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Preface

This work is about the numerical evaluation of the expression

f(A)b,

where A € CV*V is an arbitrary square matrix, b € CV is a vector and f is a
suitable matrix function. This task is of very high importance in all applied sciences

since it is a generalization of the following problems, to name just a few:

e Solve the linear system of equations Ax = b.
The solution is « = f(A)b, where f(2) = 1/z.

e Solve an ordinary differential equation y'(¢t) = Ay(t) with given initial
value y(0) = b. The solution is y(t) = f(tA)b, where f(z) = exp(2).

e Solve identification problems in stochastic semigroups. Here one needs

to compute f(A)b with f(z) = log(z) (see Singer, Spilermann [29]).

e Simulate Brownian motion of molecules. Here one needs to determine

f(A)b with f(z) = v/z (see Ericsson [9]).

In the first chapter we will define the term f(A). There are different equivalent
approaches. A constructive one is to involve the Jordan canonical form of the
matrix A. Later we shall see that f(A) = pra(A), where ps4 is a polynomial of
degree < N —1 that interpolates f at the eigenvalues of A. In practical applications
N is very large and the spectrum of A is not known. Therefore we will determine

an f-interpolating polynomial py,, of low degree m —1 < N and hope that

The resulting methods are called Krylov subspace methods or polynomial methods

and they are considered in Chapter 2.
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The choice of the interpolation nodes for py,, is an important issue. If the
interpolation nodes are uniformly distributed on a compact subset of C, we may
analyze the asymptotic convergence behavior of the arising methods using theory of

interpolation and best approximation. This is done in Chapter 3.

Another very popular choice of interpolation nodes are Ritz values. The resulting
Arnoldi approximations converge in many cases very fast to f(A)b. To explain
this, it is necessary to describe the behavior of Ritz values. In Chapter 4 we will
present a theory on the convergence of Ritz values, which was mainly developed
by Beckermann and Kuijlaars (see [1, 18, 19]). This theory involves tools from

potential theory.

Files

All computations in this work have been carried out using MATHWORKS MATLAB,
VERSION 6.5 R13. The operating system was MICROSOFT WINDOWS XP PRO-
FESSIONAL, SP 2. The necessary files can be found on the attached CD-ROM.
All figures may be reproduced by the reader and are marked by a symbol and
an identifier at the right margin of the page. A graphical user interface for the easy
access to the corresponding .m-files is provided. It is executed from the command

line of MATLAB by typing

>> cd X: % change to CD-ROM drive X
>> cd mat

>> guirun

The .m-files may also be accessed directly from the subfolder FILES/Identifier
by running rundemo.m. Note that some of the examples require the Schwarz-
Christoffel-toolbox written by Driscoll [3], which should be added to the search patch

of MATLAB. Moreover, access to the MAPLE kernel is necessary for some files.

Additionally, the CD-ROM contains this document and two presentations about
the subject of this work as . pdf- and IXTEX-files, as well as all the figures shown here.
For a detailed File List we refer to page 97.

=0~

Identifier
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Some Words about Notation

Throughout this work, matrices are uppercase letters and vectors are bold lowercase
letters. The null matrix is denoted by O and the identity matrix by I. &,, denotes
the m-th unit coordinate vector, whereas e,, denotes the error and u,, is a column
of an unitary matrix. Mainly in the first chapter we will use the space-saving toep-
operator. It takes a vector argument and constructs a Toeplitz matrix (i.e., a matrix
with constant diagonal entries) by using the vector entries as diagonal values, where
the main diagonal value is underlined. If the size of the constructed matrix is not
clear from the context, it follows the toep-operator:

2
1

toep(1,2,3,4) = c C**2,

_ NN W

2 3
c C**, toep(1,2,3,4) = [ Lo

— N W

2

The operator diag arranges (block-)diagonal matrices by taking a list of matrices
Jl,JQ,...,JkZ

(7]

|
dlag(‘]la J27 LRI Jk) -

] |

On page 98 we give a detailed overview about the symbols used here.
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1 Matrix Functions

The aim of this chapter is to give a meaning to the term f(A), where A € CN*V is
a given square matrix and f(z) is a complex-valued function of a complex variable
z € C. We explain which requirements f has to fulfill in order that f(A) is defined
and how it is defined. Since there are different definitions, we have to clarify in which
sense they are compatible to each other: some of them hold only for polynomials,
others hold only if f is analytic in a domain that contains the eigenvalues of A, etc.
The most common and constructive approach involves the Jordan canonical form of
a matrix. Another very important viewpoint, especially for the following chapters,
is to consider f as an interpolation polynomial. At the end of this chapter we list

some properties of matrix functions.

1.1 Polynomial Matrix Functions

Let p(z) be a polynomial of degree m with complex coeflicients «;, i.e.,
p(2) = 2™ + apm_12™ 1 4+ -+ . This will be denoted by p(z) € Pn(z).
Since the powers I, A, A%, ... exist, we may insert A in p and the following definition

is justified.

Definition 1.1. p(A) is defined as

p(A) = apA™ + ap A" 4l € CY, (D1)

We say p is a polynomial matrix function.

We no longer have to distinguish between P,,(z) and the set of polynomials in A
of degree < m. We simply write P,,. In the following lemma we summarize some

important properties of polynomial matrix functions.
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Lemma 1.2. Let p € P,, be a polynomial, A € CN*N and A = TJT~', where
J = diag(Jy, Ja, ..., Jg) is block-diagonal. Then

(i) p(A) =Tp(J)T,
(i) p(J) = diag (p(/1),p(22), - - -, p(Jk)),
(iii) If Av = \v then p(A)w = p(A\)v (v € CV),
(iv) Given another polynomial j € Py then p(A)p(A) = p(A)p(A).

Proof. (i) By (D1) we have

p(A) = p(TJT™)
= A (TIT ™)™ 4 ey (TIT )™ 4+ apl
=T (ame + o JT ozgl) 7!
= Tp(J)T~".
(ii) Powers of block-matrices do not alter the block-structure.
(iii) Using (D1) we obtain
p(A)v = A"+ oy A"+ g
= A"V + A NV -+ v
= p(Av.
(iv) holds because powers of A commute: A*AY = AY AH. O

1.2 The Jordan Canonical Form

A factorization A = TJT~! with J = diag(Jy, Ja, ..., J;) can always be found.
Every square matrix A is similar to a block-diagonal Jordan matriz J, where each
Jordan block J; = J;(A;) € C"*™ has entries A; on the main diagonal and ‘ones’

on the first upper diagonal (j = 1,2,...,k):

Jj()‘j) = toep(ﬁ, ].) =
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We say J = T YAT is a Jordan canonical form (JCF) of A. The numbers ),
are the eigenvalues of A and the columns of T are the corresponding generalized
eigenvectors. In general the computation of a JCF is very expensive and unstable.
Nevertheless it will be useful to extend our definition of polynomial matrix functions

to wider function classes.

Assume that the JCF of A consists of one single Jordan block, i.e.,

J :=toep(A, 1) € C™", n = N.

Let py(2) := 2™ be the monomial of degree m. Then p,,(J) is an upper triangular

Toeplitz matrix and its i-th diagonal' contains the values (")\™~". In other words,

() = toep (@ (T) A (Z) )\0> ecvm. (11)

To explain this we write J = A\ + FE with E := toep(0,1) € C™*" and note that
E° = I, E? = toep(0,0,1), E* = toep(0,0,0,1),... and E™ = O for m > n.
Because I and F commute we may apply the Binomial Theorem, resulting in
p(J) = (A + E)™ = i T Am—ipi
pr N ’
from which the assertion (1.1) follows.

We observe that
|
D) = —ami =gt () e,
B = ("
Here pq(fl) is the i-th derivative of the function p,,. Note that pg,? =0if i > m.

Consequently, (1.1) can be rewritten as

(i) (n—1)
Pu() = toep (p—mm’ S H) |

Finally, we replace p,, by a function f: C O D — C and find that f(J) is well
defined if f(\), f'(N), ..., f™ D ()\) exist. We are led to give the following definition
of f(A) (see Lancaster, Tismenetsky [20]).

'The i-th diagonal of a matrix M = [mmu :1 < p,v < n] contains all entries m,,,, that satisfy

v — = 1. This is MATLAB-enumeration of diagonals.
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Definition 1.3. Given A € CN*N with a Jordan canonical form J = T~*AT, where
J = diag(J1, Jo, ..., i) and J; = J;(N\;) € C*™ (j = 1,2,...,k). Let U be an
open subset of C such that {\1, Ao, ..., \e} CU. Let f be a function f : U C D — C.

We say that f is defined for A if f(\;), f'(Nj), ..., f(dkfl)()\j) exist, where dy,

is the size of the largest Jordan block associated with the eigenvalue \;.

If f is defined for A we set

f(A) :=Tdiag (f(1), f(J), -, f(JR) T, (D2)
where
(@) (). (nj=1) ().
f(Jj) == toep (f()\j), .,f i(')\])"”’f(nj——(l);]!)) . (D2’)
Remarks 1.4.

(1) f(A) is uniquely determined by (D2).

Proof. The JCF is unique up to a permutation of the Jordan blocks (see
Meyer [22]). Given another JCF J = T~'AT. Then there exists a permu-
tation matriz P € {0, 13NN PTP = I such that J = PJPT and T = TPT.
Therefore

TFT = f(TJT ) = f(TPTPJPTPTY) = f(TJT') = f(A).
O

(ii) By A(A) we denote the spectrum of A. The minimal polynomial of A is defined

as
valz) = [ ="
AEA(A)
W is the monic polynomial of smallest degree d := Z/\GA(A) dy that

annihilates A (i.e., Y 4(A) = O)?. 4 is uniquely determined.

Proof. T is invertible. Therefore 14(A) = T¢4(J)T~' = O if and only if
Ya(J) = O. Let J,(\) be a largest Jordan block to an eigenvalue A. Then

all other Jordan blocks J; to the same eigenvalue are leading submatrices

2Indeed, this is an equivalent definition of the minimal polynomial.
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(iii)

(iv)

of J, and all matrices ¢ 4(.J;) are leading submatrices of 14(J,). Hence, it is
sufficient to prove that ¥ 4(J,) = O. But this is obvious since 14 has a root A
of multiplicity dy:

() (dr—1)

= toep(0,...,0,...,0).

Conversely, we assume that \ is only a root of multiplicity v < d) — 1. Then
ng)(/\) # 0 and ¥a(Ji(N\)) # O. Therefore 14 is not annihilating A and thus
not a minimal polynomial of A, which is a contradiction.

Now we prove the uniqueness of 1. Assume that 14 is another minimal
polynomial of A. Then by definition deg(iﬁ 4) = d. Consequently, (3 (1/; A —a)
is a monic polynomial (for some scaling constant 0 # 3 € C) of degree < d
that annihilates A. This is a contradiction to ¢4 and ¢4 having the minimal

degree d. Thus, uniqueness is proven. O

By x4 we denote the characteristic polynomial of A,
k

xXa(z) :=det(z] — A) = H(z — )",

j=1

Obuiously, 14 is a divisor of x4, i.e.,
Yalxa. (1.2)

If all the \; are pairwise distinct (i.e., each eigenvalue occurs in exactly one

Jordan block) then

balz) = [1 =A™ = xal2).

Jj=1

Such matrices are called nonderogatory.

By construction it is clear that for monomials p,,(z) = f(2)
(D1) = (D2).

But the equivalence of both definitions also persists for all p € P,,. Given
p(z) = YTy a;2 then by Lemma 1.2 we obtain

p(A) = Z%‘Pj(/l) =T (Z ajpj(J)) Tt =Tp(J)T™"

10
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1.3 Polynomial Interpolation |

The following theorem clarifies the connection between matrix functions and

interpolation polynomials.

Theorem 1.5.

(i) There holds

if and only if

FON) =p DN\ forall Ne A(A), i=0,1,...,dy— 1. (HIP)

These are d := deg(14) interpolation conditions on p.

(ii) There ezists a uniquely determined polynomial ps 4 € Pa—y that satisfies (HIP).
We say pys.a is the Hermite interpolating polynomial satisfying (HIP).

(iii) FEwvery polynomial p that satisfies (HIP) can be represented in the form
p(2) = pra(z) + Ya(2)h(2)

for some polynomial h(z).

Proof. (i) Let J =T 'AT be a JCF of A, J = diag(Jy, Ja, ..., Ji). Clearly, f(A) =
p(A) if and only if f(J) = p(J). By definition,

’ OO fmO(y)
) = toep(w,..., FREREEREE (nj—l)!)
@), =Dy

= p(J)),

where the second equality holds for all 7 = 1,2,...,k if and only if the interpolation
conditions (HIP) are satisfied.

(ii) Given another polynomial py 4 that satisfies (HIP). Then psa — pra has d
roots (counted by multiplicities) and thus pra — pra = 0. Hence ps 4 is unique.

Now existence follows from uniqueness: With

pra(z) = g 12 g 924 ay,

11



1 Matrix Functions

(HIP) is a system of d linear equations for d unknowns «; and can be written as
Ma = f, where M € C>4 f € C! and a = [, 1, ..., q-1]F. M is invertible
because of the already proven uniqueness of py 4. Hence a = M ™! f exists.

(iii) Set r(z) = p(z) — pr.a(z).
r(A) = O. Thus, r must contain a factor ¥4, i.e., 7(2) = Ya(2)h(2).
if p(z) = pra(z) +Ya(2)h(z) then p(A) = pra(A) + Ya(A)h(A) = pra(4) + O =
pralA). O

Since p(A) = psa(A) due to (i), we have

Conversely,

Example 1.6. Let A = [a] for some constant a € C. Then 4(2) = z — a and

deg(v4) = 1.
f(a)I. This is a degenerate case.

Therefore f(A) = pra(A) with deg(pr,a) = 0, namely pra(z) =

Example 1.7. Find a polynomial p such that p(A) = exp(A), where

(1 6 4 0 -8
0 7 4 0 -8
A=|2 0 -1 -1 —2
29 4 0 0 2
2 6 3 -1 -9 |

A Jordan canonical form of A is J = T *AT, where

1 -4 2 -4 1 10 0 0 O
0 -4 2 -4 1 0 -1 1 0 O
T'=|10 -2 -1 =1 0| andJ =] 0 -1 0 O
2 2 2 1 0 0 0 0 0

| 0 -5 2 —4 1] 00 0 0 -1

We read off: J has k = 4 Jordan blocks J; to the associated eigenvalues \; =
1, A =
ng = 2. Thus, dy =dy =1 and d_1 = 2. The minimal polynomial of A is

—1,A3 = 0,\s = —1. The sizes n; of the blocks are ny = ng = ny =1 and

Ya(z) = (z = 1)(z +1)z.

We have to determine a polynomial p(z) that satisfies the following d = 4 Hermite

interpolation conditions:

12
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p(M) =p(1) = exp(l) =e,
p(ho) =p(—=1) = exp(—1) = 1/e,
P2) =p/(=1) = exp(~1) = 1/e,

p(Xs) = p(0) = exp(0) =1

A solution is

and there holds
p(A) = exp(4).

Because p € Py_1 we already found the unique Hermite interpolating polynomial.

Remarks 1.8.

(1) Every matriz function f(-) can be represented pointwise (i.e., for a fivred A)

as a polynomial ps a(A) € Py_1, d = deg(va).

(ii) f(A) depends only on the values of f, f',... on A(A). Thus, f(A) and f(B)
have the same polynomial representation if A and B have the same minimal

polynomial (e.g., if A and B are similar matrices).

(iii) If all Jordan blocks have size 1x1 and thus J is a diagonal matriz (this happens
if and only if A has n linearly independent eigenvectors, e.g., if A is normal)

then (HIP) reduces to a Lagrange interpolation problem:

fA) =p(A)  forall X € A(A). (LIP)

1.4 The Components of a Matrix

We want to derive a (more or less) explicit formula for the Hermite interpolating
polynomial p; 4 € Py_; that fulfills (HIP) for a function f (see Theorem 1.5). By the
way, this will lead us to another definition of f(A) generalizing the Cauchy integral

formula. The following derivation has been adapted from Gantmacher [11].

13
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Let

vaz) = [ =™

AEA(A)
denote the minimal polynomial of A.  We represent the rational function
pr.a(2)/1a(z), where deg(pyra) < deg(ia) = d, as a sum of partial fractions:
Pf,A(Z) QX0 a1 Q) dy—1
= e 1.3
PG T (st Esg).

AEA(A)

where «a,; are certain constants we want to determine for A\ € A(A) and
i=0,1,...,dy — 1. Therefor we multiply both sides of (1.3) by (2 — A)% and set
Yax(z) :=1a(2)/(z — A)™. We obtain

pra(?)
wA,A(Z)

where R)(z) is a rational function with Ry(\) # oo.

= Q)0 + O./)Hl(Z — )\) + -+ OéA,dA_1<Z — )\)d)‘_l + (Z — )\)dAR)\(Z),

From the last equation the following can be easily verified:

1 PfA(Z)l(i)
L _ 1.4

ST bA,A(@ 2= (14)
By (HIP) we know that p\’,(\) = fO(\) (A € A(A); i = 0,1,...,dy — 1).

