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Abstract
We answer a question of Masser by showing that for the Weierstrass

zeta function ζ corresponding to a given lattice Λ, the density of algebraic
points of absolute multiplicative height bounded by T and degree bounded
by k lying on the graph of ζ, restricted to an appropriate domain, does
not exceed c(log T )15, for an effective constant c > 0 depending on k and
on Λ. Using different methods, we also give two bounds of the same form
for the density of algebraic points of bounded height in a fixed number
field lying on the graph of ζ restricted to an appropriate subset of (0, 1).
In one case the constant c can be shown not to depend on the choice of
lattice; in the other, the exponent can be improved to 12.

Keywords: Weierstrass zeta functions, counting, irrationality
2010 Mathematics Subject Classification:
Primary: 11J72. Secondary: 03C64, 33E05.

1 Introduction
In [Mas11], Masser proves the following bound on the density of rational points
on the graph of the Riemann zeta function.

Fact 1.1 ([Mas11, Theorem, p. 2038]). There is a positive effective absolute
constant C such that, for any integer D ≥ 3, the number of rational z with 2 <
z < 3 of denominator at most D such that ζ(z) is rational also of denominator

at most D is at most C
(

logD
log logD

)2

.

In order to arrive at this statement, he in fact proves the following more
general result concerning the density of algebraic points of bounded degree.

Fact 1.2 ([Mas11, p. 2045]). There is an absolute constant c > 0 such that, for
any integers k, T ≥ 1, there are at most

c

(
k2 log 4T

log (k log 4T )

)2

different complex numbers z with
∣∣z − 5

2

∣∣ ≤ 1
2 such that [Q(z, ζ(z)) : Q] ≤ k,

H(z) ≤ T and H(ζ(z)) ≤ T , where H is the absolute non-logarithmic height.
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In the context of outlining these results, Masser states that “It may be an in-
teresting problem to prove analogues of our theorem for other natural functions.
For example the Euler gamma function Γ(z), about which we know even fewer
irrationality properties. Or the Weierstrass zeta function ζ(z) seems promising,
say with rational invariants; in spite of its differential equation we do not know a
single rational z with ζ(z) irrational. Jonathan Pila has also suggested ζ(z)

πz [for
ζ the Riemann zeta function].” The functions Γ(z) and ζ(z)

πz (for ζ the Riemann
zeta function) were analysed by the first author and Boxall in [BJ15], where re-
sults analogous to Fact 1.2 were proved for which the exponent is 3 + ε in place
of 2, although they hold for the restriction to (2,∞). Independently, Besson
adapted Masser’s methods and proved that a bound C(n) (k2 log T )2

log(k log T ) holds in the
case of Γ(z) restricted to any interval [n− 1, n] (see [Bes14]).

It is the aim of this note to address the question of the Weierstrass zeta
function, to which the methods of [BJ15] and [Bes14] do not apply. We will
provide three bounds of a similar nature using different methods, all of which
apply to Weierstrass zeta functions in general (and do not require that they
have rational invariants). Our main result (in Section 4) corresponds to Fact
1.2 above. We also obtain two bounds for the density of points in a fixed
number field on the graph of the form ζ�I , for an interval I ⊆ R. In all cases
the bound has the form c(log T )γ , but the value of γ and the uniformity of the
constant c differ in each case. (In all cases an effective constant c can be found.)
In our main result and our first restricted case, the constant c depends both
on the lattice and on k, where k is, respectively, the maximum degree of the
points being counted or the degree of the number field. However, in our second
restricted case, a constant c can be found which depends only on k, at the cost
of a much larger exponent γ than is obtained in the other cases.

In order to state these results, we must first fix the following notation. Let
H be the absolute multiplicative height. For rational numbers, this is given by
H(ab ) = max{|a|, b}, where a, b ∈ Z, gcd(a, b) = 1 and b > 0. For algebraic
numbers β, it is given by

H(β) =

(
|a0|

d∏
i=1

max {|βi| , 1}

) 1
d

,

where mβ(Z) = a0 + a1Z + . . . + adZ
d = a0(Z − β1) · · · (Z − βd) ∈ Z[Z] is a

minimum polynomial of β with gcd(a0, . . . , ad) = 1. This agrees with the previ-
ous definition of H(x) for x rational. (For more details see [BG06, p. 16].) We
extend H to tuples of real numbers (α1, . . . , αn) by setting H((α1, . . . , αn)) :=
max1≤i≤n{H(αi)}. Then, for W ⊆ Cn, F a fixed number field of degree k and
T a positive real number, we set

W(F, T ) = {z̄ ∈ W ∩ Fn | H(z̄) ≤ T},
NF (W, T ) = #W(F, T ).

