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THE NONCOMMUTATIVE GEOMETRY OF INNER
FORMS OF p-ADIC SPECIAL LINEAR GROUPS

ANNE-MARIE AUBERT, PAUL BAUM, ROGER PLYMEN, AND MAARTEN SOLLEVELD

ABSTRACT. Let G be any reductive p-adic group. We conjecture that every
Bernstein component in the space of irreducible smooth G-representations can
be described as a "twisted extended quotient” of the associated Bernstein torus
by the asssociated finite group. We also pose some conjectures about L-packets
and about the structure of the Schwartz algebra of G in these noncommutative
geometric terms. Ultimately, our conjectures aim to reduce the classification of
irreducible representations to that of supercuspidal representations, and similarly
for the local Langlands correspondence. These conjectures generalize earlier ver-
sions, which are only expected to hold for quasi-split groups.

We prove our conjectures for inner forms of general linear and special linear
groups over local non-archimedean fields. This relies on our earlier study of Hecke
algebras for types in these groups. We also make the relation with the local
Langlands correspondence explicit.
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INTRODUCTION

The aim of this paper is twofold. Firstly, we generalize our earlier conjecture
[ABPl [ABPS2] to all reductive p-adic groups, split or not. This is done in the
introduction and the appendices. Secondly, we prove all these conjectures for the
inner forms of general and special linear groups. In this respect the paper is a sequel

to [ABPS3, ABPSA).
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2 A.-M. AUBERT, P. BAUM, R. PLYMEN, AND M. SOLLEVELD

Let F' be a non-archimedean local field, and let G be a connected reductive al-
gebraic group over F'. We denote the space of (equivalence classes of) irreducible
smooth complex G-representations by Irr(G), and its subset of supercuspidal repre-
sentations by Irrcusp(G). For a Levi subgroup L (of a parabolic subgroup) of G we
put W(G, L) = Ng(L)/L. Let £ = L(G) be a set of representatives for the conju-
gacy classes of Levi subgroups of G. The roughest form of our conjectures asserts
that there exists a bijection

(1) 11(G) ¢ ||, _, (Weusp(D)//W(G, D))z

The right hand side is a twisted extended quotient, see Appendix[B] It means that in
the ordinary quotient Irreys,(L)/W (G, L) we replace every point w € Irreusp(L) by
the set of irreducible representations of the twisted group algebra C[W (G, L),,, i(w)]
determined by the 2-cocycle f(w). In general the map is not canonical, but the
non-canonicity is limited. This already shows an important aspect of our work:
relating, in a new and very precise way, the classification of irreducible smooth
representations to that of supercuspidal representations.

To formulate our conjectures more accurately, we need the Bernstein decomposi-
tion of the category of smooth G-representations. Let L be a Levi subgroup of G
and w € Irreysp(L). The inertial equivalence class s = [L,w]q determines a subset
Irr* (@) C Irr(G). Bernstein also attached to (L,w) a torus Ty = Irrl®«l2 (L) and
a finite group Ws, the stabilizer of T, in W (G, L). We note that Ty is isomorphic
to the quotient of the group of unramified characters X,,(L) by a finite subgroup
Xnr(L,w).

Let Irr¢emp(G) be the set of irreducible tempered G-representations (still consid-
ered up to isomorphism), and write

I, (G) = Irr* (G) N It gemp (G).

Let T5 un be the set of unitary representations in 75. It is a real compact subtorus
and

(2) Ts = Ty un x Homz (X (1), Rso).

Then T yn = Xunr(L)/Xur (L, w), where Xyny(L) is the group of unitary unramified
characters of L.

Conjecture 1. [Bijection with extended quotients]
There exist a family of 2-cocycles fj and a bijection

(3) It (G) «— (T5//Ws)s
such that:

e [t restricts to a bijection Ity (G) <— (Tsun//Ws)y, and is determined
by this restriction.

e Suppose that © € Irtiey,,(G) is mapped to [t, p| € (Tsun//Ws)y. Then Wit €
Tsun/Ws is the unitary part of the cuspidal support of m (an element of
T/ Ws), with respect to the polar decomposition .

It is already clear how should be determined by its restriction to tempered
representations. Namely, by some kind of analytic continuation, as in [ABPSI].
Together with the second bullet this already determines the Ti-coordinates of .
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Let t € T,. Define W ; as the isotropy group of ¢ in W, with respect to the
canonical action of W (G, L) on Irr(L). It is a semi-direct product

Ws,t = W(Rs,t) X %5,157

where W (R, +) is the Weyl group of a root system R, attached by Harish-Chandra
to ¢t by means of zeros of the p-function [Wal, V.2], and R, ; is the associated R-
group in Wi, see [Sill] and [ABPSI, §1]. The group W, may be viewed as the
"Weyl group” of a (possibly disconnected) group G’s,t with connected component
Gg,t the complex Lie group with Weyl group W (Rs+). The Springer correspondence
for th has been extended to the group G, in [ABPS4, §4]. For a given irreducible
representation p of W ;, we will call the pair attached to it by this extended Springer
correspondence the Springer parameter of p.

Conjecture 2. [L-packets]
Assume that a local Langlands correspondence exists for Irr*(G).

o The 2-cocycle §(t) : Wey x Wsy — C* factors through Wy /W (Rsyt) %
Ws,t/W(Rs,t) .

e The bijection is canonical up to permutations within L-packets in Irr*(G).

e Two G-representations with images [t,p] and [t',p'] belong to the same L-
packet if and only if there is a w € Wy such that wt' =t and the W(Rq,)-
representations p and w-p’' have Springer parameters with the same unipotent
class (in the complex reductive group with mazimal torus Ty, root system Rq
and "Weyl group” Ws ).

The first bullet ensures that C[W,,(t)] contains C[W (Rs )], which is necessary
for p to be alinear (i.e. not projective) representation of W(Rs). Although ply, (g,
may be reducible, all its irreducible constituents are W ;-conjugate. Therefore the
unipotent parts of their Springer parameters are in the same conjugacy class in the
indicated complex reductive group.

This conjecture implies that the intersection of Irr®(G) with the L-packet of [t, p]
is in bijection with a set of projective representations of a certain subgroup of
Wsi/W(Rs¢). This can be compared with the conjectures about R-groups and
L-packets in [Art] and [ABPSI], §5].

We expect that the 2-cocycles (t) are trivial whenever G is split. However,
h(t) does not always represent the neutral element of H?(Ws:, C*). In [ABPS4,
Example 5.6] we worked out a Bernstein component for G = GL5(D)qe (with D a
4-dimensional noncommutative division algebra over F'), for which §(¢) is not trivial.

Recall that the Harish-Chandra—Schwartz algebra S(G) has Irriem (G) as its space
of irreducible representations. Let S(G)* C S(G) be the ideal corresponding to
Irr*(G).

Conjecture 3. [Schwartz algebras]
There ezist a projective representation Vi of Xy (L,w) x Wy and a homomorphism
of topological algebras

&+ (O (Xune(L)) ® Ende (Ve)) ) s Wy — S(G)°

such that:



4 A.-M. AUBERT, P. BAUM, R. PLYMEN, AND M. SOLLEVELD

e There are canonical bijections

(4) (TS,un//Wﬁ)h — (Xunr(L)//an(va) X WS)h
e Trr ((C™(Xune (L)) @ Ende(Ve)) 54 5 W7).

o The morphism (., is spectrum preserving with respect to filtrations (see Ap-
pendix .

o The map Irr}
equals (|1).

(G) = Irr(S(G)*) — (Tsun//Ws)y induced by (& and

emp

The first bullet is true by the general principle Lemma if the family of 2-
cocycles f satisfies a mild condition. The shape of the domain of (¢, is motivated by
the Fourier transform of S(G)?, see [Mis, [Wal]. Indeed, we expect that the relation
between these two algebras is that certain parameters ¢ € R+ associated to S(G)*
are changed to 1. The second bullet is a generalization of results known for Schwartz
completions of affine Hecke algebras [Sol2]. This part of the conjecture replaces the
affine Hecke algebras appearing in earlier versions [ABP]. The new version is more
flexible because it avoids the use of asymptotic Hecke algebras.

We have already verified Conjectures [I] and 2] for principal series representations
of split reductive p-adic groups in [ABPS5]. That situation is simpler than the
general case, because all the 2-cocycles are trivial. Conjecture [3] also holds for those
representations, that is a consequence of [ABPS5, Theorems 11.2 and 15.1] and
Lemma

Our conjectures interact with the local Langlands correspondence (LLC), mainly
because elements of (T;//W;), are rather close to Langlands parameters. This was
used in [ABPSH] §16] to establish the LLC for for principal series representations of
split reductive p-adic groups (except for a few cases in which the residual character-
istic of F' is bad for G).

If one accepts that a local Langlands correspondence exists for all supercuspidal
representations of Levi subgroups of G, then ([1) can be transferred to a similar bijec-
tion for Langlands parameters (which in examples is easier to prove that itself).
In this way our conjectures help to reduce the local Langlands correspondence for
G to that for supercuspidal representations of its Levi subgroups. Conjecture (3| can
be regarded as an outline to prove a part of the LLC for G.

Let D be a central simple F-algebra with dimp(D) = d2. Then G := GL,,(D) is
an inner form of GL,,q(F') and Gt = GLy,(D)ger is an inner form of SL,,4(F). As
announced, we will prove the above conjectures for G and G*. This relies heavily on
our earlier paper [ABPS4], whose main results we recall in Section

Most of the work for the conjectures for G was already done in [ABPS4], the
remainder is contained in Theorems and and Lemmas and

Our strategy for G is based on restriction of a Bernstein component Irr*(G) to
G*, as in [ABPS4, §2.2]. This yields a finite number of Bernstein components for G¥.
The relation between the Bernstein tori for G and those for G* can be formulated
nicely in terms of extended quotients, see Section [2] and the first part of Section [4
In Section We use the Hecke algebras for Bernstein components of G* (as computed
in [ABPS4]), as well as Lusztig’s asymptotic Hecke algebras, to establish geometric
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equivalences (see Appendix between the appropriate algebras. These are used to
prove Conjecture [1| for G¥ in Theorem and Lemma

Then we invoke the LLC for G*, known from [HiSa] and [ABPS3], to compare the
L-packets with these twisted extended quotients. Conjecture [2| for G* is established
in Lemma 5.5

Finally, in Section |§| we turn to the Schwartz algebras for G and G*. The Hecke
algebras for Bernstein components of G and G* are closely related to affine Hecke
algebras. Likewise, the Schwartz algebras for Bernstein components of G and G*
turn out to be isomorphic to some algebras derived from Schwartz completions of
affine Hecke algebras [DeOp]. The link is established in Subsection by comparing
the Fourier transforms of these algebras. Then we apply some techniques [Sol2] for
affine Hecke algebras and their Schwartz completions to prove Conjecture [3| for G*

(Corollary [6.7)).

1. PRELIMINARIES

We start with some generalities, to fix the notations. Then we recall the main
results of [ABPS4].

Let G be a connected reductive group over a local non-archimedean field F' of
residual characteristic p. All our representations are tacitly assumed to be smooth
and over the complex numbers. We write Rep(G) for the category of such G-
representations and Irr(G) for the collection of isomorphism classes of irreducible
representations therein.

Let P be a parabolic subgroup of G with Levi factor L. The “Weyl” group of L
is W(G,L) = Ng(L)/L. Tt acts on equivalence classes of L-representations m by

(w-m)(g) = m(wgw™"),
where w € Ng(L) is a chosen representative for w € W(G, L). We write
We={weW(G,L)|w -m=n7}.
Let w be an irreducible supercuspidal L-representation. The inertial equivalence
class s = [L,w]q gives rise to a category of smooth G-representations Rep®(G) and
a subset Irr®(G) C Irr(G). Write Xy, (L) for the group of unramified characters
L — C*. Then Irr*(G) consists of all irreducible irreducible constituents of the
parabolically induced representations I§(w ® x) with x € Xy (L). We note that 1§
always means normalized, smooth parabolic induction from L via P to G.
The set Irr*~ (L) with s;, = [L,w]r, can be described explicitly, namely by
(5) Xnr(Lyw) ={x € Xpr(L) : w® x 2w},
(6) It (L) = {w® x : x € Xa(L)/Xnr(L,w)}.
Several objects are attached to the Bernstein component Irr®(G) of Irr(G) [BeDe].
Firstly, there is the torus
T := an(L)/an(L7 w)a
which is homeomorphic to Irr®Z(L). Secondly, we have the groups
Ne(sp) ={g € Ng(L) | g-w € Irr** (L)}
={9€Na(L) | g-[L,w]L = [L,w]L},
Wi :={w e W(G,L) |w-w € Irr®* (L)} = Ng(s1)/L.
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Of course T; and W, are only determined up to isomorphism by s, actually they
depend on sy. To cope with this, we tacitly assume that s;, is known when talking
about s.

The choice of w € Irr® (L) fixes a bijection Ty — Irr®* (L), and via this bijection
the action of Wy on Irr®L (L) is transferred to Ts. The finite group Wy can be thought
of as the “Weyl group” of s, although in general it is not generated by reflections.

Let C2°(G) be the vector space of compactly supported locally constant functions
G — C. The choice of a Haar measure on G determines a convolution product *
on C°(@G). The algebra (C°(G), *) is known as the Hecke algebra H(G). There is
an equivalence between Rep(G) and the category Mod(H(G)) of H(G)-modules V
such that H(G) -V = V. We denote the collection of inertial equivalence classes for
G by B(G). The Bernstein decomposition

Rep(G) = [ ] _yy s REP(G)

s€B(G)

induces a factorization in two-sided ideals

H(G) = Hﬁe%(G) H(G).

From now on we discuss things that are specific for G = GL,,(D), where D is a
central simple F-algebra. We write dimp(D) = d?. Every Levi subgroup L of G
is isomorphic to [[; GL, (D) for some m; € N with » ,m; = m. Hence every
irreducible L-representation w can be written as ®;@; with @; € Irr(GLy, (D)).
Then w is supercuspidal if and only if every w; is so. As above, we assume that this
is the case. Replacing (L,w) by an inertially equivalent pair allows us to make the
following simplifying assumptions:

Condition 1.1.

L] Zf m; = T?Lj and [GLm]. (D)WDAGLT;IJ.(D) = [GLmj (D)a‘:}j]GLmj(D): then w; =
Wj;

cw=1]], wi®ei, such that w; and w; are not inertially equivalent if © # j;

o L = I[, Ly = [, GLw, (D)%, embedded diagonally in GL,,(D) such that
factors L; with the same (m;, e;) are in subsequent positions;

e as representatives for the elements of W (G, L) we take permutation matrices;

e P is the parabolic subgroup of G generated by L and the upper triangular
matrices;

o if m; = mj,e; = ej and w; is isomorphic to w; ® 7y for some character v of
GLp, (D), then w; = wj @ yx for some x € Xn(GLp, (D)).

Most of the time we will not need the conditions for stating the results, but they
are useful in many proofs. Under Conditions we define

..
(7) M; = ZG(H#i L) = GLp,e, (D),
then []; M; is a Levi subgroup of G containing L. For s = [L,w]g we have

(8) We = Ny (D)/L = [T Nar (L5) /L5 = ]| S,
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a direct product of symmetric groups. Writing s; = [L;, w;]r,, the torus associated
to s becomes

(9) T.=[[. @) =1[. T
(10) Tﬁi = an(Li)/an(Li, wi).

By our choice of representatives for W (G, L), wP is stable under Ny, (L") /LS =2
Se,- If Ry C X*(]]; Ti) denotes the coroot system of (M;, L;"), we can identify S,
with W(R;). The action of Wy on T; is just permuting coordinates in the standard

way and
(11) We = W,,.