Furthermore no higher derivatives of ps 4 occur in (1.4). Therefore we may replace

pra by [ "
1 fle) "
T LﬁA,A('z)}zA. 1-5)

Hence all the a); can be obtained and we may determine pf 4(z) by multiply-
ing (1.3) by ¥4(z):

pf’A(z) = Z (Oé)\’o + on(z — )\) + 4 a)\,dAfl(Z — )\)dkil) wA,)\<Z) . (16)
ACA(A)

By substituting in (1.6) the expressions (1.5) for the coefficients «; and gath-
ering the terms that contain the same factor f(®()), we may represent p; 4(z) in

the form

pra(z) = Y (FNero(z) + FNean(z) + -+ AV Npaa1(2)) . (1.7)

AEA(A)

14
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where ¢y; € Pago1 (A € A(A); i = 1,2,...,dy — 1) are d polynomials that are
completely determined when 1 4(z) is given and do not depend on the function f.

Choosing functions fy;(z) such that

Y 1, z=\ 1=v;
)(\z)(z) = .
0, otherwise,

for all z € A(A), then the associated Hermite interpolating polynomials py; ful-
fill (HIP) by definition, Le., p\)(\) = f{*)(\). Therefore (1.7) yields

1

0, otherwise,

, 2=, L=,

P )(2) = { (1.8)

for all z € A(A).

Hence all the ¢, ;(z) are linearly independent (f =0 = psa =0 = fO(\) = 0).
Thus, {px:(A) : A€ A(A); i =0,1,...,dy—1} is a basis of P4_y, the Hermite basis.

Definition 1.9. With the polynomials @y, from above the matrices C; := ¢y ;(A)
define the components of A.

We summarize some properties of the components of a matrix:

Theorem 1.10. Let Cy; € CV*N (X € A(A); i =0,1,...,d\—1) be the components
of A € CV*N and let J = T7'AT = diag(Jy, Ja, ..., Jx) be a JCF of A, where
Jj = Jj(\;) € Cv*™ for j =1,2,..., k. Then there holds

(i) {Cr; : XeA(A); i=0,1,...,dy—1} C CV*N js a set of linearly independent

matrices,

(ii)

(IV) C)\JCM,]' - C,u,jC)\,z‘ ’

15
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(v) Cyi=Tdiag(D, Dy, ...,Dp)T™t, where D; € C"" (5 =1,2,...,k) and

I, /\j = )\, 1= X
toep(0,...,0,1/¢!), A=A\ 0<i<m; —1;
D; = p(0 /i), A J
i-times
0, otherwise.

Proof. (i) Z/\,i criCri=0=0 = ZM‘ cxipri(A) € Pyo1 = cx; = 0, otherwise we
would have found a minimal polynomial of degree d — 1, which is a contradiction.
(ii) results from (1.7) using the Definition 1.9. (iii) follows from (ii) setting f(z) = 1
or f(z) = z, respectively. The components are polynomials in A. Thus, (iv) is an

implication of Lemma 1.2, (iv). (v) Definition 1.3 yields

Chi = ori(A) = Tox; ()T =T diag (i (J1), xi(J2)s - - - o (Ji) T

where . o
oty o st 0. B
! ; [
The values ¢}();) are given by (1.8): §)();) = 8, which yields ¢x;(J;) = D;
and therefore the assertion. o

Remark 1.11. Equation (1.9) is often referred to as the spectral resolution of A
for f.

Example 1.12. The components of the matrix A from Example 1.7 are

0

Coip=T T Cy1=T T,

o O O O O
o o o = O
o O = O

o O O O O
_ o O O O
o O O O O
o O O O O
o o o = O
o O O O O
o O O o O

0070 - T Tﬁl, 01,0 = T Tﬁl.

o O O O O
o O O O O
o O O O O
o = O O O
o O O o O
o O O O
o O O o O
o o O o O
o O O O O
o O O O O

There holds exp(A) = e 'C_19+e 'C_1 1 +e°Chg +e'Chp.

16
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1 Matrix Functions

Figure 1.1: The Hermite basis polynomials ¢} ; of the matrix A from Example 1.7.
1.5 Cauchy Integral Formula

We begin with some fundamental definitions from complex analysis as they are
needed for what follows. For further studies the reader may consult Walsh [32] and
Henrici [16].

Definitions 1.13. A path v is a continuous function v : |a,b] — C. A closed
path v is a path that satisfies y(a) = (b). A simple path 7 is a path that satisfies
v(s)=~(t)=s=aandt =0b for alla < s <t <b. For a closed path ~y we define
the winding number around z € C as

wind.(7) := [arg(y(b) — 2) — arg(v(a) — 2)]/2m,

where arg has to be chosen continuous along v. The interior of a closed path v s

defined as
int(y) :={z € C : wind,(y) # 0}.

The exterior of a closed path v is
ext(y) :={z € C : wind.(y) = 0}.

An open set § is connected if any two points of it can be joined by a path that

18 contained in €).  is a domain if it is nonempty, open and connected.

17



1 Matrix Functions

The 1mage of a path ~ is a curve I', i.e.,
I'=7([a,b]) :={7(t) € C : t €[a,b]}.

A curve is closed (simple) if it is the image of a closed (simple) path. A simple
closed curve is called Jordan curve. The winding number of a curve I' around z € C
is defined as the winding number of v around z, where v is a path whose image is
['. The interior (exterior) of a curve I' is defined as the interior (exterior) of a path
whose image is I'. By the Jordan Curve Theorem it is known that the exterior of
a Jordan curve is an unbounded domain (i.e., nonempty, connected and open) and
its interior is a simply connected bounded domain. The latter is often called Jordan

domain.

Theorem 1.14 (Cauchy). Let f(z) be a function that is analytic within the interior
of a Jordan curve I' and extends continuously to it. Then the Cauchy integral

formula

f9(z) = 22—7;1 /r % dg (CIF)

holds fori=0,1,... and any z € int(I").

Proof. See, for example, Henrici [16, p. 211]. ]

Lemma 1.15. Let A € CN*V ¢ & A(A) and Cy; be the components of A. There
holds

dy—1

Re(A):=((I—A)" = Y ZC w+1 (1.10)

AeA(A) =0

R¢(A) is the resolvent of A to (.

Proof. For ( ¢ A(A), (I — A) is invertible because N (¢(I — A) = {0}. The spectral
resolution (1.9) of A for f:(A) =1/(¢ — A) (defined for all X # () yields the desired
equivalence in (1.10). O

Theorem 1.16. Let A € CN*N and T be a Jordan curve such that A(A) C int(T).

Let f(2) be analytic in int(I") and continuous on ', then

1) = 5 [ 10T = o = o [ HORG(A (D3)
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Proof. By multiplying both sides of (1.10) by f(¢)/(271) and integrating along I'

we obtain

£(©) G =
[Scr—atac = / > )\HlCAde

AEA(A) =0
dy—1
_ f(©)
- X X (T ) o
AEA(A) =0
(CIF) i
S IV
AEA(A) =0
= f<A>
O
1.6 Polynomial Interpolation Il
We have a look at more general interpolation polynomials. Let
0(z) = (2 = )™ (2 = )™ -+ (= = )™
be an arbitrary monic polynomial, u; pairwise distinct.
Let pf. be a polynomial such that
FOy) =pfl(py)  for j=1,2,... ki i=0,1,...,n;— 1. (gHIP)

These are d := deg(w) interpolation conditions to pys,. We say pr, € Py_1 is
the Hermite interpolating polynomial to f at the nodes w. w is often referred to as

the nodal polynomial to the nodes py, o, .. ., k-

Remark 1.17. Since we can always construct a matriz A such that w is the minimal
polynomial of A, (gHIP) is nothing but a generalization of (HIP), page 11.
The following theorem provides an analytic representation of py,,.

Theorem 1.18 (Hermite Formula). Let I' be a Jordan curve such that
{1, pa, .. ue} € int(T) and let f be analytic in int(T") and extend continuously

to I'. There holds ) © (=) £(0)
w(C) —w(z
ele) =5 | G
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Proof. w(¢) —w(z) is a polynomial in z of degree d with a root in (. Hence ( — z is
a divisor of it. For this reason we may write
d—1 d—1
1 AW 1 / f(©) :
= — . J| L2222 — i ) IS J

which is obviously a polynomial of degree d — 1.

Prw(2) also fulfills the interpolation conditions (gHIP):
(3) ol /W(C) —w(p;) f(C)
Pr i) = 5= - d
™ S (T I(§
where we used (CIF) and the fact that w(pu;) = 0.

¢ =),

By Theorem 1.5 it follows that ps, is the Hermite interpolating polynomial
satisfying (gHIP). O

From the last formula we can immediately derive the interpolation error formula

due to Hermite:

Lemma 1.19 (Interpolation error). Let I' be a Jordan curve such that
{p1, 2y« gy C int(L) and let f be analytic in int(I') and extend continuously
to I'. There holds

1

f(2) = pro(z) = —/F&M

(€= 2)w(0)
Proof. Represent f(z) using (CIF). O

dc.

271

1.7 Power Series

We examined polynomials in A € CV*¥ of degree m < +oo. We may also consider
matrix functions f that are defined by power series:

+00 m
flA) =) ;A = lim Y ;A (1.11)
j=0 J=0

m——+00 &

We have to take care about the convergence behavior of this expression. Let ||-||
denote an arbitrary matrix norm on CV¥*¥ that satisfies o(A) < || A||. The Cauchy

convergence criteria is

+oo +oo
ZajA] converges < Ve >0 dn, € Np: Z a; AN <e.
Jj=0 J=ne

20
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We assume that f is analytic around 0 and has convergence radius 7 (i.e.,

|f(2)|] < 400 for |z| < 7). Then

+o0o
Z O[jAj

J=ne

+oo 4
<> oyl IAYP

Jj=ne

thus, o(A) < ||A|| < 7 would be a sufficient criteria for the convergence of (1.11)
because Taylor series converge absolutely. Here p(A) := max{|A] : A € A(4)}
denotes the spectral radius of A.

Theorem 1.20. Let f be analytic in an open set U 3 0 and let f(z) = ;;08 oz

be the Taylor expansion of f in 0 with convergence radius T € (0,4+00]. Then f is

defined for every matriz A with o(A) < T and

m—-+oo -

+oo m
fA) =D ;A = lim Y ;A (D4)
j=0 j=0

Example 1.21. Let f(z) = exp(z). [ has convergence radius T = +oo. Thus, [ is
defined for every A € CN*N and there holds

Remark 1.22. (i) If f is of the form
“+o00
f(z) =) aj(z = =)
=0
and for all eigenvalues A\ € A(A) there holds |f(\)| < oo then
+oo
FIA) =) aj(A—zl)
=0

1s well defined.

(ii) If J = toep(zo, 1) € CV*N then by definition of a matriz function

@) (2, (N=D) (2,
f(J) = toep(M""’f @<| )"“’f(N—<1)!>)

= toep(%,...,ai,...,aNfl)a

1.e., we can read off the coefficients of the truncated power series of f in the

first row of f(J).
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1.8 Properties of Matrix Functions

Firstly, we may extend Lemma 1.2 to general matrix functions:

Lemma 1.23. Let A = TJT! € CN*N_ where J = diag(Jy, Ja, ..., Jx) is block-
diagonal and let f be defined for A. There holds

(i) f(A)=Tf()T,
(i) f(J) = diag (f(/1), f(J2),-- -, f(Jk)).
(iii) If Av = \v then f(A)v = f(N)v,
(iv) Given another function f that is defined for A. Then f(A)f(A) = f(A)f(A).
Proof. Apply Lemma 1.2 to the polynomial representation of f(A) and f(A). O

Given two scalar functions f and g that are defined for A. By ps 4 and p, 4 we
denote the corresponding Hermite interpolating polynomials that satisfy pra(A) =
f(A) and py 4(A) = g(A). Clearly, this polynomials fulfill

Pasa = apra (e €C),
Pf+gA = DPfA T Pga,
Pfg.A = DPf,APgA;
where the polynomials pg s 4, Priga and prg 4 Hermite-interpolate the functions af,

f+gand fg at the roots of 14. These three identities imply that any scalar rational
identity will be fulfilled by the corresponding matrix functions.

Example 1.24. The following equations hold, provided that all the involved terms
are defined:
sin?(A) + cos*(A) = I,
sin(A) (cos(A))™" = tan(A),
exp(1Ad) = cos(A) +isin(A),
log(aA) = log(a)l +log(A),
(I-A)" = I+A+A*+---  (ifo(A) < 1),
A = RA)+13(A),
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2 Krylov Subspace Methods

Given a matrix A € CN*Y and a vector b € CV, our task is the computation of

f(A)b

for a given matrix function f that is defined for A. This should be accomplished in
an elegant and efficient way, with regard to computation speed as well as memory

requirements.

In most cases, N is very large and A is sparse. In general, f(A) is not sparse
and thus it would not be reasonable to first determine f(A) and then multiply the
result by b.

Definition 2.1. The m-th Krylov subspace of A and b is defined as
Km(A, b) :=span{b, Ab, A%b,..., A" b}  (m >1),

where span{. ..} is the set of all linear combinations of the vectors in braces. For

ease of notation we abbreviate IC,, (A, b) by ICp,.
In Chapter 1 we proved that

f(A) = pra(A),

where pyr 4 is a polynomial of degree d — 1 that interpolates the function f in the

Hermite sense at the roots of 4. Hence

f(A)b = pf7A(A)b - ICd(A, b)

Krylov subspace methods for the approximation of matrix functions are iterative

methods that choose their iterates x,, from Krylov spaces Ky, Ko, . .. In other words,

Ty = pm(A)b € ICm(Av b)
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2 Krylov Subspace Methods

for some polynomial p,, of degree m — 1. For obvious reasons such methods are
also known as polynomial methods. The element x,, is called Krylov approrimation
of order m. How the polynomial p,, is chosen, depends on the concrete method
at hand.

A ‘good’ Krylov subspace method should return the exact result «,, = f(A)b if
the Krylov subspace IC,, contains it. One might claim that such Krylov subspace
methods are not iterative methods since they terminate after a finite number of steps.
This is true provided that we ignore rounding errors. In practical applications we
will start the iteration and run until some stopping condition is fulfilled. Note that
finding such a stopping condition is not always a trivial task for general matrix
functions: a residual or error norm may not be available. This is one of our main

motivations to seek convergence estimates of Krylov subspace methods.

In the following sections we will list important properties of Krylov subspaces,
introduce the Arnoldi process and some Krylov subspace methods, where we con-

centrate on the Arnoldi method and a generalized interpolation method.

2.1 Properties of Krylov Subspaces

Lemma 2.2. By ¢4 we denote the minimal polynomial of A. There exists an index
L =L(A,b) <deg(va) such that

Ki(A,0) G Ka(A0) S --- S Ki(A b) = Ky (A, b) = - -

KL(A, b) is the first of the nested Krylov subspaces that is invariant to A.

Proof. 1t is obvious with Definition 2.1 that the Krylov subspaces are nested sub-
spaces of CV | i.e.,

KiCKyC--CK,C---CCN.

This chain must become stationary because of the finite dimension of CV. Thus,

there exists a minimal index L = L(A, b) with K, =Ky 1 ="--

Now assume that IC,,, = IC,,41 for some index m. This means that A™b € IC,,,
or equivalently
Amb = Oé()b + OélAb + .. + Ozm_lAm_lb
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2 Krylov Subspace Methods

for some coefficients aq, aq,...,a,,—1 € C. We multiply this equation by A and
obtain
A"y = 0gAb + 0 A%+ -+ a1 A™D.

Therefore A™*'b € K,,.5 is a linear combination of elements from K,,,;. Thus,

Kmi1 = Ko, Continuing by induction on m — m + 1 yields the assertion.

From ¢4(A)b = 0 it follows that L < deg(¢4). O
Corollary 2.3. There holds
dim(/C,,) = min{m, L}.

Definition 2.4. By 14 ,(2) we denote the monic polynomial of smallest degree for
which Yap(A)b = 0. We say ap is the minimal polynomial of b with respect
to A.

Lemma 2.5. 944 is uniquely determined and of the form

vap(z) = ] (2= (2.1)

AEA(A)

Proof. First we prove the uniqueness of ¢4 5. Assume that ) A,b 1S another minimal
polynomial of b with respect to A. Then by definition deg(v4) = deg(as).
Consequently, p := 3 (@/NJ Ab — ¥ap) is a monic polynomial (for some scaling constant
0 # (8 € C) that satisfies p(A)b = 0 and is of lower degree than 14,. This is a

contradiction.

