTm(z)− Tm−1(z) for m = 1, 2, . . . (3.2)
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In order to study the behavior of the m-th Chebyshev polynomial Tm = Tm(z) in

the complex plane, we observe that (3.2) is a difference equation of order 2 with

characteristic polynomial

χ(ζ) = ζm+1 − 2zζm + ζm−1,

which has a root of multiplicity m− 1 at 0 and the two non-trivial roots

w := z +
√
z2 − 1 and z −

√
z2 − 1 = w−1.

Note that w + w−1 = 2z. From the theory of difference equations it is known that

Tm(z) is a linear combination of wm and w−m that satisfies the initial conditions

T0(z) = 1 and T1(z) = z. Therefore we have

Tm(z) =
1

2

(
wm + w−m

)
, where z :=

1

2

(
w + w−1

)
. (3.3)

The mapping

Ψ : w 7→ 1

2

(
w + w−1

)
= z

is the well known Joukowski transformation. It is the conformal bijection from C\D
onto C\[−1, 1] with Ψ(∞) = ∞ and Ψ′(∞) = 1

2
. For every R > 1, Ψ maps the circle

{w : |w| = R} =: TR to an ellipse ER with semiaxes 1
2
(R +R−1) and 1

2
(R−R−1).

From (3.3) we obtain

|Tm(z)| = 1

2
|wm|

∣∣1 + w−2m
∣∣ for z ∈ ER,

and since |wm| = Rm for w ∈ TR we have

|Tm(z)| = Rm

2

∣∣1 + w−2m
∣∣ for z ∈ ER. (3.4)

Remark 3.11. For T̃m the equation (3.4) is of the form∣∣∣T̃m(z)
∣∣∣ =

Rm

2m

∣∣1 + w−2m
∣∣ for z ∈ ER. (3.5)

Shifted Chebyshev Polynomials

Finally, we transform the Chebyshev polynomials to an arbitrary positive real in-

terval

K := [λmin, λmax] (0 < λmin < λmax)
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Ψ

TR

D

z

ER

1 +1−1

w

Figure 3.2: The Joukowski transformation Ψ.

and normalize them at the origin. The linear mapping

z 7→ 2z − λmax − λmin

λmax − λmin

furnishes the transformation from K onto [−1, 1]. We define the (shifted) Chebyshev

polynomial of degree m on the interval K as

TK
m (z) :=

Tm

(
2z−λmax−λmin

λmax−λmin

)
Tm

(
−λmax−λmin

λmax−λmin

) .

Clearly, this polynomial satisfies TK
m (0) = 1. Later on we shall make use of the

following assertion.

Lemma 3.12. There holds

max
z∈K

|TK
m (z)| = min

p∈P0
m

max
z∈K

|p(z)| = 2

((√
κ− 1√
κ+ 1

)m

+

(√
κ− 1√
κ+ 1

)−m
)−1

,

where κ := λmax/λmin.

Proof. TK
m is a polynomial of degreem, say, TK

m (z) = αmz
m+αm−1zm−1+· · ·+α1z+1.

It takes on its extreme value

M :=
1∣∣∣Tm

(
−λmax−λmin

λmax−λmin

)∣∣∣
in m + 1 points of K with alternating sign, because it is just a shifted version of

Tm that takes on the alternating extreme values ±1 in [−1, 1] (cf. Lemma 3.8). By

Theorem 3.4, we have that (αm−1zm−1 + · · ·+ α1z + 1) ∈ P0
m−1 is the uniform best
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approximation to −αmz
m on K. Thus, maxz∈K |TK

m (z)| = M is minimal. At last

we determine M . We fix z :=
(
−λmax−λmin

λmax−λmin

)
and note that

w := −
√
κ− 1√
κ+ 1

satisfies z =
1

2
(w + w−1),

where κ = λmax/λmin > 1, hence w < 0. From Lemma (3.3) we obtain

M =
1

|Tm(z)|
=

1∣∣1
2
(wm + w−m)

∣∣ =
2

(−w)m + (−w)−m
,

which is the assertion.

3.3 A Generalized Approximation Method

To complete our survey, we mention that the polynomials (qf,m)m≥1 we used to

construct Krylov subspace methods for the approximation of f(A)b may not only

arise from interpolation processes. One may think of methods that determine a

polynomial q∗f,m ∈ Pm−1 of best approximation to f on a compact set Ω and define

the Krylov approximations by

am := q∗f,m(A)b ∈ Km.

Indeed, some semi-iterative methods may be put into this framework, e.g. the

Chebyshev method . A prototype of such approximation methods looks like this:

Algorithm 3.13: Generalized approximation method

Input: A ∈ CN×N , b ∈ CN , m ≥ 1, Ω compact, f ∈ C(Ω).

Output: Krylov approximation am.

Determine a polynomial best approximation q∗f,m ∈ Pm−1 to f on Ω.1

Set am := q∗f,m(A)b.2

Remark 3.14. If Ω consists of m points at most, this algorithm reduces to an

interpolation problem. If Ω consists of exactly m points, q∗f,m will be the unique

Lagrange interpolation polynomial of degree m − 1. If Ω includes more than m

points, then q∗f,m is still unique due to Theorem 3.3.
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3.4 Error of Polynomial Methods

Lemma 3.15. Given q ∈ Pm−1, A ∈ CN×N normal and b ∈ CN . For every function

f that is defined for A there holds

‖f(A)b − q(A)b‖ ≤ ‖b‖ max
λ∈Λ(A)

|f(λ)− q(λ)|.

Proof. We write A = UDUH , where U is unitary and D is a diagonal matrix. From

the properties of matrix functions and the 2-norm it follows

‖f(A)b − q(A)b‖ ≤ ‖f(A)− q(A)‖‖b‖

= ‖b‖‖U(f(D)− q(D))UH‖

= ‖b‖ max
λ∈Λ(A)

|f(λ)− q(λ)|.

Remark 3.16. This result is as important as it is simple. It asserts that, in order

to obtain results about the error of a polynomial method, we may study

max
λ∈Λ(A)

|f(λ)− q(λ)|

for some polynomial q ∈ Pm−1. More generally, we may consider

max
λ∈Ω

|f(λ)− q(λ)| = ‖f − q‖Ω,

where Ω is a compact set containing Λ(A). For non-normal matrices it is not valid

that the error of polynomial methods is primarily determined by the spectrum. This

is why the investigations of the convergence of Krylov subspace methods for arbitrary

matrices is much more complicated.

One may ask what is the ‘best possible’ Krylov approximation g∗m ∈ Km(A, b)

to f(A)b that we can expect from a polynomial method in general. Again we

decompose A = UDUH , U = [u1,u2, . . . ,uN ] and note that

‖f(A)b − q(A)b‖2 = ‖(f(D)− q(D))UHb‖2 =
N∑

i=1

|uH
i b(f(λi)− q(λi))|2. (3.6)
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Thus, the best approximation g∗m to f(A)b out of Km with respect to the 2-norm

can be obtained by minimizing (3.6) among all polynomials of degree m − 1. This

is a weighted least squares problem. Once we obtained the minimizing polynomial

q∗ we set g∗m := q∗(A)b.

The Generalized Interpolation Method

Let us now consider f -interpolating polynomials qf,m that arise from the generalized

interpolation method, Algorithm 2.34. With the formula for the Hermite interpola-

tion error (Lemma 1.19) we can present some results (cf. Gaier, [10, pp. 59–61]).

3Taylor

Example 3.17. Given a nodal polynomial ωm(z) := zm, i.e., zero is the only inter-

polation node and it has multiplicity m. Let f be analytic in DR := {z : |z| < R}
and continuous on DR := {z : |z| ≤ R} for R > 0. The resulting f -interpolating

polynomial qf,m is

qf,m(z) =
1

2πi

∫
|ζ|=R

ζm − zm

ζ − z

f(ζ)

ζm
dζ

=
1

2πi

∫
|ζ|=R

1− (z/ζ)m

1− (z/ζ)

f(ζ)

ζ
dζ

=
m−1∑
i=0

1

2πi

∫
|ζ|=R

(z/ζ)i f(ζ)

ζ
dζ

=
m−1∑
i=0

f (i)(0)

i!
zi (3.7)

for all z ∈ DR. This is the truncated Taylor expansion of f at 0. We used

the formula for the partial sum of a geometric sequence and the Cauchy inte-

gral formula. Since Taylor expansions converge uniformly in their convergence

disk, we have qf,m(z) ⇒ f(z) on DR for m → +∞. Lemma 3.15 implies that

‖f(A)b − qf,m(A)b‖ → 0 if we can choose R such that %(A) ≤ R.

Consider the function fα(z) := (α − z)−1, 0 6= α ∈ C. fα is analytic in DR and

continuous on DR for R < |α|. Since f
(i)
α (0) = i!α−i−1, equation (3.7) yields

qfα,m(z) =
m−1∑
i=0

α−i−1zi =
1− (z/α)m

α− z
.

The error satisfies

fα(z)− qfα,m(z) =
(z/α)m

α− z
→ 0 (3.8)
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Figure 3.3:

The solid lines show ‖fα(A)b − qfα,m(A)b‖ for different values of α, corresponding to

Example 3.17. In all cases A ∈ C101×101 is a diagonal matrix with equidistant eigenvalues in

[−1, 1] and b = [1, 1, . . . , 1]/
√

101. The dotted line is the error bound (3.9).

for m→ +∞ and all |z| ≤ R. For an arbitrary set S ⊆ C and z ∈ C we define

dist(z, S) := inf
s∈S

|s− z|.