The reduced norm map D — F gives rise to a group homomorphism Nrd : G — F*.
We denote its kernel by G*, so G¥ is also the derived group of G. For subgroups
H C G we write
H*= HnNG"

In [ABPS4] we determined the shape of the Hecke algebras associated to types for
G*, starting with those for G. As an intermediate step, we did this for the group
G*Z(@), where Z(G) = F* denotes the centre of G. The advantage is that the
comparison between Gf and G*Z(G) is easy, while G!Z(G) C G can be treated as
an extension of finite index. In fact it is a subgroup of finite if p does not divide md.
In case p does divide md, the quotient G/G*Z(G) is compact and similar techniques
can be applied.

For an inertial equivalence class s = [L,w]qg we define Irr*(G*) as the set of irre-
ducible Gf-representations that are subquotients of Resgu (m) for some 7 € Irr*(G),
and Rep®(G*) as the collection of Gf-representations all whose irreducible subquo-
tients lie in Irr®(G*). We want to investigate the category Rep®(G#). It is a product
of finitely many Bernstein blocks for G* (see [ABPS4]):

(12) Rep®(G¥) = [, Rep”(G¥).

We note that the Bernstein components Irrtﬂ(Gﬁ) which are subordinate to one s

(i.e., such that t* < s) form precisely one class of L-indistinguishable components:

every L-packet for G* which intersects one of them intersects them all.
Analogously we define Rep®(G*Z(G)), and we obtain

Rep*(GFZ(G)) = ], Rep(G*Z(G)),

th<s

where the t are inertial equivalence classes for G*Z(G).
The restriction of t to G¥ is a single inertial equivalence class ¢!, and by [ABPS4]
(43)]:

(13) Ty = T/ Xoe (Nd(Z(G)).
For m € Irr(G) we put
XY r) :={y e r(G/G*) : y@ 7 = 7}

The same notation will be used for representations of parabolic subgroups of G which
admit a central character. For every v € X% (7) there exists a nonzero intertwining
operator

(14) I(y,n) € Homg(r ® v, 7) = Homg(m, 7 ® 7~ 1),
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which is unique up to a scalar. As G* C ker(y), I(7,m) can also be considered as
an element of Endgs (7). As such, these operators determine a 2-cocycle k. by

(15) I(y,m) o I(Y ) = tin (7,7 ) I (v, 7).
By [HiSa, Lemma 2.4] they span the G*-intertwining algebra of m:
(16) End s (Resguﬂ) >~ C[XY (1), kx),

where the right hand side denotes the twisted group algebra of X% (7). Furthermore
by [HiSa), Corollary 2.10]

(17) ResiGym = D Home(x6 () ) (P 7) @ p
p€Err(C[X G (7),kx])

as representations of G* x X (r).
The analogous groups for s =

(L,
XE(s) i= {7 € In(L/LPZ(G)) 70w € (Lol ),
XC(s) = {7 e r(G/G*Z(@)) : v ® [E(w) € [L,w]g}-
The role of the group W; for Rep(GF)* is played by
Wi={weW(G,L)|3yelr(L/L*Z(G)) such that w(y ®w) € [L,w]}
By [ABPS4, Lemma 2.3]

]G and 51, = [L,w]L are

(18) WE =W, xR, where R = Wn Ng(PN H M;)/
while [ABPS4, Lemma 2.4.d] says that
(19) XC(s)/ X (s) = nRE.

Now we collect some notations which are needed specifically to state the final results
of [ABPSA].

From [SéSt1] we know that there exists a simple type (K, ) for [L,w]ys, and in
[SéSt2] it was shown to admit a G-cover (Kg, Ag). We denote the associated central
idempotent of H(K) by ey, and similarly for other irreducible representations. Then
Vi = exV.

For the restriction process we need an idempotent that is invariant under X (s).
To that end we replace Ag by the sum of the representations y® \g with v € X% (s),
which we call pug. Of course

VM = Z"/EXG(S) 6»\/®)\Vw

is reducible as a representation of K.

In [ABPS4, (128)] we defined a finite dimensional subspace V,, C V,, which is stable
under the operators I(v,w) with v € XT(s). In [ABPS4, (91)] we constructed an
idempotent e, € H(G) which is supported on a compact open subgroup K¢ C G.
It follows from the work of Sécherre and Stevens [SéSt2] that e, H(G)e,,, is Morita
equivalent with H(G)®. By [Séc| and [ABPS4l Proposition 3.15] there is an affine
Hecke algebra H (T, W, gs) such that

(20) eucMH(G)eyus = H(Ts, Ws, ¢s) ® Endce(V, ®c CRY).
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The groups X%(s) and Xy (G) act on e, H(G)e,,, by pointwise multiplication of
functions G — C with characters of G. However, for technical reasons we use the
action

(21) a,(Ng) =79 flg)  feH(G),yelr(G/GF),g€q.
The action on the right hand side of preserves the tensor factors, and on
Endc(C9RY) it is the natural action of X%(s)/ XL (s) =2 RE.

Although e, looks like the idempotent of a type, it is not clear whether it is
one, because the associated Kg-representation is reducible and no more suitable
compact subgroup of GG is in sight. Let €py (respectively e“GﬁZ@) be the restriction

of e, : G — C to G* (vesp. G*Z(G)). We normalize the Haar measure on G* (resp.
G*Z(@)) such that it becomes an idempotent in H(G¥) (resp. H(G*Z(G))).

In [ABPS4, Lemma 3.3] we can constructed a certain finite set [L/H )], consisting
of representatives for a normal subgroup H) C L. Consider the elements

t -1
A = ZaE[L/HA] ae a0 € H(G),

i — -1 #
(22) e = Zaewm Aepy, 00 € HIGPZ(Q)),

Actzc)

t -1 f
O = ZGE[L/HA] aeu a0 € H(GY).

It follows from [ABPS4, Lemma 3.12] that they are again idempotent. Notice that
i

€\ detects the same category of G-representations as e, namely Rep®(G). In the
proof of [ABPS4l, Proposition 3.15] we established that extends to an isomor-
phism

(28) ¢ _H(G)EL = H(T,, Way gs) ® Ende(Vy, ©c CRE) @ Mip,p, ().
Theorem 1.2. [ABPS4, Theorem 4.13]
(a) 7—[(GﬁZ(G))5 18 Morita equivalent with its subalgebra

eicﬁ H(GEZ(G))eéh o YH(GFZ(G)) -1

= @ aey, aey a
Z(G) Gtz(a) a€[L/H)] GFZ(G) GhZ(G)

(b) Each of the algebras aeuGﬁZ(G)a*l’;'-[(GﬁZ(G))aeucﬁzw)cf1 is isomorphic to

L
(24) (H(Te, Wa ge) @ Ende (V)™ 0 92

(c) Under these isomorphisms the action of Xu(G) on H(G*Z(G))® becomes the
action of Xur(L/LF) =2 X1 (G) on via translations on Ts.

To describe the Hecke algebras for G¥ in similar terms, let 7 f be the restriction
of T, to L%, that is,

(25) Tgu = Ts/an(G) = Ts/an(L/Lﬁ) = an(Lﬁ)/an(va),

where Xy, (L/LF) denotes the group of unramified characters of L which are trivial
on L. With this torus we build an affine Hecke algebra ”H(Tf, W, qs)-

Theorem 1.3. [ABPS4, Theorem 4.15]
(a) H(G*)® is Morita equivalent with

# g -1 -1
e)‘GﬁH(Gﬂ)e’\Gii o 69aE[L/H,\} gz H(Gﬁ)aeﬂaua
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-1 1 .. .
(b) Each of the algebras ae, ,a H(Gﬁ)aeucﬁa is isomorphic to

XL
(H(TE, We, gs) ® Ende (V)" © x 922,
Let us describe the above actions of the group X%(s) explicitly. The action on
(26) o H(GZ(G)) ™ = H(T,, Ws, g5) ® Ende(V,,).

ae“GﬁZ(G) ae”GﬁZ(G)

does not depend on a € [L/H,] because
v-(afa ) =a(y- Hlat fEH(G),
For another way to view X%(s), we start with
Stab(s) := {(w,v) € Ng(L)/L x Irr(L/L* Z(G)) | w(y ® w) € [L,w]L}.
The normal subgroup W has a complement:
Stab(s) = Stab(s, P N Hi M;) x Wy := Stab(s) " x W,
Stab(s)™ := {(w,v) € Ng(P N Hz M;)/L x Irr(L/L*Z(G)) | w(y ® w) € [L,w]}

By [ABPS4, Lemma 2.4.a] projection of Stab(s) on the second coordinate gives an
isomorphism

(27) XC%(s) = Stab(s) /W, = Stab(s) "
In particular
(28) Stab(s)" /XL (s) = 91t

This yields an action « of Stab(s)™ on (26). As in [ABPS4, (159)-(161)] we choose
Xy € Xur (L)W= for (w,v) € Stab(s)™, such that

(29) ww) @7 = w® Xy
Notice that x, is unique up to Xy,(L,w). Furthermore we choose an invertible
(30) J(v,w®x;") € Homp(w®@ x5 w™ ' (w) @y,

This generalizes in the sense that
J(v,w@x;l) =I(y,w) if y€X¥w)andx, =1.
We may assume that
(31) Xy =7 and J(yw®x;')=idy, if € Xu(L/L*Z(G)).
By definition [ABPS4] (119)] the algebra H (s, Ws, ¢s) has a C-basis {0;[w] : = €
X*(Ts),w € W} such that

o the span of the 6, is identified with the algebra O(Ts) of regular functions
on Tg;

e the span of the [w] is the finite dimensional Iwahori-Hecke algebra H(Ws, gs);

e the multiplication between these two subalgebras is given by

(32) Fls] = [sl(s - ) = (as(s) = D(f = (s- /)AL = b-a)""  feO(Ty),
for a simple reflection s = s,;
e the parameter function ¢, is given explicitly in [Séd].
Thus H(Ts, Ws,qs) is a tensor product of affine Hecke algebras of type G L., but
written in such a way that the torus Ty appears canonically in it (i.e. independent
of the choice of a base point of T5).
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Theorem 1.4. [ABPS4, Lemmas 3.5 and 4.11]

(a) The action of Stab(s)™ on H(Ty, Ws, ¢s) ® Endc(V),) in Theorem preserves
both tensor factors. On H(Ts, Ws, qs) it is given by

Q) (0z[V]) = Xgl(a;)ﬁw(x) [wow ] x € X*(Ty),v € W,
and on Endc(V,) by
Ay () = J(v,w@ x5 ) o hoJ(y,w@x; ")
(b) The subgroup of elements that act trivially is
Xhw,v,) = {y e Xt (w) | I(y,w)|y, € C*idy, }.

Its cardinality equals [L : H)].
(¢) Part (a) and Theorem [1.4.c also describe the action of Stab(s)*X,.(G) on

H(I}?,Ws,qs) ® Endc(V,) in Theorem . The subgroup of elements that act
trivially on this algebra is

X(w, V) X0 (G) = X (w, V) X (L LF).
Let us compare Theorem [L.3[ with the situation for Lf, which is simpler.

Theorem 1.5. (a) There exist idempotents e7 € H(L), e}, € H(LF) such that
H(LF)® is Morita equivalent with

L)y = (D)X X/ = (O(TH) © Ende(V, © CIL/HN]) ™

~ XL XL w,V
= @GGWHA} (O(Tf) ® Endc(V,,)) (s)/ X (Vi)

(b) Under the equivalences from part (a) and Theorem the normalized parabolic
induction functor

15! : Rep®* (L*) — Rep®(GY)

corresponds to induction from the last algebra in part (a) to
#
@QG[L/H)\] (H(Ts ) W57 Q5) ® I'End(c(‘/:u

Proof. Part (a) is a consequence of [ABPS4] (169)] and [ABPS4, Lemma 4.8], which
shows that Endc(C[L/H,]) = C[L/H,].
The analogue of part (b) for L and G says that

IS : Rep®t (L) — Rep®(G)
corresponds to induction from
erH(L)et = O(Ty) ® Ende(V, ® C[L/H,]) to
A H(G)eh, = H(Te, We, qs) @ Ende(V,, ® C[L/H,] ® CRY).
To see that it is true, we reduce with [ABPS4] Theorem 4.5] to the algebras
ex,H(L)ex, = O(Ts) @ Endc(Va),
exe H(G)erng = H(Ts, Ws, ¢s) ® Ende (V).

Then we are in the situation where (K¢g, A\g) is a cover of a type (K, Ar), and the
statement about the induction functors follows from [ABPS4, (126)] and [BuKul
Corollary 8.4].

))XL(E)/XL(“}?VH) 5 ERE
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We note that here, for a given algebra homomorphism ¢ : A — B, we must use
induction in the version Indf (M) = Homu (B, M). However, in all the cases we
encounter B is free of finite rank as a module over A and it is endowed with a
canonical anti-involution

felff g flgh]
Hence we may identify Homs (B, M) = B*®4 M = B®4 M.
Now we have shown the desired claim for I§. Since G*/P* = G/P, I§ = Igf

e L H(L)e

G
. , and Res?, to re-
ef‘Lﬁ”;‘-i(Lﬂ)e}Ji ’ Gt

on Rep®*(L). The functor Rest, corresponds to Res

striction from eﬁ/\GH(G)eKG to eﬁ/\GuH(Gﬁ)eﬁAGu, which is the algebra appearing in the

statement.
This proves part (b) on Reséu (Rep*t(L)). Since every irreducible Lf-representation

appears as a summand of an L-representation, this implies the statement on the
whole of Rep®? (LF). O

2. BERNSTEIN TORI
We will determine the Bernstein tori for G*Z(G) and G¥, in terms of those for G.
From [ABPS4, (169)] we get a Morita equivalence
L
(33 H(LZ(G))* ~ar (O(T) © Ende(V, © CLL/HA)) ™.

The group X*(s) acts on Ty = Irr°Z (L) by 7 — 7 ®y. By [ABPS4, Proposition 2.1]
Resﬁn (w) and Resﬁu (w®x) with x € Xy,;(L) have a common irreducible subquotient

if and only if there is a v € X (s) such that w ® y & w® x-. Like in we choose
a nonzero

J(v,w) € Homp (w,w ® x4y ') = Homy (w ® 7,w @ X)-

Then J(v,w) € Homp:(w,w ® x,) and for every irreducible subquotient ot of
Resﬁu (w)
(34) v (P @ x) :m = J(v,w) o (6f @ x)(m) o J(y,w)™?
is an irreducible subquotient representation of

Resf;(w ® xxy) = Resfy (w @ xxa7 ).

This prompts us to consider

(35) XE(s,0%) = {y e XL(s) | yx o =o' @ x, }.
By [ABPS4, Lemma 4.14]
(36) of @ x = of for all x € Xpe(L,w).

Hence the group (35) is well-defined, that is, independent of the choice of the x,.
For v € X' (w) reduces to of @ x, so v € X'(s,0%). By the same goes for
v € Xu(L/LFZ(G)), so there is always an inclusion

(37) X5 (w) X (L/LPZ(G)) € XE(s,0%).
We gathered enough tools to describe the Bernstein tori for G* and G*Z(G). Recall

that s, = [L,w]r, Ts = Xur(L)/Xnr(L,w) and that T? denotes the “restriction” of
T, to LF.
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Proposition 2.1. Let of be an irreducible subquotient of Resﬁu (w) and write
t=[L*Z(G), 0% i 5(c) and ¢ = [LF, 0] 6.

(a) X(s,0") depends only on s, not on the particular o*.

(b) Xne(L,w){xy | v € XE(s,0%)} is a subgroup of X (L) which contains
Xue(L/LFZ(@)).

(€) TL=To/{xy | 7 € X2(5,0%)} 2 Xu (I Z(G))/ Xun(Lo0) 1y | 7 € X 25,0},

(d) Te = TE/{xy | v € XL(s,0%)} = Xp(LF)/ XL, w){xy | 7 € X (5,0%)}.