We turn to (2.1). Assume that 14, contains a factor (z — A), where A & A(A).
Then (A — M) is invertible and by definition of ¥4, we have

(A= M) "Yu(A)b = 0.
Hence (z— X)_lw 4.5(%) is a minimal polynomial of b with respect to A and its degree
is lower than deg(14.). This is a contradiction. O
Lemma 2.6. There holds L = deg(¢ap).
Proof. By Lemma 2.2, L = L(A, b) is the smallest integer for which AZb is lin-

carly dependent on b, Ab,..., AL='b. Therefore we will find uniquely determined

coefficients aq, aq, ..., ar_1 € C such that

ALb = O[()b + OélAb + “ee + O{L_lAL_lb.
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2 Krylov Subspace Methods

Thus,
Yap(z) =28 —ap 12" =~y

is the minimal polynomial of b with respect to A and deg(¢a) = L. ]

Theorem 2.7. Let f be defined for A and let
vap(z) = J[ (==
AEA(A)
be the minimal polynomial of b with respect to A. By prap € Pr—1 we denote the

unique Hermite interpolating polynomial satisfying

PO = FOO) forall e A(A), i=0,1,...,cy— L.

Then
f(A) b = pf’A,b(A) b

Proof. Let J = T7YAT = diag(Jy, Ja,...,Jy) be a JCF of A. We note that
Yap(A)b = 0 if and only if

J:
Yap . a=0, where a :==T 'b =

| (@] |

The length of each of the a; corresponds to the size of the Jordan block J; (j =

1,2,...,k). By reading the above equation block-wise we obtain
Vap(Jj)a; = 0.
Let J; € C™*" be a fixed Jordan block associated with the eigenvalue A. 144 has a

root of multiplicity ¢, in A. With the definition of a matrix function it follows that

Yap(J;) =toep [ 0,...,0,%, ... % |,
—

cy-limes

where all the % are nonzero entries. This implies
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2 Krylov Subspace Methods

Hence, for f(J;)a; = prap(J;)a; to hold, it is sufficient that in

() (n—1)

only f(A), f'(\), ..., f~D(X) are interpolated by ps 4. O

Remark 2.8. From the last proof it is easy to see that for all X € A(A) there
holds ¢y < dy, where dy is the multiplicity of the root X in 4. Together with (2.1)
and (1.2) this yields

Vap | Yalxa. (2.2)

2.2 Nonderogatory Matrices

For the fast convergence of Krylov subspace methods it would be advantageous if
the subspaces IC,,,(A, b) were to become stationary very early. In other words: we
hope that L is small. Unfortunately, this is not always the case. At least we have a

complete characterization of the worst-case, namely L = N.
It is clear that

2.2
L=N <= deg(tus)=N Z& y,=ya.

Definition 2.9. A matriz A € CN*N for which V4 = xa is said to be
nonderogatory. A vector b € CN for which L(A, b) = N is said to be cyclic for A.

Remark 2.10. A matriz A is nonderogatory if and only if its Jordan canonical
form contains one and only one Jordan block to each eigenvalue N € A(A). This is

equivalent to the following assertions:

(1) All eigenvectors of A associated with the same eigenvalue are linearly

dependent.

(ii) The JCF of A is (up to a permutation of the Jordan blocks) uniquely

determined by the characteristic (=minimal ) polynomial of A.

Moreover, two mnonderogatory matrices are similar if and only if their

characteristic polynomuals agree.
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Lemma 2.11. Let

xa(z) =2 a1 2N M4+

be the characteristic polynomial of A € CN*N. Then A is nonderogatory if and only

if it is similar to the companion matrix Cy of its characteristic polynomial,

— o -
0 —Q
0 — Q9
Oa _ c (cNXN
0 —an—2

Proof. [«] First it has to be shown that y 4 is the characteristic polynomial of Cl.
This can be done by expanding det(z/ — Cy) along the first column and proceeding
by induction on the dimension of C,. For a detailed proof see Meyer [22, p. 648].

Secondly, we show that C, is nonderogatory: Assumed there is a monic polyno-
mial ¢¥(z) = 24 By12%7 4o 4 By of degree d < N that annihilates C. Then

0= ¢(Ca)€1 = Ci€1 +ﬂd—1ci71€1 + - '+B0€1 = €d+1 +ﬁd—1€d+' : '+ﬂ0£17 (2-3)

i.e., &, is linearly dependent on &;,&,,...,&,;, which is impossible and therefore a
contradiction. Consequently, the minimal and the characteristic polynomial of Cy

coincide and Cy, is nonderogatory.

Being nonderogatory is invariant under a similarity transformation. Since A is
similar to Cy, it is nonderogatory.

[=] A and C\, are nonderogatory matrices with the same characteristic polyno-

mial. Therefore they are similar. m

Lemma 2.12. There exists a vector b € CN that is cyclic for A € CN*N if and

only if A is nonderogatory.

Proof. [<] By Lemma 2.11 there exists an invertible matrix T € CN*¥ such that
Co = T7YAT, where Oy is the companion matrix to the characteristic polynomial
of A. &, is cyclic for C,, because of (2.3). Equivalently, b := T, is cyclic for T~ A.
There holds N = dim(TKx(T71A, b)) = dim(Ky (A, b)). Thus, b is cyclic for A.
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[=] Assume that A is not nonderogatory, i.e., deg(4) < N. Because of (2.2)
this implies L = deg(¢ap) < N and thus b is not cyclic for A. O

2.3 The Arnoldi Process

Let m < L. We will construct an orthonormal basis {v;, vy, ..., v,} C CV of the
m-th Krylov subspace K,, (4, b) with span{ vy, v, ..., v;} = IC;(A, b) for any j < m.
This is done by a Gram-Schmidt procedure, which for Krylov matrices is known as

the Arnoldi process. || - || denotes always the 2-norm of a vector or a matrix.

Definition 2.13. A matrizc H,, = [h;; : 1 < i,j < m] is said to be an upper
Hessenberg matrix if j +1 <7 = h;; =0, i.e.,

hig hig -+ higmo him
hop hos -+ hom—1 hom

Hm = h3,2 te h3,m—1 h3,m

hm,mfl hm,m ]

If hjr1,;,#0 (j =1,2,...,m — 1) then H,, is said to be unreduced.

Algorithm 2.14: Arnoldi process
Input: Ac CV*V becCVN, m< L.

Output: V = [vy, vy, ..., U, Uny1, Hp = [hi; 1 1 < 4,5 <m], hypgim.
1= b/|b]
2 for j=1,2,...,mdo
3 w = Av;
4 fort=1,2,...,5 do /* orthogonalize w */
5 hi; = vlw
6 L w = w — h; ;v
7 hjt1,; = ||wl] /% hjy1; =0 iff j=1L */
8 if hji1; > 0 then
9 ‘ Vi1 = w/hjp
10 else

11 t Viy1 =0
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Theorem 2.15 (Arnoldi decomposition). Given A € CV*N b e CN andm < L.
There exists a matriz V,, € CNX™ with orthonormal columns, a vector v, € CN
satisfying VH v, 1 = 0, an unreduced upper Hessenberg matriz H,, € C™™ and

hms1,m > 0 such that

AV = Vi Hy + g 1 i Om 1 & (2.4)

For m = L this reduces to

AV, =V, H, . (2.5)

Proof. Let j € {1,2,...,m} and vy, v, ..., v; be an orthonormal basis of IC;(A, b).
Lines 3-6 of Algorithm 2.14 read as

J
w = A’Uj — Z hi,j’U@' s (26)
=1

where

i.e., w is orthogonal to K;. Because of Corollary 2.3 we have Av; € K; (and thus

w = 0) only if j = L.
By Lines 7-11 we set
hjt1s = |lwll (2.7)

and define v;44, which is orthogonal to K, and satisfies
hjt1iVi = w. (2.8)

Ol’lly lfj = L we have hj—l-l,j =0 and Vjy1 = 0.
(2.6) and (2.8) yield

j+1
A’Uj = Z hi,jvi s
i=1
which for 7 = 1,2,...,m can be written in matrix form
Alvy, v, ..., vy = [v1, 02, ..., U, vm+1]ﬁm+17m (2.9)
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with _ -
hip hig -+ him1  him
hox hop -+ hom-1  hom
~ hsg -+ hgm-1  ham

Hm—i—l,m =

hm,mfl hm,m

hm+1,m

We define H,, := [h;; : 1 <, < m] by removing the last row of ﬁ]mﬂ,m. Then

H,, is an unreduced upper Hessenberg matrix and (2.9) can be rewritten as

Ao, va, .. 0] = (01, Vo, U Hoy + B 1 Oy 1 €0
By setting V := [vy, vo, ..., v, the assertion is obtained. O
N x N N xm

Figure 2.1: Scheme of the Arnoldi decomposition

Corollary 2.16. For 1 < m < L there holds
H,, =VIAv,,.

Remark 2.17. We say H,, is the compression of A onto K,,(A, b). H,, represents
the operation of A on KC,, with respect to the Arnoldi basis {v; : j = 1,2,...,m}.
We shall see that this representation is free of redundance in the sense that H,, is

nonderogatory.

Lemma 2.18. H,, is a nonderogatory matriz (1 < m < L).

Proof. Otherwise there would exist two linearly independent eigenvectors x,y to
the same eigenvalue \. Define z := ax + By, z = [21, 29,...,2m|] # 0 such that

Z2m # 0. H,,z = Az and H,, unreduced yield z,,_1 = 0, z,,_2 = 0, ... inductively.

Therefore z = 0, which is a contradiction. O
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Lemma 2.19. There hold

(1) H.,, has strictly positive entries on its lower subdiagonal, i.e.,
hjt1, >0 for j=1,2,...,m—1.
Furthermore, hyy1,m > 0 for m < L and hy41 1 = 0.

(ii)
0, k<m;

m—1
IS A, k=m.

€7 kg, {

Proof. (i) This is an immediate consequence of the definition of h;; ; given in (2.7).
(ii) Direct multiplication H,,H* ' shows that & H¥'¢, = hj,, ;€& HF2¢, for
k = 2,3,...,m. By recursively applying this equation to itself the assertion is
obtained. ]

2.4 Arnoldi Approximation to f(A)b

Lemma 2.20. Let m < L be fized and p(z) = ap2™ + @ 12™ 1 4+ + ag € P
With the notation from Theorem 2.15 there holds

p(A)b = [[b][Venp(Him)&1 + (|l amYon Vi1, (2.10)
where Y, = H;":l hjy1;. In particular, for any p € Py,—1 this reduces to
p(A)b = [[b]|Vinp(Hm )& (2.11)
Proof. 1t is sufficient to prove

Ab = ||b||V,,H €, for j<m (2.12)
and  A"b = |||V H €, + ||b]Ym Ui (2.13)

By construction of the Algorithm 2.14 there holds b = ||b||V},,&;. Therefore the

assertion (2.12) is true for j = 0:

A’ = b = [[b]|V,u&; = [|b]| Vi Hp .-
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Let (2.12) hold for j =0,1,...,k — 1. Then by induction,

A*p = A(AF'b)
=7 A(|[blIVi Hy E)
= [|bll(AV,) Hy g
= 6l (VinHon + P 1m0 &) Hpy &4
= [|blVinHyp &y + (16l 1 (&0 HYy €1) O

By setting Y 1= hmi1mén HE '€, and applying Lemma 2.19, (ii), we obtain the
assertion (2.12) if & < m or (2.13) if k£ = m, respectively. O

Definition 2.21. Let f be defined for H,,. The Arnoldi approximation of order m
to f(A)b is defined as

I = 110]|Vin f (Him )&,

The algorithm to obtain the Arnoldi approximation f;,, can be summarized

as follows.

Algorithm 2.22: Arnoldi method I
Input: Ac CV*V becCVN, m< L.
Output: Arnoldi approximation f;,.

1 Determine V,,,, H,, using the Arnoldi process 2.14.
2 Set fm = ”bHme<Hm>£1

Remark 2.23. (i) We are still left with the problem of evaluating f(H,,) (actu-
ally, we need only the first column f(H,,)€,). The dimension of this problem

has been reduced from N to m.

(ii) Even though we assume that f is defined for A, H,, may have eigenvalues in
points where f is not defined. In this case, f(H,,) is not defined and therefore
the Arnoldi approximation of order m remains undefined too. For the solution
of linear systems of equations (i.e., f(z) = 1/z), this problem is known as

Galerkin breakdown.
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2.5 Ritz Values

Let 1 < m < L. The eigenvalues of the matrix H,, are called Ritz(m) values of A.
With x,,(z) we denote the characteristic polynomial of H,,. x., is also called Ritz(m)
polynomial of A.! Since H,, is nonderogatory by Lemma 2.18, we have that y,,(z)

is the minimal polynomial of H,,.

Lemma 2.24. There holds
XL ="Vap-

This implies
fi = F(A)b.

Proof. We know that x; and 14, are monic polynomials of degree L. Set p :=
Yap — XL € Pr—1 and assume p # 0. Note that p(Hp) = a(H). Since Hp is
nonderogatory, p has to fulfill L interpolation conditions and therefore p = ¥ 4.

But this is a contradiction to deg(va) = L.

Theorem 2.7 asserts that f(A)b = pf ap(A)b, where ps 4, € Pr_; interpolates f
at the roots of ¥4 5 = xr. Moreover we know from Theorem 1.5 that f(Hy) € Pr_1
is a polynomial psp, (Hy), where pyp, interpolates f at the eigenvalues of Hi,.

Therefore ps , = pfap and the assertion is obtained. O

Lemma 2.25. There holds
Vxm(A)b = 0.

Proof. Let m < L. Multiply (2.10) by V. from the left setting p := x,,. For m = L
the assertion follows from Lemma 2.24, because x1(A)b = 144(A)b = 0. O

Remark 2.26. Let m < L. Then x,,(A)b is an element of KC,n1i1(A, b) that satisfies

Xon(A)b L K,

In what follows, we denote the set of monic polynomials of degree m by P;r.

'Both H,, and x,, depend also on the vector b. For ease of notation, this will not be mentioned

explicitly in the sequel.
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2 Krylov Subspace Methods

Lemma 2.27. x,, minimizes the norm ||[p(A)b|| among all p € P2.

Proof. Lemma 2.25 yields V,,V.¥,,(A)b = 0. Note that V,,V.Z is the orthogonal
projector onto IC,, (A, b). From this it follows

(ViVEx(A)b,2) =0 forall & € K,,,

or equivalently,
(Xm(A)b, V,, VEZ) =0 forall x € K,,.

Writing x,,(z) = 2™ — q(z), where ¢ € P,,_1, we obtain
(A™b — q(A)b, A7) =0 for j=1,2,...,m —1.

These are the normal equations for minimizing the 2-norm of A™b — ¢(A)b among
all ¢ € Pp_1. O

’Cm+1 (Av b)

Figure 2.2:
K. (A, b) is a hyperplane of K,,11(A, b) and x;n(A)b can be interpreted as the best
approximation to the origin 0 out of the linear manifold A™b + KC,,,(A, b).

With the notion of Ritz values we may reformulate Algorithm 2.22. Instead
of evaluating f(H,,), we determine the polynomial p;,, that interpolates f at the
Ritz(m) values of A. By Theorem 1.5 there holds

f(Hun) = prom(Hp).

Since py,, is a polynomial of degree m — 1, equation (2.11) yields

S =prm(A)b.
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Algorithm 2.28: Arnoldi method II
Input: AcCMN becCV, m<L.
Output: Arnoldi approximation f;,.

1 Determine V,,, H,, using the Arnoldi process 2.14.

2 Determine the Ritz(m) values of A, i.e., determine the eigenvalues of H,,.

3 Determine py,, € Py,—1 that interpolates f (in the Hermite sense) at the
Ritz(m) values.

a Set fon := |[b|Vippm(Him)& - (= [0/Vinf (Him )€1 = prm(A)D).

To summarize, it has become apparent that the Arnoldi method is simply an in-
terpolation process, where the nodes for the f-interpolating polynomial py ., are the
Ritz(m) values of A. This interpolation nodes are implicitly chosen by the method
independently of the function f. Although y,, fulfills the minimizing property from
Lemma 2.27, there is no guarantee that the Ritz(m) values of A are a good choice

to achieve a fast decrease of the approximation error ||f(A)b — f.]|.

We recall the formula for the interpolation error from Lemma 1.19 and assume

that f is sufficiently smooth. In our context the error formula takes the form

1 f(©) xm(2)
f(z) = pym(2) = %/mem—(o dg,

where I" is a Jordan curve such that all Ritz(m) values are contained in its interior.
We obtain

10 =l = (s [ 11T = 2= ac) b

or equivalently

F = = (5 [ SOOI = )7 d6) wnl,

Therefore we get for the error of the Arnoldi approximation of order m,

1F(A)b = fnl

(I — A)- ch I (A)].

Lemma 2.27 asserts that y,, is the minimizer of ||p(A)b|| among all p € Pre.
Hence [[xm(A)b|| is as small as possible and in this sense, choosing the Ritz(m)

values of A as interpolation points seems reasonable. On the other hand, we do not
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know how the integral term behaves. Clearly, we would like |x,,| to be large on T,
especially in regions where |f| is large. But this is beyond our influence since x,, is

only determined by A and b and not by f.

Example 2.29. This example demonstrates that the Ritz values may be ‘blind’ until
the end of the Arnoldi process, i.e., none of the eigenvalues of A is approximated by

a Ritz(m) value as long as m < N.