Using Lemma 3.15 and (3.8) we obtain

‖fα(A)b − qfα,m(A)b‖ ≤ ‖b‖2
%(A)m

|α|m dist(α,Λ(A))
, (3.9)

i.e., we can expect the resulting polynomial method to converge fast if the singularity

α is far from the origin and the eigenvalues of A. The latter should be centered

tightly around zero such that %(A) is small.

3circle

Example 3.18. Let ωm(z) := zm − 1 and f be analytic in DR and continuous on

DR, R > 1. The resulting interpolation polynomials are

q̂f,m(z) =
1

2πi

∫
|ζ|=R

ζm − zm

ζ − z

f(ζ)

ζm − 1
dζ.

Because q̂f,m has a similar form to qf,m from the previous example, we consider

q̂f,m(z)− qf,m(z) =
1

2πi

∫
|ζ|=R

ζm − zm

ζ − z

(
f(ζ)

ζm − 1
− f(ζ)

ζm

)
dζ

=
1

2πi

∫
|ζ|=R

ζm − zm

ζ − z

f(ζ)

ζ2m − ζm
dζ.
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Let |z| = ρ > R. Then

|q̂f,m(z)− qf,m(z)| ≤ 2πR

2π
max

|z|=ρ,|ζ|=R

|zm ((ζ/z)m − 1) f(ζ)|
|ζ2m(ζ − z)(1− 1/ζm)|

=
ρm

R2m−1
O(1) for m→ +∞. (3.10)

This tends to zero if ρ < R2. The maximum principle yields that the maximum in

the above formula is attained for z satisfying |z| = ρ, even if we allow z ∈ Dρ. Hence

(3.10) holds for all z ∈ Dρ. With

|f(z)− q̂f,m(z)| ≤ |f(z)− qf,m(z)|+ |qf,m(z)− q̂f,m(z)|

it is assured that ‖f(A)b − q̂f,m(A)b‖ → 0 if we can choose R sufficiently large that

%(A) < R.

Consider again the function fα(z) = (α − z)−1. It is easily verified that the

interpolating polynomial q̂fα,m is

q̂fα,m(z) =
1− ωm(z)/ωm(α)

α− z
,

since it is a polynomial of degree m − 1 that fulfills the interpolation conditions.

Thus,

q̂fα,m(z) =
1− (zm − 1)/(αm − 1)

α− z

=
1− (z/α)m

(α− α−m+1)(1− z/α)

=
1

α− α−m+1

m−1∑
i=0

zi

αi

and

fα(z)− q̂fα,m(z) =
zm − 1

(αm − 1)(α− z)
.

Together with Lemma 3.15 we obtain

‖fα(A)b − q̂fα,m(A)b‖ ≤ ‖b‖ %(A)m + 1

|αm − 1| dist(α,Λ(A))
. (3.11)
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Figure 3.4:

The solid lines show ‖fα(A)b − q̂fα,m(A)b‖ (Example 3.18). Here we interpolate at the m-th

roots of unity. A and b are the same as in the previous example. The dotted line is the error

bound (3.11).

3Cheby

Example 3.19. We distribute m interpolation nodes on the interval [−1, 1]

according to the roots of the Chebyshev polynomial T̃m, i.e., ωm(z) := T̃m(z).

By Lemma 1.19 the interpolation error is

f(z)− q̃f,m(z) =
1

2πi

∫
ER

T̃m(z)

T̃m(ζ)

f(ζ)

ζ − z
dζ,

where the curve ER is the ellipse with semiaxes 1
2
(R +R−1) and 1

2
(R−R−1), R > 1.

Furthermore, it is assumed that f is analytic in the interior of ER and extends

continuously to it. Recall that

max
z∈[−1,1]

∣∣∣T̃m(z)
∣∣∣ =

1

2m−1

due to Theorem 3.10. For ζ ∈ ER we get from equation (3.5)∣∣∣T̃m(ζ)
∣∣∣ =

Rm

2m

∣∣1 + w−2m
∣∣ ,

where |w| = R. It is easily verified that for any w with |w| = R > 1 there holds

0 < 1−R−2 ≤
∣∣1 + w−2m

∣∣ .
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This yields

|f(z)− q̃f,m(z)| =
1

2π

1

2m−1

2m

Rm(1−R−2)
O(1)

=
1

Rm
O(1)

for all z ∈ [−1, 1]. Let Λ(A) ⊂ [−1, 1]. By Lemma 3.15 there holds

‖f(A)b − q̂f,m(A)b‖ = 1
RmO(1) for each function f that is analytic in the interior

of ER and extends continuously to it.

The interpolation error for the function fα(z) = 1/(α− z) is

fα(z)− q̃fα,m(z) =
T̃m(z)

T̃m(α)(α− z)
.

Choose R > 1 such that α ∈ ER. Then

max
z∈[−1,1]

|fα(z)− q̃fα,m(z)| ≤ 2

Rm(1−R−2) dist(α, [−1, 1])
.

If all the eigenvalues of A are contained in [−1, 1] we obtain with Lemma 3.15

‖fα(A)b − q̃fα,m(A)b‖ ≤ ‖b‖ 2

Rm(1−R−2) dist(α, [−1, 1])
. (3.12)
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Figure 3.5:

The solid lines show ‖fα(A)b − q̃fα,m(A)b‖ (Example 3.19). Here we interpolate at the roots

of T̃m. A and b are the same as in the previous examples. The dotted lines show the error

bound (3.12). Note the different scaling of the m-axis.
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Error Estimate for Arnoldi Approximations

When choosing the Ritz(m) values of A as interpolation nodes, we can show a

stronger assertion than Lemma 3.15 provides. Roughly speaking, the following

Lemma asserts that the Arnoldi approximations fm (cf. Algorithms 2.22 and 2.28)

are not worse than twice the best we can get from any polynomial method for a

slightly larger matrix Ã that satisfies Λ(Ã) = Λ(A) ∪ Λ(Hm).

Lemma 3.20. Let A be normal and Λ(A) ∪ Λ(Hm) ⊆ Ω, Ω compact. Then the

Arnoldi approximations fm fulfill

‖f(A)b − fm‖ ≤ 2‖b‖ min
p∈Pm−1

max
λ∈Ω

|f(λ)− p(λ)|.

Proof. Let p ∈ Pm−1. Then p(A)b = Vmp(Hm)V H
m b, as asserted in Lemma 2.20.

With the definition of fm we get

‖f(A)b − fm‖ = ‖f(A)b − Vmf(Hm)V H
m b + Vmp(Hm)V H

m b − p(A)b‖

≤ ‖b‖ (‖f(A)− p(A)‖+ ‖f(Hm)− p(Hm)‖)

≤ 2‖b‖max
λ∈Ω

|f(λ)− p(λ)|.

We take the infimum among all p ∈ Pm−1 over this inequality and note that this

infimum is attained because of Theorem 3.2. The proof is complete.

3.5 Interpolation in Uniformly Distributed Points

Let Ω ⊂ C be a compact set such that its complement ΩC = C \ Ω is a simply

connected domain. Then by Riemann Mapping Theorem there exists a conformal

map

z = Ψ(w) = cw + c0 + c1w
−1 + · · ·

from DC
onto ΩC with Ψ(∞) = ∞ and Ψ′(∞) = c > 0. c is called the capacity

of ∂Ω. By

Φ(z) = c−1z + · · ·

we denote the inverse function of Ψ. Note that Φ is a conformal map from ΩC

onto DC
. For every R > 1 we define the level curve

LR := {z ∈ C : |Φ(z)| = R} ⊂ ΩC .
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D Ω
Ψ

Φ

TR LR

w z

Figure 3.6: The conformal maps Ψ, Φ and the level curves LR.

All the LR are disjoint Jordan curves because they are the image of TR under the

bijective analytic transformation Ψ.

Let (ωm)m≥1 be a sequence of nodal polynomials for Ω, i.e., each ωm is a monic

polynomial of degree m and all of its roots µm,1, µm,2, . . . , µm,m are contained in Ω.

We define the numbers

Mm := ‖ωm‖Ω = max
z∈Ω

|ωm(z)|.

By the maximum principle, the maximum Mm is attained on ∂Ω = ∂(ΩC) and

there holds

Mm ≥ cm for m = 1, 2, . . . (3.13)

To prove this, we consider the function

Hm(z) :=
ωm(z)

(cΦ(z))m
,

which is analytic in ΩC . Moreover, Hm(z) → 1 as z →∞. The maximum principle

implies

max
z∈LR

|Hm(z)| ≥ 1 for all R > 1,

and, since Φ(z) = R for z ∈ LR, this yields

max
z∈LR

|ωm(z)| ≥ (cR)m for all R > 1.

By taking R → 1, the assertion (3.13) is obtained. The following definition is now

justified.

Definition 3.21. The nodes associated with the sequence (ωm)m≥1 of nodal poly-

nomials for Ω are uniformly distributed on Ω if

m
√
Mm → c for m→ +∞. (3.14)
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Example 3.22. The roots of the (normalized) Chebyshev polynomials T̃m(z) are

uniformly distributed on Ω = [−1, 1] :

By Theorem 3.10 we have Mm = 1/2m−1. The conformal map from DC
onto

[−1, 1]C is the Joukowski transformation z = Ψ(w) = 1
2
(w+w−1). Hence c = 1

2
and

the condition (3.14) is satisfied.

Example 3.23. The roots of the (shifted) Chebyshev polynomials TK
m (z) are

uniformly distributed on K.

Now let f be analytic on Ω (i.e., analytic in an open subset of C that con-

tains Ω). By qf,m(z) we denote the Hermite interpolating polynomial of degree

m − 1 that interpolates f at the roots of ωm. The following theorem gives the

connection between the uniform distribution of the nodes and the convergence of

the corresponding interpolation process.