Proof. (a) By [ABPS4, Proposition 2.1] every two irreducible subquotients of
Resfu (w) are direct summands and are conjugate by an element of L. Given v €
XL(s), pick m, € L such that

yx0F = (wmy) oot ow(m,)) ® xy = (my - 0F) @ Xy

For any other irreducible summand 7 = m, - ¢ of Resﬁu (w) we compute

1 -1

YT =% (my-0f) = J(y,w) ow(ms) L oot owlm,) o J(v,w)

= (xyy !t @w)(mt) o J(y,w) 00t o J(7,w) o (xyy T @ w)(my)

[ad

w(mzt) o (m - ) ® Xy o w(my)

1

(mrmy - 0%) @ X
As L/Lti is abelian, we find that m,m,, - ol MMy - ot and that
Y *T = (mymr - 0F) © Xy = MT @ Xy
Writing L, = {m € L | m -7 = 7}, we deduce the following equivalences:

~

y*aﬁ :Jﬁ@))ﬁ & my € Ly & my € mTLU,ﬁnT_1 =L; & 77T =T Xy
This means that X (s, o) = XZ(s, 7).
(b) By and
Xl L/LFZ(G)) € {xy | 7 € XE(s,0%)}.
In view of the uniqueness property of x, the map
XL(s) = Xne(L)/ X (Lyw) 0y = Xy

is a group homomorphism with kernel XZ(w). Hence the x. form a subgroup of
Xnr(L)/ X (L, w), isomorphic to X¥(s)/ X (w).
(¢) Consider the family of L!Z(G)-representations

{o*®x | x € Xu(L)}.

We have to determine the x for which o ® x = of € Trr(L!Z(G)). From [ABPS4,
Lemma 4.14] we see that this includes all the elements of X, (L, w) X, (L/L*Z(G)).
By [ABPS4, Proposition 2.1.b] and part (a), all the remaining v come from {x, | v €

X%(s,0%)}. This gives the first isomorphism, and the second follows with part (b).
(d) This is a consequence of part (c) and (13). O

Proposition [2.1] entails that for every inertial equivalence class

t= [LﬁZ(G),aﬁ]GuZ(G) < s=[L,wlg
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the action of X(s,0%) leads to
i = Ts/XL(570'ﬁ)-
However, some of the tori

[LFZ(G),0"]

T,=T, =Irr 1826 (L} Z(Q))

associated to inequivalent of C Resﬁﬁ (w) can coincide as subsets of Irr(LFZ(G)).
This is caused by elements of X (s)\ XL (s, o) via the action (34). With (36),
and we can write

(38) (L4 Z(G)) = Ty, = (Ts x Irr(C[X E(w), k) / X E(s),

tr<sr,
where (w ® x, p) € Ty x Irr(C[X ¥ (w), k,,]) corresponds to
Homg xz (u) x,) (0w @ X) € Irr(LFZ(G)).

7”%.:]

With we can deduce a similar expression for Lf:

I (LF) = | T

(30) & <oy ¢ = (Tsﬁ X Irr((C[XL(w),/{w]))/XL(s)

= (Ts x Irr(C[X " (W), ku])) /X 5 (5) Xue(LF Z(G) /LF).
In the notation of and the action of v € X*(s) becomes

(40) Y (WX, p) = (W XXy, PwyP),

where ¢, - is yet to be determined. Any v € X L(w) can be adjusted by an element
of Xur(L,w) to achieve x, = 1. Then shows that ¢, ,p = p for all v € XL (w).

Lemma 2.2. For v € XL(s), ¢up is p tensored with a character of X*(w), which
we also call ¢, . Then

XE(s) = Tir(XE(w)) 1y = ¢y
s a group homomorphism.

Proof. Let N,/ be a standard basis element of C[X*(w), k,]. In view of by P
is given by
(41) Ny = J(y, ) (7, w)J (v,w) ! € Homp(w ® 7' X4, w ® X)-
Since these are irreducible L-representations, there is a unique A € C* such that
T @I w)J (y,w0) ™ = AT (Y w @ xy),
(Gwyp)(Ny) = p(M (Y, w)) = Ap(Ny).

Moreover the relation

(42) I(v, w ® x1)I (Y3, w ® Xvy) = Kwy, (V1 12) L (V1V8, w @ Xv)

also holds with J(v,w)I (v}, w)J(vy,w) ! instead of I(v},w)— a basic property of con-
jugation. It follows that 4/ ++ X defines a character of X*(w) which implements
the action p — ¢y, p. As ¢, comes from conjugation by J(v,w ® x) and by ,
¥+ ¢y is a group homomorphism. O
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A straightforward check, using the above proof, shows that

(43) Home(xL () k) (0w @ X) = Home[xL () k] (P70, @ @ XXy)
> J(y,w®@x)of

is an isomorphism of LfZ(G)-representations.

3. HECKE ALGEBRAS AND SPECTRUM PRESERVING MORPHISMS

We will show that the Hecke algebras obtained in Theorems and fit in the
framework of spectrum preserving morphisms and geometric equivalence of finite
type algebras, see Appendix A.

To apply this to the algebras from Section [I] we first exhibit an algebra that
interpolates between

L
(H(Ty, We, gs) ® Ende(V,,))~ @ x :E
and (O(Ts) x W ® EndC(V#))XL(ﬁ) x ME. Recall that Conditions|1.1|are in force and

write
T, = HT R, = |_|i Ri, Wy = HiW(Ri) = Hi Se,.

Let g; be the restriction of ¢s : X*(Ts) x Wy — Ry to X*(T;) x W(R;). Recall
Lusztig’s asymptotic Hecke algebra J(X*(T;) x W(R;)) from [Lus2, Lus3]. We
remark that, although in [Lus2] it is supposed that the underlying root datum
is semisimple, this assumption is shown to be unneccesary in [Lus3|. This alge-
bra is unital and of finite type over O(T;)" () Tt has a distinguished C-basis
{teo | * € X*(T}),v € W(R;)} and the t, with z € X*(T;)V ") are central. We
define
J(X*(Ty) x W) = ®i J(X*(Ty) x W(R;)).

This is a unital finite type algebra over O(T;)"=, in fact for several different O(T)"=-

module structures.

Lemma 3.1. The group Stab(s)™ acts on J(X*(Ty) x Ws) ® Endc(V,) and on
O(Ty) x Wy ® Endc(V},) like the action on H(Ty, Ws, ¢s) @ Ende(V,,) in Theorem|[1.4)

Proof. For w € SRE the group automorphism
(44) zv — wrvw ™t of  X*(Ty) x W

permutes the subgroups X*(7;) x W(R;) and preserves ¢s. Thus can be factor-
ized as

[[wi withw; € Ant( [  X*(T) x W(R)))

J i:Ri=Rj,qi=q;
The function ¢s takes the same value on all simple (affine) roots associated to the
group for one j in , so the algebra

() ®i|Ri:Rjaqz':qg' J(XH(T3) = W(Ri))

is of the kind considered in [Lus3|, §1]. Then w; is an automorphism which fits in
a group called Q in [Lus3l, §1.1], so it gives rise to an automorphism of the algebra

([@5). In this way the group RE acts naturally on J(X*(Ts) x Ws).
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Since T}V is central in Ty x W, every x € T)V= gives rise to an algebra automor-
phism of J(X™*(T5) x Ws):
(46) oy > X(T)tay x e X (Ty),veWs.
Thus we can make Stab(s)™ act on J(X*(T;) x W) by
(w,7) -ty = X;l(fb)twmw—l x e X*(Ty),v e Ws.
The action of Stab(s)™ on Endc(V),) may be copied to this setting, so we can define
the following action on J(X™*(75) x Ws) ® Endc(V),):

) (tzo @ 1) = X5 (@)t ygow— @ T (1,0 @ x5 1) o ho J(y,w@xy 1)

Of course the above also works with the label function 1 instead of ¢;. That yields
a similar action of Stab(s)* on O(Ts) x W, ® End¢(V,), namely

47)  a@qy (@@ h) =X, (@) wrvw ' @ J(v,w @ x, ) oho J(v,w®x, )T,

where zv € X*(Ty) x Ws. O

Lusztig [Lus3| §1.4] defined injective algebra homomorphisms

(48)  H(TLW(R),q;) 225 J(X*(T3) % W(Ry)) &2 O(T) = W (Ry)

with many nice properties. Among these, we record that
(49) ¢ig and ¢ are the identity on C[X*(T;)"V ()] = O(X,.(Z(M;))).

There exist O(T;)" (F)-module structures on J(X*(T;) x W (R;)) for which the maps
are O(T;)"W i) linear, namely by letting O(T;)W (%) act via the map ¢;,, or
via ¢;1. Taking tensor products over ¢ in and with the identity on Endc(V),)
gives algebra homomorphisms

bgo . H(Ts, Ws,¢5) ® Ende(Vy) —  J(X(Ts) x Ws) ® Ende(Vy),

(50) ¢1:  O(T) x We ® Ende(V,) —  J(X(Ts) x W) @ Endc(V,,).

The maps ¢4, and ¢1 are O(T,)W=-linear with respect to the appropriate module
structure on J(X (T5) x Ws).

Lemma 3.2. The O(T;)"s-algebra homomorphisms ¢g, and ¢1 from are spec-
trum preserving with respect to filtrations.

Proof. It suffices to consider the map ¢,,, for the same reasoning will apply to ¢1.
Our argument is a generalization of [BaNi, Theorem 10], which proves the analogous
statements for J(X*(T;) x W(R;)). Recall the function

(51) a: X*(Tﬁ) X W5 — ZZO

from [Lus3, §1.3]. For fixed n € Z>o, the subspace of J(X*(T;) x W(R;)) spanned
by the t,, with a(zv) = n is a two-sided ideal, let us call it J". Then

J(X*(T;) x W(R;)) = @nzo Jimn

and the sum is finite by [Lusl) §7]. Moreover

Hi,n — (b;’lz(@kzn Jz,k)



THE NONCOMMUTATIVE GEOMETRY OF INNERFORMS OF p-ADIC SPECIAL LINEAR GROURS
is a two-sided ideal of H(T;, W(R;),q:). According to [Lus2, Corollary 3.6] the
morphism of O(T;)W (Fi)-algebras

HEJHETL 5 J5 induced by g, 4

is spectrum preserving. For any irreducible J*"-module M f, the H*"-module gb;_,i(M f,)
has a distinguished quotient Mﬁf%, which is an irreducible H*"/H*" L module.

Let n be a vector with coordinates n; € Z>o and put [n| = > . n;. We write
n < n' if n; < n} for all i. We define the two-sided ideals
Jr = ®, 7 @Ende(V,) C J(X*(To) x We) ® Ende(V,.),
H = Q,H" ®Endc(V,) C H(T: Wi, qs) @ Ende(Vy),

HT = Zn’zn,\n/|:\n|+1 H"
It follows from the above that the morphism of O(T})"+-algebras

(52) ® (er nl/er m+1) ® End(c( ) an/Hn+ —y Jn

induced by ¢, is spectrum preserving, and that every irreducible J"-module M,
has a distinguished quotient My, which is an irreducible H®/H™-module.
Next we define, for n € Z>:

=P H =P H™
n|=n In|=n

The aforementioned properties of the map are also valid for

(53) H/H T — T,
which shows that ¢, is spectrum preserving with respect to the filtrations (H"),>0
and (@mZnJm)nZ(L ]

It follows from [Lus3l §1] that the maps are Ri-equivariant for the actions o
defined in Lemma [3.1] Now
(H(Te, War ge) @ Ende (V) 92,
(54) (J(X*(T3) % Wa) @ Ende(V,)) @ x 91t
(O(Ty) » W, ® Endg (V)™ x !

are unital finite type O(T;)StP()-algebras, and ¢¢, and ¢ provide morphisms be-
tween them.

Theorem 3.3. (a) The above morphisms between the O(Ty)3P() _algebras are
spectrum preserving with respect to filtrations, in the sense of (112]).

(b) The same holds for the three algebras of with TSjj instead of Ts.

Proof. (a) We use the notations from the proof of Lemma Since gives rise
to an automorphism of the algebra J(X*(T,) X W, gs),

a(wzow™) = a(zwv) for all z € X*(T),v € We, w € RE.

Hence J" and H" are stable under the respective actions o and is Stab(s)"-

equivariant. Consider the restriction of M to (J")XL(s). By Clifford theory (see
[RaRa, Appendix]) its decomposition is governed by a twisted group algebra of the
stabilizer of M; in X% (s). Since is X1 (s)-equivariant and My is a quotient of
Mj, the decomposition of My as module over (H"/H"1)X"() is governed by the
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same twisted group algebra in the same way. Therefore (53| restricts to a spectrum

preserving morphism of O(T;)Ws*X L (s)

(an/an+1)XL(5) N (Jn)XL(ﬁ)
Now a similar argument with Clifford theory for crossed product algebras shows that
(Hn/Hn—I—l)XL(s) V SRE s (Jn)XL(s) >4 %g

is a spectrum preserving morphism of O(T})5%P()_algebras. By definition [BaNi,
§5], this means that the map

-algebras

L
(55) @, : (H(Ty, Ws,q5) @ Ende (V)X ) x ;i -
L
(J(X*(Ts) x Ws) @ Ende(V,) X« me

induced by ¢, is spectrum preserving with respect to filtrations.

The same reasoning is valid with O(T;) x W instead of H(Ts, Ws, gs) — it is simply
the case g; = 1 of the above.
(b) Recall that Ty = X, (L)/ X (L, w). The torus Ts/ X (L/LFZ(G)) can be iden-
tified with

(56) X (LFZ(G)) ) X (L, w).
Since the elements of Xy, (L,w) are trivial on Z(L) D Z(G) and LF N Z(G) = o} is
compact, factors as

Xr (L)) X (L, w) X X0n(Z(G)) = T x Xue(Z(G)).

By Theorem [1.2] the action of X,,,(L/LfZ(G)) € X%(s) on the algebras comes
only from its action on the torus Ts. Hence these three algebras do not change if we

replace Ty by . Equivalently, we may replace Ts by Tf X X (Z(G)). It follows
that

L
(H(To, We, ) @ Ende (V)™ s 9t =
L
(O(Xue(Z(G))) ® H(TE, Wi, g5) @ Ende(V,)) X x %RE,
The action of Stab(s)" fixes O(Xy,(Z(G))) pointwise, so this equals

(H(TE, We, g) @ Ende (V)X x % @ O(Xu(2(G))).

The other two algebras in can be rewritten similarly. By the morphisms
¢g, and ¢y fix the respective subalgebras O(Xn:(Z(G))) pointwise. It follows that

decomposes as

L
¢ @id : (H(TE W, gs) @ Ende (V)N © x % @ O(Xu(2(Q))) —

XE(s)

(J(X*(TE) x Ws) ® Ende(V,)) X R, © O(Xu(Z(Q))),

and similarly for ¢}. From part (a) we know that ¢} = gbgﬁ ®1id and ¢} = (;S’i ®id
are spectrum preserving with respect to filtrations. So gbgs and
L
&+ (O(T!) x W, @ Ende(V,)) X x 91
* (rpff XL(5) f
(J(X*(TE) x Ws) @ Endce(V,,)) x RE
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have that property as well. O

With Theorem we can show that the Hecke algebras for G* and for G*Z(G)
are geometrically equivalent (confer Appendix to much simpler algebras. Recall
the subgroup Hy C L from [ABPS4, Lemma 3.3].

Theorem 3.4. (a) The algebra H(G*Z(G))*® is geometrically equivalent with
[LZH/\]
D, " (0(T) ® Endc(V,))

where the action of w € W¥ is Q) for any v € Irr(L/L*Z(G)) such that
(w, ) € Stab(s).
(b) The algebra H(G*)® is geometrically equivalent with

D" (012 @ Ende(v,)

XL(s) % ng

X% () X Wf,

with respect to the same action of VVEﬁ

Remark. In principle one could factorize the above algebras according to single
Bernstein components for G*Z(G) and G*. However, this would result in less clear
formulas.