We approzimate f(A)b for f(z) = 1/(6—z), where A = Cy, is the nonderogatory
companion matriz introduced in Lemma 2.11. We set b := &, and note that A; =
&1 forj=1,2,..., N—1. Therefore the matriz V,, produced by the Arnoldi process
is simply Vi, = [€1,&,, ..., &,,] and by Corollary 2.16 we have

t 1,0 < N;
Hm: Oep( 7_)7 m )
A, m = N.

It is obvious what happens while m < N: all the Ritz(m) values are equal to 0.
Let =0 & A(A). Then f is defined for A but none of the functions f(H,y,) is
defined. The Arnoldi method will break down.

Let 3 # 0 and ¢ A(A). For all m < L the functions f(H,,) are defined and
for the Arnoldi approximation f,, there holds f,, = psm(A)b, where ps,, € Py
interpolates f, ', ..., f=Y at the point 0. On the other hand, the eigenvalues of A
are the roots of xa(z) = 2N + an_ 1271+ - +ag which may be chosen arbitrarily.

Therefore we cannot expect f,, to be a good approximation to f(A)b.

2.6 The Lanczos Process

Let A € CN*N be a Hermitian matrix. By Corollary 2.16 we have H,, = VZAV,,.
Therefore H,, is Hermitian and moreover symmetric since it has only real values on

its lower subdiagonal (Lemma 2.19). Thus, we may write

ap [
Ba
Brm

Bm  m
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where «;, 3; are real numbers. If we let Vj, = [vy, vo, ..., vz] we have by (2.5)
Avj = Bjvj1 + ;v + B0

for 5 =2,3,...,L — 1. This three-term recurrence for v;;; is used by the Lanczos
process to construct the orthonormal basis vectors of K. The Lanczos process
is mathematically equivalent to the Arnoldi process (Algorithm 2.14) applied to a
Hermitian matrix (see Saad [26, p. 185-187]).

Algorithm 2.30: Lanczos process
Input: A € CV*V Hermitian, b € CV, m < L.

Output: V := [vy, 02, ..., Unl, Vi1, Hm, Bt
1 v:=0
2 f1:=0
s v :=b/|b]
4 for j=1,2,...,mdo
5 w = Av;
6 w = w — (v, /* orthogonalize w */
7 aj = vlw
8 wi= W — Qv
o | fBiyr:=[lw| /* Big1 =0 iff j=1L */
10 if 811 > 0 then
1 ‘ Vi1 = w/ B
12 else
13 t Vjy1 =0

Now let A have the eigenvalues
)\min = /\1 S)\2 <--- S)\N = /\max-

By 6; <6y <--- <6, we denote the Ritz(m) values of A, i.e., the real eigenvalues
of the symmetric matrix H,,. The following theorem is often referred to as the

interlacing property of Ritz values of Hermitian matrices.
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Theorem 2.31. For m < L there holds
Amin < 01 <0y < -+ < O < Aax,
and each of the intervals
(—00,01], [01,02], ..., [Om—1,Om)], [Om, +00)

contains at least one eigenvalue of A.

Proof. See Golub, Van Loan [12, Chapter 9]. O

min max

3
i
N}
[ J
]

Figure 2.3:

The blue dots show the Ritz(m) values of a Hermitian matrix A of size 10 x 10 for

=0

coincide with the Ritz(10) values. Note that two Ritz(m) values are separated by at least one 2Lanczos

m=1,2,...,9. The magenta dots and the vertical dotted lines indicate the eigenvalues of A that

vertical dotted line.

An immediate consequence of the last theorem is

Corollary 2.32. In any interval (—oo,z| (x € R) the number of Ritz(m) values

does not exceed the number of eigenvalues.

Remark 2.33. If a function f is defined on the interval K = [Anin, Amax] then
f(Hy) is defined for every m < L since all the Ritz(m) values are contained in K.

Hence it is assured that no (Galerkin) breakdown will occur in the Arnoldi method,
Algorithm 2.28.
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2.7 Residual and Error Minimizing Methods

In all the previous algorithms for the approximation of f(A)b we are still faced with

one of the tasks

e determine f(H,,)&,,

e determine the eigenvalues of H,, and an f-interpolating polynomial.

In case of the function f(z) := 1/z we can avoid this problems, since f = f~! is
self-inverse. This can be exploited to construct a ‘control-equation’ for the Krylov

approximations. We consider the problem
Az = b, (2.14)

where A is an invertible matrix. Hence f(A) is defined and & = f(A)b solves the
linear system (2.14).

For an arbitrary vector x,, we define the residual T, by

ry, = b— Ax,,.

We assume that x,, € K,,(A,b), since we dare to construct a Krylov subspace

method. Then x,, has the representation
T = pm(A)b,
where p,, is a polynomial of degree m — 1. Moreover, the last two equations yield
rm = b—Ap,(A)b
= (I — Apn(A))b.
By defining p,,(2) := 1 — 2p,,(2), we may write
Tm = Pm(A)b. (2.15)
Obviously, p,, is a polynomial of degree m that satisfies p,,(0) = 1. We say that

Pm is a residual polynomial of degree m and denote this by p,, € P. There is an

immediate connection between the polynomials p,, and p,,. Because of

pm(Z) = ! _im<2)
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2 Krylov Subspace Methods

it is easy to see that p,, interpolates the function 1/z in the Hermite sense at the
roots of the associated residual polynomial p,,, and this holds for every Krylov

subspace method.

A residual minimizing method is characterized by a minimizing property for the
residual, i.e., p,, is chosen such that ||| 7, ||| is minimized, where ||| - || denotes a fixed

vector norm of CV. In other words,

7 [l = P (A) b = min [[p(A)b]]-
pEPy,
Note that ||7,]| = 0 if and only if the associated Krylov approximation x,,

solves (2.14). Since A™'b € K, the above minimizing property assures that x
solves (2.14) in exact arithmetic. Practical implementations of minimal residual
methods make use of the Arnoldi decomposition (2.4): since x, € K,, can be

represented in the form V,,vy,, for some vy, € C™, we have
Tm = b — Avmym =b— Vm+ll~{m+1,mym-

Now let || - || denote the 2-norm. The resulting method is then called generalized
minimal residual method (GMRES). Note that b = ||b||V,,41&; and therefore

7l = || 1B 1€ = Frrmym]| = min 1516, = iy
yeC

This is a least squares problem. Once we obtained the minimizer y,,, we set
If A is Hermitian, we can make further simplifications by using the Lanczos

process (Algorithm 2.30) instead of the Arnoldi process. The resulting method is
called minimal residual method (MINRES).

Now we turn to error minimizing methods. For an arbitrary vector x,, we define
the error e, by

e, =A1'b—uwx,.

Note that Ae,, = r,. By assuming x,, € K,,(4, b), equation (2.15) yields
emn = Dm(A)Ab

for some p,, € P°. An error minimizing method is characterized by a minimizing

property for the error, i.e., p,, is chosen such that || e, || is minimized. In other
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words,

llemlll = [||m(A)A™ B[] = min |[|p(A)A™"b]||.

pEPY,

For the same reasoning as above, it is assured that x; solves (2.14).

Let A be a symmetric positive definite matrix. We may minimize the A-norm
lemlla == (e Aey,)'/? of the error, resulting in the widely used CG method (see
Stiefel [17]). The iterates @, @, . .. of the CG method are characterized by

AT — plla = |lemlla = min [[p(A) A7 b 4.
pEPY,

For implementations of the mentioned algorithms we refer to the books of
Greenbaum [13] and Saad [26].

2.8 A Generalized Interpolation Method

Given are a nodal matriz

Hi1
H21  H22
H31 HM32 33

and the corresponding nodal polynomaials

m

wm(z) = H(z—,umj) (m=1,2,...).

J=1

We assume that f (and f’, f”,... if necessary) is defined on all nodes.

Algorithm 2.34: Generalized interpolation method
Input: A € CY*V b € CN, nodes fim 1, thn2s - - - » foan.m-

Output: Krylov approximation g,,.
1 Determine gy, € Py,—1 that Hermite-interpolates f at fim 1, ftm2, - - - 5 thm,m-
2 Set gm = qr.m(A)b.

42



2 Krylov Subspace Methods

Remarks 2.35. (i) If the nodes fim 1, fm,2, - - - s fm.m aTe the Ritz(m) values of A,
this algorithm coincides with the Arnoldi method (Algorithm 2.28).

(ii) We have to clarify for which nodes we can expect that the g, approximate

f(A)b well and how fast the approximation error decreases with m.

(iii) This method has the advantage that, once gy, is determined, we can evaluate
it for different A and b. Then of course, the quality of the Krylov approxima-

tions g, will vary.

(iv) This algorithm allows to choose the nodes explicitly, i.e., we may adapt the

interpolation nodes to the function f.
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Best Approximation

The class of Krylov subspace methods is much too large to discuss each known
algorithm for the approximation of f(A)b. Such algorithms will differ for special f

and A. For example, if A is Hermitian and we use Arnoldi approximations

I = (16| Vin f (Hin )€1,

we will find that H,, is a symmetric tridiagonal matrix. This can be exploited to
improve calculation speed and memory storage need as well.

It seems reasonable to examine Krylov subspace methods as what they are:
polynomial interpolation methods. From now on we will assume that A € CV*V
is a normal matrix, i.e., ATA = AAY. Normal matrices can be written in the
form A = UDU¥, where D is a diagonal matrix with the eigenvalues of A as
diagonal entries and U is an unitary matrix. We say: normal matrices are unitarily
diagonalizable. For a matrix function f that is defined for a normal matrix A, the

properties of the 2-norm || - || yield

[F(A) = [[F(D)]| = max{|f(N)] - A € A(A)}.

More generally, if A is only required to be diagonalizable, i.e., A= X DX ! with an

invertible matrix X, then
LA < XX max{[f(A)] - A € A(A)}.

Many of the inequalities developed here hold for normal matrices but can be easily

extended to diagonalizable matrices by involving the term || X||[| X ~1||.
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3.1 Some Approximation Theory

Let € be a compact (i.e., closed and bounded) subset of C. By C(Q2) we denote the
set of continuous functions f : @ — C. For all f € C(Q) there holds |f| € C(Q2)

and, by Weierstrass’ Theorem, | f| attains a maximum on 2. We define

1l = max | (=)

| - [l is called the uniform norm on Q. A sequence (fn),,»; C C(Q2) converges

uniformly to fif ||f — fmlloa — 0 for m — 400. We denote this by f,, = f.

Definition 3.1. Given a linear space V with norm ||-|| and v € V. Let U be an
arbitrary subset of V. We say u* € U is an element of best approximation from U
to v if

J— * — 1 J—
v =l = min flo —ulf.

Theorem 3.2 (Existence of best approximations). Let U be a finite-
dimensional normed linear subspace of V. Then for every v € V there exists an

element u* € U of best approximation to v.

Proof. We define Uy := {u € U : ||v —ul| < ||v]||}, which is a closed and bounded
subset of a finite-dimensional space, thus compact. Set d := inf,cp, ||v — u|| and
let (u;),,5, C Up be a minimizing sequence, i.e., [|v — w| — d as i — +oo. By the
compactness of Uy, this sequence has at least one accumulation point u* € Uy and
we can assume that [|u; — u*|| — 0. Hence,
llo = wll < llv = willl + llws — w”ll] = d = inf flo—wull.
Because of
inf flo—ull = inf flo — ul]

and u* € U, the minimum is attained and u* is the element of best approximation
to v. [l

For our purposes we will identify

- =1 lle,

V = C(Q),
v = f(Q),
U = Pna
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and conclude that the problem
for f € C(Q) find p* € P,y such that ||f —p*|lq = 6r%in Ilf — plla
pPerFm—1

has a solution. The following theorem provides us the uniqueness of p*, which we

refer to as the polynomial uniform best approximation of degree m — 1 to f on €.

Theorem 3.3 (Tonelli). Let Q@ C C be compact and contain more than m points.
For a given f € C(Q) we set

M= min |[f —plle
and let p* be such a minimizing polynomial. Then
(1) there are at least m + 1 distinct points z € Q at which |f(z) — p*(2)| = M*,
(i) p* is unique.
Proof. See Davis [2, pp. 143-145]. ]

If © is a real compact set and f is real-valued, then (i) from the above theorem
is also a sufficient condition for that p* is the best approximation to f, provided

f — p* takes on its extreme value with alternating sign on (2.

Theorem 3.4 (Oscillating property). Let Q@ C R be compact and f € C(Q)

real-valued. For p € P,,_1 we set

M= ||f = pllo-

Then p 1s the polynomial uniform best approzimation to f on 2 if and only if there

are m + 1 distinct points x1 < o < ... < Tyi1, T; € ), such that
flz) —plx)) =M  for i=1,2,....,m+1

with alternating sign (i.e., f(x;) — p(z;) = p(xiv1) — f(Tir1)).

Proof. Let p* € P,,_1 be the uniform best approximation to f on 2. By definition
we have ||f — p*|lg = M* < M. Now assume M* < M. We set m; := f(z;) — p*(x;)
and note that |m;| < M for i =1,2,...,m + 1. There holds

P (@) — pla:) = (f(zi) —mu) — (f(2:) — M) = =M —m,.

The polynomial p*—p € P,,_1 has m+1 points of alternating sign in x1, zs, . . ., Tpy11-

Hence it has m roots and therefore p* — p = 0. O

46



3 Polynomial Interpolation and Best Approximation

3.2 Chebyshev Polynomials

We will give a brief survey to the classical Chebyshev polynomials. The interested

reader will find more details and proofs on this topic in Davis [2, pp. 60-64].

Chebyshev Polynomials on [—1, 1]
Definition 3.5. The Chebyshev polynomial of degree m is defined as

Ton(z) := cos(marccosz)  (x € [-1,1]; m=0,1,...).

We have to prove that T,, is indeed a polynomial, but first we will give the

following recurrence relation.

Lemma 3.6. There holds

Tni1(z) = 22T (x) — Thma () for m=1,2,... (3.1)

Proof. By adding the equations

cos(m+1)8 = cosmf cosf — sinmfsin
cos(m —1)8 = cosmb cosf + sinmf sin 0
we get
cos(m + 1) = 2 cosmb cos — cos(m — 1)0.
By setting cosf = = and cosm# = T,,(z), the assertion is obtained. O

Since To(xz) =1 and Ti(x) = z, the recurrence relation (3.1) yields
Corollary 3.7. T,, is a polynomial of degree m and of the form
Tr(x) = 2™ 1™ + terms of lower degree.
The following well known result is easily verified and thus given without proof.

Lemma 3.8. T}, has m simple roots xy in (—1,1), where

2k —1
Ty = COS ———T (k=1,2,...,m).
There holds |T,,(z)| <1 for all x € [—1,1]. Equality holds for the m + 1 points
2k
x;:cos%w (k=0,1,...,m),

where the value T,,(x},) = £1 is taken with alternating sign.
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3T-5

Figure 3.1: The graph of T5(z) on [—1, 1] with its roots and extreme points.

Definition 3.9. The normalized Chebyshev polynomial of degree m s defined as

Tonlz) = 2m—1_1Tm(a:) (m=0,1,...).

Since T}, is a monic polynomial of degree m, we can write Tm(x) =™ — p*(x)
for some p* € P,,_1. Furthermore, \Tvm| takes on its extreme value M := 7 at
m + 1 distinct points in Q := [—1, 1] with alternating sign. Theorem 3.4 yields that
p* is the unique best approximating polynomial to f(z) = 2™ on . We state this

result as a theorem.

Theorem 3.10 (Chebyshev). There holds

~ 1
Tm pu— 1 pu— 5
1Tl min Iplle = 5
where P denotes the set of all monic polynomials of degree m and Q = [—1,1].

Chebyshev Polynomials in C

Now we let z € C be fixed and set Ty(z) = 1, T1(z) = z. The recurrence relation (3.1)

is well defined for complex arguments, i.e.,

Toi1(2) =221, (2) — Thna(2)  for m=1,2,... (3.2)
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In order to study the behavior of the m-th Chebyshev polynomial T;,, = T,,,(2) in
the complex plane, we observe that (3.2) is a difference equation of order 2 with

characteristic polynomial
X(¢) = ™ = 220"+ (T
which has a root of multiplicity m — 1 at 0 and the two non-trivial roots
wi=z+vV22—1 and z—V22—1=w"".

Note that w + w™! = 2z. From the theory of difference equations it is known that
Tn(z) is a linear combination of w™ and w™™ that satisfies the initial conditions
To(z) = 1 and T1(z) = z. Therefore we have

To(z) == (W™ +w™),  where z:== (w+w™"). (3.3)

DN | —
DN | —

The mapping
1
U:wr— — +w ) =
w 2(w w ) z

is the well known Joukowski transformation. It is the conformal bijection from C\D
onto C\ [—1, 1] with ¥(co) = 0o and ¥'(c0) = L. For every R > 1, ¥ maps the circle
{w : |w| = R} =: Tg to an ellipse Ex with semiaxes 3 (R+ R™') and 5 (R — R™).
From (3.3) we obtain

1
T (2)] = §|wm| 11+ w_2m| for z € Eg,
and since |w™| = R™ for w € Tg we have

Rm
T (2)| = - |1 + w_2m} for z € Eg. (3.4)

Remark 3.11. For T,, the equation (3.4) is of the form

‘Tm(z)’ = ];—: |14 w?™| for z € Ek. (3.5)

Shifted Chebyshev Polynomials

Finally, we transform the Chebyshev polynomials to an arbitrary positive real in-

terval

K = [>‘min7 )\max] (O < )\min < Amax)
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\J

Figure 3.2: The Joukowski transformation W.

and normalize them at the origin. The linear mapping

2z — )\max - )\min
>\max - >\min

Z

furnishes the transformation from K onto [—1, 1]. We define the (shifted) Chebyshev

polynomial of degree m on the interval K as

Tm ( 22=Amax—Amin >

)\max_Amin

Tm < _Amax_)\min )

)\max_kmin

TE(2) =

Clearly, this polynomial satisfies TX(0) = 1. Later on we shall make use of the

following assertion.