For an arbitrary degree k ∈ N, we set

W(k, T ) = {z̄ ∈ W | [Q(z̄) : Q] ≤ k,H(z̄) ≤ T},
Nk(W, T ) = #W(k, T ).
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Our three results may be stated collectively as follows. We give the definition
of a Weierstrass zeta function and all the related terminology required in Section
3.

Theorem 1.3. Let ζΛ : C \ Λ → C be the Weierstrass zeta function corre-
sponding to a fixed lattice Λ ⊆ C with generators ω1, ω2 (chosen so that |ω1| =
minω∈Λ{|ω|}, and |ω2| = minω∈Λ\Zω1

{|ω|}). Set F to be the fundamental do-
main with corners 0, ω1, ω2 and ω1 + ω2.

(i) Fix k ∈ N. There exist effectively computable numbers R (ω1, ω2) > 0 and
c (k, ω1, ω2) > 0 such that

Nk(W1, T ) ≤ c · (log T )15,

where W1 is the graph of ζΛ�∆R
, and ∆R := {z ∈ C |

∣∣z − ω1+ω2

4

∣∣ ≤ R} ⊆
F .

Now suppose that F ⊆ C is a number field of degree k ∈ N.
(ii) Let B be a compact subset of (0, 1) ∩ F \ (Λ/2). There exists an effective

constant c(k, ω1, ω2, B) > 0 such that

NF (W2, T ) ≤ c · (log T )12,

where W2 is the graph of ζΛ�B.

(iii) Set I := F ∩ R. There exists an effective constant c(k) > 0 such that

NF (W3, T ) ≤ c · (log T )41,

where W3 is the graph of ζΛ�I .

Remark. Cases (ii) and (iii) only give a non-trivial statement in the event that
F ∩ (0, 1), respectively F ∩ R, is non-empty.

In proving all three cases we shall use the fact that Weierstrass zeta functions
may be defined implicitly from certain Pfaffian functions, a property proved by
Macintyre [Mac08]. Pfaffian functions are derived from solutions to particular
triangular systems of polynomial differential equations; we shall outline the
required theory of these functions in Section 2. Then, in Section 3, we shall show
how any Weierstrass zeta function may be represented using them. The bounds
will follow in the remaining sections; we first prove the general statement (i) in
Section 4, followed by proofs of statements (ii) and (iii) of the special setting
in Section 5. Although all three results follow rather straightforwardly from
the literature, this concrete setting allows us the opportunity to compare the
different methods in each case.
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2 Pfaffian functions
Here we outline the necessary aspects of the general theory of Pfaffian functions
that we shall use in the proofs in the later sections. We follow the presentation
of [GV04].

Definition 2.1. A sequence f1, . . . , fr : U → R of analytic functions on an open
set U ⊆ Rn is said to be a Pfaffian chain of order r and degree α if there are
polynomials Pi,j ∈ R[X1, . . . , Xn+j ] of degree at most α such that

∂fj
∂xi

= Pi,j(x̄, f1(x̄), . . . , fj(x̄)) for all i = 1, . . . , r and j = 1, . . . , n.

Given such a chain, we say that a function f : U → R is Pfaffian of or-
der r and degree (α, β), with chain f1, . . . , fr, if there is a polynomial P ∈
R[X1, . . . , Xn, Y1, . . . , Yr] of degree at most β such that f(x̄) = P (x̄, f1(x̄), . . . , fr(x̄)),
for all x̄ ∈ U .

We denote by RPfaff the expansion of the real ordered field by all Pfaffian
functions f : Rn → R, for n ≥ 1.

