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Abstract—Slowly converging iterative methods such as
Landweber or ART, have long been preferred for reconstructing
a tomographic image from a set of CT data. In the recent years, a
fast-converging method named CGLS has received attention for
reconstructing tomographic data. However, there is a large class
of methods that give more reliable solutions, when compared
to CGLS. In this paper, we are going to consider the merits
of the GMRES-type methods when applied to the CT problem,
introduce various strategies, and compare the results with CGLS.

In computed tomography, we deal with an over-determined
system of linear equations of the form

Ax = b, (1)

where A 2 Rm⇥n is a large and sparse geometry matrix,
b 2 Rm⇥1 is the logarithm of the ratio of initial and final
intensities, and x 2 Rn⇥1 is the linear attenuation coefficient
in voxels. For computational efficiency and mathematical
flexibility, iterative methods are preferred for solving problems
of this type. Additionally, since the CT problem is very large,
it cannot be solved with a direct method because that would
require more matrices of the same size to be stored. This em-
phasises the need for iterative methods. In the CT community,
when iterative reconstruction methods are discussed, one is
accustomed to think of slowly converging algebraic iterative
methods such as Landweber or ART. These methods have been
around for a long time and are widely used because the user
has the advantage of stopping the algorithm before the data
is over-fit, even though the problem is mathematically not yet
minimized. However, it is understood in the recent years that
by reconstructing CT data with a fast-converging method, we
also avoid over-fitting the data and are able to obtain a better
solution. So in theory, to obtain an exact solution with these
complex, fast-converging methods, we would have memory
requirements that grow with the number of iterations but in
practice, we require only a fraction of this number so our
memory requirements stay low. These are just a few reasons
why there has been a growing interest in fast-converging
methods, with the most popular one being the Conjugate
Gradient method for Least Squares (CGLS). This method is
mathematically equivalent to applying the original Conjugate
Gradient to the normal equation, i.e.

ATAx = AT b. (2)
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The performance of the CG method depends on the fact that
the geometry matrix is symmetric, which automatically works
well with (2) since the product of any matrix with its transpose
will always be symmetric. However, it is not always ideal to
calculate the exact transpose in CT problems, and it is much
more efficient to implement an inexact transpose (also known
as an unmatched back projection): A certain bAT that is close,
but not equal to AT . Of course this means that the product
of bATA is no longer a symmetric matrix, which causes some
issues on the convergence and computational inefficiency with
the CGLS method. This is an important point (to which we
return to later on in the paper), and our main motivation for
wanting to adapt alternative iterative methods in the same class
as a well-established problem.

CGLS is a member of a large class of methods named the
Krylov subspace (KS-)methods [8]. Those belonging to this
class converge very quickly, which gives us the possibility of
applying them directly to the Tikhonov system,

(ATA+ �2LTL)x = AT b. (3)

For the readers’ convenience, we now give the definition of
a Krylov subspace: An order k Krylov subspace, Kk(A, b),
is the linear subspace spanned by the image of b under the
linear transformation matrix Ap, p = 0, 1, . . . , k � 1 (where
A0 = In),

Kk(A, b) = span{b, Ab,A2b, . . . , Ak�1b}. (4)

KS-methods are derived from (4) and are popularly used for
their convergence properties, robustness and efficiency. These
methods are particularly preferred for when A is large and
sparse since the product of Ab is a vector, and A2b = A(Ab)
is another matrix-vector operation1. This avoids filling in the
zero elements in the matrix and preserves the sparsity of A.
Also, as k ! 1, Akb ! A�1b, thus avoiding the inversion of
a large and sparse matrix. Krylov subspace methods are also
row (or column) action methods. This is important because
in CT, the geometry matrix A is often too big to store, and
the matrix-vector operations are required to be performed with
one row (or column) of A at a time. So KS-methods are easily
(and efficiently) adaptable for the CT problem.