Theorem 3.24 (Kalmár-Walsh). The convergence

qf,m(z) ⇒ f(z) (z ∈ Ω, m→ +∞)

takes place for each function f analytic on Ω if and only if the interpolation nodes

are uniformly distributed on Ω.

Proof. See Gaier [10, pp. 65–66].

The following theorem gives an assertion about the rate of convergence.

Theorem 3.25. Assume that R > 1 is the largest number such that f is analytic

inside LR. The interpolating polynomials qf,m with uniformly distributed nodes on Ω

then satisfy the condition

lim sup
m→+∞

m

√
‖f − qf,m‖Ω =

1

R
=: k(Ω, f). (3.15)

Proof. See Gaier [10, pp. 66–67].

Definition 3.26. A sequence of f -interpolating polynomials (qf,m)m≥1 converges

maximally to f on Ω if the condition (3.15) is satisfied. The number k(Ω, f) is

called the asymptotic convergence factor of the sequence
(

m
√
‖f − qf,m‖Ω

)
m≥1

.
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The term ‘maximal convergence’ was introduced by Walsh, see [32, p. 79]. It

is justified by the fact that 1/R is the best possible (i.e., smallest) asymptotic

convergence factor that holds for all functions which are analytic inside LR. If f

is an entire function (i.e., analytic in the whole complex plane C), the constant R

may be chosen arbitrarily large. In this case we expect superlinear convergence.

Interpolation in Fejér Points

Let Ω have a sufficiently smooth boundary ∂Ω, e.g. a Jordan curve. By the

Theorem of Caratheodory-Osgood there exists a bijective continuous extension

Ψ̃ : DC → ΩC ∪ ∂Ω of Ψ to the boundary.

Definition 3.27. The Fejér points {µm,j : j = 1, 2, . . . ,m} of order m on Ω are the

images under Ψ̃ of the m-th roots of unity, i.e.,

µm,j := Ψ̃ (exp (2πi(j − 1)/m)) for j = 1, 2, . . . ,m.

Theorem 3.28 (Fejér). The Fejér points are uniformly distributed on Ω.

Proof. See Gaier [10, p. 67–69].

Application to the Generalized Interpolation Method

We turn back to the generalized interpolation method, Algorithm 2.34. Recall that

A is required to be normal. Choose a compact set Ω such that Λ(A) ⊂ Ω and ΩC

is a simply connected domain. Let f be analytic on Ω and R chosen according to

Theorem 3.25. By {qf,m}m≥1 we denote a sequence of f -interpolating polynomials

of degree m − 1 to f with uniformly distributed nodes on Ω. By Lemma 3.15 and

Theorem 3.25 we have immediately that

lim sup
m→+∞

(
‖f(A)b − qf,m(A)b‖

‖b‖

)1/m

≤ 1

R
.

Now it seems reasonable to use uniformly distributed interpolation points for the

generalized interpolation method. In this case we know that the error should behave

asymptotically like R−m.
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3Fejer

Example 3.29. Let f(z) := 1/z. Let A ∈ C100×100 be a normal matrix with ran-

domly and evenly distributed eigenvalues inside a L-shaped polygon Ω, see Fig-

ure 3.7(a). We compute the map Ψ̃ using the Schwarz-Christoffel-toolbox for

Matlab (see Driscoll [3]). With the help of the function evalinv we determine

R ≈ 1.6421,

which is the value for which the origin 0 lies on the level curve LR. See also Fig-

ure 3.7(b). For a fixed m we determine the Fejér points of order m on Ω and evaluate

the interpolating polynomial qf,m that interpolates f at the Fejér points. For this task

we use the variable precision arithmetic of Maple in order to avoid stability prob-

lems. A more practical implementation makes use of recurrence schemes to compute

the coefficients of qf,m in Newton form, see Novati [24]. Finally, the Krylov approx-

imation to f(A)b is gm := qf,m(A)b. In Figure 3.7(d) we plot the logarithmic error

log(|f(z)−qf,m(z)|+ε) for m = 16. (The small positive constant ε is added to avoid

log(0), that would be attained at least in the interpolation points.) Note how well f

is approximated on Ω, indicated by the dark blue color.

The greatest advantage of generalized interpolation methods with uniformly dis-

tributed interpolation points (GIMUD) is, that the interpolating polynomials qf,m

can be applied to every matrix whose spectrum is contained in Ω without worsening

the asymptotic convergence factor 1/R. Once qf,m is determined, qf,m(A)b is easily

evaluated for different A and b, e.g., using the Horner scheme. Such problems arise

very often, for example, if we solve a partial differential equation with the method

of lines. In this case we will have to solve a set of ordinary differential equations

and this involves the evaluation of exp(tA)b, where t > 0 and b varies for each

evaluation.

One of the drawbacks of (GIMUD) is that we first have to know at least the

outlying eigenvalues of A in order to determine Ω. Therefor we may determine some

Ritz(m) values of A. They often have the property to approximate the eigenvalues

of A at the edge of the spectrum, even if m is small (cf. Chapter 4). Because we

first have to run another Krylov subspace method in order to use (GIMUD), it is

often called a hybrid method.
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Figure 3.7:

Illustration to Example 3.29. (a) L-shaped polygon Ω (grey filled) with the 100 random

eigenvalues (blue dots). (b) The image of an orthogonal grid under the map Ψ (grey lines).

The critical level curve LR is in red. The black dot in the origin indicates the singularity of f .

(c) Fejér points of order 16 on Ω. (d) The colors indicate the value of log(|f(z)− qf,m(z)|+ ε).
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In Figure 3.8 we plot the error curves of the interpolation method using

• Fejér points on Ω (magenta),

• equidistant points on the boundary of the polygon (blue),

• Ritz values (green)

as interpolation nodes. The erratic behavior of the blue error curve is caused by

a strong oscillation of the corresponding interpolation polynomials inside Ω if the

degree is high.
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Figure 3.8:

Error of the interpolation method using different interpolation nodes. The dotted line indicates

the asymptote R−m.

3.6 Convergence of the CG Method

Recall from Section 2.7 that the iterates of the CG method x1,x2, . . . minimize the

A-norm of the error em = A−1b − xm:

‖em‖A = min
p∈P0

m

‖p(A)A−1b‖A.
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A is symmetric positive definite and therefore normal. Thus,

‖em‖A = min
p∈P0

m

‖A1/2p(A)A−1b‖

= min
p∈P0

m

‖Up(D)UHA1/2A−1b‖

≤ min
p∈P0

m

‖p(D)‖‖A1/2A−1b‖

= ‖A−1b‖A min
p∈P0

m

max
λ∈Λ(A)

|p(λ)|. (3.16)

(Although A1/2 is not uniquely determined, ‖A1/2v‖ is unique for every vector v .)

The problem

M := min
p∈P0

m

max
λ∈Λ(A)

|p(λ)|

is a polynomial uniform best approximation problem on the discrete set Λ(A). Let

λmin (λmax) denote the smallest (largest) eigenvalue of A and set κ := λmax/λmin.

We replace Λ(A) by the interval K := [λmin, λmax]. There holds

M ≤ M̃ := min
p∈P0

m

max
λ∈K

|p(λ)|,

because a polynomial p̃ ∈ P0
m for which the minimum M̃ is attained fulfills

|p̃(λ)| ≤ M̃ for all λ ∈ Λ(A). The minimizer p̃ is the shifted Chebyshev polynomial

on K of degree m. Thus, Lemma 3.12 yields

M̃ = 2

((√
κ− 1√
κ+ 1

)m

+

(√
κ− 1√
κ+ 1

)−m
)−1

.

Using (3.16) we obtain the following error bound for the CG method

‖em‖A

‖A−1b‖A

≤ 2

((√
κ− 1√
κ+ 1

)m

+

(√
κ− 1√
κ+ 1

)−m
)−1

≤ 2

(√
κ− 1√
κ+ 1

)m

. (3.17)
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3CGerr

Example 3.30. We consider four symmetric positive definite matrices Ai :

• A1 has 100 eigenvalues at the roots of T
[1,100]
100 , i.e., the eigenvalues are

uniformly distributed on the interval [1, 100],

• A2 has 100 equidistant eigenvalues in the interval [1, 100],

• A3 has 98 equidistant eigenvalues in the interval [20, 80] and two separated

eigenvalues {1, 100},

• A4 has 100 equidistant eigenvalues in the interval [20, 80].

In Figure 3.9 we plot the error norms

‖em‖A

‖A−1b‖A

of the CG iterates xm. Note that the error bound (3.17) is the same for the matrices

A1, A2 and A3, since κ = 100 for all of them. Thus, we expect a geometric decrease

of the error with rate √
κ− 1√
κ+ 1

=
9

11
.

For the matrix A4 we have κ = 4 and therefore expect a geometric decrease of the

error with rate 1/3.
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Figure 3.9:

Error of the CG iterates for the matrices Ai. The dotted line is the error bound (3.17) for κ = 100.
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We make the following observations:

(i) The error curve for the matrix A1 (magenta) behaves as predicted by the dotted

error bound (3.17). This suggests that uniformly distributed eigenvalues are the

worst case for the convergence behavior of the CG method. This observation

can also be made for polynomial interpolation methods in general.

(ii) The error curves for A2 (blue) and A3 (red) decrease much faster than the

error bound suggests, so that we have a much too pessimistic prediction of

the error decrease. The reason is that the error bound (3.17) does not take

into account the fine structure of the spectrum, i.e., the distribution of the

eigenvalues in the interior of the interval [1, 100].

(iii) After a few initial iterates, the error curve for A3 behaves like the error curve

for A4 (green), although the predicted convergence rates differ by a factor ≈ 2.5.

After the separated eigenvalues {1, 100} of A3 ‘have been found’ by the under-

lying interpolation process, the interpolation actually takes place on a smaller

interval [20, 80].