Definition 2.2. Let g : U → R, with U ⊆ Rm, be definable in this structure.
Following [JW08], we say that g is implicitly defined by Pfaffian functions if there
exist n ≥ 1, Pfaffian functions p1, . . . , pn : Rm+n → R and definable smooth
functions g1, . . . , gn : U → R such that g1 = g and

p1(x̄, g1(x̄), . . . , gn(x̄)) = · · · = pn(x̄, g1(x̄), . . . , gn(x̄)) = 0,

det
( ∂(p1, . . . , pn)

∂(xn+1, . . . , xn+m)

)
(x̄, g1(x̄), . . . , gn(x̄)) 6= 0,

for all x̄ ∈ U . Moreover, we say that g has an implicit definition of complexity
(n, r, α, β) if the functions p1, . . . , pn have a common chain of order r, and degree
at most (α, β).

We conclude this short section with the following theorem, which is central
to the theory of Pfaffian functions and to our analysis in the subsequent sections.
It is Khovanskii’s theorem bounding the number of connected components of a
Pfaffian variety ([Kho80],[Kho91]).

Fact 2.3 (Khovanskii, see [GV04, 3.3]). Suppose that p1, . . . , pk : Rn → R are
Pfaffian functions, with a common chain of order r, and degree at most (α, β).
Then the variety V (p1, . . . , pk) = {x̄ ∈ Rn | p1(x̄) = · · · = pk(x̄) = 0} has at
most

2
r(r−1)

2 +1β(α+ 2β − 1)n−1((2n− 1)(α+ β)− 2n+ 2)r

connected components.

3 Weierstrass functions
In this section we will gather together some general theory of Weierstrass func-
tions and apply it in identifying the Pfaffian complexity of the real and imaginary
parts of Weierstrass zeta functions.
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3.1 General theory of Weierstrass functions
Let Λ be a lattice in the complex plane C. We consider it as being generated
by periods ω1 and ω2, where ω1 is an element of Λ \ {0} with smallest |ω1|,
and ω2 is an element of Λ \ Zω1 with smallest |ω2|, so |ω1| ≤ |ω2| and Λ :=
{mω1 + nω2 | m,n ∈ Z}. The Weierstrass elliptic function ℘Λ : C \ Λ → C
corresponding to Λ is defined as follows:

℘Λ(z) :=
1

z2
+

∑
06=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
.

It has poles at the points of Λ and its Laurent series expansion is given by

℘Λ(z) =
1

z2
+
g2

20
z2 +

g3

28
z4 +O(z6),

for invariants g2, g3. Moreover, it satisfies the differential equation

(℘′Λ(z))2 = gΛ(℘Λ(z)),

where gΛ(z) ∈ C[Z] is the polynomial given by 4z3 − g2z − g3. On any fun-
damental domain F (for example, we will fix F to be the parallelogram with
corners 0, ω1, ω2 and ω1 + ω2, including the lines [0, ω1] and [0, ω2]), the func-
tion ℘Λ �F : F → C has a well-defined inverse function ℘−1

Λ , which has two
branches at any point w for which gΛ(w) 6= 0. This inverse function satisfies
the Weierstrass integral of the first kind

(℘−1
Λ )(z) =

∫ z dw√
gΛ(w)

. (3.0.1)

The Weierstrass zeta function ζΛ : C \ Λ→ C corresponding to Λ may then
be defined by the following:

ζΛ(z) :=
1

z
+

∑
06=ω∈Λ

(
1

z − ω
+

1

ω
+

z

ω2

)
.

Its derivative is the negation of ℘Λ, i.e. for all z ∈ F ,

ζ ′Λ(z) = −℘Λ(z).

We may also express the relationship between ℘Λ and ζΛ in the following way:

ζΛ(z) = −GΛ(℘Λ(z)), (3.0.2)

where GΛ is given by the Weierstrass integral of the second kind

GΛ(z) =

∫ z w dw√
gΛ(w)

. (3.0.3)

For more details, see [DV73, §§43, 50].
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3.2 Implicitly defining ζΛ from Pfaffian functions
Our aim here is to provide the details of the way in which ζΛ may be implicitly
defined from Pfaffian functions. We begin by identifying C with R2 in the usual
way, so z = x+iy. For this subsection, we let the notation z̄ denote the complex
conjugate of z, for any z ∈ C. We will provide the proof of the following lemma,
which is a version of Theorems 2.4 and 3.1 of [Mac08], in which we include all
of the details required in the later sections.