Another popular method from the KS-methods class is
GMRES. In the next section, we highlight the advantages
and disadvantages of this method but we first give a quick
introduction to GMRES and state the algorithm. We should

1Note here that this definition is valid for square matrices. For non-square
matrices, we deal with forward and back projection, rather than the powers
of matrices.



note that a more detailed derivation of this method is given in
[9], [5] as well as an extensive literature review. Here, we will
mention only some of these references and briefly explain the
GMRES variations.

GMRES-TYPE METHODS

The Generalised Minimum Residual (GMRES), is a KS-
method that approximates a solution to (1) by evaluating

xk = x0 + Vky. (5)

Here, Vk 2 Rk⇥k is the orthonormal columns of basis for
Kk(A, r0), and y 2 Rk⇥1 is the solution to (what we refer
to as) an inner problem, where krkk2 is minimized over
the Krylov subspace, Kk(A, r0). The matrix Vk is obtained
during what is called an Arnoldi process, which also returns
a rectangular upper Hessenberg matrix, Hk 2 R(k+1)⇥k. This
matrix mimics the characteristics of the coefficient matrix A
and thus, it is used to obtain a solution to the inner problem,
y, that minimizes the residual over Kk(A, r0).

GMRES was first introduced by Saad and Schultz in 1986
[9], for solving nonsymmetric square matrices. Its convergence
properties were studied by van der Horst, in 1993 [11], and its
behaviour for singular and nearly singular matrices by Brown
and Walker, in 1994 [1]. In the following years, there has been
a great interest in the theory and applications of GMRES-type2

methods: Complementing Brown and Walker’s work, Calvetti
proposed a GMRES-type method for singular matrices, called
Range Restricted GMRES (RRGMRES) [2]. The idea, with
which we experiment, was to shift Kk(A, r0) by the coefficient
matrix A prior to the Arnoldi process. The GMRES algorithm
is given below:

ALGORITHM 1: GMRES
1. Start: Choose x0. Let r0 = b�Ax0, � = kr0k2 and
V1 = r0/�.
2. Arnoldi Process:
for j = 1, 2, . . . until convergence do
h(i,j) = V T

i AVj , i = 1, 2, . . . , j,
! = AVj �

Pj
i=1 h(i,j)Vi,

h(j+1,j = k!k2,
Vj+1 = !/h(j+1,j).

end for
3. Solve: k�e1 � Hk+1,kyk2 for y, where e1 =
[1, 0, . . . , 0]T .
4. Form the approximated solution: xk = x0 + Vky.

Step 3 can be done with the help of QR factorization
coupled with Givens rotation. For the RRGMRES algorithm,
we only have to replace V1 = r0/kr0k2 by V1 = Ar0/kAr0k2
in Step 1.

GMRES is popularly used as a deblurring technique and
often compared with other iterative methods [3]. It is also
used as part of new hybrid methods [4] or coupled with
preconditioners [13]. In recent years, GMRES is adapted to

2Throughout the paper, we use this term to mean GMRES and its variations.

solve various other applied problems, e.g. inverse blackbody
radiation problem [12], or non-rotational CT [10]. However
most of these works are limited to square matrices and are
concluded using simulated data.

CG is arguably the most popular KS-method because it is
easy to implement, computationally inexpensive and numeri-
cally stable when applied to square, symmetric and positive-
definite systems. As we mentioned earlier, CGLS is the
equivalent of CG applied to ATAx = AT b, where ATA is
clearly symmetric but when an unmatched back projection,
bAT , is used (where bAT 6= AT ), bATA is not symmetric.
So CGLS has difficulties giving reliable results, whereas
GMRES encounters no problems. This is because GMRES
is designed to work with nonsymmetric systems as opposed
to CG. Another advantage of GMRES is that, in case of a
well-conditioned coefficient matrix in a square system (that is,
m = n in (1)), GMRES works as a direct solver and returns
the exact solution in n steps. When compared to CGLS [3],
examples show that the residual is much smaller and GMRES
requires less computational work.