Proof. (a) Recall from Theorem |1.2| that H(G*Z(G))? is Morita equivalent with

[L:H\] XL
(57) B, (T, e, g0) @ Ende (V) ®) s .
Consider the sequence of algebras

L
(H(Ty, We, gs) @ Ende(V;,)) @ x %1t

X" (s)

— (J(X*(Ts) x Ws) @ Endc(V,,)) x R

(59) :
= (J(X(T) % W) @ Bnde (V) ¥ 0 94

— (O(T3) % W, ® Ende(V,)) X @ s 91t

In Theorem [3.3]a we proved that the map between the first two lines is spectrum
preserving with respect to filtrations. The equality sign does nothing on the level
of C-algebras, but we use it to change the O(T3)5*?P()-module structure, such that
the map from

(59) (O(T) % We ® Ende(V,)™ ) x o3¢

becomes O(T;)5%P®) linear. By Theorem a that map is also spectrum preserving
with respect to filtrations.

Every single step in the above sequence is an instance of geometric equivalence
defined in Appendix A, so H(G*Z(G))* is geometrically equivalent with a direct
sum of [L : H,] copies of . Since x~ € T in is Ws-invariant, the actions of
XL(s) and W, on O(T;) ® Endc(V,) commute. This observation and allow us
to identify with

(60)  ((O(T) @ Ende (V)™ ® % W,) » 9% = (O(T) ® Ende(V,)) ™ ® s WE.

The description of the action of Wf can be derived from Theorem
(b) This follows from Theorem [L.3| and the same proof as for part (a). O
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4. TWISTED EXTENDED QUOTIENTS

Twisted extended quotients appear naturally in the description of the Bernstein
tori for L*Z(G) and L.
Lemma 4.1. Let s, = [L,w];, and define a two-cocycle k, by (15)).
(a) Equation for L determines bijections

(To// X" (8)) i — Ier*™ (LFZ(G)),
(To/) X5 (8) X (L/LF)) sy = (T /) X(8)) o/ Xr(LFZ(G) [ LF) — Trx* (LF).
(b) The induced maps
"L (L Z(G)) — T/ X (s)  and Ter*t(LF) — T/ X P (s) X (L) LF)

are independent of the choice of k.

(¢) Let Tsun be the real subtorus of unitary representations in Ty. The subspace
of tempered representations Irrfeme(LﬁZ (@)) corresponds to (Tsun// X (5))s, -
Similarly Irriémp(Lﬁ) is obtained by restricting the second line of part (a) to

Tﬁ,un-

Proof. (a) Apart from the equality, this is a reformulation of the last page of Section
For the equality, we note that by the action of
Xor(LFZ(G)/LF) 2 X (L/LF) /(X (8) N Xue (L/LF))

on (Ty// X (s)).,, is free. Hence the isotropy groups for the action of X% (s) X, (L/L¥)
are the same as for X%(s), and we can use the same 2-cocycle , to construct a
twisted extended quotient.

(b) By a different choice of k, in part (a) would only lead to the choice of
another irreducible summand of Resgﬁ (7) for w € Ty, and similarly for G*Z(G).

(c) Since w is supercuspidal, the set of tempered representations in Ty = Irr®s (L) is
Ty un- In the decomposition , an irreducible representation of L* or LFZ(G) is
tempered if and only if it is contained in a tempered L-representation w ® x. This
proves the statement for L. The claim for L* follows upon dividing out the free

action of X, (L¥Z(G)/L*). O

The subgroup X% (w, V,,) acts trivially on O(7;) ® Endc(V,), and for that reason
it can be pulled out of the extended quotient from Lemma

Lemma 4.2. There are bijections
(To// X () ¢ (Te// X(8)/ X (@, Vi) o, x Tir(XE(w, V),
(Ts /) X2 (8) Xae (L) LF)) e, ¢ (Ts//X),, x Tre(XF(w, V7)),
where X = X*(s)Xn(L/L?)/ X (w,V,,). They fix the coordinates in Ts.

Proof. In Lemmawe saw that (Ty// X *(s))x, is in bijection with Trr(H (L Z(G))5L).
By [ABPS4, (169)] H(L!Z(G))5t is Morita equivalent with (H(L)%)X"® and with
the subalgebra

= @GG[L/H)\] (O(Tﬁ) ® Endc(vﬂ))xL(s)/—an(w,Vu)
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Here the X% (s)-action on the middle term comes from an isomorphism
Endc(e7 V) = Ende(V,) ® C[L/H)] ® C[L/H,]*.

We recall that by [ABPS4, Lemma 3.5] there is a group isomorphism

(62) L/Hy = Trr(XE (W, V).

The stabilizer of an irreducible representation C, ® V,, of the right hand side of
is XX (w)/Xnr(w,V,). Comparing the spaces of irreducible representations of ,
we find that

{p € I (C[X (W), ku]) © plxr( vy, = triv)
m

corresponds bijectively to Irr(EndC(Vu)XL(s)/ X L(“’V#)). It follows that every irre-

ducible representation of C[X%(w)/XT(w,V),), kw| appears in V. This is equiv-
alent to each irreducible representation of Endc(V,) x X' (w)/X*(w,V,) having
nonzero vectors fixed by X% (w)/X%(w,V,). Thus Lemma can be applied to
XL (w)/ Xt (w,V,) acting on O(Ty) ® Endc(V,,), and it shows that the irreducible
representations on the right hand side of are in bijection with
(T X () X (w0, Vi) % Tix(X (0, V,)):

The second bijection follows by dividing out the free action of X, (LfZ(G)/LF),
as in the proof of Lemma [£.1]a. O

It turns out that any Bernstein component for G can be described in a canonical
way with an extended quotient. Before we prove that, we recall the parametrization
of irreducible representations of H(Ts, W, gs)-

Let G be the complex reductive group with root datum (X*(Ts), Rs, X«(Ts), RY),
it is isomorphic to []; GLe, (C), embedded in G' = GL,,4(C) as

Gs = Z5(L) = ZaL, 4 (H GLmid(C)8i> :

Recall that a Kazhdan Lusztig triple for G consists of:
e a unipotent element u = [[, u; € Gs;
e a semisimple element ¢, € G5 with tqutq_l =u® =[], ul;
e a representation p, € Irr(mo(Zg, (g, w))) which appears in the homology of
variety of Borel subgroups of G containing {tq,u}.
Typically such a triple is considered up to Gs-conjugation, we denote its equivalence

class by [tq,u, pgls,- These equivalence classes parametrize Irr(H (75, Ws, gs)) in a
natural way, see [KaLu]. We denote that by

(63) [tg: u, Pq]és = (tgs s pg)-

Recall from [ABPSH, §7] that an affine Springer parameter for G consists of:
e a unipotent element u = [, u; € Gs:
e a semisimple element t € Zx_(u);
e a representation p € Irr(mo(Zg, (t,u))) which appears in the homology of
variety of Borel subgroups of G, containing {t,u}.
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Again such a triple is considered up to Gs-conjugacy, and then denoted [t,u, Pla,-

Kato [Kat] established a natural bijection between such equivalence classes and
Irr(O(T5) x Ws), say

(64) t,u, plg, = Tt u,p).

From [Kalul §2.4] we get a canonical bijection between Kazhdan—Lusztig triples
and affine Springer parameters:

(65) [th?u’p!I]és A [t>uvp]ég'

Basically it adjusts ¢, in a minimal way so that it commutes with u, and then there
is only one consistent way to modify p, to p.
Via Lemma the algebra homomorphisms give riso to a bijection

(66) Irr (H (T, We, gs)) <— Irr(O(T5) x Wy)).

We showed in [ABPS5] (90)] that is none other than the composition of
with and the inverse of (63):

(67) W(tmuapq) — T(taua p)
Theorem 4.3. The Morita equivalence H(G)® ~nr H(Ts, Ws, gs) and give rise

to a bijection
(68) I (G) «— (Ts//Ws)2
with the following properties:

(1) restricts to a bijection Irrge,, (G) — (Tsun//Ws)2-

(2) can be obtained from its restriction to tempered representations by an-
alytic continuation, as in [ABPSI].

(3) If m € Itien, (G) is mapped to [t, p| € (Tsun//Ws)2 and has cuspidal support
Wso € Ts/Ws, then Wit is the unitary part of Wso, with respect to the polar
decomposition

T5 = Ts,un X Homz(X*(Ts),R>0).
(4) In the notation of (3), suppose that the Springer parameter of p € Irr(Ws )
is a unipotent class [u] which is distinguished in a Levi subgroup M C Zg (1)
Then m = IgM((S), where M D L is the unique standard Levi subgroup of G

[L.w]n
temp

Moreover is the unique bijection with the properties (1)—(4).

Proof. The isomorphism gives a bijection

(69) Irr*(G) «— Irr(H(Ts, Ws, gs))-

Via Lemmas and the right hand side is in bijection with
r(O(T3) % Wy 2 (Ty//Wo).

In this way we define the map (68)).

(1) follows from [ABPS5| (92) and Proposition 9.3].

(2) Consider the bijection and its formulation (67). Here the representations
are tempered if and only if ¢t € T is unitary. Thus r tempered representations
determines the bijection , by analytic continuation (in the parameters ¢ and ¢,)
of the formula.

corresponding to M and & € Irr (M) is square-integrable modulo centre.
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The relation between Irr®(G) and Ity (G) is similar, see [ABPS1) Proposition
2.1]. Hence is can also be deduced from its restriction to tempered representa-
tions, with the method from [ABPSI], §4].

(3) In [Séc, Théoreme 4.6] a sz-type (K, Ar) is constructed, with

eALH(L)GAL = O(Ts) @ Endc(Vy).
It [SéSt2] it is shown that it admits a cover (Kq, Ag) with
GAGH(G)G)\G = %(1;7 Wsu C_Is) ® EHdC(V)\),
see also [ABPS4, §4.1]. By and the inclusions
exc H(Gerg = e H(Gens — €5 H(G)eS

are Morita equivalences, of the simple form tensoring with a finite dimensional ma-
trix algebra. This means that comes from a cover of a sy-type. With [BuKul
§7] this implies that translates the cuspidal support of a (7, V) € Irr*(G) to the

unique Wit, € T;/W such that ey, Vr is a subquotient of indé‘((%sws,qs)(ctq) 2 V.

It follows from [ABPSH, (33) and Lemma 7.1] that the bijection sends any

tempered irreducible subquotient of indggﬁﬁws’qs) (Ct,) to an irreducible O(T5) x We-
representation with O(T;)-weights Wi (¢, [t,| ™). The associated element of (Ty//Ws)2
is then [t =t, |t,| 7%, p] with p € Irr(Wi4).

(4) By the H(Ts, Wy, gs)-representation associated to [t, p] is 7(ty, u, triv). Then
(tg,u, triv) is also a Kazhdan-Lusztig triple for H (T, Ws a, ¢s) and by [KaLu, §7.8]

7(tg, u, triv) = indzM v (tg, u, triv).

By [ABPS5), Proposition 9.3] (see also [KaLul, Theorem 8.3]) mz(t4, u, triv) is essen-
tially square-integrable and tempered, that is, square-integrable modulo centre.

Since (Kg,Ag) is a a cover of a sp-type (K, \r), there is a a [L,w]y-type

(K, Ayr) which covers (K7, Ar) and is covered by (Kg, Ag). By [ABPSH, Propo-
sition 16.1] s (tg, u,triv) corresponds to a M-representation ¢ which is square-
integrable modulo centre. By [BuKu, Corollary 4.8] the bijection respects
parabolic induction, so 7 (¢, u, triv) corresponds to IgM(é).
Now we check that is canonical in the specified sense. By (1) and (2) it suffices
to do so for tempered representations. For m € Irr{,,,,(G), property (3) determines
the Ws-orbit Wst. Fix a t in this orbit. By a result of Harish-Chandra [Wal, Propo-
sition IT1.4.1] there are a Levi subgroup M C G containing L and a square-integrable
(modulo centre) representation § € Irr(M) such that 7 is a subquotient of I§,,(5).
Moreover (M, §) is unique up to conjugation.

For t € Tsun, Ws; is a product of symmetric groups S, and Z(}s (t) is a product
group GL.(C). Hence the Springer correspondence for W, is a bijection between
Irr(Ws,) and unipotent classes in Zg (). A general linear group GL¢(C) has a
unique distinguished unipotent class, so Irr(Ws;) is also in canonical bijection with
the set of W -conjugacy classes of Levi subgroups M C G, containing Zeg, (1).

Viewed in this light, properties (3) and (4) entail that for every pair (M,t) as
above there is precisely one square-integrable modulo centre ¢ € Irr(M) such that
W+ is the unitary part of the cuspidal support of I$,,(5). Thus (3) and (4) deter-
mine the (tempered) G-representation associated to [t, p] € (Tsun//Ws)2. O
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As aresult of the work in Section[3] twisted extended quotients can also be used to
describe the spaces of irreducible representations of G*Z(G) and G*. Let us extend
Ky to a two-cocycle of Stab(s), trivial on the normal subgroup Wy x X% (w, V,,), by

(70) J(y,w) (Y, w) = ku(1,7) (1, w) 7,9 € XC(s).
Theorem 4.4. (a) Lemmas[B.1] and[B.3 gives rise to bijections
(Ty//Stab(s)/ X (w, Vi) ., = Ie((O(T2) @ Ende(V,)) @) W),
(s //Stab(s) Xur (L/LF) /X (w0, Vi), — Trr((O(TE) @ Ende (V)X @ 5 W),
(b) The geometric equivalences fmm provide bijections
(T, //Stab(s))., — (Ts//Stab(s)/X L (w, Vi), X Irr(XE(w, V) — I (G*Z(G)),
(Ts//Stab(s) Xuw(L/LF))w, = (T3//S),.. x Irr(X*(w, V) — In*(GY),

where S = Stab(s) Xy (L/LF)/ X (w, V).
c¢) In part (b) Irr? G'Z(@)) (respectively Trrs GY)) corresponds to the same
temp temp
extended quotient, only with T . instead of Ts.

K,

Proof. In each of the three parts the second claim follows from the first upon dividing
out the action of X, (L*Z(G)/L*), like in Lemma, a
(a) In the proof of Lemma we exhibited a bijection

(T //Stab(s)/ X (w, V,.)) . +— Trr((O(T%) @ Ende (V;,)X ).
With Lemma we deduce a Morita equivalence
(71)  (O(T2) ® Endc (V)X ~pr (O(Ty) ® Ende (V) % (XE(s)/ X E(w, VL)),

In the notation of (115|) this means that p := PXL(s)/XL(w,V,) is a full idempotent
in the right hand side of , that is, the two-sided ideal it generates is the entire
algebra. Then p is also full in

(72) (O(Ty) & Ende(V,) x (Stab(s)/ X5 (w, V),
which implies that is Morita equivalent with

p((O(T3) @ Ende(Vy)) % (Stab(s)/ X" (w, Vi) )p =

(O(Ty) @ Endc (V)X /X @ Vi) ¢ (Stab(s) /X (s)).
As a direct consequence of , and ,
Stab(s) /X (s) = WE.

In this way we reach the algebra featuring in part (a). By the above Morita equiv-
alence, its irreducible representations are in bijection with those of . Apply
Lemma [B.I]a to the latter algebra.
(b) All the morphisms in are spectrum preserving with respect to filtrations.
In combination with the other remarks in the proof of Theorem [3.4la this gives a
bijection
(73) i (G*Z(G)) — Trr((O(Ty) @ Ende (V)X ) 5 Wi x [L/H,).
By part (a) and the right hand side of is in bijection with

(74) (Ts//Stab(s)/ X" (w, V), x Trr(X T (w, V,)).