Lemma 3.1. For each w ∈ C with gΛ(w) 6= 0 and each analytic branch of√
gΛ(z) on an open, simply connected neighbourhood U ⊆ C of w on which gΛ

does not vanish, the real and imaginary parts of the corresponding branches of
℘−1

Λ : U → C and GΛ : U → C are real Pfaffian functions of order 6 and degree
(9, 1). Collectively, they are real Pfaffian with order 9 and degree (9, 1).

Proof. Let us fix both w ∈ C and an analytic branch of
√
gΛ(z) on some open,

simply connected neighbourhood U of gΛ(w), so that we are considering a fixed
(corresponding) branch of each of ℘−1

Λ and GΛ on U . Macintyre proved the
statement for Re(℘−1

Λ ), Im(℘−1
Λ ) : U → R in [Mac08, 2.2, 2.4]. He also indicated

that, in order to prove it for Re(GΛ) and Im(GΛ), one follows exactly the same
argument [Mac08, 3.1]. However, we shall include the details here in order to
identify the Pfaffian chain in each case, and hence demonstrate the order and
degree, which will be used in later arguments.

We begin by considering the Cauchy-Riemann equations for ℘−1
Λ and GΛ. In

order to simplify the notation we let u := Re(℘−1
Λ ), v := Im(℘−1

Λ ), ũ := Re (GΛ)
and ṽ := Im (GΛ). Then, using identities 3.0.1 and 3.0.3, we see that

∂u

∂x
=
∂v

∂y
=

1

2

(
∂

∂z
℘−1

Λ (z) +
∂

∂z
℘−1

Λ (z)

)
=

Re(
√
gΛ(z))

|gΛ(z)|
(3.1.1)

∂u

∂y
= −∂v

∂x
= − 1

2i

(
∂

∂z
℘−1

Λ (z)− ∂

∂z
℘−1

Λ (z)

)
=

Im(
√
gΛ(z))

|gΛ(z)|
(3.1.2)

∂ũ

∂x
=
∂ṽ

∂y
=

1

2

(
∂

∂z
GΛ(z) +

∂

∂z
GΛ(z)

)
=

Re(z̄
√
gΛ(z))

|gΛ(z)|
(3.1.3)

∂ũ

∂y
= −∂ṽ

∂x
= − 1

2i

(
∂

∂z
GΛ(z)− ∂

∂z
GΛ(z)

)
=

Im(z̄
√
gΛ(z))

|gΛ(z)|
(3.1.4)

Now let us observe that the polynomial gΛ(z), as a function of the variables
x and y, can be written as

gΛ(z) = AΛ(x, y) + iBΛ(x, y), (3.1.5)

whereAΛ andBΛ are polynomials of degree 3 overQ(Re(g2), Im(g2),Re(g3), Im(g3)).
Alternatively, we may write

gΛ(z) = reiθ,

from which we observe that√
gΛ(z) = ±r 1

2 ei
θ
2 . (3.1.6)
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Combining 3.1.5 and 3.1.6, and assuming that we take the positive square root
of r =

√
A2

Λ +B2
Λ, we establish the following identities:

Re(
√
gΛ(z)) =

1√
2

√√
A2

Λ +B2
Λ +AΛ (3.1.7)

Im(
√
gΛ(z)) =

1√
2

√√
A2

Λ +B2
Λ −AΛ (3.1.8)

Re(z̄
√
gΛ(z)) =

1√
2

(
x

√√
A2

Λ +B2
Λ +AΛ + y

√√
A2

Λ +B2
Λ −AΛ

)
(3.1.9)

Im(z̄
√
gΛ(z)) =

1√
2

(
x

√√
A2

Λ +B2
Λ +AΛ − y

√√
A2

Λ +B2
Λ −AΛ

)
(3.1.10)

These would be purely formal without having already made a choice of branch of

±
√
gΛ(z), which determines the signs of

√√
A2

Λ +B2
Λ +AΛ and

√√
A2

Λ +B2
Λ −AΛ.

