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Polynomial Eigenvalue Problems:
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Abstract Matrix polynomial eigenproblems arise in many application areas, both
directly and as approximations for more general nonlinear eigenproblems. One of
the most common strategies for solving a polynomial eigenproblem is via a lin-
earization, which replaces the matrix polynomial by a matrix pencil with the same
spectrum, and then computes with the pencil. Many matrix polynomials arising from
applications have additional algebraic structure, leading to symmetries in the spec-
trum that are important for any computational method to respect. Thus it is useful to
employ a structured linearization for a matrix polynomial with structure. This essay
surveys the progress over the last decade in our understanding of linearizations and
their construction, both with and without structure, and the impact this has had on
numerical practice.
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1 Introduction

Nonlinear eigenvalue problems of the form

P(λ )x = 0 , x ∈ Cn, x 6= 0 ,

where P(λ ) is an m× n matrix-valued function of a scalar variable λ , are play-
ing an increasingly important role in classical and contemporary applications. The
simplest, but still most important among these problems are the polynomial eigen-
problems, where P(λ ) is an m×n matrix polynomial

P(λ ) =
k

∑
i=0

λ
iAi , Ai ∈ Cm×n . (1)

Such problems arise directly from applications, from finite element discretizations
of continuous models, or as approximations to more general nonlinear eigenprob-
lems, as detailed in the survey articles [69, 79]. The trend towards extreme designs,
such as high speed trains, optoelectronic devices, micro-electromechanical systems,
and “superjumbo” jets such as the Airbus 380, presents a challenge for the compu-
tation of the resonant frequencies of these structures as these extreme designs often
lead to eigenproblems with poor conditioning.

However, the physics that underlies problems arising from applications can lead
to algebraic structure in their mathematical formulation. Numerical methods that
preserve this structure keep key qualitative features such as eigenvalue symmetries
from being obscured by finite precision error.

A recurring theme running through much of the work of Volker Mehrmann
has been the preservation of structure — in the pursuit of condensed forms, and
in the development of numerical algorithms. To quote from the 2004 paper titled
Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods by
Mehrmann and Voss [69]:

The task of numerical linear algebra then is to design numerical methods that are accurate
and efficient for the given problem. The methods should exploit to a maximal extent the
sparsity and structure of the coefficient matrices. Furthermore, they should be as accurate
as the approximation of the underlying operator problem permits, and they should include
error and condition estimates.

One of the most common strategies for solving a polynomial eigenproblem is via
a linearization, which replaces the given matrix polynomial P(λ ) by a matrix pen-
cil L(λ ) = λX +Y with the same eigenvalues as P. The eigenproblem for L(λ ) is
then solved with general pencil algorithms like the QZ algorithm, or with methods
designed to work effectively on the specific types of pencils produced by the lin-
earization process. If the matrix polynomial has some structure, then the lineariza-
tion should also have that structure, and the algorithm employed on the linearization
should preserve that structure.

The most commonly used linearizations in numerical practice have been the
Frobenius companion forms. Although these pencils have many desirable proper-
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ties, including the extreme ease with which they can be constructed, they have one
significant drawback. They do not preserve any of the most important and com-
monly occurring matrix polynomial structures – Hermitian, alternating, or palin-
dromic. Thus in order to implement the structure preservation principle on the lin-
earization strategy, it is necessary to have more linearizations available, in particular
ones that preserve the structure of the original polynomial. It is also useful to have a
large palette of easily constructible linearizations, even in the absence of any struc-
ture to be preserved. For example, it may be possible to improve numerical accuracy
by selecting an “optimal” linearization, but only if there are many linearizations
available to choose from.

This essay will illustrate the influence that the structure preservation principle has
had on the development of linearizations of matrix polynomials, on the impact our
improved understanding of linearizations in general has had on numerical practice,
and Mehrmann’s key contributions to that effort.

2 Basic Concepts

We use N to denote the set of nonnegative integers, F for an arbitrary field, F[λ ] for
the ring of polynomials in one variable with coefficients from the field F, and F(λ )
for the field of rational functions over F.