Several attempts have been made to improve the error bound (3.17), for example

if A has one eigenvalue much larger than the others, say, λ1 ≤ λ2 ≤ · · · ≤ λN−1 � λN

or if the spectrum of A is well approximated by the union of two disjoint intervals.

Some results can be found in Greenbaum [13, pp. 52–54]. In what follows, we want

to introduce another approach that involves the fine structure of the spectrum of A

with the help of a distribution function σ.
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The expression ‘a Ritz value has converged’ is more a heuristic description than

a mathematical term that can be defined exactly. We recall from Chapter 2 that

the Ritz(m) values µm,1, µm,2, . . . , µm,m of a matrix A ∈ CN×N are the eigenvalues

of the unreduced upper Hessenberg matrix Hm generated by the Arnoldi process

for an initial vector b ∈ CN×N . The Arnoldi process was given in Algorithm 2.14,

page 29. The Ritz(m) polynomial χm is the characteristic polynomial of Hm, i.e.,

χm(z) = det(zI − Hm). By Lemma 2.27 it is known that χm is the minimizing

argument of ‖p(A)b‖ among all monic polynomials p ∈ P∞
m . We will denote this by

χm = arg min
p∈P∞m

‖p(A)b‖. (4.1)

As before, ‖ · ‖ denotes the 2-norm of a vector or a matrix. Moreover, we retain the

assumption that A is a normal matrix and thus can be written in the form

A =: UDUH

with D = diag(λ1, λ2, . . . , λN) and an unitary matrix U = [u1,u2, . . . ,uN ]. The

vectors u1,u2, . . . ,uN are the orthonormal eigenvectors of A associated with the

eigenvalues λ1, λ2, . . . , λN .

4.1 A Least Squares Problem

By the properties of the 2-norm, equation (4.1) can be rewritten as

χm = arg min
p∈P∞m

N∑
i=1

|〈ui, b〉|2|p(λi)|2, (WLS)

which is a weighted least squares problem for the values of χm at the eigenvalues

of A. This point of view gives an intuition how the Ritz values depend on the

initial vector b.
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Example 4.1. Let b ∈ CN be a linear combination of m < N eigenvectors ui of A,

say without loss of generality

b := α1u1 + α2u2 + · · ·+ αmum, where all αi 6= 0.

Then

(z − λ1)(z − λ2) · · · (z − λm) = χm(z)

is the unique minimizer of (WLS) because the polynomial χm is zero on all the

eigenvalues λi of A that have nonzero weight |〈ui, b〉|2 = |αi|2. Such eigenvalues are

said to be active in b. We say an eigenvalue λ is found by a Ritz(m) value µ if the

Ritz(m) polynomial χm has a root ‘very close’ to it. In our case, the eigenvalues

λ1, λ2, . . . , λm are found since they are exactly the roots of χm. From ‖χm(A)b‖ = 0

and the fact that there is no monic polynomial of smaller degree with this property,

it follows that χm is the minimal polynomial of b with respect to A.

Now let n > m. It still makes sense to ask for a monic polynomial χn of degree n

that minimizes (WLS), although the minimizer is no longer unique: every χn ∈ P∞
n

that is divided by χm minimizes (WLS) because λ1, λ2, . . . , λm are among its roots.

Note that this is not a contradiction to Lemma 2.27 since the Ritz(n) polynomial

does not exist. If we want the solution of (WLS) to be the Ritz(m) polynomial for

all m ≤ N , we have to assure the existence of the latter. Recall from Chapter 2

that we can run the Arnoldi process until m = N if and only if the Krylov subspaces

Km(A, b) do not become stationary for m < N . This will not happen if and only if

A is nonderogatory and b is cyclic for A.

Assumption I. Let A be a nonderogatory (and normal) matrix and b cyclic for A.

Lemma 4.2. This assumption assures 〈ui, b〉 6= 0 for i = 1, 2, . . . , N and therefore

the uniqueness of the solution of (WLS) for all degrees m ≤ N .

Proof. Assume the assertion is wrong, say 〈u1, b〉 = 0 without loss of generality.

Then b =
∑N

i=2 αiui and UHb = [0, α2, . . . , αN ]T . For m = 0, 1, . . . , N − 1 we have

〈u1, A
mb〉 = 〈u1, UD

mUHb〉

=
〈
u1, U diag(λm

1 , λ
m
2 , . . . , λ

m
N)[0, α2, . . . , αN ]T

〉
=

〈
u1,

N∑
i=2

λm
i αiui

〉
= 0,
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since {ui : i = 1, 2, . . . , N} is an orthonormal basis of CN . But this means that

0 6= u1 ⊥ KN(A, b), hence KN 6= CN and therefore b is not cyclic for A. This is a

contradiction.

We are still left with one problem. What happens if all the weights |〈ui, b〉|2 are

nonzero, but differ extremely in value?

In view of (WLS) it is necessary for the minimizing polynomial χm to be small

at those eigenvalues λi which are associated with eigenvectors ui that have a large

weight |〈ui, b〉|2 (relative to the eigenvectors with a small weight). This means that

χm should ‘prefer’ to have its roots close those eigenvalues. Therefore we expect

the eigenvalues associated with eigenvectors of a large weight to be found early (i.e.,

for small m) by Ritz(m) values. Figure 4.1 shows one example where this actually

happens.

4weight
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Figure 4.1:

The blue squares are the 40 eigenvalues λ1, λ2, . . . , λ40 of a random normal matrix A,

A = U diag(λ1, . . . , λ40)UH , where U = [u1,u2, . . . ,u40]. The vector b ∈ C40 was chosen as

b =
∑40

i=1 2iui. The red crosses show the Ritz(10) values of A. They lie close to the eigenvalues

λ40, λ39, . . . because the associated eigenvectors u40,u39, . . . have a large component in b.
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Outside of such constructed scenarios we can assume that the weights |〈ui, b〉|2 do

not differ strongly in value. Moreover, we even should not assume that these weights

are known, since their computation may be expensive in general. Therefore it is

rather a must than a drawback to carry out our investigations without considering

the influence of the starting vector b. To get rid of b we consider the ideal case,

that is

Assumption II.

|〈u1, b〉|2 = |〈u2, b〉|2 = · · · = |〈uN , b〉|2 = const .

At first glance this assumption seems to be too restrictive, and indeed, for the

theory of Beckermann and Kuijlaars on the convergence of Ritz values it is suffi-

cient to assume that the eigenvector components |〈ui, b〉| do not vary exponentially

in value (cf. Kuijlaars [18, p. 7]). Nevertheless we do not loose generality here.

In fact, Beckermann and Kuijlaars make Assumption II implicitly but argue after-

wards, see Kuijlaars [18, p. 23], that the theory holds more generally because small

variations in |〈ui, b〉| are not felt as N → +∞ and we will only obtain results in the

asymptotic sense.

Under Assumption II the problem (WLS) reduces to

χm = arg min
p∈P∞m

N∑
i=1

|p(λi)|2, (LS)

which is an (unweighted) least squares problem on the eigenvalues of A. If Assump-

tion II does not hold, but the weights do not differ very strongly, we hope that the

‘true’ Ritz polynomial χm from (WLS) will have its roots ‘close’ to the roots of the

polynomial from the ideal case (LS). Note that both polynomials are monic and

therefore uniquely determined by their roots.

To motivate our further ongoing, we recall the Lanczos process from Chapter 2.

We observed that the Ritz values produced by this algorithm lie in the real interval

[λmin, λmax] and fulfill the interlacing property, Theorem 2.31. But there is something

more that can be observed concerning the location of the Ritz values over the course

of the Lanczos process. We want to demonstrate this with the help of the following

examples.
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4Lanczosp

Example 4.3. We consider a diagonal matrix A with 40 equidistant eigenvalues

in the interval [−1, 1] and a vector b := [1, 1, . . . , 1]T of length 40. Note that the

orthonormal eigenvectors of A are the unit coordinate vectors ξ1, ξ2, . . . , ξN . Thus,

〈ui, b〉 = 1 for i = 1, 2, . . . , N and Assumption II is fulfilled. We run the Lanczos

process until m = 29. In Figure 4.2 we plot the Ritz polynomial χ29(z). The red

squares indicate the values of χ29 at the eigenvalues of A. The remarkable fact is

that χ29 has some of its roots very close to those eigenvalues of A that are located

near the edge of the interval [−1, 1]. These eigenvalues have been found by Ritz(29)

values. It can be observed that, once an eigenvalue has been found by a Ritz value, it

remains found as the degree m is increased further. Because of this ‘convergence-like’

behavior we say that this Ritz value has converged to an eigenvalue of A.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−10

Figure 4.2:

The blue line is the graph of the Ritz(29) polynomial χ29(z) on the interval [−1, 1]. The red

squares indicate the value of χ29 on the 40 equidistant eigenvalues of A. The green dots mark the

roots of χ29, which are the Ritz(29) values of A.

In Figure 4.3 one can see how the Ritz values begin to approximate the spectrum

4interval
of A from the outside to the inside of the interval. The black circles indicate the

location of the 40 eigenvalues of A. The colored disks indicate those eigenvalues

that have been found by a particular Ritz(m) value (or: some Ritz(m) values have

converged to those eigenvalues). The color of the disk encodes the value of m for

which convergence sets in (see the figure’s legend). For example, we plot a red disk
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at a certain eigenvalue λ if there exists an index m̃ ∈ {30, 31, 32, 33} such that each

Ritz polynomial χm with m ≥ m̃ has a root within distance tol to λ. Here we

have chosen tol:= 10−3. This convergence check is easily implemented and avoids

misinterpreting ‘lucky guesses’ as converged Ritz values. Unfortunately, it can only

be applied if the spectrum Λ(A) is known a priori. The empty circles in the middle

of the interval indicate the eigenvalues of A that are not found until m = 40.