Lemma 3.12. There holds

-1
—1\" — 1\ ™
max |TX(2)| = min max |p(z)| = 2 VE + vE 7
2K peEPY, 2€K VE+1 VE+1

where K := Amax/Amin-

Proof. TX is a polynomial of degree m, say, TX (z2) = apz™+a™ 2™ 4y 2+1.

It takes on its extreme value

1
T _>\max_>\min
’Tm < Amax_)\min ) ‘

in m + 1 points of K with alternating sign, because it is just a shifted version of

M

T, that takes on the alternating extreme values £1 in [—1, 1] (cf. Lemma 3.8). By
Theorem 3.4, we have that (o™ '2™" 1 4+ ...+ a;2+ 1) € PY_, is the uniform best
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approximation to —a,,2z™ on K. Thus, max,cx [TX(2)] = M is minimal. At last
we determine M. We fix z := (M) and note that

>\max_>\min

N

1
W= —~——— satisfies z = §(w +w™h),

VE+1

where K = Apax/Amin > 1, hence w < 0. From Lemma (3.3) we obtain

1 1 2
M= o ™ T o]~ oyt (cw) ™

which is the assertion. O

3.3 A Generalized Approximation Method

To complete our survey, we mention that the polynomials (gf,)m>1 we used to
construct Krylov subspace methods for the approximation of f(A)b may not only
arise from interpolation processes. One may think of methods that determine a
polynomial ¢}, € Pp,—1 of best approximation to f on a compact set (2 and define

the Krylov approximations by
A = G (A)b € K.

Indeed, some semi-iterative methods may be put into this framework, e.g. the

Chebyshev method. A prototype of such approximation methods looks like this:

Algorithm 3.13: Generalized approximation method
Input: A€ CMY b e CV, m>1, Q compact, f € C(Q).
Output: Krylov approximation a,,.

1 Determine a polynomial best approximation ¢},, € Pp—1 to f on Q.
2 Set a,, == qj,,(A)b.

Remark 3.14. If Q consists of m points at most, this algorithm reduces to an
interpolation problem. If 1 consists of exactly m points, q},, will be the unique
Lagrange interpolation polynomial of degree m — 1. If Q includes more than m

points, then g5, is still unique due to Theorem 3.5.

51



3 Polynomial Interpolation and Best Approximation

3.4 Error of Polynomial Methods

Lemma 3.15. Givenq € P,,_1, A € CV*N normal and b € CV. For every function
f that is defined for A there holds

17(A)b = q(A)b] < |[b]] max [f(A) —q(M)].

AEA(A)

Proof. We write A = UDU! | where U is unitary and D is a diagonal matrix. From

the properties of matrix functions and the 2-norm it follows

If(A)b —q(A)b] < [f(A) —a(A)llb]
= [BlllU(f(D) — (DU
= [[b]l max [f(A) —q(N)]-

AEA(A)

O

Remark 3.16. This result is as important as it is simple. It asserts that, in order

to obtain results about the error of a polynomial method, we may study

max [F(A) = a(M)]

AEA(A)

for some polynomial q € P,,_1. More generally, we may consider

max | f(A) — g\)| = || f — qlle,

AeQ

where Q is a compact set containing A(A). For non-normal matrices it is not valid
that the error of polynomial methods is primarily determined by the spectrum. This
15 why the investigations of the convergence of Krylov subspace methods for arbitrary

matrices is much more complicated.

One may ask what is the ‘best possible’ Krylov approximation g} € K,.(A, b)
to f(A)b that we can expect from a polynomial method in general. Again we

decompose A = UDU, U = [uy, uy, . . ., uy| and note that

1£(A)b — q(A)b|I* = | (f(D) — ¢(D))U"B|* = Z|qu — (M) (3.6)
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3 Polynomial Interpolation and Best Approximation

Thus, the best approximation g, to f(A)b out of IC,, with respect to the 2-norm
can be obtained by minimizing (3.6) among all polynomials of degree m — 1. This
is a weighted least squares problem. Once we obtained the minimizing polynomial

q* we set g = q*(A)b.

The Generalized Interpolation Method

Let us now consider f-interpolating polynomials gy, that arise from the generalized
interpolation method, Algorithm 2.34. With the formula for the Hermite interpola-

tion error (Lemma 1.19) we can present some results (cf. Gaier, [10, pp. 59-61]).

Example 3.17. Given a nodal polynomial w,,(z) := 2™, i.e., zero is the only inter-
polation node and it has multiplicity m. Let f be analytic in Dg := {z : |z| < R}
and continuous on D := {z : |z| < R} for R > 0. The resulting f-interpolating

polynomial gy, is

Grm(z) = L./K S (%

271 |=R C—Z Cm
_ 1 1—(2/Q)™ f(C)
= o /M_R -G ¢
= 1 : F(Q)
;Qm |<|:R( [0 =2 dS
m=l @) gy
- Y L0 (3.7)
i=0 ’

for all z € Dg. This is the truncated Taylor expansion of f at 0. We used
the formula for the partial sum of a geometric sequence and the Cauchy inte-
gral formula. Since Taylor expansions converge uniformly in their convergence
disk, we have q,,(2) = f(2) on Dg for m — +4oo. Lemma 8.15 implies that
| f(A)b — qrm(A)b]| — 0 if we can choose R such that o(A) < R.

Consider the function fo(z):= (a —2)7', 0 # «a € C. f, is analytic in Dg and
continuous on Dy for R < |a|. Since féi)(O) = ila™""1 equation (3.7) yields

m—1

i1 I—=(z/a)™
_ =11 _
pon(2) = 3ot = IR
The error satisfies
_ (/o)™
ul2) = @pum(z) = LI (3.9

23
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11 (A)b - q, (A |

0 20 40 60 80 100 120

Figure 3.3:

The solid lines show || fo(A)b — g5, .m(A)b|| for different values of «, corresponding to
Example 3.17. In all cases A € C'01x101 ig a diagonal matrix with equidistant eigenvalues in
[~1,1] and b = [1,1,...,1]/v/101. The dotted line is the error bound (3.9).

for m — 400 and all |z| < R. For an arbitrary set S C C and z € C we define
dist(z, S) := inf |s — z|.
ses

Using Lemma 3.15 and (3.8) we obtain

o(A)™
o™ dist(c, A(A))’

[ fe(A)b = q1.m(A)b] < |[b]]5 (3.9)

1.e., we can expect the resulting polynomial method to converge fast if the singularity
a is far from the origin and the eigenvalues of A. The latter should be centered

tightly around zero such that o(A) is small.

Example 3.18. Let wy,(2) := 2™ — 1 and [ be analytic in Dg and continuous on

-0

3circle

Dgr, R > 1. The resulting interpolation polynomials are

. 1 ¢m—=" f(Q)
qJﬂm(Z) _/§|—R C_Z (m_l

2m1
Because G¢ ., has a similar form to q¢,, from the previous example, we consider

A L e O Q)
i) ) = g [ S ()
L Q)
= dC.
ot Jon C—2 G

dc.

o4



3 Polynomial Interpolation and Best Approximation

Let |z| = p> R. Then

) s i A (YR RO FA (9]
Upm(e) —amG < 5 e (¢ = 2)(1 = 1/¢m)]
= RfmilO(l) for m — +oo. (3.10)

This tends to zero if p < R?. The mazimum principle yields that the mazimum in
the above formula is attained for z satisfying |z| = p, even if we allow z € ﬁp. Hence

(3.10) holds for all z € D,. With

£ (2) = 4rm(2)] < [f(2) = @rm(2)] + |gr.m(2) = Grm(2)]

it is assured that || f(A)b — Gf.m(A)b]| — 0 if we can choose R sufficiently large that
o(A) < R.

Consider again the function f,(2) = (o — 2z)7'. It is easily verified that the
interpolating polynomial Gy, m s
1 — wi(2)/wm(a)

q/\fa7m(z) = a—z ’

since it is a polynomial of degree m — 1 that fulfills the interpolation conditions.
Thus,

1—(z"=1)/(a™—1)
1—(z/a)™
(a0 —a™ ™t (1 — z/a)

1 z
N oz—a—mﬂza

1=0

quaym<Z) -

and
2" —1

fa(2) = Gpam(2) = (@™ —1)(a—2)

Together with Lemma 3.15 we obtain

o(A)™ 4+ 1
— 1] dist(a, A(A))”

[fa(A)b — g7, m(A)b]| < [|B]] am (3.11)
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1A = g (AD II

0 20 40 60 80 100 120

Figure 3.4:

The solid lines show || fo(A)b — G¢,.m(A)b|| (Example 3.18). Here we interpolate at the m-th
roots of unity. A and b are the same as in the previous example. The dotted line is the error
bound (3.11).

Example 3.19. We distribute m interpolation nodes on the interval [—1,1] éo

according to the roots of the Chebyshev polynomial Tm, Be., wp(z) = fm(z) 2Ol
. . . eby
By Lemma 1.19 the interpolation error is

F&) =) =55 [ ?8 19 4,

where the curve Eg is the ellipse with semiazes § (R+ R™') and 3 (R—R™'), R > 1.
Furthermore, it is assumed that [ is analytic in the interior of Er and extends

continuously to it. Recall that

max
z€[—1,1]

due to Theorem 3.10. For ( € Er we get from equation (3.5)
~ R™
‘Tm(o‘ = om 114w,
where |w| = R. It is easily verified that for any w with |{w| = R > 1 there holds

0<1-R?Z><|[1+w?".

26



3 Polynomial Interpolation and Best Approximation

This yields

16 =il = 55t g O
= o)

for all z € [-1,1]. Let A(A) C [-1,1]. By Lemma 3.15 there holds
1f(A)b — Grm(A)b|| = 5=O(1) for each function f that is analytic in the interior
of Er and extends continuously to it.

The interpolation error for the function f,(z) =1/(a — z) is

_ fm(z)
o(2) = Qrom(z) = =————
Jold) = Gpanle) = B
Choose R > 1 such that o € Er. Then
2
-1 < )
e 1fa(2) = 4m () S pom = py Gt 211

If all the eigenvalues of A are contained in [—1,1] we obtain with Lemma 3.15

2
(1 — R-2)dist(a, [—1,1])

1£a(A)b = Grm(A)bI < [Ibll 2 (3.12)

11 (&b -, (@b |

Figure 3.5:
The solid lines show || fo(A)b — §r, .m(A)b|| (Example 3.19). Here we interpolate at the roots

of Tm. A and b are the same as in the previous examples. The dotted lines show the error
bound (3.12). Note the different scaling of the m-axis.
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3 Polynomial Interpolation and Best Approximation

Error Estimate for Arnoldi Approximations

When choosing the Ritz(m) values of A as interpolation nodes, we can show a
stronger assertion than Lemma 3.15 provides. Roughly speaking, the following
Lemma asserts that the Arnoldi approximations f;,, (cf. Algorithms 2.22 and 2.28)
are not worse than twice the best we can get from any polynomial method for a
slightly larger matrix A that satisfies A(A) = A(A) U A(H,,).

Lemma 3.20. Let A be normal and A(A) U A(H,,) C Q, Q compact. Then the
Arnoldi approximations f,, fulfill

IF(A)b — finll < 2[[b]| min max[f(A) —p(A)].

Proof. Let p € Pp1. Then p(A)b = V,,p(H,,)V.Hb, as asserted in Lemma 2.20.
With the definition of f;,, we get

1F(A)b —full = [1f(A)b — Vi f(Hun)V, b + Viup(Hm)V, b — p(A)b]|
< bl (I[£(A) = p(A)| + | f(Hn) — p(H)]|)
< 2[[b] max|f(A) = p(A)[-

We take the infimum among all p € P,,_; over this inequality and note that this

infimum is attained because of Theorem 3.2. The proof is complete. O]

3.5 Interpolation in Uniformly Distributed Points

Let  C C be a compact set such that its complement Q¢ = C \  is a simply
connected domain. Then by Riemann Mapping Theorem there exists a conformal
map

z=U(w)=cw+cy+cw -

from D" onto QC with U(00) = oo and U'(c0) = ¢ > 0. c is called the capacity
of 0€). By
P(z)=clz+---

we denote the inverse function of ¥. Note that ® is a conformal map from Q¢

onto D" . For every R > 1 we define the level curve

Lp:={2€C : |®(2)| =R} CQC.
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—

)
O+ ()

Lp—

Figure 3.6: The conformal maps ¥, ® and the level curves Lg.

All the Ly are disjoint Jordan curves because they are the image of Tg under the

bijective analytic transformation W.

Let (wm)m>1 be a sequence of nodal polynomials for 2, i.e., each w,, is a monic
polynomial of degree m and all of its r00tS [ty 1, fm.2; - - -, fim.m are contained in €.
We define the numbers

M, := “WmHQ = I?Eaéi |Wm(z)|

By the maximum principle, the maximum M,, is attained on 9Q = 9(Q°) and
there holds

M, >c" for m=1,2,... (3.13)
To prove this, we consider the function
wm(2)
H,(2) = ——%—,
(c®(z))™

which is analytic in Q. Moreover, H,,(z) — 1 as z — oco. The maximum principle
implies

max |H,,(z)] >1 forall R>1,

z€Lp

and, since ®(z) = R for z € Lp, this yields

max |wy,(2)] > (cR)™  for all R > 1.
z€LR

By taking R — 1, the assertion (3.13) is obtained. The following definition is now
justified.

Definition 3.21. The nodes associated with the sequence (wp,)m>1 of nodal poly-

nomials for Q0 are uniformly distributed on Q if

N M, —c  for m— +oo. (3.14)
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Example 3.22. The roots of the (normalized) Chebyshev polynomials Ty (z) are
uniformly distributed on Q@ = [—1,1] :

By Theorem 3.10 we have M, = 1/2™~1. The conformal map from D onto
[—1,1]¢ is the Joukowski transformation z = ¥(w) = :(w+w™"). Hence c =3 and
the condition (3.14) is satisfied.

Example 3.23. The roots of the (shifted) Chebyshev polynomials TE(z) are

uniformly distributed on K.

Now let f be analytic on Q (i.e., analytic in an open subset of C that con-
tains Q). By ¢ym(2) we denote the Hermite interpolating polynomial of degree
m — 1 that interpolates f at the roots of w,,. The following theorem gives the
connection between the uniform distribution of the nodes and the convergence of

the corresponding interpolation process.

Theorem 3.24 (Kalmar-Walsh). The convergence
grm(z) = fz) (2€9Q, m— 400)

takes place for each function f analytic on € if and only if the interpolation nodes

are uniformly distributed on ().
Proof. See Gaier [10, pp. 65-66]. ]

The following theorem gives an assertion about the rate of convergence.

Theorem 3.25. Assume that R > 1 is the largest number such that f is analytic
inside L. The interpolating polynomials qg ., with uniformly distributed nodes on )

then satisfy the condition

timsup §/1f — agnlle = 5 = k(2 f). (3.15)

m—-+00

Proof. See Gaier [10, pp. 66-67]. ]

Definition 3.26. A sequence of f-interpolating polynomials (qsm)m>1 converges
maximally to f on Q if the condition (3.15) is satisfied. The number k(, f) is

called the asymptotic convergence factor of the sequence <m\/ Ilf— qf’m||g>
m

>1
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The term ‘maximal convergence’ was introduced by Walsh, see [32, p. 79]. It
is justified by the fact that 1/R is the best possible (i.e., smallest) asymptotic
convergence factor that holds for all functions which are analytic inside Lg. If f
is an entire function (i.e., analytic in the whole complex plane C), the constant R

may be chosen arbitrarily large. In this case we expect superlinear convergence.

Interpolation in Fejér Points

Let © have a sufficiently smooth boundary 02, e.g. a Jordan curve. By the
Theorem of Caratheodory-Osgood there exists a bijective continuous extension
D — QCUIN of U to the boundary.

Definition 3.27. The Fejér points {ji,, ;1 j = 1,2,...,m} of order m on Q are the

mmages under v of the m-th roots of unity, i.e.,

fm,; =Y (exp (2mi(j — 1)/m))  for j=1,2,...,m.
Theorem 3.28 (Fejér). The Fejér points are uniformly distributed on €.