A matrix polynomial of grade k has the form

P(λ ) =
k

∑
i=0

λ
iAi, with Ai ∈ Fm×n. (2)

Here we allow any of the coefficient matrices, including Ak, to be the zero matrix.
The degree of a nonzero matrix polynomial retains its usual meaning as the largest
integer j such that the coefficient of λ j in P(λ ) is nonzero. The grade of a nonzero
matrix polynomial is a choice of integer k at least as large as its degree [22, 59, 61].
It signals that the polynomial is to be viewed as an element of a particular vector
space – the F-vector space of all matrix polynomials of degree less than or equal
to k. Choosing a grade, in effect, specifies the finite-dimensional vector space of
discourse.

If m = n and detP(λ ) is not the identically zero polynomial, then P(λ ) is said to
be regular; equivalently, P(λ ) is regular if it is invertible when viewed as a matrix
with entries in the field of rational functions F(λ ). Otherwise, P(λ ) is said to be
singular (note that this includes all rectangular matrix polynomials with m 6= n). The
rank of P(λ ) is its rank when viewed as a matrix with entries in the field F(λ ), or
equivalently, the size of the largest nonzero minor of P(λ ). For simplicity, in many
cases we may suppress the dependence on λ when referring to a matrix polynomial.

An m×m polynomial E(λ ) is said to be unimodular if detE(λ ) is a nonzero
constant, i.e., E(λ ) has an inverse that is also a matrix polynomial [32]. The canon-
ical form of a matrix polynomial P(λ ) under a transformation E(λ )P(λ )F(λ ) by
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unimodular matrix polynomials E(λ ) and F(λ ) is referred to as the Smith form of
P(λ ). This form was first developed for integer matrices by H.J.S. Smith [76] in
the context of solving linear systems of Diophantine equations [51]. It was then
extended by Frobenius in [30] to matrix polynomials.
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Theorem 1 (Smith form (Frobenius, 1878)[30]).
Let P(λ ) be an m×n matrix polynomial over an arbitrary field F. Then there exists
r ∈ N, and unimodular matrix polynomials E(λ ) and F(λ ) over F of size m×m
and n×n, respectively, such that

E(λ )P(λ )F(λ ) = diag(d1(λ ), . . . ,dmin{m,n}(λ )) =: D(λ ), (3)

where each di(λ ) is in F[λ ], d1(λ ), . . . ,dr(λ ) are monic, dr+1(λ ), . . . ,dmin{m,n}(λ )
are identically zero, and d1(λ ), . . . ,dr(λ ) form a divisibility chain, that is, d j(λ )
is a divisor of d j+1(λ ) for j = 1, . . . ,r− 1. Moreover, the m× n diagonal matrix
polynomial D(λ ) is unique, and the number r is equal to the rank of P.

The nonzero diagonal elements d j(λ ), j = 1, . . . ,r in the Smith form D(λ ) are
called the invariant factors or invariant polynomials of P(λ ).

The uniqueness of D(λ ) in Theorem 1 implies that the Smith form is insensitive
to field extensions. In other words, the Smith forms of P(λ ) over F and over any
extension field F̃⊇ F are identical. Consequently, the following notions of the par-
tial multiplicity sequences, eigenvalues, and elementary divisors of P(λ ) are well-
defined.

Definition 1 (Partial Multiplicity Sequences and Jordan Characteristic).
Let P(λ ) be an m×n matrix polynomial of rank r over a field F. For any λ0 in the
algebraic closure F, the invariant polynomials di(λ ) of P, for 1≤ i≤ r, can each be
uniquely factored as

di(λ ) = (λ −λ0)
αi pi(λ ) with αi ≥ 0 , pi(λ0) 6= 0 . (4)

The sequence of exponents (α1,α2, . . . ,αr) for any given λ0 ∈ F satisfies the con-
dition 0≤ α1 ≤ α2 ≤ ·· · ≤ αr by the divisibility chain property of the Smith form,
and is called the partial multiplicity sequence of P at λ0 ∈ F, denoted J (P, λ0).
The collection of all the partial multiplicity sequences of P is called the Jordan
characteristic of P.