Now let us define the following functions on U .

f1 =
1√

A2
Λ +B2

Λ

(3.1.11)

f2 =
1√√

A2
Λ +B2

Λ +AΛ

(3.1.12)

f3 =
1√√

A2
Λ +B2

Λ −AΛ

(3.1.13)

f4 =

√√
A2

Λ +B2
Λ +AΛ (3.1.14)

f5 =

√√
A2

Λ +B2
Λ −AΛ (3.1.15)

If we also set f6 = u, then the functions f1, . . . , f6 form a Pfaffian chain. It
is easy to compute that it has degree 9. Consequently, u is Pfaffian of order 6
and degree (9, 1). The same argument applies if we set f6 to be any of v, ũ or
ṽ. This proves the first statement. Moreover, u, v, ũ and ṽ taken collectively
are Pfaffian with common chain f1, . . . , f5, u, v, ũ, ṽ, and have therefore common
order 9 and degree (9, 1).

Combining Lemma 3.1 with 3.0.2 we see the following.

Corollary 3.2. The functions Re(ζΛ) and Im(ζΛ), when restricted to a suitable
set U ⊆ F \ (Λ/2) ⊆ R2 \ Λ, may be implicitly defined by Pfaffian functions,
with complexity of definition (3, 8, 9, 1).

Proof. For the corresponding branches of ℘−1
Λ and GΛ, we may write

graph(Re(ζΛ)) = {(x, y, w) ∈ U × R | ∃t1, t2 (x− Re(℘−1
Λ )(t1, t2) = 0

∧ y − Im(℘−1
Λ )(t1, t2) = 0

∧ w + Re(GΛ)(t1, t2) = 0)}.
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By the proof of Lemma 3.1, Re(℘−1
Λ ), Im(℘−1

Λ ) and Re(GΛ) are Pfaffian functions
of common order 8 and common degree (9, 1), and it follows that the functions
featuring in the above definition are as well, giving the required complexity. An
analogous expression can be given for graph(Im(ζΛ)).

4 The general case and proof of Theorem 1.3(i)
For the remainder of this note we fix a lattice Λ, with fixed generators ω1 and
ω2 as above, and set F to be the fundamental domain with corners 0, ω1, ω2 and
ω1 + ω2.

In this setting we fix k ∈ N and make use of two results of Masser to obtain
a upper bound on Nk(W1, T ), where W1 is again the graph of ζΛ restricted to
a domain which depends on the lattice Λ, in this case the disc around the point
ω1+ω2

4 of a radius R which will be indicated shortly.
The first result we employ is the following, an immediate consequence of

[Mas11, Proposition 2].

Lemma 4.1. For any k ∈ N and any real R > 0, S > 0, T ≥ e, let f1, f2 : U →
C be complex analytic functions on an open neighbourhood U of {z ∈ C | |z| ≤
R} such that max|z|≤R {|fi(z)|} ≤ S, for i = 1, 2. If Z is a finite set of complex
numbers such that, for all z, z′ ∈ Z,

(i) (f1(z), f2(z)) ∈ X (k, T ), where X is the image of f = (f1, f2);

(ii) |z| ≤ R
2 ;

(iii) |z − z′| ≤ R
4 ;

then there exists c(k, S) > 0 such that f(Z) is contained in the zero set of some
non-zero P ∈ Z[Z1, Z2] with degree at most c · log T .

Proof. We will apply [Mas11, Proposition 2]. In order to do so, we set the
variable d there to be our k, A to be 4

R , Z to be R
2 , M to be S, H to be our

T , and the T there to be c · log T for our T . Then the statement above follows
from [Mas11, Proposition 2] if

(a) c · log T ≥
√

8k and

(b) c ≥ 142k2+16k log (S+1)
(log 2)(log T ) + 48k2

log 2 ,

for all T ≥ e. It is clear that one can choose c > 0 large enough that both of
these inequalities can be satisfied together. The fact that the algebraic curve
obtained is defined over Z follows from the proof of [Mas11, Proposition 2].