 −1  −0.5 0 0.5    1   

0 

eigenvalue
m = 1 ... 14
m = 15 ... 29
m = 30 ... 33
m = 34 ... 36
m = 37 ... 39

Figure 4.3:

The black circles indicate the eigenvalues of the matrix A. The colored disks encode from which

index m on an eigenvalue is found by a Ritz(m) value.

The phenomenon that the eigenvalues on the edge of the spectrum are found

first by Ritz values is not restricted to Hermitian matrices.

4random

Example 4.4. In Figure 4.4 we consider a complex random diagonal matrix A of

size 100 × 100 (the real and imaginary parts of the diagonal entries are normally

distributed with mean 0 and variance 1). We set b := [1, 1, . . . , 1]T and tol:= 10−3.

As above, the innermost eigenvalues of A are not found until the end of the Arnoldi

process, whereas the outermost ones are approximated very early by a Ritz value.

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

eigenvalue
m = 1 ... 19
m = 20 ... 39
m = 40 ... 59
m = 60 ... 79
m = 80 ... 99

Figure 4.4: Convergence of the Ritz values of a non-Hermitian matrix.
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The aim of this chapter can now be stated as follows: try to characterize the

regions where eigenvalues are found by Ritz values and the regions where this is

not the case. One way to accomplish this task is to use potential theoretic tools

in the complex plane. In the recent years, a lot of effort has been put into this

approach, mainly by Bernhard Beckermann and Arno B. J. Kuijlaars. Here we will

shortly present their theory on the convergence of Ritz values and refer also to the

articles [1, 18, 19].

4.2 The Theory of Beckermann and Kuijlaars I

Firstly, we will slightly modify the problem at hand. Instead of considering the

minimizer χm of (LS), we consider the following problem:

χ̂m := arg min
p∈P∞m

max
λ∈Λ(A)

|p(λ)|. (4.2)

Here we replaced the L2-norm by the uniform norm on Λ(A). Note that zm− χ̂m is

the uniform best approximating polynomial of degree m − 1 to the function zm on

the discrete set Λ(A).

We assume that moving from (LS) to (4.2) is indeed a slight modification in the

sense that the roots of χm and χ̂m are close to each other. Since χm is small on the

eigenvalues of A, it should have some of its roots close to them. We expect also χ̂m

to be small on the eigenvalues and to have its roots close to them. In other words:

since the roots of χm and χ̂m are related to the spectrum of A, we hope that the

roots of χm and χ̂m are somehow related to each other:

roots of χm (= Ritz(m) values) ! Λ(A) ! roots of χ̂m.

In some cases this connection may fail and the roots of χm and χ̂m are distributed

completely differently. For example, one may think of minimizing polynomials that

are very small on a particular eigenvalue (or a cluster of eigenvalues) but do not

have any root in this region. In this case, the spectrum of A cannot explain any

connection between the roots of χm and χ̂m.
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In order to apply potential theoretic tools, it is necessary to replace the discrete

set Λ(A) by a ‘larger’ compact set Ω ⊃ Λ(A).1 Recall that the same procedure was

followed for the convergence investigation of the CG method, where we replaced the

spectrum of A by an interval. We define

χ̃m := arg min
p∈P∞m

max
z∈Ω

|p(z)|. (4.3)

4minmax-

discr

Example 4.5. Again we consider a diagonal matrix A with 40 equidistant eigenval-

ues in [−1, 1] and a vector b := [1, 1, . . . , 1]T of length 40. In Figure 4.5(a) we plot

the polynomial χ̂29, which is the monic polynomial of degree 29 that minimizes |χ̂29|
on Λ(A). For the computation of this polynomial we used an algorithm described in

Stiefel [30]. Note that p(z) := z29 − χ̂29(z) ∈ P28 is the best uniform approximating

polynomial to f(z) = z29 on Λ(A). The error |f − p| = |χ̂29| takes on its maximum

value in 30 points of Λ(A), which is necessary and sufficient for the optimality of p

by Theorem 3.4. In view of Figure 4.5(c), the roots of χ29 and χ̂29 are ‘similarly

distributed’.

In Figure 4.5(b) we plot the polynomial χ̃29 for the same matrix A. We have

4minmax-

cont

4compare

chosen Ω = [λmin, λmax] = [−1, 1] so that χ̃29 equals the normalized Chebyshev poly-

nomial T̃29. It can be observed that the roots of χ̃29 are very closely spaced at the

outer regions of the interval Ω, see also Figure 4.5(c). Apart from the extreme eigen-

values λmin and λmax, the polynomial χ̃29 is independent of the spectrum of A. Hence

it is easy to construct Hermitian matrices where the roots of χ̃29 even fail to have

the interlacing property satisfied by the Ritz(29) values: just concentrate most of the

interior eigenvalues of A around the center of the interval. The idea to overcome

this problem is to introduce a constraint that forces the interlacing property to be

fulfilled.

1Later we will assume that the capacity of Ω is nonzero since this is sufficient for the existence

of an unique equilibrium measure for Ω.
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(a)
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(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−9

(c)
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Ritz values
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Figure 4.5:

Illustration to Example 4.5. (a) The blue line is the graph of χ̂29(z). The red squares indicate the

value of χ̂29 on the 40 equidistant eigenvalues of A. The magenta dots mark the roots of χ̂29.

(b) The graph of χ̃29(z). The cyan dots mark the roots of χ̃29. (c) The roots of the Ritz(29)

polynomial χ29 (green), the polynomial χ̂29 (magenta) and χ̃29 (cyan) in comparison.
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4.3 Potential Theoretic Tools

On the next pages we introduce some potential theoretic tools at an introductory

level as it is sufficient for our purposes. Here we follow the article [21] by Levin and

Saad. For a more detailed exposition of this wide subject we refer to Ransford [25].

The logarithmic potential due to a unit charge placed at the point ζ in the

complex plane is

uζ(z) := − log |z − ζ|,

where we set

− log 0 := +∞,

so that uζ : C → R∪{+∞}. Due to the superposition principle of electrostatics (see

Shadowitz [28]), the logarithmic potential caused by m particles ζ1, ζ2, . . . , ζm ∈ C
each of charge 1/m is

1

m
(uζ1 + uζ2 + · · ·+ uζm) (z) = − 1

m
log |z − ζ1||z − ζ2| · · · |z − ζm|.

More generally, let the charges be distributed according to a measure µ ∈M(Ω),

where M(Ω) denotes the set of Borel probability measures supported on Ω, i.e., their

support is contained in a compact set Ω ⊂ C. The support supp(µ) of µ is (in our

case) the smallest closed subset of C with measure 1. We define the (logarithmic)

potential Uµ associated with µ by

Uµ(z) := −
∫

log |z − ζ| dµ(ζ). (4.4)

This function Uµ : C → R ∪ {+∞} is harmonic outside supp(µ). Moreover, Uµ is

superharmonic in C, which means that it is lower semi-continuous and satisfies a

local supermean inequality , i.e., for each z ∈ C there exists ρ > 0 such that

Uµ(z) ≥ 1

2π

∫ 2π

0

Uµ(z + reit) dt for all 0 ≤ r < ρ.

The energy of µ is defined by

I(µ) :=

∫
Uµ(z) dµ(z).

The energy is either finite or takes the value +∞. We consider the following energy

minimization problem

V (Ω) := inf{I(µ) : µ ∈M(Ω)}
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and define the (logarithmic) capacity of Ω by

cap(Ω) := exp(−V (Ω)).

If V (Ω) = +∞, we set cap(Ω) := 0. Such sets are called polar. Polar sets are

thin in the sense that the ‘area’ (planar Lebesgue measure) and the ‘length’ (one-

dimensional Hausdorff measure) of any polar set are equal to zero. For example,

any countable set has capacity zero.

We assume from now on that

cap(Ω) > 0.

In this case the Theorem of Frostman asserts that there exists an unique measure

µΩ ∈ M(Ω) such that I(µΩ) = V (Ω). For a proof of this result see Ransford [25].

The measure µΩ is called equilibrium measure for Ω. Some important properties of

µΩ, UµΩ and the capacity will be required in what follows.

4equilibrium

4movie

• Let ∂∞Ω denote the outer boundary of Ω (that is, the boundary of the

unbounded component of C \ Ω). Then µΩ is supported on ∂∞Ω, i.e.,

supp(µΩ) ⊆ ∂∞Ω.

• Since M(∂∞Ω) ⊆M(Ω) and µΩ is unique, the above inclusion implies

cap(Ω) = cap(∂∞Ω).

• For all z ∈ C there holds

UµΩ(z) ≤ V (Ω)

with equality holding quasi-everywhere on Ω; that is, except possibly for a set

of capacity zero. There holds

UµΩ(z) = V (Ω) = − log cap(Ω) quasi-everywhere on Ω.

On the other hand, if the potential of some µ ∈ M(Ω) is constant quasi-

everywhere on Ω and I(µ) < +∞, then µ = µΩ.
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Figure 4.6: Density and potential UµΩ of the equilibrium measure µΩ for the L-shaped domain.

4.4 The Theory of Beckermann and Kuijlaars II

In this section the potential theory comes in. Given a monic polynomial p(z) =

(z − z1)(z − z2) · · · (z − zm) of degree m, we define the associated normalized zero

counting measure

νp =
1

m

m∑
i=1

δzi
,

where δz denotes the unit Dirac measure at z ∈ C, i.e.,

δz(S) =

{
1, z ∈ S;

0, z 6∈ S;
for all S ⊆ C.