Note that we allow any, even all, of the exponents αi in a partial multiplicity
sequence J (P, λ0) to be zero. Indeed, this occurs for all but a finite number of
λ0 ∈ F. These exceptional λ0 with at least one nonzero entry in J (P, λ0) are of
course just the eigenvalues of P(λ ).

Definition 2 (Eigenvalues and Elementary Divisors).
A scalar λ0 ∈ F is a (finite) eigenvalue of a matrix polynomial P whenever its par-
tial multiplicity sequence (α1,α2, . . . ,αr) is not the zero sequence. The elemen-
tary divisors for an eigenvalue λ0 of P are the collection of factors (λ −λ0)

αi with
αi 6= 0, including repetitions. The algebraic multiplicity of an eigenvalue λ0 is the
sum α1 +α2 + · · ·+αr of the terms in its partial multiplicity sequence, while the
geometric multiplicity is the number of nonzero terms in this sequence. An eigen-
value λ0 is said to be simple if its algebraic multiplicity is one; λ0 is semisimple if
its algebraic and geometric multiplicities are equal, equivalently, if all of its nonzero
partial multiplicities are equal to one.
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It is worth noting that defining the eigenvalues of a matrix polynomial via the
Smith form subsumes the more restrictive notion of the eigenvalues as the roots
of detP(λ ), which is completely inadequate for singular matrix polynomials. We
also stress the importance of viewing the partial multiplicities of a fixed λ0 as a
sequence. In a number of situations, especially for matrix polynomials with structure
[58, 59, 60], it is essential to consider certain subsequences of partial multiplicities,
which can be subtly constrained by the matrix polynomial structure. Indeed, even
the zeroes in the partial multiplicity sequences of structured matrix polynomials can
sometimes have nontrivial significance [58, 59, 60].

Matrix polynomials may also have infinite eigenvalues, with a corresponding
notion of elementary divisors at ∞. In order to define the elementary divisors at ∞

we need one more preliminary concept, that of the reversal of a matrix polynomial.

Definition 3 ( j-reversal).
Let P(λ ) be a nonzero matrix polynomial of degree d ≥ 0. For j ≥ d, the j-reversal
of P is the matrix polynomial revj P given by

(revj P)(λ ) := λ
jP(1/λ ). (5)

In the special case when j = d, the j-reversal of P is called the reversal of P and is
sometimes denoted by just revP.

Definition 4 (Elementary divisors at ∞).
Let P(λ ) be a nonzero matrix polynomial of grade k and rank r. We say that λ0 = ∞

is an eigenvalue of P if and only if 0 is an eigenvalue of revk P, and the partial multi-
plicity sequence of P at λ0 = ∞ is defined to be the same as that of the eigenvalue 0
for revk P, that is J (P,∞) := J (revk P, 0). If this partial multiplicity sequence is
(α1,α2, . . . ,αr), then for each αi 6= 0 we say there is an elementary divisor of degree
αi for the eigenvalue λ0 = ∞ of P.

If P(λ ) = ∑
g
i=0 λ iAi has grade k and rank r, then P has an eigenvalue at ∞ if

and only if the rank of the leading coefficient matrix Ak is strictly less than r. For a
regular polynomial P this just means that Ak is singular. Observe that if k > degP,
then Ak = 0 and P necessarily has r elementary divisors at ∞.

Definition 5 (Spectral Structure of a Matrix Polynomial).
The collection of all the eigenvalues of a matrix polynomial P(λ ), both finite and
infinite, is the spectrum of P. The collection of all the elementary divisors of P, both
finite and infinite, including repetitions, constitutes the spectral structure of P.

The two most frequently used equivalence relations that preserve spectral struc-
ture between matrix polynomials are unimodular equivalence and strict equiva-
lence. They can be used only between matrix polynomials of the same size.

Definition 6. A pair of m×n matrix polynomials P and Q over a fixed but arbitrary
field F are said to be

(a)unimodularly equivalent, denoted P ∼ Q, if there exist unimodular matrix poly-
nomials E(λ ) and F(λ ) over F such that E(λ )P(λ )F(λ ) = Q(λ ),
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(b)strictly equivalent, denoted P∼= Q, if there exist invertible (constant) matrices E
and F over F such that E ·P(λ ) ·F = Q(λ ).