Proof. See Gaier [10, p. 67-69]. O

Application to the Generalized Interpolation Method

We turn back to the generalized interpolation method, Algorithm 2.34. Recall that
A is required to be normal. Choose a compact set € such that A(4) C Q and Q°
is a simply connected domain. Let f be analytic on €2 and R chosen according to
Theorem 3.25. By {¢fm}m>1 we denote a sequence of f-interpolating polynomials
of degree m — 1 to f with uniformly distributed nodes on 2. By Lemma 3.15 and

Theorem 3.25 we have immediately that

<|rf<A>b—qf,m<A>bH>“m 1
o] R

IA

lim sup
m—-+00

Now it seems reasonable to use uniformly distributed interpolation points for the
generalized interpolation method. In this case we know that the error should behave

asymptotically like R™™.
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Example 3.29. Let f(z) := 1/z. Let A € C'%%10 pe ¢ normal matriz with ran-
domly and evenly distributed eigenvalues inside a L-shaped polygon €2, see Fig-
ure 3.7(a). We compute the map U using the Schwarz-Christoffel-toolbox for
MATLAB (see Driscoll [3]). With the help of the function evalinv we determine

R~ 1.6421,

which is the value for which the origin 0 lies on the level curve Lgr. See also Fig-
ure 3.7(b). For a fired m we determine the Fejér points of order m on 2 and evaluate
the interpolating polynomial qy ., that interpolates f at the Fejér points. For this task
we use the variable precision arithmetic of MAPLE in order to avoid stability prob-
lems. A more practical implementation makes use of recurrence schemes to compute
the coefficients of gy, in Newton form, see Novati [24]. Finally, the Krylov approa-
imation to f(A)b is gm = qrm(A)b. In Figure 3.7(d) we plot the logarithmic error
log(|f(2) —qrm(2)|+¢) for m = 16. (The small positive constant € is added to avoid
log(0), that would be attained at least in the interpolation points.) Note how well f

is approximated on §2, indicated by the dark blue color.

The greatest advantage of generalized interpolation methods with uniformly dis-
tributed interpolation points (GIMUD) is, that the interpolating polynomials qg
can be applied to every matrix whose spectrum is contained in ) without worsening
the asymptotic convergence factor 1/R. Once gy, is determined, qr.m(A)b is easily
evaluated for different A and b, e.g., using the Horner scheme. Such problems arise
very often, for example, if we solve a partial differential equation with the method
of lines. In this case we will have to solve a set of ordinary differential equations
and this involves the evaluation of exp(tA)b, where t > 0 and b varies for each

evaluation.

One of the drawbacks of (GIMUD) is that we first have to know at least the
outlying eigenvalues of A in order to determine ). Therefor we may determine some
Ritz(m) values of A. They often have the property to approzimate the eigenvalues
of A at the edge of the spectrum, even if m is small (cf. Chapter 4). Because we
first have to run another Krylov subspace method in order to use (GIMUD), it is
often called a hybrid method.
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Figure 3.7:

0.5

N, /| L
-0.5 0 0.5 1 15 2 25 3

Tlustration to Example 3.29. (a) L-shaped polygon Q (grey filled) with the 100 random
eigenvalues (blue dots). (b) The image of an orthogonal grid under the map ¥ (grey lines).

The critical level curve Lp is in red. The black dot in the origin indicates the singularity of f.
(c) Fejér points of order 16 on . (d) The colors indicate the value of log(|f(2) — gf,m(2)| + €).
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In Figure 3.8 we plot the error curves of the interpolation method using
e Fejér points on §) (magenta),
e cquidistant points on the boundary of the polygon (blue),

e Ritz values (green)

as interpolation nodes. The erratic behavior of the blue error curve is caused by
a strong oscillation of the corresponding interpolation polynomials inside € if the

degree is high.

T
— Fejer
—— Equidistant
- —— Ritz
107 X @rR™

A - q, (AbII/Ib

Figure 3.8:
Error of the interpolation method using different interpolation nodes. The dotted line indicates

the asymptote R~™".

3.6 Convergence of the CG Method

Recall from Section 2.7 that the iterates of the CG method @, @y, . .. minimize the
A-norm of the error e,, = A™'b — x,,:

| €m]l4 = min [[p(A)A™"b| 4.
pePY,
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A is symmetric positive definite and therefore normal. Thus,

lemlla = min [[AY2p(A)A™ ]|

pEPY,

= min |[Up(D)U?AY2A |
PEPR,

< min [[p(D)|[|AY*A™'b|

pEPY,

= ||A'd i ). 3.16
| ”Aprél?l){(i félﬂfi)‘p( )l (3.16)

(Although A'/2 is not uniquely determined, ||AY/2v]|| is unique for every vector v.)

The problem

M = mi a A
nin max ()]

is a polynomial uniform best approximation problem on the discrete set A(A). Let
Amin (Amax) denote the smallest (largest) eigenvalue of A and set £ := Apax/Amin-
We replace A(A) by the interval K := [Apin, Amax)- There holds

M < M = mi A
< min max Ip(N)],

because a polynomial p € P° for which the minimum M is attained fulfills
15(A)| < M for all A € A(A). The minimizer j is the shifted Chebyshev polynomial
on K of degree m. Thus, Lemma 3.12 yields

() (F) )

Using (3.16) we obtain the following error bound for the CG method

detie=((F) () ) =(E)" o
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Example 3.30. We consider four symmetric positive definite matrices A; : QO
] 1,100 - ] 3CGerr
o Ay has 100 eigenvalues at the roots of Ty, ', t.e., the eigenvalues are

uniformly distributed on the interval [1,100],

Ay has 100 equidistant eigenvalues in the interval [1,100],

As has 98 equidistant eigenvalues in the interval [20,80] and two separated

eigenvalues {1,100},

Ay has 100 equidistant eigenvalues in the interval [20, 80].

In Figure 3.9 we plot the error norms

[€mll

[A=1b] 4

of the CG iterates x,,. Note that the error bound (3.17) is the same for the matrices
Ay, Ay and As, since k = 100 for all of them. Thus, we expect a geometric decrease

of the error with rate
vVE—1 9
VE+1 11

For the matriz Ay we have k = 4 and therefore expect a geometric decrease of the

error with rate 1/3.

10° oo i
107 - i
\\
4 \
10 F g
_<
r 10° - \ i
T‘( \
= T
= 10" | B ST
<& N
1
TP -10 ‘
< 10°F A, A, i
= |
-12 ‘
10k A, 14
I
-14 ‘
10 'k B
10*167 7
L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 3.9:
Error of the CG iterates for the matrices A;. The dotted line is the error bound (3.17) for x = 100.
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We make the following observations:

(1) The error curve for the matriz Ay (magenta) behaves as predicted by the dotted
error bound (3.17). This suggests that uniformly distributed eigenvalues are the
worst case for the convergence behavior of the CG method. This observation

can also be made for polynomial interpolation methods in general.

(ii) The error curves for As (blue) and As (red) decrease much faster than the
error bound suggests, so that we have a much too pessimistic prediction of
the error decrease. The reason is that the error bound (3.17) does not take
into account the fine structure of the spectrum, i.e., the distribution of the

eigenvalues in the interior of the interval [1,100].

(iii) After a few initial iterates, the error curve for Az behaves like the error curve
for Ay (green), although the predicted convergence rates differ by a factor ~ 2.5.
After the separated eigenvalues {1,100} of A3 ‘have been found’ by the under-
lying interpolation process, the interpolation actually takes place on a smaller

interval [20, 80].

Several attempts have been made to improve the error bound (3.17), for example
if A has one eigenvalue much larger than the others, say, \; < Ay < -+ < Ay_1 < Ay
or if the spectrum of A is well approximated by the union of two disjoint intervals.
Some results can be found in Greenbaum [13, pp. 52-54]. In what follows, we want
to introduce another approach that involves the fine structure of the spectrum of A

with the help of a distribution function o.

67



4 On the Convergence of Ritz Values

The expression ‘a Ritz value has converged’ is more a heuristic description than
a mathematical term that can be defined exactly. We recall from Chapter 2 that
the Ritz(m) values fim 1, fim2, - - - » fm.m Of a matrix A € CN*V are the eigenvalues
of the unreduced upper Hessenberg matrix H,, generated by the Arnoldi process
for an initial vector b € C¥*¥. The Arnoldi process was given in Algorithm 2.14,
page 29. The Ritz(m) polynomial y,, is the characteristic polynomial of H,,, i.e.,
Xm(z) = det(z] — H,,). By Lemma 2.27 it is known that y,, is the minimizing
argument of ||p(A)b|| among all monic polynomials p € P°. We will denote this by

Xm = argmin||p(A)b||. (4.1)
pEPR
As before, || - || denotes the 2-norm of a vector or a matrix. Moreover, we retain the

assumption that A is a normal matrix and thus can be written in the form
A=UDU"

with D = diag(A\1, A2, ..., Ax) and an unitary matrix U = [ug, ug, ..., uy|. The
vectors uy, us, ..., uy are the orthonormal eigenvectors of A associated with the

eigenvalues A1, Ao, ..., An.

4.1 A Least Squares Problem

By the properties of the 2-norm, equation (4.1) can be rewritten as

N

Xm = argmin Y |{u;, b)F[p(N) [, (WLS)

PEPE =1
which is a weighted least squares problem for the values of x,, at the eigenvalues

of A. This point of view gives an intuition how the Ritz values depend on the

initial vector b.
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Example 4.1. Let b € CV be a linear combination of m < N eigenvectors u; of A,

say without loss of generality
b :=aju; + asup + -+ - + ap Uy, where all a; # 0.

Then
(z=M)(z = A) -+ (2 = Am) = xm(2)

is the unique minimizer of (WLS) because the polynomial X, is zero on all the
eigenvalues \; of A that have nonzero weight |{u;, b)|*> = |ay|*>. Such eigenvalues are
said to be active in b. We say an eigenvalue X is found by a Ritz(m) value p if the
Ritz(m) polynomial x,, has a root ‘very close’ to it. In our case, the eigenvalues
A1, A2, .oy A are found since they are exactly the roots of Xum. From ||xm(A)b| =0
and the fact that there is no monic polynomial of smaller degree with this property,

it follows that X, is the minimal polynomial of b with respect to A.

Now let n > m. It still makes sense to ask for a monic polynomial x,, of degree n
that minimizes (WLS), although the minimizer is no longer unique: every x, € P
that is divided by ., minimizes (WLS) because A1, g, ..., Ay are among its roots.
Note that this is not a contradiction to Lemma 2.27 since the Ritz(n) polynomial
does not exist. If we want the solution of (WLS) to be the Ritz(m) polynomial for
all m < N, we have to assure the existence of the latter. Recall from Chapter 2
that we can run the Arnoldi process until m = N if and only if the Krylov subspaces
Kn(A, b) do not become stationary for m < N. This will not happen if and only if

A is nonderogatory and b is cyclic for A.
Assumption I. Let A be a nonderogatory (and normal) matriz and b cyclic for A.

Lemma 4.2. This assumption assures (u;, by # 0 fori=1,2,..., N and therefore
the uniqueness of the solution of (WLS) for all degrees m < N.

Proof. Assume the assertion is wrong, say (u;, b) = 0 without loss of generality.
Then b = Zi]\;aiui and UPb = [0,qy,...,ay]?. Form=0,1,..., N — 1 we have

(u, A"b) = (u;,UD™U"b)
= (w, Udiag(A7", A5, ..., AR)[0, 00, ..., an]")

N
= <’u,1, Z A:”aluz>
=2

= 0,
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since {w; : ¢ = 1,2,..., N} is an orthonormal basis of CV. But this means that
0 # uw; L Kn(A, b), hence Ky # CV and therefore b is not cyclic for A. This is a
contradiction. O]

We are still left with one problem. What happens if all the weights |(u;, b)|* are

nonzero, but differ extremely in value?

In view of (WLS) it is necessary for the minimizing polynomial x,, to be small
at those eigenvalues \; which are associated with eigenvectors u; that have a large
weight |(u;, b)|? (relative to the eigenvectors with a small weight). This means that
Xm should ‘prefer’ to have its roots close those eigenvalues. Therefore we expect
the eigenvalues associated with eigenvectors of a large weight to be found early (i.e.,

for small m) by Ritz(m) values. Figure 4.1 shows one example where this actually

happens.
10 e
6 a
=
X 328
9 o 39 ]
o 38 o g u]
u} 28
15 o
I . oo ,
17
7H i
a
[m] a
6l 18 14 o 29
X ]2%3
[m] [m] g
- 34 4
7 24
[m]
4 10
20 5
O 22
35 O
L o1 i
3 5 23
[m]
26
2F i i
b= u]
o 37 o O 33 Xy
1t 16 )ou 31 R
36 o
0o 19
0 L I L L 122 L L L L
0 1 240 3 4 5 6 7 8 9 10
Figure 4.1:
The blue squares are the 40 eigenvalues A1, Ag, ..., Ago of a random normal matrix A,

A =Udiag(\, ..., \0)UH, where U = [ug, ug, . .., ugo). The vector b € C*° was chosen as
b= 2?21 2tu;. The red crosses show the Ritz(10) values of A. They lie close to the eigenvalues

A0, A39, - - - because the associated eigenvectors uyg, U3g, - . . have a large component in b.
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4 On the Convergence of Ritz Values

Outside of such constructed scenarios we can assume that the weights |(u;, b)|* do
not differ strongly in value. Moreover, we even should not assume that these weights
are known, since their computation may be expensive in general. Therefore it is
rather a must than a drawback to carry out our investigations without considering
the influence of the starting vector b. To get rid of b we consider the ideal case,
that is

Assumption II.

[(ur, b)[* = [{u, b)|* = - - - = [{un, b)|* = const .

At first glance this assumption seems to be too restrictive, and indeed, for the
theory of Beckermann and Kuijlaars on the convergence of Ritz values it is suffi-
cient to assume that the eigenvector components |(u;, b)| do not vary exponentially
in value (cf. Kuijlaars [18, p. 7]). Nevertheless we do not loose generality here.
In fact, Beckermann and Kuijlaars make Assumption II implicitly but argue after-
wards, see Kuijlaars [18, p. 23|, that the theory holds more generally because small
variations in [(w;, b)| are not felt as N — +oo and we will only obtain results in the

asymptotic sense.

Under Assumption II the problem (WLS) reduces to

Xm = arg mlnz |p()‘z)|2a (LS)

which is an (unweighted) least squares problem on the eigenvalues of A. If Assump-
tion IT does not hold, but the weights do not differ very strongly, we hope that the
‘true’ Ritz polynomial y,, from (WLS) will have its roots ‘close’ to the roots of the
polynomial from the ideal case (LS). Note that both polynomials are monic and

therefore uniquely determined by their roots.

To motivate our further ongoing, we recall the Lanczos process from Chapter 2.
We observed that the Ritz values produced by this algorithm lie in the real interval
[Amin, Amax] and fulfill the interlacing property, Theorem 2.31. But there is something
more that can be observed concerning the location of the Ritz values over the course
of the Lanczos process. We want to demonstrate this with the help of the following

examples.
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4 On the Convergence of Ritz Values

Example 4.3. We consider a diagonal matrix A with 40 equidistant eigenvalues
in the interval [—1,1] and a vector b := [1,1,...,1]7 of length 40. Note that the
orthonormal eigenvectors of A are the unit coordinate vectors &,,&, ..., &x. Thus,
(uj, b) =1 fori=1,2,...,N and Assumption Il is fulfilled. We run the Lanczos
process until m = 29. In Figure 4.2 we plot the Ritz polynomial xo9(z). The red
squares indicate the values of x29 at the eigenvalues of A. The remarkable fact is
that x29 has some of its roots very close to those eigenvalues of A that are located
near the edge of the interval [—1,1]. These eigenvalues have been found by Ritz(29)
values. It can be observed that, once an eigenvalue has been found by a Ritz value, it
remains found as the degree m is increased further. Because of this ‘convergence-like’
behavior we say that this Ritz value has converged to an eigenvalue of A.

x107°°

LA L
AR

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.2:
The blue line is the graph of the Ritz(29) polynomial x29(z) on the interval [—1,1]. The red
squares indicate the value of 29 on the 40 equidistant eigenvalues of A. The green dots mark the

roots of xa9, which are the Ritz(29) values of A.

In Figure 4.3 one can see how the Ritz values begin to approximate the spectrum
of A from the outside to the inside of the interval. The black circles indicate the
location of the 40 eigenvalues of A. The colored disks indicate those eigenvalues
that have been found by a particular Ritz(m) value (or: some Ritz(m) values have
converged to those eigenvalues). The color of the disk encodes the value of m for

which convergence sets in (see the figure’s legend). For example, we plot a red disk
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4 On the Convergence of Ritz Values

at a certain eigenvalue A if there exists an index m € {30, 31, 32,33} such that each
Ritz polynomial x,, with m > m has a root within distance tol to \. Here we
have chosen tol:= 1073. This convergence check is easily implemented and avoids
masinterpreting ‘lucky quesses’ as converged Ritz values. Unfortunately, it can only
be applied if the spectrum A(A) is known a priori. The empty circles in the middle

of the interval indicate the eigenvalues of A that are not found until m = 40.

eigenvalue
m=1..14
m=15..29
m=30..33
m=34..36
m=37..39

L N X @)

Figure 4.3:
The black circles indicate the eigenvalues of the matrix A. The colored disks encode from which

index m on an eigenvalue is found by a Ritz(m) value.