Rw
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Let X(s) act on
Endc(C[L/H)]) = C[L/H,] @ C[L/H)]*
by extension of its action on H(L). Then we have an isomorphism

(O(Ty) ® Endc(V,,))* ") % W @ C[L/H)| =

(75) .
(O(T:) ® Ende(V, ® CIL/HN))N @ x WE.

We note that (74]) is also the space of irreducible representations of . In the
proof of Lemma [4.2| we encountered a bijection

(To// X (), = Trr((O(T3) ® Ende(V, @ C[L/Hy)) X ).
It implies a Morita equivalence
(O(Ty) ® Ende(V, ® CIL/Hy )Y )~y (O(Ty) @ Ende(V, @ C[L/H,])) x X (s).
Just as in the proof of part (a), this extends to

(O(T3) ® Ende(V, © CIL/HA))Y @ 5 Wi~y

(76)
(O(Ty) ® Endg(V,, ® C[L/H,])) » Stab(s).

Finally we apply Lemma a to the right hand side and we combine it with ,
and .
(¢) The first bijection in part (b) obviously preserves the subspaces associated to
Tsun- We need to show that the second bijection sends them to Irrfemp(GﬂZ (G)).
This is a property of the geometric equivalences in Theorem [3.4] as we will now
check.

We may and will assume that w is unitary, or equivalently that it is tempered.
The Morita equivalence between ’H(GﬁZﬁl))s and is induced by an idempotent

2

eﬂ/\ € H(G*Z(@)), see Theorem Its construction (which starts around

Gtz(a
)(Sl)lOWS that eventually it comes from a central idempotent in the algebra of a
profinite group, so it is a self-adjoint element. Hence, by [BHK, Theorem A] this
Morita equivalence preserves temperedness. The notion of temperedness in [BHK]
agrees with temperedness for representations of affine Hecke algebras (see page
because both are based on the Hilbert algebra structure and the canonical tracial
states on these algebras.

The sequence of algebras is derived from its counterpart for
H(Ts, Ws, ¢s) ® Ende (V). By Theorem that one matches tempered representa-
tions with (75 un//Ws)2. By Clifford theory any irreducible representation m of

(77) (H(Ty, W, gs) ® Ende(V;,)X @ x %!

is contained in a sum of irreducible representations 7 of H (75, Ws, ¢s) ® Endc(Vy),
which are all in the same Stab(s)-orbit. Temperedness of = depends only on the
action of the subalgebra O(T;) = C[X*(T;]), and in fact can already be detected on
C[X] for any finite index sublattice X C X*(7s). The analogous statement for
holds as well, with X = X*(T,/X"(s)), and it is stable under the action of Stab(s).
Consequently 7 is tempered if and only if 7 is tempered.
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These observations imply that the sequence of algebra homomorphisms pre-
serves temperedness of irreducible representations, and that it maps such represen-
tations of to irreducible representations of with O(Ts/ X" (s))-weights in
Tsun/XE(s).

Now we invoke this property for every a € L/H, = Irr(X%(w,V},)) and we de-
duce that the second map in part (b) has the required property with respect to
temperedness. O

We work out what Theorem says for a single Bernstein component of G¥. Let
t# = [L*, 0] 5+ be an inertial equivalence class for G¥, with t* < s = [L,w]g.

We abbreviate ¢, xr(s) = {dw : 7 € XL(s)}. By there is a unique X% (s)-
orbit

(78) Gy xLe)p C Ir(CIXH(w), k)

such that Ty = (TSﬁ X ¢w7xL(5)p)/XL(5). Then ¢,, x1(s)p determines a unique sum-
mand Ca of C[L/H,], namely the irreducible representation of X*(w,V,,) obtained
by restricting p. Let V,: C Ca ®c V), be the subspace associated to ¢, xz()p, and

let Ry be its stabilizer in R:. Then MRy is also the stabilizer of t* in R? and
by [ABPS4, Lemma 2.3]. Via the formula the operators .J (%w)h’u determine

a 2-cocycle k!, of the group
(80) W' = {(w,v) € Stab(s) : w € Wy}

Since is 1 on Wi, so is k[,. By W'/XE(s) = Wyg. As V. is associated
to the single XX (s)-orbit (78), ., ((w,v), (w’,~’)) depends only on (w,w’). Thus it
determines a 2-cocycle k4 of Wiy, which factors through Ry = Wiy /W.

Lemma 4.5. (a) The bijections in Theorem [4.4) restrict to
1 (GF) < (T /) W),

Trrt (Gﬁ) > (T an /W)

temp K49

where T \,,, denotes the space of unitary representations in Ty.

(b) Suppose T € Irriimp(Gﬁ) corresponds to [t, p] and has cuspidal support
We(x @ ot) € Ty /Wy Then Wit is the unitary part of x ® of, with respect to
the polar decomposition

Ty = Tty ¥ Homyz (X™*(Ty), Ro).

Proof. (a) Recall that Irr* (G*) consists of those irreducible representations that are
contained in Igrf (x ® o*) for some Y ® of € Ty;. In Theorem b we translated Igf

to induction between two algebras. The first one, Morita equivalent with H(Lﬁ)sL,

CIL/Hy] @ (O(TF) @ Ende (V)X .

The second algebra, Morita equivalent with #(G¥)?, was

L
CIL/Hy) ® (H(TE, We, ) ® Ende (V)™ © x :E,
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By Theorem Irr* (G*) is in bijection with the spaces of irreducible representations
of the two Morita equivalent algebras

L

(81) (M(TE, Wi, g5) @ Ende (R - V)™ 0 98,
L

(H(Tsua Wi, qs) ® End@(VUﬁ))X &) X Ry

The constructions in Section [3| restrict to geometric equivalences between and
(O(T#) ® Ende(CRE - V)X ) s WE,

(82) .
(O(TF) @ Ende (V)X ®) x W.

By Proposition [2.1d
(83) T ((O(TY) @ Ende (V)Y @) 2 Ty,

As explained above with , the 2-cocycle k,, of Stab(s) reduces to the 2-cocycle
kgt for the action of Wy in . Now we apply Lemma a to and we find
the first bijection. To obtain the second bijection, we use Theorem [4.4]c.

(b) For the geometric equivalence between

H(TE, Ws, gs) @ Ende(V,:) and O(TF) @ Ende(V,:) x Wy

the analogous claim about the cuspidal support is property (3) of Theorem
Clifford theory relates the irreducible representations of these algebras to those of
and , in a way already discussed after (77)). This implies that the desired
property of the cuspidal support persists to the geometric equivalence between
and (82), which underlies part (a). O

5. RELATION WITH THE LOCAL LANGLANDS CORRESPONDENCE

We show how the local Langlands correspondence (LLC) for G' and G* can be
reconstructed in terms of twisted extended quotients.

Let Wr be the Weil group of the local non-archimedean field F'. Recall that the
Langlands dual group of G = GL,,(D) is G = GLy,4(C). A Langlands parameter
for G is continuous group homomorphism ¢ : Wr x SLy(C) — G such that:

* 9lgr, () isa homomorphism of algebraic groups.

o ¢»(Wp) consists of semisimple elements.

e ¢ is relevant for G: if L is a Levi subgroup of G which contains im(¢) and
is minimal for that property, then (the conjugacy class of) L corresponds to
(the conjugacy class of) a Levi subgroup of G.

We denote the collection of Langlands parameters for G, modulo conjugation by G,
by ®(G).

Every smooth character of G is of the form v o Nrd, with v a smooth character of
F>*. Via Artin reciprocity it determines a Langlands parameter (trivial on SLs(C))

(84) D Wp — C* 2 Z(GLyg(C)).

For any ¢ € ®(G), ¢v is a well-defined element of ®(G) because the image of © is
central in G.

Theorem 5.1. The local Langlands correspondence for G is a canonical bijection

recp m : Irr(G) = ®(G)
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with the following properties:

(a) m € Irr(G) is tempered if and only if recp ,,(7) is bounded, that is, if
recp () (Wg) is a bounded subset of G.

(b) The L-packet I14(G) is the single representation rec;m(ﬂ).

(¢) recp , is equivariant for the two actions of Irr(G/G*): on Trr(G) by twisting
with smooth characters and on ®(G) by multiplication with central Langlands
parameters as in .

Proof. For the bijection and part (a) see [HiSal, §11] and [ABPS3|, §2]. Ultimately it
relies on the Jacquet—Langlands correspondence from [DKV), Bad].

(b) This is a direct consequence of the bijectivity.

(c) Since recp,, is determined completely by its behaviour on essentially square
integrable representations of Levi subgroups of G [ABPS3|, (13)], it suffices to prove
(c) for such representations. Via the Jacquet—Langlands correspondence the issue
can be transferred to Irr(GL,(F)) with n < md. For general linear groups (c) is a
well-known property of the LLC, and in fact a starting point of the construction,
confer [Henl 1.2]. O

For s = [L,w]g we define ®(G)® as the image of Irr®(G) under the bijection recp .
Similarly we define ®(L)°t C ®(L).

Lemma 5.2. The LLC for G fits in a commutative diagram of canonical bijections

recp,m

Irr*(G) O (G)°
(Ts//Ws)2 (®(L)* [/ Ws)2

Here the bottom map comes from the LLC for Irr®t (L) and the left hand side comes

from Theorem [{.3

(a) Suppose that [¢pr] € ®(L)*L and that p € Irr(Ws 4, ) has as Springer parameter
a unipotent class [u] € Zg (¢1). Then there is a representative u such that the
right hand side sends [¢r, p| to a Langlands parameter ¢ with ¢y = dLlw,

and ¢(1, ((1] %)) =or(l, ((1) %))u
(b) Conjecture 2.2 holds for Irt*(G).

Proof. Apart from the right hand side, the maps have already been established
as bijective and canonical. So there is a unique, canonical way to complete the
commutative diagram.

(a) To work out the map on the right hand side, it suffices to consider

L= Hl L7 and w= Hl w;t

such that (L;,w;) is not isomorphic to (L;,w;) for i # j. Let ¢; : Wp x SLy(C) —
GL,,,4(C) be a Langlands parameter for w;. Then

oL =[] ¢ : Wr x SLs(C) = ][ GLim,a(C)

is a Langlands parameter for w. We have W, 4, =[], Se,, where S, is embedded in
Nar, o (©)(GLyp,a(C)¢) as permutation matrices. The unipotent class

[u] = [Hl ui] € ]__L GLe;m,a(C) C Zés (or)
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is determined by the standard Levi subgroup in which it is distinguished, say
M= Hi,j GLbijmid(C)Cij with Zj Cijbij =¢;.

Assume for the moment that w is tempered. By Theorem [w, p] € (Ts,un//Ws)2
corresponds to 1§,,(0), where
Cii L,
§= H” 6 € IrrEenﬁM(M)
is the unique square-integrable modulo centre representation such that W; yw is
the unitary part of the cuspidal support of §. By construction [ABPS3, §2] the
Langlands pararr;eter ¢ of 1G,,(5) is the same as that of J, namely ¢ = IL:; qu}j
with ¢ijlw, = ¢;” lw, and
¢ (L, (§1)) = ¢i(L, (§ 1) 7wy
where u;; is a distinguished unipotent element in Zgy, d(c)(GLmid(C)bU). Thus
15

#(1,(§ 1)) is distinguished in M and ¢ has the asserted shape.

The general case, where w is not necessarily tempered, follows from the tempered
case. The reason is that all the maps in the commutative diagram (a priori except
the right hand side) can be obtained from their tempered parts by some kind of
analytic continuation, as in [ABPS1| and Theorem 4.3
(b) The first part holds by the definition of x,, (70| and the second part because our
commutative diagram is canonical.

For the third part, by Theorem [5.1lb the elements of (T;//Ws)2 are in bijection
with the L-packets in Irr*(G). Two elements [t, p|] and [/, p/] are equal if and only
if there is a w € W; such that wt' = t and w - p' = p. We note also that for
every t € Ty the group Wy, = W(Rs;) is product of symmetric groups. Hence all
irreducible representations of W ; are parametrized by different unipotent classes in
connected complex reductive group with maximal torus 7, and root system R ;. So
the condition becomes that p and w - p’ have the same unipotent class as Springer
parameter. O

Let Irreusp(L) be the space of supercuspidal L-representations and let ®(L)cusp
be its image in ®(L). The Weyl group
W(G,L) = Na(L)/L = Ng(L)/L

acts naturally on both sets.

Theorem 5.3. Let L be a set of representatives for the conjugacy classes of Levi
subgroups of G. The maps from Lemma combine to a commutative diagram of
canonical bijections

recp,m

Irr(G) o(G)

| |

Urer (Ireusp (L)//W(G, L)), Urer (2(L)eusp//W(G, L)),

Here the tempered representations correspond to the bounded Langlands parameters.




30 A.-M. AUBERT, P. BAUM, R. PLYMEN, AND M. SOLLEVELD

Proof. The action of W (G, L) on L is simply by permuting some direct factors of
L, and the same for L. Hence the canonical bijection Irr(L) <+ ®(L) is W(G, L)-
equivariant. The group W is defined as the stabilizer in W(G, L) of T; = Irr** (L),
and by the above equivariance it is also the stabilizer ®°£(L). Consequently

(Irreusp (L) //W(G, L))2 = I_L:[L,W]G(TS//WS)Q’

(®(L)eusp//W(G, L))2 = USZ[L,W}G(‘I’SL (L)//Ws)a-

Now we simply take the union of the commutative diagrams of Lemma [5.2l The
characterization of temperedness and boundedness comes from Theorems [5.1]a and

dAc. O

To formulate the LLC for G¥, we need enhanced Langlands parameters. In fact
these are already present in the LLC for G, but there the enhancement can be
neglected without any problems.

Recall that a Langlands parameter for G = GL,,(D)ger is a homomorphism
¢ : W xSLy(C) — PGL,,4(C) subject to the same requirements as a Langlands pa-
rameter for G. The set of such parameters modulo conjugation by Gt = PGL,,4(C)
is denoted ®(G*). We note that the simply connected cover SL,,4(C) of PGL,,4(C)
also acts by conjugation on Langlands parameters for G.

An enhancement of ¢ is an irreducible representation p of mo(Zsr, ,c)(¢)). In
order that (¢, p) is relevant for G¥, an extra condition is needed. For this we have to
regard D as part of the data of G¥, in other words, we must consider not just the inner
form G* of SL,,q(F), but even the inner twist determined by (G*, D). The Hasse
invariant of D gives a character xp of Z(SL,4(C)) = Z/mdZ with kernel mZ/mdZ.
Notice that, by Schur’s lemma, every enhancement p of ¢ determines a character of
Z(SLyna(C)). We define an enhanced Langlands parameter for G* = GL,,(D)ger as a
pair (¢, p) such that p| Z(SLya(c)) = XD- The collection of these, modulo conjugation
by SL;q(C), is denoted ®.(G*).

The LLC for G* [ABPSJ] is a bijection

(85) e(GF) ¢ 1rx(GF) : (9, p) = (9, p).
such that
e if ¢ lifts to a Langlands parameter ¢ for G, then (¢, p) is a direct summand
of Resgu (recB1 (0)),

o (o, p) is temiaered if and only if ¢ is bounded,
e the L-packet

s(GY) = {m(6, p) : p € Irr(mo(Zsi,a(c) (D))): Pl 251,000y = XD}
is canonically determined.

As Trr*(G*) is defined in terms of restriction from Irr®(G), it is a union of L-packets
for Gf. With the second property of , it canonically determines a set ®.(G*)*
of enhanced Langlands parameters for G*.

In the same way as for G, the LLC for a Levi subgroup L = L N G* follows from
that for L = [[, GL,, (D). It involves enhancements from the action of

(L%)se = SLya(C) N Hi GLyp,4(C).
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Given sy, = [L,w]r, Irr®t (L*) is a union of L-packets for L. Hence the corresponding
set ®.(G*)® of enhanced Langlands parameters is well-defined.