Choose a real number R > 0 such that there is an open neighbourhood U of
∆2R := {z | |z− ω1+ω2

4 | ≤ 2R} with U ⊆ F \ (Λ/2). Note that R can be chosen
effectively in terms of ω1 and ω2. We set ∆R := {z | |z − ω1+ω2

4 | ≤ R} and let
W1 be the graph of ζΛ�∆R

.
Let N ∈ N be such that we can cover ∆R with N closed discs ∆(1), . . . ,∆(N)

of radius R
8 . Let z1, . . . , zN be the corresponding centres of these discs. For

each i ∈ {1, . . . , N}, consider the functions fi,1, fi,2 : Ui → C given by

fi,1(z) = z + zi, fi,2(z) = ζΛ(z + zi),

8



where Ui is the translate U − zi. Fix T ≥ 1. Since fi,1, fi,2 are analytic on Ui,
we would like to apply Lemma 4.1 to

Zi := {z ∈ DR
8
| (fi,1, fi,2)(z) ∈ graph(ζΛ(∆i))(k, T )},

whereDR
8
denotes the closed disc of radius R8 around the origin. However, before

we do so, we explain how to find real Si > 0 such that max|z|≤R {|fi(z)|} ≤ Si,
for i = 1, 2.

In order to find such Si, it is enough to find a real S > 0 such that
maxz∈∆2R

{|z| , |ζΛ(z)|} ≤ S. It is easy to see that |ω1+ω2|
4 + 2R is a bound

on maxz∈∆2R
{|z|}. To obtain a bound on maxz∈∆2R

{|ζΛ(z)|}, we appeal to the
following theorem of Masser.

Fact 4.2 ([Mas03]). For any lattice Λ and any z ∈ C \ Λ, we have

|℘′Λ(z)| ≤ M

d(z; Λ)3
,

where d(z; Λ) is the distance of z from the lattice Λ, and M =
Γ( 1

3 )9

(2π)3·3
3
2
≈ 5.5.

We fix the notation δ := minz∈∆2R
d(z; Λ), so δ depends only on ω1, ω2. By

Fact 4.2 we then have that |℘′Λ (z)| ≤ M
δ3 .

Now, let z be a point on the boundary of ∆2R, and let C be the straight line
from ω1+ω2

4 to z. Then

℘Λ(z)− ℘Λ

(
ω1 + ω2

4

)
=

∫
C

℘′Λ(ξ)dξ

and so

|℘Λ(z)| ≤
∫
C

|℘′Λ(ξ)| dξ +

∣∣∣∣℘Λ

(
ω1 + ω2

4

)∣∣∣∣
≤ 2MR

δ3
+

∣∣∣∣℘Λ

(
ω1 + ω2

4

)∣∣∣∣ .
We also have that, for such z,

ζΛ(z)− ζΛ
(
ω1 + ω2

4

)
=

∫
C

ζ ′Λ(ξ)dξ

and consequently, since ζ ′Λ = −℘Λ,

|ζΛ(z)| ≤
∫
C

|℘Λ (ξ)| dξ +

∣∣∣∣ζΛ(ω1 + ω2

4

)∣∣∣∣
≤ 4MR2

δ3
+ 2R

∣∣∣∣℘Λ

(
ω1 + ω2

4

)∣∣∣∣+

∣∣∣∣ζΛ(ω1 + ω2

4

)∣∣∣∣ .
Therefore, if we set

S := max

{
|ω1 + ω2|

4
+ 2R,

4MR2

δ3
+ 2R

∣∣∣∣℘Λ

(
ω1 + ω2

4

)∣∣∣∣+

∣∣∣∣ζΛ(ω1 + ω2

4

)∣∣∣∣} ,
9



we have that maxz∈∆2R
{|z| , |ζΛ(z)|} ≤ S.

Applying Lemma 4.1 then to each Zi, for i ∈ {1, . . . , N}, and noting that
#Zi = #graph(ζΛ(∆(i)))(k, T ), the above calculations tell us that there is an
effective constant c0(k, ω1, ω2) such that W1(k, T ) is contained in N algebraic
curves over Z of degree at most c0 · log T .