One disadvantage of GMRES is its large memory require-
ments. To avoid this, Saad and Schultz suggested to restart
the method after a certain number of iterations (parameter
m, chosen by user), clear the memory, and use the mth

iterate xm as the new initial vector x0, before the next
cycle of iterations. In our experiments, we found that for
normal matrices, restarted GMRES (or GMRES(m)) does not
converge at all. Our results are omitted here but can be found
in [5]. However, as we have already said, the applications to
CT with typical accuracies of data, we do not need that many
iterations before we are over-fitting. So the disadvantage of
GMRES is not an issue for us when solving the CT problem.

In our strategies, we combine GMRES and RRGMRES
with other useful tools (e.g. Tikhonov regularisation). Var-
ious test matrices from MATLAB’s gallery, Hansen’s
Regularization Tools and AIRTools [6], [7] are
used, but we include only two test cases with 1% and 10%
Gaussian noise in this paper. The computations are carried out
using MATLAB 2013a with a personal laptop of specifications
1.7 GHz Intel Core i7.

NUMERICAL EXPERIMENTS

In this section, we test the accuracy and speed of GMRES,
RRGMRES and regularised GMRES methods. We have 8
strategies to compare and give results for two simulated
cases: Parallel 2D and FanBeam 2D. The strategies are listed
in Table I.

Test Case 1: Parallel 2D

This test case is generated using the tomo(N,f) function
from Hansen‘s Regularization Tools [6]. N is chosen
to be 50, i.e. matrix A has dimensions N2 ⇥N2. The images
below are obtained for when b contains 1% noise, and the
dataset is complete. For this and the next case, we assume we
have no prior information about the object, so for the strategies
involving Tikhonov, we take L = I (and � = 10�4).



Strategy Description

1) GMRES full–GMRES algorithm,
as stated in ALGORITHM 1.

2) GMRES+Tikhonov
(outer)

GMRES algorithm applied to
solve the Tikhonov system (3).

3) GMRES+Tikhonov
(double)

GMRES algorithm applied to
solve the Tikhonov system (3),
and the inner problem in Step 3
is replaced by its Tikhonov
alternative.

4) GMRES+Tikhonov
+TV

GMRES algorithm applied to
solve the Tikhonov system (3).
The system is then plugged
in TV to be solved (where the
GMRES solution is used as the
starting point).

5) RRGMRES
GMRES algorithm where
V1 = r0/kr0k is replaced by
V1 = Ar0/kAr0k in Step 1.

6) RRGMRES+Tikhonov
(outer)

RRGMRES algorithm applied to
solve the Tikhonov system (3).

7) RRGMRES+Tikhonov
(double)

RRGMRES algorithm applied to
solve both the ‘outer’ Tikhonov
system (3) and the Tikhonov
alternative of the inner problem
in Step 3.

8) CGLS
The popular CGLS algorithm,
run until the same tolerance
value is satisfied.

TABLE I
THE STRATEGIES USED IN THE TEST CASES, FOLLOWED BY THEIR

DESCRIPTIONS.

(a) Exact image

(b) GMRES (c) GMRES+Tikhonov
(outer)

(d) GMRES+Tikhonov
(double)

(e) GMRES+Tikhonov+TV

(f) RRGMRES (g) RRGMRES+Tikhonov
(outer)

(h) RRGMRES+Tikhonov
(double)

(i) CGLS (104 iterations)

Fig. 1. Results for Parallel 2D test problem with 1% noise.

We see that the features of the exact image are distinguish-
able in the GMRES runs. GMRES gives much better results
when we start with a problem where Tikhonov regularisation
is already added. The results seem to improve further when a
TV solution is computed following GMRES+Tikhonov.

RRGMRES gives similar results to GMRES, but when cou-
pled with Tikhonov, it fails to give any reasonable solutions.
This is because RRGMRES is designed for singular or nearly
singular systems, so it is not stable when the problem becomes
‘less’lill-posed. We will not include RRGMRES in the future
experiments in our work.

Finally, we note that all the GMRES runs took less than
N2 iterations whereas CGLS reached the maximum iteration
number, which was set by us as 104.