The phenomenon that the eigenvalues on the edge of the spectrum are found

first by Ritz values is not restricted to Hermitian matrices.

Example 4.4. In Figure 4.4 we consider a complex random diagonal matriz A of
size 100 x 100 (the real and imaginary parts of the diagonal entries are normally
distributed with mean 0 and variance 1). We set b :=[1,1,...,1]7 and tol:= 1073.
As above, the innermost eigenvalues of A are not found until the end of the Arnoldi

process, whereas the outermost ones are approximated very early by a Ritz value.
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Figure 4.4: Convergence of the Ritz values of a non-Hermitian matrix.
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4 On the Convergence of Ritz Values

The aim of this chapter can now be stated as follows: try to characterize the
regions where eigenvalues are found by Ritz values and the regions where this is
not the case. One way to accomplish this task is to use potential theoretic tools
in the complex plane. In the recent years, a lot of effort has been put into this
approach, mainly by Bernhard Beckermann and Arno B. J. Kuijlaars. Here we will
shortly present their theory on the convergence of Ritz values and refer also to the
articles [1, 18, 19].

4.2 The Theory of Beckermann and Kuijlaars |

Firstly, we will slightly modify the problem at hand. Instead of considering the
minimizer x,, of (LS), we consider the following problem:
Ym = arg min max |p(\)]. 4.2
X g Iin max Ip(M)] (4.2)
Here we replaced the L?-norm by the uniform norm on A(A). Note that 2™ — X, is

the uniform best approximating polynomial of degree m — 1 to the function 2™ on
the discrete set A(A).

We assume that moving from (LS) to (4.2) is indeed a slight modification in the
sense that the roots of ,, and X,, are close to each other. Since Y, is small on the
eigenvalues of A, it should have some of its roots close to them. We expect also X,
to be small on the eigenvalues and to have its roots close to them. In other words:
since the roots of x,, and Y, are related to the spectrum of A, we hope that the

roots of x,, and Y, are somehow related to each other:

roots of x,, (= Ritz(m) values) «~ A(A) e~ roots of Y.

In some cases this connection may fail and the roots of y,, and X,, are distributed
completely differently. For example, one may think of minimizing polynomials that
are very small on a particular eigenvalue (or a cluster of eigenvalues) but do not
have any root in this region. In this case, the spectrum of A cannot explain any

connection between the roots of x,, and X,,.
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4 On the Convergence of Ritz Values

In order to apply potential theoretic tools, it is necessary to replace the discrete
set A(A) by a ‘larger’ compact set D A(A).! Recall that the same procedure was
followed for the convergence investigation of the CG method, where we replaced the
spectrum of A by an interval. We define

Xm := arg min max [p(z)]|. (4.3)
pEPL z€Q

Example 4.5. Again we consider a diagonal matriz A with 40 equidistant eigenval-
ues in [—1,1] and a vector b :=[1,1,...,1]T of length 40. In Figure 4.5(a) we plot
the polynomial a9, which is the monic polynomial of degree 29 that minimizes |X29|
on A(A). For the computation of this polynomial we used an algorithm described in
Stiefel [30]. Note that p(z) := 2*% — Xa9(2) € Pog is the best uniform approzvimating
polynomial to f(z) = 2%° on A(A). The error |f — p| = |Xoo| takes on its mazimum
value in 30 points of A(A), which is necessary and sufficient for the optimality of p
by Theorem 3.4. In view of Figure 4.5(c), the roots of x29 and Xag are ‘similarly
distributed’.

In Figure 4.5(b) we plot the polynomial Xa9 for the same matric A.  We have
chosen € = [Amin, Amax] = [—1, 1] so that Xa9 equals the normalized Chebyshev poly-
nomial fgg. It can be observed that the roots of a9 are very closely spaced at the
outer regions of the interval S0, see also Figure 4.5(c). Apart from the extreme eigen-
values Apin and Amayx, the polynomial Xo9 is independent of the spectrum of A. Hence
it is easy to construct Hermitian matrices where the roots of Xa9 even fail to have
the interlacing property satisfied by the Ritz(29) values: just concentrate most of the
interior eigenvalues of A around the center of the interval. The idea to overcome

this problem 1is to introduce a constraint that forces the interlacing property to be

Fulfilled.

'Later we will assume that the capacity of  is nonzero since this is sufficient for the existence

of an unique equilibrium measure for ).
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Figure 4.5:

Tllustration to Example 4.5. (a) The blue line is the graph of Y29(z). The red squares indicate the
value of Xa9 on the 40 equidistant eigenvalues of A. The magenta dots mark the roots of Xag.

(b) The graph of X29(2). The cyan dots mark the roots of X29. (¢) The roots of the Ritz(29)

polynomial xa9 (green), the polynomial Y29 (magenta) and Xa9 (cyan) in comparison.
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4 On the Convergence of Ritz Values

4.3 Potential Theoretic Tools

On the next pages we introduce some potential theoretic tools at an introductory
level as it is sufficient for our purposes. Here we follow the article [21] by Levin and

Saad. For a more detailed exposition of this wide subject we refer to Ransford [25].

The logarithmic potential due to a unit charge placed at the point ( in the
complex plane is
uc(z) == —log |z — (|,
where we set
—log 0 := +o0,
so that u; : C — RU{+o00}. Due to the superposition principle of electrostatics (see
Shadowitz [28]), the logarithmic potential caused by m particles (1, (o, ..., (n € C
each of charge 1/m is
1 1
— (g gy 1) () =~ log |z = Gille = Gl ]2 = Gl
More generally, let the charges be distributed according to a measure p € M(£2),
where M(2) denotes the set of Borel probability measures supported on €2, i.e., their
support is contained in a compact set @ C C. The support supp(u) of p is (in our
case) the smallest closed subset of C with measure 1. We define the (logarithmic)

potential U* associated with p by
Ur(2) i= = [ log |2 = ¢[ (o) (1.4)

This function U* : C — RU {400} is harmonic outside supp(u). Moreover, U* is
superharmonic in C, which means that it is lower semi-continuous and satisfies a

local supermean inequality, i.e., for each z € C there exists p > 0 such that

1 2 )
U”(z)22—/ Ur(z+ret)ydt  forall 0 <r <p.
T Jo

The energy of p is defined by
1) = [ U4 dut2)

The energy is either finite or takes the value +00. We consider the following energy

minimization problem

V(Q) == inf{I (1) : p € M(Q)}

7




4 On the Convergence of Ritz Values

and define the (logarithmic) capacity of Q by
cap(Q) := exp(—V(Q)).

If V(2) = 400, we set cap(2) := 0. Such sets are called polar. Polar sets are
thin in the sense that the ‘area’ (planar Lebesgue measure) and the ‘length’ (one-
dimensional Hausdorff measure) of any polar set are equal to zero. For example,

any countable set has capacity zero.

We assume from now on that
cap(£2) > 0.

In this case the Theorem of Frostman asserts that there exists an unique measure
po € M(Q) such that I(ug) = V(Q). For a proof of this result see Ransford [25].
The measure pgq is called equilibrium measure for ). Some important properties of

ia, U2 and the capacity will be required in what follows.

o Let 0,2 denote the outer boundary of 2 (that is, the boundary of the
unbounded component of C \ €2). Then puq is supported on 0,f2, i.e.,

supp(pa) € 0x002.

e Since M(059) C M(R) and pugq is unique, the above inclusion implies

cap(Q2) = cap(9-12).

e For all z € C there holds
Ure(z) <V(Q)

with equality holding quasi-everywhere on €2; that is, except possibly for a set

of capacity zero. There holds
Ure(z) =V (Q) = —logcap(?)  quasi-everywhere on .

On the other hand, if the potential of some p € M(Q) is constant quasi-
everywhere on ) and () < +o00, then p = pg.
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03
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Density of pg
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Potential Ute

Figure 4.6: Density and potential U#2 of the equilibrium measure puq for the L-shaped domain.

4.4 The Theory of Beckermann and Kuijlaars 1l

In this section the potential theory comes in. Given a monic polynomial p(z) =
(z — 2z1)(z — z2) -+ - (2 — zm) of degree m, we define the associated normalized zero

counting measure
m
1
= i 20
=1

where ¢, denotes the unit Dirac measure at z € C, i.e.,

62(5):{(1)’22? for all § C C.
y )

The discrete measure v, assigns mass 1/m to each root of p and roots are counted

by multiplicity. From the definition (4.4) of the potential it is easy to see that

Ur(z) = —/10g|z—§\d1/p(§)
= —%;log\z—zil

1 m
- ——1 —z
mogil |l|z 2l

1
- ——]
—log Ip(2)],

so that there is an immediate connection between the absolute value of a monic

polynomial and the potential of its associated normalized zero counting measure.
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Consequently, the minimizing problem (4.3) can be reformulated equivalently as

L 1 «
Maximize min U* among measures p of the form y = — E -
z€ m
i=1

The mass points of the maximizing measure of this problem are then exactly the
roots of the minimizing polynomial X,, from problem (4.3). The advantage of mea-
sures in contrast to roots of polynomials is that measures need not be discrete. In

the limit m — +o0o we ignore the fact that p is discrete. This leads to

Maximize mig U* among all probability measures u. (4.5)
ze

A maximizer of this problem does not always exist. To overcome this problem
we assume that cap(€2) > 0. Then by Frostman’s Theorem there exists a unique
equilibrium measure uq for 2. Moreover, we assume that €2 is regular in the sense
that

Ure(z) < V(Q) (4.6)

with equality holding for all z € Q (not only quasi-everywhere!).

Now we show that pq is a maximizer of (4.5): Assume this is not the case and
that there exists a probability measure fi such that U# > V() on €. Integrating
this inequality with respect to ugq,

V(@) < [ U7z dun(e) = = [ [ tog 2 = ] diC)dn(o)

and, using Fubini’s Theorem to interchange the order of integration, we obtain
V(Q) < [Uredj. But this is a contradiction to (4.6) because fi is a probability

measure.

If Q has nonzero capacity but is not regular, we may still determine the equilib-

rium measure ji for 2 as the minimizer of the energy problem

Minimize the energy /U“(z) du(z) among pu € M(9Q). (4.7)

Problems arise because the maximizer of (4.5) may not be uniquely determined.
However, in many important cases it is unique (and therefore coincides with pg),
for example if € is a union of curves with simply connected complement (see Kuij-
laars [18, p. 13]). This includes also real intervals, which is sufficient for the analysis

of Hermitian matrices.
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4 On the Convergence of Ritz Values

The Hermitian Case
Let A € CV*Y be a Hermitian matrix with (real) eigenvalues
Amin = A1 S A2 <0 S AN =0 Apae
Moreover, we denote the Ritz(m) values of A by
0 <O < <.

Actually, due to Theorem 2.31, the inequalities in the last string are even strict.

We define the following normalized counting measures (see Kuijlaars [18, p. 10])

on(S) = %Z 0x.(S) and jin () = % Z 59,(9).

We restrict 0, to the Borel sets of R, so that ox and py,, are Borel measures.

Definition 4.6. The distribution function F, : R — R, of a positive Borel

measure v with support in R is
Fy() = v ((~oc,2]).

Given two such measures v1,v5. We say vy is smaller or equal (in the sense of

inequality of measures) than vy, if

F, (z)<F,(x)  foral x€R.

We denote this by vy < vs.

Note that

o (S) = #{ eigenvalues in S } and  pixm(S) = #{ Ritz(m) values in S }

N m

By taking into account Corollary 2.32, we obtain
MmN m((—00,2]) < Noy((—o0,z])  forall z € R,

or, equivalently, in our new notation

mpnm < Noy. (GP1)
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(GP1) is a guiding principle for the distribution of the Ritz(m) values. It serves
as an upper constraint on the number of Ritz values. The intuition behind it is that
it would be a ‘waste of resources’ to have more Ritz values than eigenvalues in some

region (see Kuijlaars [18, p. 15]).

Now we let N — +o00. This is reasonable because the matrix A is of very large
dimension. One may think of a sequence of matrices (Ay)n>1, where the eigenvalue
distributions of the matrices Ay tend (in a weak sense, see below) to some limit
distribution ¢ supported on €2. If, for example, the matrices Ay arise from the
dicretization of a partial differential equation (PDE), where N is determined by
the discretization mesh size, the eigenvalues will follow some distribution which is
related to the properties of the PDE (Kuijlaars [18, pp. 6].) To formalize this, we

introduce the notion of weak*-convergence.

Definition 4.7. By C(£2) we denote the set of continuous functions f : Q — R.

A sequence (v,),,5, in M(Q) is weak*-convergent to v € M(Q), if

/fdun—>/fdl/ for all f e C(Q).
We write v, — v.

Assumption III. We assume that on — o, where o is some Borel probability

measure with supp (o) = €.

For a given real interval K it can be observed, that for a particular index m the
number of Ritz(m) values in K is directly proportional to N if the eigenvalues of
the matrices Ay are samples (in the sense of statistics) of one fixed distribution.

We want to give an example to make this clear. See also Kuijlaars [18, pp. 8-9].

Example 4.8. Let Ay € CV*N have N equidistant eigenvalues in [0,1], namely
071/(N_1)72/(N_1)77<N_2)/(N_1>71
By this we have

N
1
on(8) = 5 D i-n/v-n(S).
=1

For N — 400 this measure tends, in the weak*-sense, to the uniform distribution

on the interval [0,1], i.e., on — o, where o(S) denotes the Lebesque measure of

SA0,1].
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Now we consider a fixed interval K. It can be observed, that if we increase N —

say, by a factor a > 1 — then pion.am(K) =~ unm(K). In the limit (weak*-sense), the

measure [y, depends on the ratio m/N =:t € (0,1) only. Thus, we may denote
the limit measure by pu; and make the following assumption:
Assumption IV.
pney = pe as N — +oo
for some Borel probability measure ;.
1r |
0.8 ____
@ 06 — =
w04t —___ N =10
___ N =20 *
< N =80
02l R 4ratio-t
o—:
-0.2 0 0.2 0.‘4 0.6 0.8 1 1.2
Figure 4.7:
Here we plot the distribution functions of jn:n for N = 10,20, 80,400 and ¢ = 0.5. The matrix
Ay € CV*N has N equidistant eigenvalues in the interval [0,1] and b = [1,1,...,1]T.
We note that (GP1) can now be rewritten as
m Y
N HNm <on. (GP1)
By taking N — +o0 and setting ¢ :== m/N we obtain
(19
Finally, together with (4.7), we are led to the constrained energy problem
(¢ minimizes /U“(z) du(z) among u € M(Q) with tu < o. (CEP)
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We say ; is the constrained equilibrium measure to (CEP). It can be shown that p
exists and is uniquely determined if o has a continuous and real-valued logarithmic
potential U?. This is a smoothness condition on o. It will be satisfied, for example,
if o has a density with respect to Lebesgue measure which is bounded, or which has
power-type singularities near end-points. On the other hand, o cannot have mass

points, since the logarithmic potential would be infinite there.

It is clear that if tug < o, then the equilibrium measure ugq also solves (CEP),
ie., py = pg. As for the equilibrium measure there is also a characterizing property

in terms of the potential. We define the set

Fy := supp(o — tpu),

which we call the free region. This is the set where the upper constraint (4.8) is not
active. Under the above smoothness condition on o, one can show that U is equal
to a constant C; on F; and smaller than or equal to C; everywhere else. Moreover,
the only probability measure p that satisfies 0 < ¢t < o and whose potential U* is
constant on F; and smaller everywhere else, is pi; (see Helsen, Van Barel [15, p. 3]).
On the complement

St =0 \ Ft
the measures o and tu; agree. This is what we call the saturated region.

In our context, (CEP) has the following interpretation: Let ¢ € (0,1) and
A € CN*N be a Hermitian matrix (N large). Moreover, let 2 be a reasonable ap-
proximation to the spectrum of A, for example Q := [Apin, Amax]- Then the Ritz(tN)
values of A are distributed according to u, i.e., they are distributed according to the
equilibrium measure for €2 under the constraint that there should not be more Ritz
values than eigenvalues in some region. In the saturated region .S; this constraint is
active, i.e., the number of Ritz values is limited by (4.8). This is the region where
the Ritz(tN) values have converged (see Kuijlaars [18, p. 16-17]).

4.5 Examples to the Constrained Energy Problem

The determination of j; is a non-trivial problem in general. For special eigenvalue

distributions o it can be calculated explicitly (cf. Kuijlaars [18, p. 17-19]). In other
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cases, some properties of y; can be derived without being able to obtain an explicit
solution. Hence it would be interesting to obtain a numerical approximation. This
is what we do on the next pages. To solve the constrained energy problem we have
used an algorithm by Helsen and Van Barel [15]. This algorithm computes g if the

constraint ¢ is given by a piecewise linear density function f7(z), = € R.