Lemma 5.4. The LLC for G* and the maps from Lemma[{.1, Theorem[{.4.b and
Corollary[6.7 fit in the following commutative bijective diagram:

Irr® (G¥) O (GH)°

(Trr®s (L) /) W), (Pe(LF)L /W),

(/) X (8) Xur(L/L9)) . (1 WE) . <— ((B(L)*2 [/ X (8) X (L/L9)) . /) WE),

(s //Stab(s) X (L/LF)),  <———— (®(L)*% //Stab(s) Xur (L/LF)),

((T3//Wa)o//Stab(s)* Xun(L/ L)), <= ((B(L)** //Wa), //Stab(s)" Xue(L/LH)),
All these maps are canonical up to permutations within L-packets. In the last row
the collection of L-packets is in bijection with (Ty//Ws),/Stab(s)® Xn,(L/L*) and
with (®(L)*L //Wy),/Stab(s)* Xy (L/LF).

Proof. The bijection between the first and the fourth set on the left hand side is
given by Theorem b. Then Corollary and give bijections to the third
and fifth sets on the left, as the 2-cocycle k, is by construction trivial on Wi.
The bijection between the second and third sets on the left comes from Lemma[f.1]a.
By Lemma [4.1]b it is canonical up to permutations within L-packets.

The LLC for L is equivariant for permutations of the direct factors of L and for
twisting with characters of L (because the LLC for GL,,(D) is so). This gives the
three lower horizontal bijections. Applying Corollary [B.4 to the three lower terms
on the right hand side gives bijections between them, and shows that the two lower
squares in the diagram are canonical and commutative.

Similarly the LLC for L¥ is equivariant for the action of Wf, which leads to the
second horizontal bijection. We define the upper two maps on the right hand side
as the unique bijections that make the diagram commute. Since all the other maps
in the upper two squares are canonical up to permutations within L-packets, so are
the last two.

An L-packet for G consists of the irreducible G*-constituents of an irreducible
G-representation. In view of Lemma the collection of L-packets in Irr®(G¥) is
canonically in bijection with (75//Ws)2. From (58) we can see how

((T5//Ws)y//Stab(s) " Xu(L/LF)),

is constructed on the level of representations. We take an element 7 € Irr*(G) and
transform it to an irreducible representation of O(7s) x W, by a geometric equiv-
alence. Then we form the twisted extended quotient by Stab(s)", using Lemmas
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and which corresponds to identifying m with «’ if they have the same re-
striction to G*Z(G), and decomposing 7 in irreducible G*Z(G)-subrepresentations.
Finally we divide out the action of X,,(L*Z(G)/L*), thus identifying the G*Z(G)-
representations with the same restriction to Gf. The implies the description of the
L-packets in the lower left term of the commutative diagram, and hence also in the
lower right term. O

The bijection between the upper and the lower term on the right hand side of
Lemma can also be obtained as follows. First apply the recipe from Lemma [5.2
(®(L)*L //Ws)2, then take the twisted extended quotient with respect to Stab(s)™,
and finally divide out the free action of X, (LfZ(G)/L*) to reach ®.(G#)5.

Lemma 5.5. Let t = [Lf 0%]o: be an inertial equivalence class subordinate to
s = [L,w|g. Lemma .a and the LLC for G* and for L! provide a commutative,
bijective diagram

Irrtﬁ(Gﬁ) o, (GH)¥

| |

(T /| Wiy < (@e(LHE s [/ W)

Klo_u

Two elements [t, pl, [t', p'] € (Ty¢//Wy)x_, are mapped to G*-representations in the
same L-packet if and only if

o wt' =w for some w € Wy;

o the Wy -representations p and w-p' have Springer parameters with the same
unipotent class, in the complex reductive group with mazimal torus Ty, root
system Ry, and Weyl group Wy ;.

Proof. The commutative diagram is obtained from Lemma taking into
account. To see whether [t, p] and [/, p/] belong to the same L-packet, Lemma
says that it suffices to look at their images in (T3 //Ws),/Stab(s)* X, (L/LF).

Let t € Ty be alift of t. Then Wy , is the isotropy group of XE(s) X (L)L) (5%) €

Ty in Wf Here of is a projective representation of
(X" (5)Xur (L/LF)); = X (w).
With Lemma, we get
o? x p € Trr(C[(Stab(s) Xnr (L/LH);, k,]).

The intersection of (Stab(s) Xy, (L/L*); with Wy is W, 7= W(R,z). Since W com-
mutes with X7 (s) X, (L/L*), the restriction of of x p to W, s dim(o*) times ply; -
We want to show that ’

(86) Rtﬁ,t = Rs,fa

although in general Wy , is strictly larger than W, ;. Both root systems are defined
in terms of zeros of Harish-Chandra p-functions associated to roots a € R;. The
function p, (for G) is defined via intertwining operators betweeen G-representations,
see [Wal, §IV.3 and §V.2]. These remain well-defined as intertwining operators
between G¥-representations, which implies that u, factors through T, — Ty and in
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this way gives the function . for G¥. By [Sil2, Theorem 1.6] all zeros of pq are
fixed points of the reflection s, € W. Hence pq(t) # 0 if sq(f) # £, proving (86).
It follows that [t, p] maps to [f,p|W(Rtﬁ ) in (Ts//Ws)y/Stab(s)* Xy (L/LF), and

similarly for [/, p/]. The Stab(s)* X, (L/L)-orbits of [7§,p|W(Ru ) and [f/,p\w(
te,t

are equal if and only if

Rtﬁ,t’)

. r_ / _

there is a w € Wy such that wt' =t and (wp )’W(Rtﬁ,t) = p‘W(Rm,t)'
By Lemma b the last condition is equivalent to wp’ and p having the same
unipotent class as Springer parameter. Because w is only determined up to Wy,
these unipotent classes must be considered in the complex reductive group with
maximal torus Ty, root system Ry, and Weyl group Wy ;. O

As before, let £ be a set of representatives for the conjugacy classes of Levi
subgroups of G. Then {L* : L € L} is a set of representatives for the conjugacy
classes of Levi subgroups of G¥.

Theorem 5.6. The maps from Lemma[5.] combine to a commutative diagram of
bijections

Irr(G¥) d.(G)

Urer (IrrCUSP(Lﬁ)//W(Gﬁ7Lﬁ))u Urec ((I)(Lﬁ)cuSp//W(Gﬁv Lﬁ))u

Upee (Wteusp(L)//Ire(L/ LYW (G, 1)), <= Upe g (9(L)ensp//Ire(L/ LW (G, 1)),

Here the family of 2-cocycles iy restricts to K, on Irr[L""}L(L). The tempered repre-
sentations correspond to the bounded enhanced Langlands parameters and the entire
diagram is canonical up to permutations within L-packets.

Proof. The upper square follows quickly from Lemma in the same way as The-
orem [5.3] followed from Lemma 5.2
Recall from Lemma [£.1] that

Irr®t (LF) is in bijection with (T, // XL (s) Xor (L/LF))x,,

Here X% (s) is the stabilizer of s;, = [L,w]y, in Irr(L/L*Z(G)). A character of L)L
which is ramified on Z(G) cannot stabilize sz, so X¥(s) X, (L/L*) is the stabilizer
of sz in Trr(L/L!). By Theorem the LLC for L is bijective and Trr(L/L*)-
equivariant, so X*(s)X,,(L/L*) is also the stabilizer of ®(L)*F in Irr(L/L?). This
implies

(Irteusp (L) //Ire(L/ L)) =2 |_|5L (Ire® (L) /f X (5) Xue (L/ LF) ),

= I_I Ll Irr°L (LF) = Trrensp (LF),

and similarly for Langlands parameters. These bijections are equivariant for permu-
tations of the direct factors of L, so applying (?//W (G, L)), to all of them produces

=[Lw|L
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a commutative square as in the theorem, but with lower row

LI, ., ((reusp (L) //Te(L/L9)),//W (G, L)), +—
LI, (®(L)eusp//Trx(L/LF)) /W (G, L)),

We apply Corollary to get the row in the theorem. The canonicity of the thus
obtained commutative diagram is a consequence of the analogous property in Lemma
The temperedness/boundedness correspondence follows from the properties of
the local Langlands correspondences for G, G, L and L. O

6. SCHWARTZ ALGEBRAS

Harish-Chandra’s Schwartz algebra S(G) is a completion of the Hecke algebra
H(G). It is particularly useful for the harmonic analysis on G, see e.g. [Wall.
By definition a smooth G-representation is tempered if and only if it extends to a
S(G)-module.

On the other hand, for affine Hecke algebras like

H(X™(T5) x Ws,qs) = H(Ts, Wi, qs)

a Schwartz completion was defined and studied in [DeOp]. In this section we will
compare these two kinds of Schwartz algebras. We do so both for G and for its
derived group G*. Throughout this section we assume that s = [, w] with w € Irr(L)
supercuspidal and unitary (and hence tempered).

First we need to recall the precise definition of S(G). Let d be a G-invariant
metric on the (enlarged) Bruhat-Tits building B(G). Fix a special vertex zg of
B(G). Now

day g 7 d(gzo, o)
is a locally constant function G — R>¢. For any N € N one defines a norm on H(G)
by

(87 un(f) = || (1 +de)V f], = ( /G (1+ dao (9 £(9) P i)

For any compact open subgroup K C G, vy becomes a norm on
H(G,K) =exH(G)ek.

As in [Vigl §9] one defines S(G, K) as the completion of H(G, K) with respect to
the family of norms {vx : N € N}. Finally one puts

S(G) = UKS(G, K),

where the union runs over all compact open subgroups K. The definitions of S (Gﬁ)
and S(G*Z(@)) are analogous.

Given an inertial equivalence class s for G, S(G)*® denotes the completion of H(G)*®
in §(G). Equivalently, S(G)® is the two-sided ideal of S(G) generated by H(G)*.
The definition with ideals can clearly be applied to G* and G*Z(G). Hence the
modules of S(H)® are precisely the tempered representations in Rep®(H), where
H € {G,G* G*Z(G)}. Like in Bushnell-Kutzko theory, idempotents can be used to
construct smaller, Morita equivalent subalgebras of S(H)®.

1/2
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Lemma 6.1. There are Morita equivalences
S@GyF ~u € S(G)e, = Bndc(CL/Hy)) ® eusS(Gepg
S(EZ@)~m e, SEFZG) = @ S(GEZ(@))

A
GZ(G) GﬁZ(G) ae[L/H)\]

D eanS(Gﬁ)euGﬁ.

aE[L/H)\]

e”cﬁz(c) e“cﬁz(c)

12

S(GH®  ~y eﬁ/\GﬁS(Gﬁ)eﬁAGﬁ

Proof. Recall that the analogous Morita equivalences for Hecke algebras were already
proven in [ABPS4], see and Theorems and Let H denote any of the

groups G, G*, G*Z(G). With the bimodules ey, S(H) and S(H)e  we calculate

Ag
eh,, SUH) @saye S(H)Es,, = e, S(H)* @5y S(H) e},
= eﬁ/\HS(H)SeﬁAH = eﬁ)\HS(H)eﬁAH,

S(H)ef, Dt sinel, es,, S(H) = S(H)el, S(H)
— S(H)H(H)S(H) = S(H)".

This means that these bimodules implement the desired Morita equivalences.
Recall the formulas for the involved idempotents. The ae,,a™! with a €
[L/H,] are mutually orthogonal. For H = G they are conjugate, which leads to the
isomorphism for H = G, see [ABPS4,, Proposition 3.15]. For H € {G* G*Z(G)} all
the aeuHa_l live in different Bernstein components. The desired isomorphisms are

consequence thereof, see Theorems [.2]a and [I.3]a. O

6.1. Fourier transforms.

The comparison of the various Schwartz algebras will go via their Fourier trans-
forms. To get to grips with them, we first work them out for G. The Plancherel iso-
morphism for G [Wal| provides a description of S(G) in terms of the space Irrtemp (G)
of irreducible tempered G-representations. As a consequence of this isomorphism,
Irttemp(G) is the support of the Plancherel measure on Irr(G). This means that the
tracial state f — f(1) can be computed as an integral of tr(m(f)) over Irremp(G),
endowed with the Plancherel measure.

Let e; € H(G) be an idempotent such that H(G)esH(G) = H(G)®. Tt gives rise
to the following data.

e A finite set Ags of pairs (P,0), where P = MU is a standard parabolic
subgroup of G and (o, V) is an irreducible square-integrable (modulo centre)
representation of M. Ags contains one element for every such pair (P, o)
with eﬁlg(Vg) # 0, considered up to G-conjugation and up to twists by
unramified unitary characters.

e For every such pair a torus

Tpye={c@x elrr(M): x € Xunr(M)},
where Xy, (M) denotes the group of unitary unramified characters of M.
We identify Tp, with Xyn(M)/Xn:(M,0) via x — 0 ® X.
e For every (P,0) € Ag s a finite group W, ,, namely the stabilizer of Tp, in
W.
e For every w € Wp, an intertwining operator

I(w,0 ® x) € Homgxg(Endc(I$ (0 ® x)), Endc(I§ (w(o @ x)))).
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e The Fréchet algebra C°°( Xy, (M)) @ Endc(esI§(Vy)).
e An action of Wp, := W, » X Xy (M, o) on this algebra by

(w- F)(x) = T(w,w™ (e ®@x))f(w (X)),
where X, (M, o) acts by translations on Xy, (M).

Based on [Wall, it was checked in [Solll, Theorem 2.9] that Harish-Chandra’s Plan-
cherel isomorphism restricts to an isomorphism of Fréchet algebras

esS(Ges — Dpareag, (CFXun(M)) @ Ende (e [§ (V)"
h = [(P,o,x) = I (0 @ x)(h)].

Let us consider an affine Hecke algebra H(W, q) based on an (extended) affine
Weyl group W and a parameter function ¢, as for example in [Opd]. It is assumed
among others that W = X x Wy where X is a lattice containing a root system with
a finite Weyl group Wj.

We need a length function N : W — R which is “close” to the length function
of the affine Coxeter group contained in W. There are many suitable choices. In
the important case W = Z™ x S, we can take

N(zo) = ||zl
and the other cases we encounter can be derived from that. The algebra H(W,q)

comes with a distinguished basis {N,, : w € W}, where N, = [w]g(w)~'/? in the
notation of Section (1} For each N € N one defines a norm on H(W, q) by

(89) o ( Z cwNyw) = sup |cy|(1+N(w))V.

weW weW
Then the Schwartz algebra S(W, q) is the completion of H (W, q) with respect to the
family of norms {py : N € N}. On elementary grounds [OpSol (130)] this family is
equivalent with the family of norms

(Y cwlu) = (3 Jewl?(1+ N (w))2N) Y2,
weW weW

Recall from that H(T;, Ws, ¢s) is defined to be the vector space O(Ts) QH (W, gs)
with certain multiplication rules. The choice of a basepoint of T; determines an
isomorphism

(88)

/H(Ts, W, (J5) = /H(X*(Ts) X W, Qs)a

and we use that to transfer the norms py to norms p%; on H(Ts, Ws, gs). The com-
pletion with respect to the latter family of norms is a Fréchet algebra S(7Ty, W, gs)
which is isomorphic to S(X*(Ts) x Ws,¢s). The equivalence class of the norm p’,
does not depend on the choice of a basepoint of T; if we suppose that it belongs to

the maximal compact subtorus of T;. Hence S(Ts, W, ¢s) is defined canonically.