Test Case 2: FanBeam 2D

The second test case is generated by using the func-
tion fanbeamtomo(N,angles,projections) from
Hansen’s AIRTools Toolbox [7]. This time, N is chosen
to be 200 (i.e. the image size is 200⇥200), the number of
angles to be 180 (going from 0 to 179), and the number of
projections to be 360. This means that the size of the geometry
matrix, A, is (180 ⇥ 360) ⇥ (200 ⇥ 200) = 64800 ⇥ 40000.
Additionally, we have added 10% Gaussian noise to the data
vector to account for the experimental noise.

In the previous case we obtained some promising results
with GMRES+Tikhonov (outer). However, for the strategies
involving Tikhonov regularisation, the prior information was
taken as L = I , and the regularisation parameter as � =
10�4. This means that starting GMRES with (3) is very close
to starting GMRES with (2). So this time we run GMRES
started with (2), and thus make a fairer comparison to CGLS
(which is mathematically equivalent to CG started with (2)).
We also compare these KS-methods to the popular iterative
methods, Landweber and ART (the details of Landweber and
ART algorithms can be found in [7]).

Fig. 2. Phantom image used for Test Case 2.



We run each method for 2000 iterations except for ART,
which is not designed for large number of iterations. Compar-
ing the solution norms with Landweber (at 2000th iteration),
we believe that running 40 iterations of ART is a fair compar-
ison to running 2000 iterations of GMRES. The reconstructed
images are presented in Fig. 3.

(a) GMRES (LS, 2000 iter-
ations)

(b) CGLS (2000 iterations)

(c) Landweber (2000 itera-
tions)

(d) ART (40 iterations)

Fig. 3. Results for FanBeam 2D test problem with 10% noise.

Since both GMRES and CGLS are members of the KS-
methods class, it is not surprising to see both reconstructions
with the same features: Both Fig. 3(a) and 3(b) have converged
to the phantom image well, except for the second half. This
is simply because we have not iterated enough. Interestingly,
after iterating for a long time, Landweber or ART are still
not as close to the phantom image as GMRES or CGLS
are. In fact, the image reconstructed with Landweber at 2000
iterations can be obtained with 39 iterations of GMRES, and
51 iterations of CGLS. This highlights the benefits of fast-
converging methods.

When compared to CGLS, although it is difficult to see from
the images, the noise is somewhat less in Fig. 3(a), and the
lines on the second half of the image are less pronounced.

CONCLUSION AND FUTURE WORK

This paper briefly introduced the theory and algorithm of
GMRES-type methods, as well as investigating the effects of
combining GMRES and its variations with regularisation tools.
A number of strategies were tested with simulated tomography
data. The results achieved are promising and motivates a great
number of possibilities, with which our implementation and
reconstructions can be improved. They also provoke different
ideas, which are all summarised and listed as future tasks
below.

1) In our test cases, we have simulated a 2D parallel and
fan beam experiments where 1% and 10% Gaussian
noise was added to the tomographic data. However,
to understand the benefits of regularised-GMRES, it is
necessary that our strategies are tried with real datasets.

2) It is also necessary to apply these strategies to cases
where some prior information is known and used in the

Tikhonov system. It is important to see how this would
affect the reconstructed images.

3) Our test cases showed GMRES + Tikhonov (outer) or
GMRES (LS) can be used as alternatives to CGLS. An
important next step could be testing these algorithms
when an unmatched back projection is used.

4) In addition to that, one must apply these strategies to
limited data problems, were the data is obtained with
fewer angles.

5) The algorithms we discussed can also be further opti-
mised and parallelised for the reconstruction of larger
datasets or 3D and 4D (space + time) tomography.

6) We must also test these ideas against the popular re-
construction methods such as CGLS and FDK to high-
light the advantages and disadvantages of our strategies.
CGLS and FDK are available to users at our facilities
in the University of Manchester.

7) More detailed investigation into GMRES with nor-
mal equations (rather than applying the algorithm to
ATAx = AT b) is needed. We need a clearer picture
of how that can affect the convergence when there is
noise in data.

8) Finally, one more task we can do is to make use of
appropriate preconditioners in the GMRES strategies to
improve the convergence properties (especially for the
real data case).
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