Now we consider W1 ∩ V (Q) for an arbitrary Q ∈ Z[X,Y,W,Z] of degree
d ≤ c0 · log T . We first identify C with R2, then follow the argument of [JMT11].
Let Q̃ ∈ Z[X,Y,W,Z, T1, T2] be given by Q̃(X,Y,W,Z, T1, T2) := Q(X,Y,W,Z).
Then W1 ∩ V (Q) is given by Π(W̃1 ∩ V (Q̃)), where Π: R6 → R4 is the natural
projection map onto the first four coordinates and W̃1 is defined by

W̃1 := {(x, y, w, z, t1, t2) ∈ ∆R × R4 | x− Re(℘−1
Λ )(t1, t2) = 0

∧ y − Im(℘−1
Λ )(t1, t2) = 0

∧ w + Re(GΛ)(t1, t2) = 0

∧ z + Im(GΛ)(t1, t2) = 0}.

Since ζΛ�∆R
is transcendental, the number of points in the set W1 ∩ V (Q) is

bounded above by the number of connected components of W̃1 ∩ V (Q̃). The
latter can be computed first using Lemma 3.1, which tells us that the Pfaffian
functions defining W̃1∩V (Q̃) are of common order 9 and common degree (9, d),
where d is at most c0 · log T . Then, by Fact 2.3, there is an effective constant
c1 (k, ω1, ω2) such that the size of the intersection W1 ∩ V (Q) is bounded by
c1 · (log T )15. Consequently, we obtain the following bound:

Nk(W1, T ) ≤ N · c1 · (log T )15

≤ c2 (k, ω1, ω2) · (log T )15,

for some effective constant c2 > 0.

5 Weierstrass zeta functions on R
For this section, we fix a real number field F ⊆ C of degree k ∈ N and consider
here the two cases of Theorem 1.3 which provide an upper bound on NF (W, T ),
where W is, in each case, the graph of ζΛ restricted to an appropriate interval
within F \ (Λ/2) ∩ R.

5.1 Mild parameterization
In this case we follow the approach of [JMT11] to find a bound on NF (W2, T ),
where W2 is the graph of ζΛ�B , for some compact subinterval B of (0, 1) ∩ F \
(Λ/2). We include the details here as we wish to compute the exponent involved,
to enable comparison with the other methods, and to show that the constant
is effective. We make use of the following two definitions and subsequent fact,
a special case of [Pil10], Corollary 3.3. In order to state these, we require the
following multi-index notation: for any α = (α1, . . . , αn) ∈ Nn, we define the
modulus |α| := α1 + . . .+αn, the factorial α! := α1! · . . . ·αn! and the differential
operator

Dα :=
∂|α|

∂xα1
1 . . . ∂xαnn

.
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Definition 5.1. Let A > 0, C ≥ 0. A C∞ function φ : (0, 1)n → (0, 1) is said
to be (A,C)-mild if

|Dαφ(x̄)| ≤ α!(A|α|C)|α|

for all α ∈ Nn and all x̄ ∈ (0, 1)n. We say that a map φ : (0, 1)n → (0, 1)m is
(A,C)-mild if each of its coordinate functions is (A,C)-mild.

Definition 5.2. Let W be a subset of Rn. A parameterization of W is a finite
set S of maps φ1, . . . , φl : (0, 1)dimW → Rn such that W =

⋃
φi((0, 1)dimW). A

parameterization is said to be (A,C)-mild if each of the parameterizing maps
is (A,C)-mild.

Fact 5.3. Let W be a subset of (0, 1)n of dimension δ and suppose that there is
an (A, 0)-mild parameterization S of W. There is a constant c3(n, δ) > 0 such
that W(F, T ) is contained in a union of at most

#S · ck3 ·A(δ+1)(1+o(1))

intersections of W with algebraic curves of degree at most (k · log T )
δ

n−δ . Here
the 1 + o(1) is taken as T →∞ with absolute implied constant.

Let B be a compact interval in (0, 1)∩F\(Λ/2) and letW2 ⊆ C2 be the graph
of ζΛ�B . We let K be a Galois closure of F and note that if x+ iy, w + iz ∈ F ,
with x, y, w, z ∈ R, then x, y, w, z ∈ K. In particular, for each point (x,w + iz)
on W2(F, T ), there is a unique point (x,w) on W ′2(K,T ), the graph of the real
function Re(ζΛ �B) : B → R. Therefore, in order to bound NF (W2, T ), it is
enough to bound NK(W ′2, T ).