The discrete measure νp assigns mass 1/m to each root of p and roots are counted

by multiplicity. From the definition (4.4) of the potential it is easy to see that

U νp(z) = −
∫

log |z − ζ| dνp(ζ)

= − 1

m

m∑
i=1

log |z − zi|

= − 1

m
log

m∏
i=1

|z − zi|

= − 1

m
log |p(z)|,

so that there is an immediate connection between the absolute value of a monic

polynomial and the potential of its associated normalized zero counting measure.
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Consequently, the minimizing problem (4.3) can be reformulated equivalently as

Maximize min
z∈Ω

Uµ among measures µ of the form µ =
1

m

m∑
i=1

δzi
.

The mass points of the maximizing measure of this problem are then exactly the

roots of the minimizing polynomial χ̃m from problem (4.3). The advantage of mea-

sures in contrast to roots of polynomials is that measures need not be discrete. In

the limit m→ +∞ we ignore the fact that µ is discrete. This leads to

Maximize min
z∈Ω

Uµ among all probability measures µ. (4.5)

A maximizer of this problem does not always exist. To overcome this problem

we assume that cap(Ω) > 0. Then by Frostman’s Theorem there exists a unique

equilibrium measure µΩ for Ω. Moreover, we assume that Ω is regular in the sense

that

UµΩ(z) ≤ V (Ω) (4.6)

with equality holding for all z ∈ Ω (not only quasi-everywhere!).

Now we show that µΩ is a maximizer of (4.5): Assume this is not the case and

that there exists a probability measure µ̃ such that U µ̃ > V (Ω) on Ω. Integrating

this inequality with respect to µΩ,

V (Ω) <

∫
U µ̃(z) dµΩ(z) = −

∫∫
log |z − ζ| dµ̃(ζ)dµΩ(z),

and, using Fubini’s Theorem to interchange the order of integration, we obtain

V (Ω) <
∫
UµΩ dµ̃. But this is a contradiction to (4.6) because µ̃ is a probability

measure.

If Ω has nonzero capacity but is not regular, we may still determine the equilib-

rium measure µΩ for Ω as the minimizer of the energy problem

Minimize the energy

∫
Uµ(z) dµ(z) among µ ∈M(Ω). (4.7)

Problems arise because the maximizer of (4.5) may not be uniquely determined.

However, in many important cases it is unique (and therefore coincides with µΩ),

for example if Ω is a union of curves with simply connected complement (see Kuij-

laars [18, p. 13]). This includes also real intervals, which is sufficient for the analysis

of Hermitian matrices.
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The Hermitian Case

Let A ∈ CN×N be a Hermitian matrix with (real) eigenvalues

λmin := λ1 ≤ λ2 ≤ · · · ≤ λN =: λmax.

Moreover, we denote the Ritz(m) values of A by

θ1 ≤ θ2 ≤ · · · ≤ θm .

Actually, due to Theorem 2.31, the inequalities in the last string are even strict.

We define the following normalized counting measures (see Kuijlaars [18, p. 10])

σN(S) :=
1

N

N∑
i=1

δλi
(S) and µN,m(S) :=

1

m

m∑
i=1

δθi
(S).

We restrict δz to the Borel sets of R, so that σN and µN,m are Borel measures.

Definition 4.6. The distribution function Fν : R → R+ of a positive Borel

measure ν with support in R is

Fν(x) := ν ( (−∞, x] ) .

Given two such measures ν1, ν2. We say ν1 is smaller or equal (in the sense of

inequality of measures) than ν2, if

Fν1(x) ≤ Fν2(x) for all x ∈ R.

We denote this by ν1 ≤ ν2.

Note that

σN(S) =
#{ eigenvalues in S }

N
and µN,m(S) =

#{Ritz(m) values in S }
m

.

By taking into account Corollary 2.32, we obtain

mµN,m( (−∞, x] ) ≤ NσN( (−∞, x] ) for all x ∈ R,

or, equivalently, in our new notation

mµN,m ≤ NσN . (GP1)
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(GP1) is a guiding principle for the distribution of the Ritz(m) values. It serves

as an upper constraint on the number of Ritz values. The intuition behind it is that

it would be a ‘waste of resources’ to have more Ritz values than eigenvalues in some

region (see Kuijlaars [18, p. 15]).

Now we let N → +∞. This is reasonable because the matrix A is of very large

dimension. One may think of a sequence of matrices (AN)N≥1, where the eigenvalue

distributions of the matrices AN tend (in a weak sense, see below) to some limit

distribution σ supported on Ω. If, for example, the matrices AN arise from the

dicretization of a partial differential equation (PDE), where N is determined by

the discretization mesh size, the eigenvalues will follow some distribution which is

related to the properties of the PDE (Kuijlaars [18, pp. 6].) To formalize this, we

introduce the notion of weak*-convergence.

Definition 4.7. By C(Ω) we denote the set of continuous functions f : Ω → R.

A sequence (νn)n≥1 in M(Ω) is weak*-convergent to ν ∈M(Ω), if∫
f dνn →

∫
f dν for all f ∈ C(Ω).

We write νn
∗→ ν.

Assumption III. We assume that σN
∗→ σ, where σ is some Borel probability

measure with supp(σ) = Ω.

For a given real interval K it can be observed, that for a particular index m the

number of Ritz(m) values in K is directly proportional to N if the eigenvalues of

the matrices AN are samples (in the sense of statistics) of one fixed distribution.

We want to give an example to make this clear. See also Kuijlaars [18, pp. 8–9].

Example 4.8. Let AN ∈ CN×N have N equidistant eigenvalues in [0, 1], namely

0, 1/(N − 1), 2/(N − 1), . . . , (N − 2)/(N − 1), 1.

By this we have

σN(S) =
1

N

N∑
i=1

δ(i−1)/(N−1)(S).

For N → +∞ this measure tends, in the weak*-sense, to the uniform distribution

on the interval [0, 1], i.e., σN
∗→ σ, where σ(S) denotes the Lebesgue measure of

S ∩ [0, 1].
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Now we consider a fixed interval K. It can be observed, that if we increase N –

say, by a factor α > 1 – then µαN,αm(K) ≈ µN,m(K). In the limit (weak*-sense), the

measure µN,m depends on the ratio m/N =: t ∈ (0, 1) only. Thus, we may denote

the limit measure by µt and make the following assumption:

Assumption IV.

µN,tN
∗→ µt as N → +∞

for some Borel probability measure µt.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x

F
ν N

,tN

(x
),

 t 
=

 0
.5

N = 10

N = 20

N = 80

N = +∞

Figure 4.7:

Here we plot the distribution functions of µN,tN for N = 10, 20, 80,+∞ and t = 0.5. The matrix

AN ∈ CN×N has N equidistant eigenvalues in the interval [0, 1] and b = [1, 1, . . . , 1]T .

4ratio-t

We note that (GP1) can now be rewritten as

m

N
µN,m ≤ σN . (GP1’)

By taking N → +∞ and setting t := m/N we obtain

tµt ≤ σ. (4.8)

Finally, together with (4.7), we are led to the constrained energy problem

µt minimizes

∫
Uµ(z) dµ(z) among µ ∈M(Ω) with tµ ≤ σ. (CEP)
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We say µt is the constrained equilibrium measure to (CEP). It can be shown that µt

exists and is uniquely determined if σ has a continuous and real-valued logarithmic

potential Uσ. This is a smoothness condition on σ. It will be satisfied, for example,

if σ has a density with respect to Lebesgue measure which is bounded, or which has

power-type singularities near end-points. On the other hand, σ cannot have mass

points, since the logarithmic potential would be infinite there.

It is clear that if tµΩ ≤ σ, then the equilibrium measure µΩ also solves (CEP),

i.e., µt = µΩ. As for the equilibrium measure there is also a characterizing property

in terms of the potential. We define the set

Ft := supp(σ − tµt),

which we call the free region. This is the set where the upper constraint (4.8) is not

active. Under the above smoothness condition on σ, one can show that Uµt is equal

to a constant Ct on Ft and smaller than or equal to Ct everywhere else. Moreover,

the only probability measure µ that satisfies 0 ≤ tµ ≤ σ and whose potential Uµ is

constant on Ft and smaller everywhere else, is µt (see Helsen, Van Barel [15, p. 3]).

On the complement

St := Ω \ Ft

the measures σ and tµt agree. This is what we call the saturated region.

In our context, (CEP) has the following interpretation: Let t ∈ (0, 1) and

A ∈ CN×N be a Hermitian matrix (N large). Moreover, let Ω be a reasonable ap-

proximation to the spectrum of A, for example Ω := [λmin, λmax]. Then the Ritz(tN)

values of A are distributed according to µt, i.e., they are distributed according to the

equilibrium measure for Ω under the constraint that there should not be more Ritz

values than eigenvalues in some region. In the saturated region St this constraint is

active, i.e., the number of Ritz values is limited by (4.8). This is the region where

the Ritz(tN) values have converged (see Kuijlaars [18, p. 16–17]).

4.5 Examples to the Constrained Energy Problem

The determination of µt is a non-trivial problem in general. For special eigenvalue

distributions σ it can be calculated explicitly (cf. Kuijlaars [18, p. 17–19]). In other
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cases, some properties of µt can be derived without being able to obtain an explicit

solution. Hence it would be interesting to obtain a numerical approximation. This

is what we do on the next pages. To solve the constrained energy problem we have

used an algorithm by Helsen and Van Barel [15]. This algorithm computes µt if the

constraint σ is given by a piecewise linear density function fσ(x), x ∈ R.