Example 4.9. Let A € RV*N be a diagonal matriz with N = 100 equidistant eigen-
values in the interval [0,1] and b = [1,1,...,1]T. Figure 4.8(a) shows, for which
index m an eigenvalue X € A(A) is found by a Ritz value. We plot a black dot at
some eigenvalue X and index m, if for every m > m there exists a Ritz(m) value
within distance tol:=1073 to X\. In (b) one can see the density of the measure o
(blue), which corresponds to the evenly distributed eigenvalues of A, and the asso-
ciated potential U’ (red). We computed the constrained equilibrium measure i, for
t =04 and t = 0.7. The resulting densities of u; are shown in (c) and (d) as a
green line, as well as the associated potentials UM (red). The saturated regions Sy
and the free regions Fy are shown below (light green and magenta). Note that S; is
exactly the region where tu, and o agree (in our case, the density of y; is constant
1/t there), whereas the potential UM is constant on the free region Fy. In (e) we
plot again the converged Ritz(m) values (black dots), and add the saturated regions
Sy (light green), where t = m/N. We observe, that the saturated regions indicate

very well the region where the eigenvalues of A have been found by Ritz values.

Example 4.10. The matriz A € RN*YN has N = 100 eigenvalues, which are dis-
tributed in the following way: 50 equidistant eigenvalues lie in the interval [0,0.5]
and 50 equidistant eigenvalues in [0.73,1]. See also Figure 4.9(a) and (b). In (c)
and (d) we plot the density and potential of the constrained equilibrium measure
fort=0.4 and t = 0.7. The saturated regions S; are a good indicator for the region

where the eigenvalues of A have been found by Ritz values, see (e).

Example 4.11. This example corresponds to Figure 4.10. Here the matriz A is
of dimension N = 200. Ten of its eigenvalues are clustered at the right end of the
interval [0, 1] and the others follow a random normal distribution with mean 1/3 and
standard deviation 1/9. As above, the saturated regions Sy are a good predictor for
the region where the Ritz values have converged. For example, we may read off from
(e) that all the eigenvalues in the cluster at the right end of the interval are found

fort =0.2, i.e., after 40 iterations of the Lanczos process.
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(a)

Eigenvalues of A and converged Ritz values, N = 100
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Figure 4.8: Convergence of Ritz values.
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Figure 4.9: Convergence of Ritz values.
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Figure 4.10: Convergence of Ritz values.
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4.6 Fast Numerical Evaluation of Potentials in 2D

Let the measure p € M(Q), Q C R? have a density function f*(x,y), i.e.,

u(S) = //f”(fc,y) dzdy

for all Borel sets S C R2.

The associated logarithmic potential U* at a point (s,t) is
Ur(s,t) == [ [ og .47~ [l (2. ) oy
We assume that f* is of the form

fu(may) = 041f1($,y) + OéQfg(!L‘,ZJ) +--ot anfn(xay)

and evaluate U* at given node points (z1,v1), (z2,92),- - -, (Tm, Ym). Then for i =
1,2,...,m we have
) = = [ [tog ol = lo (o) dady
g
S (— J[1oelizul” = .14 e0) dmdy)aj,
]:1 N - J/
::Pi,j

and in matrix-vector notation

Po = u.

The j-th column of the matrix P € R™*" contains the values of the potential U*
evaluated at the points (z;,v;) for i = 1,2,...,m, where p has the density func-
tion f;. The straightforward determination of P is very time-consuming since it
involves the numerical evaluation of mn integrals. However, we can overcome this
problem by choosing the densities f; such that the generated potentials are invariant
under certain rotations. In what follows, we present a method that allows to assem-
ble P for arbitrary domains without evaluating an integral if only the potential of a
reference density function f is given in sufficiently many Gaussian points (that are

the points (z;,y;) where both x; and y; are integers).

We start with the node points (z;,y;) (i = 1,2,...,m) which are placed equidis-

tantly according to a square grid with mesh size h. On this grid we introduce a
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reqular alternating triangulation, as shown in Figure 4.11 for the L-shaped domain.?

We may divide the node points into two classes.

e Type A: a point (z;,y;) is adjacent to 8 triangles (see the red dots in
Figure 4.11), the square region filled by these triangles is denoted by @,

e Type B: a point (z;,y;) is adjacent to exactly 4 triangles (see the green dots),
the (rotated) square region filled by these triangles is denoted by @j.

(z5,95)

In

A
(mkayk)

—
h

Figure 4.11: Constructing a piecewise linear density on the L-shaped domain.

Note that we do not have to place the nodes (x;,y;) inside the domain Q. How-
ever, in the sequel we shall set the density outside €2 and on its boundary equal to
zero, so that outlying points will become superfluous. We define m piecewise linear
density functions f; in the following way: Given a reference density function f(u,v)

with support R :=[—1,1] x [-1,1],
min{l — |ul,1 — |v|}, (u,v) € R;
fu,v) = .
0, otherwise.

The image of f describes a square pyramid centered at 0 with height 1 and side-
length 2 (see Figure 4.12). By U(u,v) we denote the potential generated by this
density.

If (z;,y;) is a point of Type A, we define

weo-[21][1-12)

2 Actually, this triangulation is not needed in the implementation of this method.

90



4 On the Convergence of Ritz Values

-0

4refdensity

Figure 4.12:
Reference density f(u,v) (yellow), certain level curves of the corresponding potential U(u,v)

(blue lines) and the Gaussian points (grey dots).

®, is a bijective linear map on R? that maps R onto Q). By <I>j’1 we denote its inverse

map. We set
filw,y) = f(@7 (2, y)).
The image of f; describes a square pyramid centered at z; with height 1 and side-
length 2h.
If (z;,y;) is a point of Type B, we set
z; ]
Yj

EIVDJ-(u,v) ::1 [ h h]

(%
+

2|1 —-h h )

and
fj(xay) = f(&);l(l»’y))

The image of f; describes a square pyramid centered at (z;,y;) with height 1 and
side-length v/2h that is rotated by the angle —m /2.

By the definition of ®; and ZI;j it is obvious that each node point (x;,y;) is the

image of a Gaussian point. In other words,

CIDj_l(xi,yi) and <I>j_1(:p,~, y;) are Gaussian points for ¢, =1,2,...,m.
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Now we evaluate the potential U’ generated by a density f; at the node (x;, ;).
First we assume that (z;,y;) is of Type A.

Ui = = [ [0 llesu)® = o.u1"]| 1o,y dady
= [ [ g s "~ G| o) ey
5 (%)
_ —//logH[mi,yi]T (u, 0)"]| f5(®;(u, v))| det(P;(u, v))| dudv
_ //1ogH s — )T — B, )| (s 0) |2 dudo
_ _// log (1 ||[z: — 3. — ;)7 /R — (w,0)7) f(u, v)h? dudo
= —// (log h +log || ;" (i, yi) — (w,v)"||) f(u, v)h? dudv.

In the third line we used the change of variables rule of integral calculus and in the

fourth line we applied the definition of ®; and f;. Finally, we have
) 4 _
Uz, y:) = _ghz log h 4+ h*U ((I)j l(xiayi)) .

Note that U’ (z;,y;) = P, ; and its evaluation involves the computation of U in
a Gaussian point. Another remarkable fact is that U is independent of A, the

discretization nodes (z;,y;) and the domain €.

If (z;,y;) is of Type B, a similar formula can be derived. There holds

% + %hQU (&3;1(331, yl)> .

As above, we have to evaluate U in a Gaussian point and U is independent of h, the

, 4
Py =Uw,y:) = —ahQ log

discretization nodes (x;, y;) and the domain 2. Therefore we will compute the values
of U just once in sufficiently many Gaussian points and store them in a matrix S,

which can be reused for each computation.

The assembly of the matrix P reduces to a look-up of some values in S and

rescaling them using the above formulae depending on the node-type. Moreover, we
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can exploit the 8-fold symmetry of the potential U:

Ulz,y) = Ulz,—y) =U(-z,y) =U(-z,—y)
= U(_yv —JZ) - U(ya —CL’) - U(—y,l’) - U(y,l’)

Hence we will only evaluate U in sufficiently many Gaussian points in the first octant

of the plane and store S as a triangular matrix:

U(0,0)
U(1,0) U(1,1)
U(2,0) U(2,1) U(2,2)

The size of S that is necessary to carry out a computation depends on the mesh size
h and the diameter of 2.

The complete implementation of this method can be found on the CD-ROM. ~O-
4computeP

4.7 Outlook

With the above method for the fast evaluation of potentials associated with piecewise
linear densities it is possible to solve the constrained energy problem (CEP) in
the complex plane very efficiently. An extension of the 1D-algorithm by Helsen,
Van Barel [15] has been obtained recently by M. Eiermann and the author. Even
though for an arbitrary normal matrix A there is no interlacing property of the Ritz
values (which ultimately led to the constraint in the Hermitian case), it still seems

reasonable to assume that the number of Ritz values in a half-plane
S(x +1y) := (—o0, z] x i(—00,y]

does not exceed the number of eigenvalues of A in S for all z = x + 1y. This would
be a ‘waste of resources’ otherwise. Under this assumption (which itself warrants
closer investigation), the theory on the convergence of Ritz values by Beckermann
and Kuijlaars (see [1, 18, 19]) may be carried over to non-Hermitian normal matrices.

First numerical tests have been performed and are quite promising.
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Example 4.12. In Figure 4.13 we consider a normal matric A € CN*N, where
N = 300. The eigenvalues of A are evenly distributed in the L-shaped domain, i.e.,
the measure o has constant density there; see the blue sheet in (a). In (b) we plot
the associated potential U°. In (c¢) and (d) we show the density of the constrained
equilitbrium measure p; and the associated potential UM for t = 0.8. The saturated
region Sy (light green) is exactly the region where tu, and o agree (in our case, the
density of uy is constant there), whereas the potential UM is constant on the free
region F; (magenta). In (e) we show the converged Ritz(m) values (colored disks),
underlaid with the saturated regions S; for t = 0.2,0.4,0.6,0.8,(N — 1)/N. For
example, all eigenvalues that are found for m < 0.2N (black disks) should belong to
the black region (t = 0.2). In view of (e), the saturated regions are a good indicator

for the converged Ritz values.

Example 4.13. In Figure 4.14 we consider a normal matriz A € C390%300  The
eigenvalues all lie in the domain Q = [0,2]* \ [0.5,1.5]> C R%. The distance of the
eigenvalues in the upper left diagonal part is scaled by a factor \/2 in comparison to
the lower right part. Therefore the density of o differs by a factor 2 between both

diagonal parts.

Example 4.14. We consider a normal matriz A € C300x300,

The eigenvalues lie
wnside a circle, which is centered at —1 and has radius 1, and a triangle with vertices
{—i,2—14,241i}. The density of o differs by a factor 4/3 between both components,
cf. Figure 4.15. Again, the regions of converged Ritz values are well predicted by the

saturated regions.
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(a)

Potential U”

=300

Eigenvalues of A (blue dots) and density of o (blue sheet), N

Potential Ut fort = 0.8

)

d

(

Density of p, fort=0.8

(c)

0.4 —

03—

02"

01"

017"

02"

0.5 ~

045"

04"

035"

03"

025~

02-f"

045"

01"

005"

)

(

=300

Converged Ritz values and saturated regions S‘, N

© 0,0 0 0 0 O O 0 0 0 o0 O O o O 0 0 o°
O O O O gOg@R Ol OGO 0N OGN0, 0 O O O O
O O O g0 O O O nOmn®un®uu®mm®pn O O O 0, O O O
OB O @O O O O O O O O U@ © Nelmenyel

O

[ORNININ@OREE O O O O O O O O O OjE (CheENe]
(Ol O OO O O O O O O O O O Y@ ©Heane]
[OlNeINe O @O O O O O O O O O O UG Neage)
[OBNRNINAY © OO O O O O O O O U © Nelge]
[ eR O O O O O O O U © Heige)

O O O O O O O @ Nehge]

@0 O O O O U@ NelNel

O O O O O HoN@) NelNel
O "eOON OO OO0 O O
O ONeN e eneNe” O O O
23 0 0 o"e™e™e" o o ©O ©

0.8N

2N ... 0.4N

4N ... 0.6N

.6N ... 0.
0.8N ... N-1

0.2N

o
EEE

O eigenvalue
e m=1..

O

O 0O 0 0 0 0O 0 O O

¥ 191dey)

0.8

06F
0.4

0.2

1.8

1.6

4

1.2

0.8

0.6

0.4

02

Convergence of Ritz values.

Figure 4.13

95



4 On the Convergence of Ritz Values

Converged Ritz values and saturated regions S, N = 300
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Figure 4.14: Convergence of Ritz values.
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File List

e Folder PDF

— file diploma.pdf — this document,

— file cyprusl.pdf — presentation slides 'Matriz Functions and their

Approzimation using Krylov Subspaces’,

— file cyprus2.pdf — presentation slides 'Matriz Functions and their

Approzimation by Polynomial Methods’,

e Folder TEX
— subfolder Diploma — I¥TgX-files of this document (main file: main.tex),
— subfolder Cyprusl — IXTEX-files of cyprusl.pdf (main file: main.tex),
— subfolder Cyprus2 — IXTEX-files of cyprus2.pdf (main file: main.tex),
e Folder FIG

— file figX-Y.pdf — Figure X.Y as .pdf-file for better view,

— file figX-Y.png — Figure X.Y as .png-file for better view,

e Folder MAT

— file guirun.m — graphical user interface to run the examples,

— subfolder FILES — .m-Files for direct access (main file: rundemo.m).
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Notation

Symbol

Em

toep(;, . )
diag(---)
A(A)

Va

dy, c»
XA
Pr.A

Description
identity matrix
null matrix

m-th unit coordinate vector

Toeplitz matrix, main diagonal is underlined

(block-)diagonal matrix

spectrum of A

minimal polynomial of A

d = deg(t)4)

multiplicity of the root A in 94, ¥4
characteristic polynomial of A
interpolates f at the roots of ¥4
components of A

path, (Jordan) curve

winding number around z € C
interior of the curve I'

imaginary unit, 12 = —1

resolvent of A to ( € C

nodal polynomial (of degree m)
interpolates f at the roots of w, wy,
some arbitrary norm

spectral radius of A

m-~th Krylov subspace

L = deg(tbay)

minimal polynomial of b with respect to A
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Notation

Symbol

Prm

Description

companion matrix

2-norm of a matrix or a vector
Hessenberg matrix produced by Algorithm 2.14
Ritz(m) polynomial

interpolates f at the roots of x,,

monic polynomials of degree m

residual polynomials of degree m

m-th residual vector

m-th error vector

A-norm

uniform norm on {2

continuous functions on 2

fm converges uniformly to f

Chebyshev polynomial of degree m
normalized Chebyshev polynomial of degree m
shifted Chebyshev polynomial of degree m
(z,y) = yx, scalar product

logarithmic potential associated with p
set of Borel probability measures on 2
energy of

logarithmic capacity of €2

equilibrium measure for €2

unit Dirac measure at z € C

normalized counting measures

measure, associated with the eigenvalues
constrained equilibrium measure

free region

saturated region
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Arnoldi
approximation, 33
basis, 31
process, 29
asymptotic convergence factor, 60

best approximation
element of, 45
polynomial, 46

Borel probability measure, 77

capacity, 58, 78
Cauchy integral formula, 18
CEP, 83
CG method, 42
characteristic polynomial, 10
Chebyshev polynomial, 47
normalized, 48
shifted, 50
Chebyshev method, 51
companion matrix, 28
components, 15
compression, 31
constraint, 82
curve, 18

cyclic, 27

density function, 89
diagonalizable, 44

Dirac measure, 79
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distribution function, 81

domain, 17

energy, 77

energy problem, 80
constrained, 83

equilibrium measure, 78
constrained, 84

error minimizing method, 41

exterior, 17

Fejér points, 61
fine structure, 67
free region, 84

Galerkin breakdown, 33
Gaussian point, 89
GMRES, 41

guiding principle, 82

harmonic, 77

Hermite
basis, 15
interpolation, 11

Hessenberg matrix, 29
unreduced, 29

Horner scheme, 62

interior, 17

interlacing property, 38
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interpolation method
generalized, 62

polynomial, 44

JCF, 8
Jordan
block, 7
canonical form, 8
curve, 18
Joukowski transformation, 49

Krylov
approximation, 24
subspace, 23

Lagrange interpolation, 13
Lanczos process, 38
least squares problem
unweighted, 71
weighted, 53, 68
level curve, 58
local supermean inequality, 77

matrix function
definition of, 9
polynomial, 6
maximally convergent, 60
method of lines, 62
minimal polynomial
of a matrix, 9
of a vector, 25
minimal residual method, 41
MINRES, 41

monomial, 8

nodal polynomial, 19, 42

for a set, 59
nonderogatory, 10, 27
normal, 44

path, 17
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polar set, 78
polynomial method, 24
potential, 77

quasi-everywhere, 78

reference density, 90
regular set, 80
residual, 40
residual minimizing method, 41
residual polynomial, 40
resolvent, 18
Riemann Mapping Theorem, 58
Ritz polynomial, 34
Ritz value, 34

converged, 72

found, 69

saturated region, 84
Schwarz-Christoffel-toolbox, 62
spectral radius, 21
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