Now we note that the inversions z 7→ ±z±1 preserve both the complexity of
definition from Pfaffian functions and the collection of algebraic points of height
bounded by T and degree bounded by k. Therefore, let us reduce to considering
the case that Re(ζΛ(B)) is also contained in [0, 1]. The result without this
assumption may then be derived from this special case by multiplying through
by a factor of c4(B) > 0, a constant depending on the number of times ζΛ�B
takes the values −1, 0, 1, which can be computed only using B and the Pfaffian
complexity of Re(ζΛ�B).

Since ζΛ is analytic on an open set containing B, it is mild on B. Moreover,
the function Re(ζΛ�B) is mild, and this is the property that we shall use. Since it
is a mild function, it is an (A, 0)-mild parameterization of itself, where A depends
on the lattice (i.e. on the lattice generators ω1 and ω2) and can be found using
the methods of Section 4. By Fact 5.3 above, there exists an absolute constant
c3 such thatW ′2(K,T ) is contained in ck3 ·A2(1+o(1)) intersections ofW ′2 with sets
of the form {(x,w) ∈ R2 | P (x,w) = 0}, where P ∈ R[X,W ] is a polynomial of
degree at most k! · log T (the degree of K is bounded by k!).

Now let us consider such an intersection for a given polynomial P . We pro-
ceed as before, following the argument of [JMT11], and let P̃ ∈ R[X,W, T1, T2]

be given by P̃ (X,W, T1, T2) := P (X,W ). Then W ′2 ∩ V (P ) is given by Π(W̃ ′2 ∩
V (P̃ )), where Π is the projection map given above, and W̃ ′2 is defined by

W̃ ′2 := {(x,w, t1, t2) ∈ B × (0, 1)× R2 | x− Re(℘−1
Λ )(t1, t2) = 0

∧ Im(℘−1
Λ )(t1, t2) = 0

∧ w + Re(GΛ)(t1, t2) = 0}.

11



As before, since ζΛ�B is transcendental, the number of points in the setW ′2∩
V (P ) is bounded above by the number of connected components of W̃ ′2 ∩V (P̃ ).
In this case, the proof of Lemma 3.1 tells us that the Pfaffian functions defining
W̃ ′2∩V (P̃ ) are of common order 8 and common degree (9, d), where d := degP .
Then, by applying Fact 2.3, we see that the size of the intersection W ′2 ∩ V (P )
is bounded by c5 · d12, where c5 > 0 is an absolute constant. Consequently, we
obtain the following bound (using d ≤ k! · log T ):

NF (W2, T ) ≤ NK(W ′2, T ) ≤ c4 · c5 · (k! · log T )12 · ck!
3 ·A2(1+o(1))

≤ c6(k,B, ω1, ω2) · (log T )12.

5.2 Implicitly defined from Pfaffian functions
In the previous subsection the bound obtained on NF (W2, T ), where W2 is the
graph of ζΛ�B , for some compact B ⊆ (0, 1)∩F\(Λ/2), is of the form c·(log T )γ ,
where γ = 12 and the constant c depends not only on k but also on A, i.e. on
the lattice Λ.

We may, however, use a different result to obtain a bound of the same form
on NF (W3, T ), whereW3 is the graph of ζΛ�I , for I := R∩F , with the constant
c depending only on k; in other words, c does not depend on the lattice. This
is achieved at the cost of increasing the exponent γ. The result which provides
this bound is the following.

Fact 5.4 ([JT12, 4.3]). Let I be an open interval in R and φ : I → R a transcen-
dental function which is implicitly definable in RPfaff with complexity (n, r, α, β).
There are explicit constants c7(k), c8(n, r, α, β) such that, for T ≥ e,

NF (W, T ) ≤ c7 · c8 · (log T )3n+3r+8,

where W is the graph of φ.

Consider the set I \ (Λ/2), which is the union of at most two intervals.
For each such subinterval J , the function Re(ζΛ�J) is implicitly defined from
Pfaffian functions with complexity (3, 8, 9, 1), by Corollary 3.2. Hence, applying
Fact 5.4 on each subinterval, and noting that there is at most one additional
point onW3 not appearing on the graph of some ζΛ�J , we see that NF (W3, T ) ≤
c9(k) · (log T )41.
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