4cep1D-1

Example 4.9. Let A ∈ RN×N be a diagonal matrix with N = 100 equidistant eigen-

values in the interval [0, 1] and b = [1, 1, . . . , 1]T . Figure 4.8(a) shows, for which

index m an eigenvalue λ ∈ Λ(A) is found by a Ritz value. We plot a black dot at

some eigenvalue λ and index m̃, if for every m ≥ m̃ there exists a Ritz(m) value

within distance tol:=10−3 to λ. In (b) one can see the density of the measure σ

(blue), which corresponds to the evenly distributed eigenvalues of A, and the asso-

ciated potential Uσ (red). We computed the constrained equilibrium measure µt for

t = 0.4 and t = 0.7. The resulting densities of µt are shown in (c) and (d) as a

green line, as well as the associated potentials Uµt (red). The saturated regions St

and the free regions Ft are shown below (light green and magenta). Note that St is

exactly the region where tµt and σ agree (in our case, the density of µt is constant

1/t there), whereas the potential Uµt is constant on the free region Ft. In (e) we

plot again the converged Ritz(m) values (black dots), and add the saturated regions

St (light green), where t = m/N . We observe, that the saturated regions indicate

very well the region where the eigenvalues of A have been found by Ritz values.

4cep1D-2

Example 4.10. The matrix A ∈ RN×N has N = 100 eigenvalues, which are dis-

tributed in the following way: 50 equidistant eigenvalues lie in the interval [0, 0.5]

and 50 equidistant eigenvalues in [0.73, 1]. See also Figure 4.9(a) and (b). In (c)

and (d) we plot the density and potential of the constrained equilibrium measure µt

for t = 0.4 and t = 0.7. The saturated regions St are a good indicator for the region

where the eigenvalues of A have been found by Ritz values, see (e).

4cep1D-3

Example 4.11. This example corresponds to Figure 4.10. Here the matrix A is

of dimension N = 200. Ten of its eigenvalues are clustered at the right end of the

interval [0, 1] and the others follow a random normal distribution with mean 1/3 and

standard deviation 1/9. As above, the saturated regions St are a good predictor for

the region where the Ritz values have converged. For example, we may read off from

(e) that all the eigenvalues in the cluster at the right end of the interval are found

for t = 0.2, i.e., after 40 iterations of the Lanczos process.
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Figure 4.8: Convergence of Ritz values.

86



C
ha

pt
er

4

4 On the Convergence of Ritz Values

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

x

m

Eigenvalues of A and converged Ritz values, N = 100

eigenvalue of A
converged Ritz(m) value

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

Density of the constraint σ and potential Uσ

density of σ
potential Uσ

(c) (d)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Density of µ
t
 and potential Uµ

t for t = 0.4

x

S
t

F
t

density of µ
t

potential Uµ
t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Density of µ
t
 and potential Uµ

t for t = 0.7

x

S
t

F
t

density of µ
t

potential Uµ
t

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t =
 m

/N

Converged Ritz values and saturated regions S
t
, N = 100

converged Ritz(tN) value
saturated region

Figure 4.9: Convergence of Ritz values.

87



C
ha

pt
er

4

4 On the Convergence of Ritz Values

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

x

m

Eigenvalues of A and converged Ritz values, N = 200

eigenvalue of A
converged Ritz(m) value

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

Density of the constraint σ and potential Uσ

density of σ
potential Uσ

(c) (d)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Density of µ
t
 and potential Uµ

t for t = 0.4

x

S
t

F
t

density of µ
t

potential Uµ
t

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Density of µ
t
 and potential Uµ

t for t = 0.7

x

S
t

F
t

density of µ
t

potential Uµ
t

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t =
 m

/N

Converged Ritz values and saturated regions S
t
, N = 200

converged Ritz(tN) value
saturated region

Figure 4.10: Convergence of Ritz values.
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4.6 Fast Numerical Evaluation of Potentials in 2D

Let the measure µ ∈M(Ω), Ω ⊂ R2 have a density function fµ(x, y), i.e.,

µ(S) =

∫∫
S

fµ(x, y) dxdy

for all Borel sets S ⊆ R2.

The associated logarithmic potential Uµ at a point (s, t) is

Uµ(s, t) = −
∫∫

log ‖[s, t]T − [x, y]T‖fµ(x, y) dxdy.

We assume that fµ is of the form

fµ(x, y) = α1f1(x, y) + α2f2(x, y) + · · ·+ αnfn(x, y)

and evaluate Uµ at given node points (x1, y1), (x2, y2), . . . , (xm, ym). Then for i =

1, 2, . . . ,m we have

Uµ(xi, yi)︸ ︷︷ ︸
=:ui

= −
∫∫

log ‖[xi, yi]
T − [x, y]T‖fµ(x, y) dxdy

=
n∑

j=1

(
−
∫∫

log ‖[xi, yi]
T − [x, y]T‖fj(x, y) dxdy

)
︸ ︷︷ ︸

=:Pi,j

αj,

and in matrix-vector notation

Pα = u .

The j-th column of the matrix P ∈ Rm×n contains the values of the potential Uµ

evaluated at the points (xi, yi) for i = 1, 2, . . . ,m, where µ has the density func-

tion fj. The straightforward determination of P is very time-consuming since it

involves the numerical evaluation of mn integrals. However, we can overcome this

problem by choosing the densities fj such that the generated potentials are invariant

under certain rotations. In what follows, we present a method that allows to assem-

ble P for arbitrary domains without evaluating an integral if only the potential of a

reference density function f is given in sufficiently many Gaussian points (that are

the points (xi, yi) where both xi and yi are integers).

We start with the node points (xi, yi) (i = 1, 2, . . . ,m) which are placed equidis-

tantly according to a square grid with mesh size h. On this grid we introduce a
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regular alternating triangulation, as shown in Figure 4.11 for the L-shaped domain.2

We may divide the node points into two classes.

• Type A: a point (xj, yj) is adjacent to 8 triangles (see the red dots in

Figure 4.11), the square region filled by these triangles is denoted by Qj,

• Type B: a point (xj, yj) is adjacent to exactly 4 triangles (see the green dots),

the (rotated) square region filled by these triangles is denoted by Q̃j.

(xj , yj)

(xk, yk)

Qj

Q̃k

h

h

Figure 4.11: Constructing a piecewise linear density on the L-shaped domain.

Note that we do not have to place the nodes (xi, yi) inside the domain Ω. How-

ever, in the sequel we shall set the density outside Ω and on its boundary equal to

zero, so that outlying points will become superfluous. We define m piecewise linear

density functions fi in the following way: Given a reference density function f(u, v)

with support R := [−1, 1]× [−1, 1],

f(u, v) =

{
min{1− |u|, 1− |v|}, (u, v) ∈ R;

0, otherwise.

The image of f describes a square pyramid centered at 0 with height 1 and side-

length 2 (see Figure 4.12). By U(u, v) we denote the potential generated by this

density.

If (xj, yj) is a point of Type A, we define

Φj(u, v) :=

[
h 0

0 h

][
u

v

]
+

[
xj

yj

]
.

2Actually, this triangulation is not needed in the implementation of this method.
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Figure 4.12:

Reference density f(u, v) (yellow), certain level curves of the corresponding potential U(u, v)

(blue lines) and the Gaussian points (grey dots).

Φj is a bijective linear map on R2 that maps R onto Q. By Φ−1
j we denote its inverse

map. We set

4refdensity

fj(x, y) := f(Φ−1
j (x, y)).

The image of fi describes a square pyramid centered at zj with height 1 and side-

length 2h.

If (xj, yj) is a point of Type B, we set

Φ̃j(u, v) :=
1

2

[
h h

−h h

][
u

v

]
+

[
xj

yj

]

and

fj(x, y) := f(Φ̃−1
j (x, y)).

The image of fi describes a square pyramid centered at (xj, yj) with height 1 and

side-length
√

2h that is rotated by the angle −π/2.

By the definition of Φj and Φ̃j it is obvious that each node point (xi, yi) is the

image of a Gaussian point. In other words,

Φ−1
j (xi, yi) and Φ̃−1

j (xi, yi) are Gaussian points for i, j = 1, 2, . . . ,m.
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Now we evaluate the potential U j generated by a density fj at the node (xi, yi).

First we assume that (xi, yi) is of Type A.

U j(xi, yi) = −
∫∫
Qj

log
∥∥[xi, yi]

T − [x, y]T
∥∥ fj(x, y) dxdy

= −
∫∫

Φj(R)

log
∥∥[xi, yi]

T − [x, y]T
∥∥ fj(x, y) dxdy

= −
∫∫
R

log
∥∥[xi, yi]

T − Φj(u, v)
T
∥∥ fj(Φj(u, v))| det(Φ′

j(u, v))| dudv

= −
∫∫
R

log
∥∥[xi − xj, yi − yj]

T − h(u, v)T
∥∥ f(u, v)|h2| dudv

= −
∫∫
R

log
(
h
∥∥[xi − xj, yi − yj]

T/h− (u, v)T
∥∥) f(u, v)h2 dudv

= −
∫∫
R

(
log h+ log

∥∥Φ−1
j (xi, yi)− (u, v)T

∥∥) f(u, v)h2 dudv.

In the third line we used the change of variables rule of integral calculus and in the

fourth line we applied the definition of Φj and fj. Finally, we have

U j(xi, yi) = −4

3
h2 log h+ h2U

(
Φ−1

j (xi, yi)
)
.

Note that U j(xi, yi) = Pi,j and its evaluation involves the computation of U in

a Gaussian point. Another remarkable fact is that U is independent of h, the

discretization nodes (xi, yi) and the domain Ω.

If (xi, yi) is of Type B, a similar formula can be derived. There holds

Pi,j = U j(xi, yi) = −4

6
h2 log

h√
2

+
1

2
h2U

(
Φ̃−1

j (xi, yi)
)
.

As above, we have to evaluate U in a Gaussian point and U is independent of h, the

discretization nodes (xi, yi) and the domain Ω. Therefore we will compute the values

of U just once in sufficiently many Gaussian points and store them in a matrix S,

which can be reused for each computation.