An H(Ts, Ws, gs)-module is called tempered if it extends continuously to a S(Ts, Wi, ¢s)-

module. It is known from [Opd| that the space

Irrtemp(H(Tsv W57 qﬁ)) - II‘I'(S(TE, W57 qﬁ))

is precisely the support of the Plancherel measure on Irr(H(7s, Ws,¢qs)). Here the
Plancherel measure comes from the standard trace on S(Tg, W, gs):

1 ifz=0,0=1,
3(0:[v]) = { 0 otherwise.
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In [DeOp]| the Plancherel isomorphism for S(75, W, ¢s) was worked out. It is built
with the following data.

o A collection Ay s of pairs (M, d), where M C G is a standard Levi subgroup
containing L and (4, Vi) is a square-integrable (modulo centre) representation
of the parabolic subalgebra HM C H = H(Ty, Ws, qs). Az s forms a set of
representatives for such pairs up to Ws-conjugation and character twists.

e For every such pair a torus

TM = {t € Toun: t(x) =1if 2 € QR(M, L) N X*(Ty)},

5,un

a quotient of Xyny(M)/(Xune(M) N Xy (L, w)).
e A finite group Wj s, the stabilizer of 6 ® Ts%n in Ws, and a finite group
TNy ={te T, t(z) =1if a(z) = 1 Vo € R(M,L)}.
e For every w € Wy 5 := Wy 5 X TEVM an intertwining operator
I(w, 8 ®t) € Homyxper (Ende(ind2, (8 ® t)), Ende (ind¥a (w(5 @ 1)))).
e The Fréchet algebra

) . N
@(M,(S)EAHJ C (TM,5) & End@(deM (‘/5))

e An action of Wy, s on this algebra by

(w- ) =I(w,w ' (@) f(w't),
where TS{WM acts on TM by translations and W s by w(d@t) =5 @w(t).

5,un

With these notations, the main result of [DeOp] states that

S(Te;Wsr0s) — Bassyenn., (C(Trs @ Endc (ind%, (V5)))
h — [(M,6,t) — ind¥y (8 @ t)(h)]
is an isomorphism of Fréchet algebras.
Recall the isomorphism

e M(G)eus = H(Ty, Ws, g5) @ Endc(V, @ CRE)

from . As tensoring with EndC(VH®(CER§) is a Morita equivalence, it is natural to

call a module V®VM®C9‘{§ over tempered if and only if V' € Mod(H(Ts, Ws, gs))
is tempered.

Whr,s
(90)

Theorem 6.2. The isomorphism extends in a unique way to an isomorphism
of Fréchet algebras

e S(Q)eus = S(Ty, Ws, g5) @ Ende(V, @ CRE).

Proof. The unicity is clear from the continuity and the density of the subalgebras

in their Schwartz completions.
Since e, H(G)ey, is Morita equivalent with H(G)*,

Rep?(G) — Mod(eu H(G)eus)

(91) Voo ensV

is an equivalence of categories. According to [BHKl Theorem A] it restricts to a
homeomorphism between the spaces of irreducible tempered representations on both
sides, and it preserves the Plancherel measures (up to some normalization factor).
The isomorphism also preserves temperedness of irreducible representations,
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because it matches the tracial states on which the Plancherel measures of both
algebras are based, namely f — f(1) and 73 ® tr,, wemi- Consequently and
H 5

induce a homeomorphism

Irrzemp(G) —>  IrTtemp (H(Tsa Ws, qs) ® End(C(Vu ® CSRE))

92
(92) |4 —> eus V.

From the Plancherel isomorphisms for e, S(G)e,,, we see that Ag s contains
precisely one pair (P,o) for every connected component of Irriemp(G). Similarly
Ay is in bijection with the set of components Irriemp (H (75, Ws, ¢s)), and this does

not change upon tensoring the algebra with Endc(V, ® (Ci){g) Hence we may choose
Asy 5 such that

{euc I8 (Vo) 1 (P,o) € Age} = {ind?a (Vs) ® V, @ CRE : (M, 5) € Mgy}
Then (92) induces a bijection
Xune(M)/Xee(M,0) 2 Tpo — Tars = Tot /T
It follows that W, , = W 5. Since T;}flm is a quotient of Xyn, (M), also
TS{WM > X (M, 0)/(Xnr(M,0) N X (L, w)).

Consider a k € X (M,0) N Xpr(L,w). Then k£ =1 in X (L)/ Xne(L,w) = Ty, so
the H(Ts, Ws, gs)-modules

indzM (0®k®yx) and indzM (0 ®x)
are the same for all x € X,,,(M). Hence
euclg(‘j ®k®x) = eucllg(a ® x)
for all x € Xy, (M) and
I(kj, o X)‘eHGIg(mgx) € CideuGIg(U@)x)'

Therefore the action of Wp,, on C°°( Xy (M)) ® Endc(e,, 15 (V) is built from an
action of Xy, (M) N Xy (L, w) on Xynr (M) and an action of the quotient

WP,U/(an(M) N an(L,w)) = WM,J
on the Xy, (M) N Xy (L, w)-invariant elements. Now becomes an isomorphism

00 w , o
(93) eNGS(G)e#G%@(PU)eAGr(C (TM,) ® Ende (e IS (Vo)) 7.

Comparing this with tensored with Endc(V, ® (Ci)‘ig), we see that the Fourier
transforms correspond via . Thus we obtain an isomorphism of topological
algebras

eneS(Q)eue — S(Ty, We, ¢s) @ Ende(V, @ CRY)
which extends . [

Both sides of Theorem[6.2]are defined as the completion of a subspace with respect
to a family of (semi-)norms, namely the norms vy on e, H(G)e,, and the norms
PN @ | lgnaevymcnty 00 H(Ts Wers) © Ende(V @ CRY), where |-llg,q. v, men)
denotes any norm on this algebra. Hence these families of norms are equivalent
under the isomorphisms and .
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In fact one can also prove Theorem [6.2] comparing these norms directly, generalis-
ing [DeOp, §10]. However, that would involve many tedious computations. We feel
that the above proof is conceptually clearer.

Proposition 6.3.

(a) S(G*Z(Q)) is Morita equivalent with Daci/my (eMGS(G)eMG)XG(s).
(b) There are isomorphisms of Fréchet algebras

(e S(G)eng) X = (8(Ty, Wi, ¢s) @ Ende(V, @ CRE)) X
> (S(Ts, Wi, g5) @ Ende (V)X ) x e,
Proof. (a) By Lemma [6.1] it suffices to show that

G
(94) s 20y S(FZE)eugs ey = (CuaS(@ene) .
The corresponding statement for Hecke algebras is the isomorphism
XG
(95) (encH(@ene)™ D = gy o G Z(@)eng,

from [ABPS4, Lemma 4.9 and Corollary 4.10]. The underlying map is simply the
restriction of functions f : G — C to G*Z(G). The norms defining the Schwartz
completions are vy and

(f) = / 1+ dao (9))2V 1/ () 24 (g).
GEZ(G)

To see that these norms are compatible, we consider the [-th congruence subgroup
C; C G. We write C] = i N G*Z(G). For I sufficiently large, it was shown in the
proof of [ABPS4, Lemma 3.10] that

(96) H(G*Z(C). O = (H(G, ")),
Hence we can normalize the Haar measures on G and G*Z(G) such that

vn(f) = V}V(f) for all f € (eHGH(G)GHG)XG(S) c (H(G, Cl)5>XG(S).

Then (95) extends continuously to an isomorphism of the Schwartz completions,
namel.

(b) The isomorphism from Theorem is X% (s)-equivariant by definition of the
action of X%(s) on

H(Ts, Ws, q5) @ End(c(vu) & End(c(Ci)fiﬁ).

Its restriction to X (s)-invariant elements gives the first statement of part (b). The
X (s)-action on the above algebra preserves the tensor factors and is the natural
action on Endg¢ (((:9%5) Knowing that, a standard argument, as in [ABPS4, Lemma
3.7], proves the second claim of part (b). O

To obtain a version of Proposition for G*, we need to involve the action o
of Xpnr(G) on H(G) from (21)). However, this action does not extend to S(G), for
example because a twist of a tempered representation by a non-unitary character
is no longer tempered. Fortunately, the action of the subgroup Xn,(G) of unitary
unramified characters does extend continuously to S(G), for it preserves the norms
that define the Schwartz completion.
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In Theorem [1.2| we saw that X,,.(G) acts on H (75, Ws, gs) ® Endc(V),) via trans-
lations on Ty. In terms of basis elements this becomes

oy (0[v] @ h) =y H(2)0,[v] @ h, for z € X*(Ty),v € Ws, h € Endc(V},).

Clearly this action stabilizes H(Ts, W5, ¢s), and the action of the subgroup Xyn:(G)
on that subalgebra preserves the norms vy defining the Schwartz completion. Hence
the action of X, (G) extends continuously to S(75, Ws,¢s) ® Endc(V,), and it is
still given by translations on 7.

Theorem 6.4.
(a) S(G*) is Morita equivalent with Docir/my (eMGS(G)eMG)XG(ﬁ)X“m(G).
(b) There are isomorphisms of Fréchet algebras

e, S(Qe, )X @)X (@) ~ (g Ty, Ws, ¢s) ® Endc(V,, ® CR? X () Xune(G)
(e} [%e} K 5
(S(TE, Wi, gs) ® Ende (V)X s 3L
Proof. (a) By Lemma [6.1] it suffices to show that
G
(97) eMGuS(Gﬁ)ean = (eMGS(G>eHG>X (8) Xunn (G
From [ABPS4, Theorem 3.17 and Lemma 4.9] we know that

1

G
(98) gy H(CH)en s = (cugH(G)epg) X (E),

Since Xunr(G) is Zariski-dense in Xy, (G), we may just as well replace Xy, (G) by
Xunr(G) on the right hand side of (98). Next we compare the relevant Schwartz
norms in the same way as in the proof of Proposition [6.3]a. To that end we need to
know that

'H(Gﬁ, Clﬁ)ﬁ ~ (H(G, Cl)s>XG(5)Xm(G') = (H(G, Cl)s)XG(ﬁ)Xm(G)’

which follows from and and the proof of [ABPS4, Theorem 3.17]. These con-
siderations lead to an isomorphism between the Fréchet algebras .
(b) This follows from Theorem and Proposition [6.3]b. O

6.2. Spectrum preserving morphisms.
In [Sol2] an algebra homomorphism

(99) Co: COO(Ts,un) X Ws — S<T57 W, QS)

with many nice properties was constructed. Notice that the left hand side is the
gs = 1 version of the right hand side. We will generalize this to the Schwartz algebras
from Theorem [6.4.

In [Sol2, Lemma 5.3.2] it was shown that there exist filtrations on C°°(Ty yn) X Wi
and on S(Ts, Ws, ¢s) which are respected by (p, and with respect to which (p is
spectrum preserving. The choice of such filtrations determines a bijection

Irr (o) = Irr(S(Ts, W, gs)) — Irr(C™°(Tsun) X Ws).
However, different filtrations can produce different bijections.

Lemma 6.5. There exist filtrations on S(Ts, Ws, ¢5) and C°°(Tsun) X W with respect
to which Irr(¢o) equals (67)).



THE NONCOMMUTATIVE GEOMETRY OF INNERFORMS OF p-ADIC SPECIAL LINEAR GROUE$

Proof. Lusztig’s a-function is also defined on Irr(H(Ts, Ws, qs)), by
a(m) = max{n : 7(H") # 0},

where H" is as in . According to [Lus3, Theorem 4.8.c| this can also be described
as

(100) a(m(ty, u, pg)) = dime(B"),
where B* denotes the variety of Borel subgroups of G, that contain u. Define
(101) I, = {h € H(T5,Ws,qs) : w(tq, u, pg) = 0 if dime(BY) < n}.
Then I,, > H" and
Irr(1y,/I41) = {7 (tg, u, pg) : dime(BY) = n}.

In [ABPS5, Proposition 9.3] it was characterized when 7(ty,u,p,) is tempered,
namely when the associated element ¢ € G lies in a compact subgroup. The collec-
tion of Kazhdan-Lusztig triples (tq,u, pq) with v and p, fixed can be written as a
union of cosets of complex tori, see [ABPS1], §3]. With it follows that the set
of tempered irreducible H (T, W5, ¢s)-representations of a-weight n is dense in the
space {7 € Irr(H(Ts, Ws,qs)) : a(m) = n} (endowed with the Jacobson topology). In
particular

(102) I, ={h € H(Ts,Ws,qs) : w(h) =0 if m € Irr(S(Ts, Ws, ¢s)), a(m) < n}.

Similarly we put
(103)
I =A{f € O(Ts) x Wy : 7(t,u, p)(f) = 0 if dimc(B*) < n}

= {f € O(Ty) x Wy : 7(t,u, p)(f) = 0 if dimg(B“) < n and t € Gy is compact}.
Then Irr(Jp/Jn+1) = {7(t, u, p) : dime(B*) = n}. Let
SI, C 8(T5,Ws,qs) and SJp, C C®(Tsun) X Ws

be the two-sided ideals generated by I, and J,. These ideals can also be described
by the conditions in (102)) and the second line of (103)). We claim that

(104) Co(SJy) C SI,,.
Let (M, ) be as in (90). By construction

%/ . 10(Ts s *
o (mdzM((S)) = mdogﬁgng(Co,Mé)’

where (j ;,0 is obtained from ¢ by modifying the parameters g of the algebra HM,
More concretely:
® (5 mOloer,) arises by replacing each O(T5)-weight ¢4 of § by t =t Itel ™t
° §5‘7M6]C[W5’M} comes from the realization of Vs as a quotient of H*(Bth)

If 0 = mar(tg, u, pg,ar), then it is a quotient of

tq,
Homuy (7, (1,u)) (Pg.ar, Hi (B, C)).
By [ABPSH, Lemma 8.3] its structure as a C[IW; p/]-module is

T (t,u, p) @ (terms 7ar (¢, 0, p') with u < o).
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Here v/ > u means that O, 2 O,, where O, denotes the M-conjugacy class of u/'.
This condition implies

dim Zy; (v') < dim Zy; (u) and  dim BEE < dim By, .
The summands of ind%\ﬂr(tq, u, pg,m) are of the form m(ty, u, pg) where
pq € Irr(mo(Zg, (tg,u))) contains pg as. It follows that
(105) G (n(ty,u, pq)) = 7(t,u, p) ® (terms 7(t, ', p') with dim BY < dim BY).
Let h € §J,, C C®(Tsun) X Ws and suppose that dim B* < n. Then (105) shows
that

7-‘-(t(]) u, pq)(CO(h)) = C(ak (T‘-(tlp u, Pq))(h) =0.

Hence (y(h) € SI,, C S(Ts, W5, qs), which proves the claim (104). Assume now that
dim B* = n and consider the algebra homomorphism

SJn/SJ»,H_l — SIn/SIn+1
induced by (g. Then (105) shows that Irr((o)(7(tq, u, pq)) = 7(t, u, p). O

To extend (y to the setting of this paper, we must check that it is Stab(s)"-
equivariant. As (p is not even unique, we will rather check that we control the
construction so that it becomes equivariant. In [Sol2] more general algebra homo-
morphisms

(106) Co @ideqry : (C°(Tyun) x We) % T — S(Ty, W, gs) @ T

are constructed. Here I' is a finite group of particular automorphisms of (75, Ws, gs ),
namely those coming from automorphisms of the Dynkin diagram of R, that preserve
¢s : Rs — Rsp. But in fact the setup of [Sol2] is even more general. By [Sol2)
Theorem 4.4.2.e and Lemma 4.2.3.a]

(107) Co is TYV0 -equivariant,

5,un

for the action induced by translations on Tgun. So in (106)) we may take for I' any
finite group consisting of diagram automorphisms and translations by subgroups of
Ty un- In particular we can take I' = Stab(s)™ with the actions described in Theorem

and (47). In this way (106) implies that (p is Stab(s)-equivariant. Then
Co® idEndc(VH) : (COO (Tﬁ,un) X Wﬁ) & End(C(V,u) — S(Tsa W, (_I5) ® End(C(Vu)

is also equivariant and induces

Cozey= B Geid: @ (C%(Tou) x Ws) ® Ende (V)X @ x 91t —
a€[L/H)] a€[L/H,]

L
(108) Dy (S(To W) © Ende (V)X .