The assembly of the matrix P reduces to a look-up of some values in S and

rescaling them using the above formulae depending on the node-type. Moreover, we
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can exploit the 8-fold symmetry of the potential U :

U(x, y) = U(x,−y) = U(−x, y) = U(−x,−y)

= U(−y,−x) = U(y,−x) = U(−y, x) = U(y, x).

Hence we will only evaluate U in sufficiently many Gaussian points in the first octant

of the plane and store S as a triangular matrix:

S :=


U(0, 0)

U(1, 0) U(1, 1)

U(2, 0) U(2, 1) U(2, 2)
...

...
...

. . .

 .

The size of S that is necessary to carry out a computation depends on the mesh size

h and the diameter of Ω.

The complete implementation of this method can be found on the CD-ROM.

4computeP

4.7 Outlook

With the above method for the fast evaluation of potentials associated with piecewise

linear densities it is possible to solve the constrained energy problem (CEP) in

the complex plane very efficiently. An extension of the 1D-algorithm by Helsen,

Van Barel [15] has been obtained recently by M. Eiermann and the author. Even

though for an arbitrary normal matrix A there is no interlacing property of the Ritz

values (which ultimately led to the constraint in the Hermitian case), it still seems

reasonable to assume that the number of Ritz values in a half-plane

S(x+ iy) := (−∞, x]× i(−∞, y]

does not exceed the number of eigenvalues of A in S for all z = x+ iy. This would

be a ‘waste of resources’ otherwise. Under this assumption (which itself warrants

closer investigation), the theory on the convergence of Ritz values by Beckermann

and Kuijlaars (see [1, 18, 19]) may be carried over to non-Hermitian normal matrices.

First numerical tests have been performed and are quite promising.
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4cep2D-1

Example 4.12. In Figure 4.13 we consider a normal matrix A ∈ CN×N , where

N = 300. The eigenvalues of A are evenly distributed in the L-shaped domain, i.e.,

the measure σ has constant density there; see the blue sheet in (a). In (b) we plot

the associated potential Uσ. In (c) and (d) we show the density of the constrained

equilibrium measure µt and the associated potential Uµt for t = 0.8. The saturated

region St (light green) is exactly the region where tµt and σ agree (in our case, the

density of µt is constant there), whereas the potential Uµt is constant on the free

region Ft (magenta). In (e) we show the converged Ritz(m) values (colored disks),

underlaid with the saturated regions St for t = 0.2, 0.4, 0.6, 0.8, (N − 1)/N . For

example, all eigenvalues that are found for m ≤ 0.2N (black disks) should belong to

the black region (t = 0.2). In view of (e), the saturated regions are a good indicator

for the converged Ritz values.

4cep2D-2

Example 4.13. In Figure 4.14 we consider a normal matrix A ∈ C300×300. The

eigenvalues all lie in the domain Ω = [0, 2]2 \ [0.5, 1.5]2 ⊂ R2. The distance of the

eigenvalues in the upper left diagonal part is scaled by a factor
√

2 in comparison to

the lower right part. Therefore the density of σ differs by a factor 2 between both

diagonal parts.

4cep2D-3

Example 4.14. We consider a normal matrix A ∈ C300×300. The eigenvalues lie

inside a circle, which is centered at −1 and has radius 1, and a triangle with vertices

{−i, 2− i, 2 + i}. The density of σ differs by a factor 4/3 between both components,

cf. Figure 4.15. Again, the regions of converged Ritz values are well predicted by the

saturated regions.
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(a) (b)

(c) (d)

(e)

Figure 4.13: Convergence of Ritz values.
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Figure 4.14: Convergence of Ritz values.

Figure 4.15: Convergence of Ritz values.
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File List

• Folder PDF

– file diploma.pdf – this document,

– file cyprus1.pdf – presentation slides ’Matrix Functions and their

Approximation using Krylov Subspaces ’,

– file cyprus2.pdf – presentation slides ’Matrix Functions and their

Approximation by Polynomial Methods ’,

• Folder TEX

– subfolder Diploma – LATEX-files of this document (main file: main.tex),

– subfolder Cyprus1 – LATEX-files of cyprus1.pdf (main file: main.tex),

– subfolder Cyprus2 – LATEX-files of cyprus2.pdf (main file: main.tex),

• Folder FIG

– file figX-Y.pdf – Figure X.Y as .pdf-file for better view,

– file figX-Y.png – Figure X.Y as .png-file for better view,

– · · ·

• Folder MAT

– file guirun.m – graphical user interface to run the examples,

– subfolder FILES – .m-Files for direct access (main file: rundemo.m).
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Notation

Symbol Description Page

I identity matrix 5

O null matrix 5

ξm m-th unit coordinate vector 5

toep(·, ·, · · · ) Toeplitz matrix, main diagonal is underlined 5

diag(· · · ) (block-)diagonal matrix 5

Λ(A) spectrum of A 9

ψA minimal polynomial of A 9

d d = deg(ψA) 9

dλ, cλ multiplicity of the root λ in ψA, ψA,b 9, 25

χA characteristic polynomial of A 10

pf,A interpolates f at the roots of ψA 11

Cλ,i components of A 15

γ, Γ path, (Jordan) curve 17

windz winding number around z ∈ C 17

int(Γ) interior of the curve Γ 17

i imaginary unit, i
2 = −1 18

Rζ(A) resolvent of A to ζ ∈ C 18

ω, ωm nodal polynomial (of degree m) 19, 42

pf,ω, qf,m interpolates f at the roots of ω, ωm 19, 42

||| · ||| some arbitrary norm 20

%(A) spectral radius of A 21

Km(A, b) = Km m-th Krylov subspace 23

L L = deg(ψA,b) 24

ψA,b minimal polynomial of b with respect to A 25

98



Notation

Symbol Description Page

Cα companion matrix 28

‖ · ‖ 2-norm of a matrix or a vector 29

Hm Hessenberg matrix produced by Algorithm 2.14 29

χm Ritz(m) polynomial 34

pf,m interpolates f at the roots of χm 35

P∞
m monic polynomials of degree m 34

P0
m residual polynomials of degree m 40

rm m-th residual vector 40

em m-th error vector 41

‖ · ‖A A-norm 42

‖ · ‖Ω uniform norm on Ω 45

C(Ω) continuous functions on Ω 45

fm ⇒ f fm converges uniformly to f 45

Tm Chebyshev polynomial of degree m 47

T̃m(x) normalized Chebyshev polynomial of degree m 48

TK
m shifted Chebyshev polynomial of degree m 50

〈x ,y〉 〈x ,y〉 = yHx , scalar product 68

Uµ logarithmic potential associated with µ 77

M(Ω) set of Borel probability measures on Ω 77

I(µ) energy of µ 77

cap(Ω) logarithmic capacity of Ω 78

µΩ equilibrium measure for Ω 78

δz unit Dirac measure at z ∈ C 79

σN , µN,m normalized counting measures 81

σ measure, associated with the eigenvalues 82

µt constrained equilibrium measure 84

Ft free region 84

St saturated region 84
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Arnoldi

approximation, 33

basis, 31

process, 29

asymptotic convergence factor, 60

best approximation

element of, 45

polynomial, 46

Borel probability measure, 77

capacity, 58, 78

Cauchy integral formula, 18

CEP, 83

CG method, 42

characteristic polynomial, 10

Chebyshev polynomial, 47

normalized, 48

shifted, 50

Chebyshev method, 51

companion matrix, 28

components, 15

compression, 31

constraint, 82

curve, 18

cyclic, 27

density function, 89

diagonalizable, 44

Dirac measure, 79

distribution function, 81

domain, 17

energy, 77

energy problem, 80

constrained, 83

equilibrium measure, 78

constrained, 84

error minimizing method, 41

exterior, 17

Fejér points, 61

fine structure, 67

free region, 84

Galerkin breakdown, 33

Gaussian point, 89

GMRES, 41

guiding principle, 82

harmonic, 77

Hermite

basis, 15

interpolation, 11

Hessenberg matrix, 29

unreduced, 29

Horner scheme, 62

interior, 17

interlacing property, 38
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Index

interpolation method

generalized, 62

polynomial, 44

JCF, 8

Jordan

block, 7

canonical form, 8

curve, 18

Joukowski transformation, 49

Krylov

approximation, 24

subspace, 23

Lagrange interpolation, 13

Lanczos process, 38

least squares problem

unweighted, 71

weighted, 53, 68

level curve, 58

local supermean inequality, 77

matrix function

definition of, 9

polynomial, 6

maximally convergent, 60

method of lines, 62

minimal polynomial

of a matrix, 9

of a vector, 25

minimal residual method, 41

MINRES, 41

monomial, 8

nodal polynomial, 19, 42

for a set, 59

nonderogatory, 10, 27

normal, 44

path, 17

polar set, 78

polynomial method, 24

potential, 77

quasi-everywhere, 78

reference density, 90

regular set, 80

residual, 40

residual minimizing method, 41

residual polynomial, 40

resolvent, 18

Riemann Mapping Theorem, 58

Ritz polynomial, 34

Ritz value, 34

converged, 72

found, 69

saturated region, 84

Schwarz-Christoffel-toolbox, 62

spectral radius, 21

spectral resolution, 16

spectrum, 9

stopping condition, 24

superharmonic, 77

superlinear convergence, 61

superposition principle, 77

Theorem of

Caratheodory-Osgood, 61

Frostman, 78

Tonelli, 46

uniform norm, 45

uniformly convergent, 45

uniformly distributed, 59

weak*-convergence, 82

winding number, 17

zero counting measure, 79
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Ich erkläre hiermit, dass ich diese Diplomarbeit selbständig
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