Proposition 6.6. Cé,u 2(G) is spectrum preserving with respect to filtrations. There
exist filtrations on the above algebras such that

(G cy)  IE(S(GEZ(G))®) = (Taun//Stab(s))e,

equals the inverse of the map from Theorem [{.4).
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Proof. First we check that the action of Stab(s)™ on H(Ts, Ws, ¢s) preserves the a-
weights of irreducible representations. Recall that m(ty, u, p,) is a quotient of the
standard module H, (B'*, C)®V,,. By construction the weights for the action of the
subalgebra O(Ty) on H,(B'w" C) are precisely the w(t,) with w € W,. Translation
by xy € T™o induces an automorphism of H (T, Ws, ¢s) which is the identity on

s,un

H(Wo, gs). This implies that

X5 (H(B'",C)) = H (B¥'",C),
X5 (tg, s pg)) = m(Xatys s pg)-
With [ABPS5, (66)] we obtain

a?w,w)(ﬂ(tqv Uu, Pq)) = W(Xglwtqw*

(109)

Lwuw™, py o Adyt).

Here conjugation with w takes place in G, which is possible because W (G, L) =
W(Gs, L). As dim B***~" = dim BY,
aag, m) =a(m) forall € Irr(H(Ts, Ws,gs)).

Hence Stab(s)™ stabilizes the ideals I,, C H(Ts, Ws,qs) and SI,, C S(Ts, Ws, qs)-
Similarly, it stabilizes the ideals J, C O(T;) x W, and SJ,, C C°°(T5 un) X Ws. This
enables us to define ideals in the algebras from ((108]):

L
I = @ae[L/H/\](SIn ® Ende (V,,))X7 ) xR,
;. XL(s) #
J = @GE[L/HA](SJH ® Ende(V,)) 3 RE.

By (104) CEGﬁZ(G)(J;l) C I;,. The way to obtain Irr(1},/I_ ) from Irr(SI,/SI, ;1)
is the same as from Irr(J},/J}), 1) from Irr(SJ,/SJpy1), and described by Clifford
theory. From the proofs of Lemma and Theorem [£.4] we see that irreducible
representations of

L
eBae[L/H/\] (S(Tsuv Ws, qs) ® EndC(VH))X () o mﬁ

can be parametrized by triples (a, 7, o) with a € [L/H,], 7 € Irr(S(Ts, Ws, gs)) and
o € Irr(C[Stab(s);, kr]). Similarly

L
Irr(@ae[L/H/\} (COO(TE’UH) x Wy ® EndC(VH))X (s) “ mg)

can be parametrized by triples (a,m,0) with 7 € Irr(C*(Tsun) % Ws). Like in
Lemma we denote the associated representation by (a, 7 x o). Then (105]) shows
that

3

3

Ciz(c) (@ m(tq, U; pg) X 0) =
(a,7(t,u, p) ¥ ) @ (terms (a,7(t,u',p') x o) with dim BY < dim BY).
As in the proof of Lemma this implies that (¢, e is spectrum preserving with
respect to the filtrations (I},)n>0 and (J},)n>0, and that

(110) Irr(cgﬁZ(G))((a’W(tq’u7pQ) X J) = (a,r(t,mp) X 0)'

The map in Theorem b is based on Theorem a, in particular on . This
in turn relies on Lemma [3.2| and the associated bijection

Irr(H(Ts, Wi, ¢s) @ Ende(Vy,)) <— Irr(O(T5) x W ® Ende(Vy)).
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By @ the latter can be identified with
W(tmu’ptﬂ QVy T(t,u,p) ® Vi
Consequently ((110)) is the inverse of the map in Theorem b. O

Corollary 6.7. (7, 2(6) restricts to a map

Gt P Goid: @ (C™(TF,) x W) @ Ende (V)X x 9t —
CLE[L/H)\} aG[L/H/\]

! XE(s) §
@QE[L/HA] (S<j; ) W57q5) & El’ld(c(vu)) 5 “ 9{5.

With respect to the filtrations coming from those in Pmpositz’on Coue 18 spectrum
preserving and

Irr () : Irr(S(G)®) — (Tsun//Stab(s) Xune (L/L%)) .,
equals the inverse of the map in Theorem [{.4}b.

Proof. 1t follows from (107) that (2, 2(G) is equivariant for the action of Xy, (G) =
Xunr(L/L*) on Ty, by translations. Hence we can restrict Con 7() to the sub-

spaces of Xyn(G)-invariant elements on both sides, which gives (Z,;. By and
the a-weights of irreducible representations of H(Ts, W, ¢s) or O(Ts) x Wy are
invariant under the action of X, (G). Therefore the ideals SI,, and SJ,, are stabi-
lized by Xun:(G). This enables us to take Xy, (G)-invariants in the entire proof of
Proposition which leads to the desired conclusions. O

APPENDIX A. GEOMETRIC EQUIVALENCES

Let X be a complex affine variety and let k£ = O(X) be its coordinate algebra.
Equivalently, k is a unital algebra over C which is commutative, finitely generated,
and nilpotent-free. A k algebra is an algebra A over C which is a k-module (with an
evident compatibility between the algebra structure of A and the k-module structure
of A). For A a k-algebra, let Prim(A) denote its primitive ideal spectrum, that is,
the set of primitive ideals of A.

In this appendix, we will consider only k-algebras A that satisfy the following
property: the map

(111) Irr(A) — Prim(A) : (mw, V) — ker(m)

is a bijection. For example, this is the case if A is of finite type (that is, if A is finitely
generated as a k-module), or more generally if every irreducible A-representation has
(at most) countable dimension. For such k-algebras, we will introduce a weakening
of Morita equivalence called geometric equivalence.

The new equivalence relation preserves the primitive ideal spectrum and the peri-
odic cyclic homology. However, it permits a tearing apart of strata in the primitive
ideal space which is not allowed by Morita equivalence.

Spectrum preserving morphisms of k-algebras

Assume that B has the same property. By definition, a C-algebra homomorphism

¢: A — B is spectrum preserving if
e for every primitive ideal I of B, the ideal ¢~!(I) is contained in a unique
primitive ideal of A, say ¢*(I);
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e the resulting map ¢*: Prim(B) — Prim(A) is bijective.

More generally, ¢: A — B is called spectrum preserving with respect to filtrations if
there exist chains of two-sided ideals

112) () =Ihch--Cl,=A and (0)=JoCJi--CJ,=DB

such that, for every i, ¢(I;) C J; and the induced map ¢: I/l;—1 — J;/Ji—1 is
spectrum preserving.

These data determine a bijection Prim(B) — Prim(A) which, however, need not
be continuous.

Algebraic variation of k-structure

Denote the centre of a k-algebra A by Z(A). If A is a C-algebra, A[t,t71] is the
C-algebra of Laurent polynomials in the indeterminate ¢ with coefficients in A. Note
that Z(A[t,t71]) = Z(A)[t,t71].

Let A be a unital C-algebra, and let W: k — A[t,t!] be a unital morphism of
C-algebras. For z € C*, let ev(z) denotes the "evaluation at z” map:

ev(z): Aft,t71] — A
Saith = Y a

Consider the composition ev(z) o ¥: k — Z(A), and denote the unital k-algebra so
obtained by A,. The underlying C-algebra of A, is A. Assume that for all z € C*,
A, is a finite type k-algebra. Then for z,z’ € C*, we will say that A, is obtained
from A, by an algebraic variation of k-structure.

Definition A.1. With k-fized, geometric equivalence for k-algebras (such that (111))

is a bijection) is the equivalence relation generated by the two elementary moves:

e spectrum preserving morphisms with respect to filtrations,
e algebraic variation of k-structure.

Thus two k-algebras A, B as above are geometrically equivalent if there exists a
finite sequence

A=Ay Ay,..., A, =B

with each A; a k-algebra such that (111]) is bijective and for j = 0,1,...,7 — 1 one
of the following three possibilities is valid:

(1) Aj4 is obtained from Aj; by an algebraic variation of k-structure,

(2) there is a spectrum preserving morphism with respect to filtrations A; —
Ajt1,

(3) there is a spectrum preserving morphism with respect to filtrations A1 —
Aj.

To give a geometric equivalence relating A and B, the finite sequence of elementary
steps (including the filtrations) must be given. Once this has been done, a bijection
of the primitive ideal spectra and an isomorphism of periodic cyclic homology are
determined:

Prim(A) <+— Prim(B) and HP.(A) ~ HP.(B).

Proposition A.2. If two unital k-algebras (such that the corresponding maps (111))
are bijective) are Morita equivalent, then they are geometrically equivalent.
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Proof. Two unital k-algebras A, B are Morita equivalent if there is an equivalence
of categories

(unital left A-modules) = (unital left B-modules).

Any such equivalence of categories is implemeted by a Morita context, i.e. by a pair
of unital bimodules (4Vp, pW4) together with given isomorphisms of bimodules

a:VepW — A, B:W®aV = B,
which are ”associative” in the following sense. Writing
a(v@w)=vw and Blw®v)=wv,
one requires that
(vw)v" = v(wv') and (wv)w' = w(vw') for all v,0" € V, w,w’ € W.

The linking algebra is defined as
AV
Max2(aVB, BWa) = <W B) )

Then the map ([111)) corresponding to Mayx2(4VE, BW4) is a bijection. The inclusions
A = Max2(aVB,BWa) and B — Moaxa(aVe, sWa)
00

a — (59) b = (50)
are spectrum preserving morphisms of k-algebras. Hence A and B are geometrically
equivalent. O

APPENDIX B. EXTENDED QUOTIENTS

Let T' be a group acting on a topological space X. In [ABPS5 §2] we studied
various extended quotients of X by I'. In this paper we need the most general
version, the twisted extended quotients.

Let fj be a given function which assigns to each x € X a 2-cocycle

f(xz): Ty x Ty = C*, where ', = {y € T : yz = z}.
It is assumed that f(yx) and 74i(x) define the same class in H?(I'y, C*), where
Y« : I'y = 'y, sends a to yay~!. Define
Xy = {(z,p) : x € X, p € r C[Ty, 1(x)]}.
We require, for every (v,z) € I' x X, a definite algebra isomorphism
$v.a : Clle, 4(z)] = Cllye, b(y2)]

such that:

® ¢, is inner if yr = x;

® Gyt yz O Py g = Py g forall ¥,y el z e X.
We call these maps connecting homomorphisms, because they are reminiscent of a
connection on a vector bundle. Then we can define a I'-action on Xy by

v () = (v, po ¢ g)-
We form the twisted extended quotient
(X//T)y = Xy/T.
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We note that this reduces to the extended quotient of the second kind (X//T")2 from
[ABPSH, §2] if g(x) is trivial for all € X and ¢, is conjugation by .

Such twisted extended quotients typically arise in the following situation. Let A
be a C-algebra such that all irreducible A-modules have countable dimension over
C. Let I" be a group acting on A by automorphisms and form the crossed product
AxT.

Let X = Irr(A). Now I" acts on Irr(A4) and we get f as follows. Given z € Irr(A)
choose an irreducible representation (7, V,,) whose isomorphism class is 2. For each
~v € IT" consider m, twisted by ~:

Nt a = (Y ray).

Then - z is defined as the isomorphism class of v - 7m,. Since v - m; is equivalent to
Tz, there exists a nonzero intertwining operator

(113) T, o € Homy(y - g, Tyz).

By Schur’s lemma (which is applicable because dim V,, is countable) T’ , is unique
up to scalars, but in general there is no preferred choice. For v,+" € T';, there exists
a unique ¢ € C* such that

Typo Ty w = Loy
We define the 2-cocycle by
1) (7, ) = e
Let N, , with v € T'; be the standard basis of C[I'y,(«)]. The algebra homomor-

phism ¢, ;, is essentially conjugation by T ., but we must be careful if some of the
T, coincide. The precise definition is

(114) Gye(Nya) = ANyt oy i Ty Ty Ty = AT -1 0, A € CX.

Notice that (114) does not depend on the choice of T, ;.
Suppose that I'; is finite and (7,V;) € Irr(C[I'y,b(x)]). Then V, ® V* is an

irreducible A x I';-module, in a way which depends on the choice of intertwining
operators T, ;.

Lemma B.1. [ABPS5, Lemma 2.3]
Let A and T be as above and assume that the action of I on Irr(A) has finite isotropy
groups.

1

(a) There is a bijection
(Ier(A)//T)y +— Irr(AxT)
(70, T) = Ty XT = Indﬁjll:z(vx ® V).
(b) If all irreducible A-modules are one-dimensional, then part (a) becomes a natural
bijection
(Irr(A)//T)2 «— Irr(A x T).

Via the following result twisted extended quotients also arise from algebras of
invariants.

Lemma B.2. Let T be a finite group acting on a C-algebra A. There is a bijection

{Vehr(AxT): VI #£0} +— Irr(AD)
% VL
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If all elements of Irr(A) have countable dimension, it becomes
{(mz,7) € (Irr(A)//T)y : Homr, (V7, V) # 0} «— Irr(AD)
(72, T) —  Homr, (V;, V).

Proof. Consider the idempotent
(115) pr=I07")  vecl]
It is well-known and easily shown that
A" = pr(A x T)pr
and that the right hand side is Morita equivalent with the two-sided ideal
I=(AxTD)pr(AxT)C AxT.
The Morita equivalence sends a module V' over the latter algebra to
Pr(A xT) @ axrypraxry V =V'.
As I is a two-sided ideal,

Ir(I) ={V eTrr(AxT): [-V#0} ={Vehr(AxT):prV =V #£0}
This gives the first bijection. From Lemma [B.Ila we know that every such V is of
the form 7, x 7. With Frobenius reciprocity we calculate

(me @ 7)1 = (Ind42E (Ve 0 Vi)' 2 (V, ® V)T = Homr, (Vy, Vy).
Now Lemma [B.T]a and the first bijection give the second. U

Let A be a commutative C-algebra all whose irreducible representations are of
countable dimension over C. Then Irr(A) consists of characters of A and is a T3-
space. Typical examples are A = Cy(X) (with X locally compact Hausdorff), A =
C*(X) (with X a smooth manifold) and A = O(X) (with X an algebraic variety).

As a kind of converse to Lemmas and we show that every twisted ex-
tended quotient of Irr(A) appears as the space of irreducible representations of some
algebras. With small modifications, the argument also works for smooth manifolds
and algebraic varieties.

Let T" be a group acting on A by algebra automorphisms, such that I'; is finite
for every x € Irr(A). Recall that every 2-cocycle § of I' arises from a projective
I'-representation (u,V),) by

(') =80,y )y, ).
Let I" act on A ® Endc(V),) by

v-(a®h) =~(a) @ p(y)hu(y) ™"

Lemma B.3. There are bijections

Irr((A® Endc(V,)) »I')  «—  (Irr(A)//T)y,
Irr((A ® Endc(V,,))!) «—— {[z,p] € (X//T'), : p appears in V,}.

Proof. We can identify Irr(A ® Endc(V,)) with {C, ® V,, : « € Trr(A)}. It follows
directly from that we can take T, ; = pu(7) for all v € I and = € Irr(A4). Thus
the first bijection is an instance of Lemma [B.1]a.

Let z € Irr(A) and (7, V;) € Irr(C[T', f]). Then

Homr, (7,C; ® V},) = Homr, (1, V),
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and this is nonzero if and only if 7 appears in V,,. Now an application of Lemma
[B.2] proves the second bijection. O

Corollary B.4. In the above setting, suppose that I' = TI'1 x 'y is a semidirect
product. Then there is a canonical bijection

(Irr(A) //T)g «— ((Irr(A) //T1)y//Ta)y-
Proof. The bijection is obtained from Lemma and
(A®Endc(Vy,)) xI' = ((A® Endc(V,)) x I'1) x Iy

It is canonical because the same 2-cocycle is used on both sides. ]
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