Of these two relations, unimodular equivalence is the more flexible, as it allows
the degrees of the two matrix polynomials to differ, while keeping the list of finite
elementary divisors invariant. On the other hand, strict equivalence preserves both
finite and infinite elementary divisors, but because the degrees of strictly equivalent
matrix polynomials have to be identical, this relation can be a bit restrictive.

Recently the relations of extended unimodular equivalence and spectral equiva-
lence have been introduced [22] to facilitate the comparison of matrix polynomials
that are of different sizes, including rectangular, and of different grades. The un-
derlying goal is to investigate the extent to which it is possible for such diverse
matrix polynomials to share the same spectral structure and and the same singular
structure. These extended equivalences now open up the possibility of choosing lin-
earizations that can take on any size that “works”. This is in accord with the notion
of “trimmed linearizations” studied by Byers, Mehrmann and Xu in [16]. Another
important consequence is that one can now easily generalize the notion of (strong)
linearization to (strong) quadratification, and indeed to (strong) `-ification [22]!

3 Linearizations

For square matrix polynomials, the notion of linearization plays a central role for
both theory and computation.

Definition 7 (Linearization).
An nk× nk pencil L(λ ) = λX +Y is said to be a linearization for an n× n matrix
polynomial P(λ ) of grade k if there exist unimodular nk× nk matrix polynomials
E(λ ),F(λ ) such that

E(λ )L(λ )F(λ ) =

[
P(λ ) 0

0 I(k−1)n

]
nk×nk

.

If in addition, rev1 L(λ ) := λX +Y is a linearization of revk P(λ ), then L is said to
be a strong linearization of P.

The key property of any linearization L of P is that L has the same finite ele-
mentary divisors as P, while a strong linearization has the same finite and infinite
elementary divisors as P. Since there are well-known algorithms for solving the lin-
ear eigenproblem this immediately suggests working on a matrix pencil L that is a
strong linearization for P.

The linearizations most used in practice are the first and second Frobenius com-
panion forms C1(λ ) = λX1 +Y1, and C2(λ ) = λX2 +Y2, where

X1 = X2 = diag(Ak, I(k−1)n), (6a)
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Y1 =


Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0

, and Y2 =


Ak−1 −In · · · 0
Ak−2 0

. . .
...

...
...

. . . −In
A0 0 · · · 0

. (6b)

They have several attractive properties:

• there is a uniform template for constructing them directly from the data in P,
using no matrix operations on the coefficients of P,

• eigenvectors of P are easily recoverable from eigenvectors of the companion
forms,

• they are always strong linearizations for P, no matter whether P is regular or
singular.

However, they have one significant drawback — they usually do not reflect the struc-
ture that may be present in the original polynomial P.

3.1 Ansatz Spaces

During an extended visit by the first two authors to Berlin in 2003, Mehrmann pro-
posed searching for alternatives to the companion linearizations C1(λ ) and C2(λ )
— alternatives that would share the structure of the parent polynomial P(λ ).

In joint work with Mehrmann and Mehl, two large vector spaces of pencils that
generalize the first and second Frobenius companion forms were introduced in [55].
Christened L1(P) and L2(P), where P is a regular matrix polynomial, these spaces
were conceived as the collection of all pencils satisfying a certain ansatz, which
we now briefly describe. With Λ :=

[
λ k−1λ k−2· · ·λ 1

]T , where k is the grade of P,
define L1(P) as the set of all kn× kn pencils L(λ ) satisfying the right ansatz

L(λ ) · (Λ ⊗ In) = v⊗P(λ ), for some v ∈ Fk, (7)

and L2(P) as the set of all kn× kn pencils L(λ ) satisfying the left ansatz

(Λ T ⊗ In) ·L(λ ) = wT ⊗P(λ ), for some w ∈ Fk. (8)

A direct calculation shows that C1(λ ) ∈ L1(P) with right ansatz vector v = e1,
and C2(λ )∈L2(P) with left ansatz vector w= e1. The pencils in these ansatz spaces
were shown to have a number of nice properties:

• like C1(λ ) and C2(λ ), they are all easily constructible from the coefficients of P,
• eigenvectors of P are easily recoverable; pencils in L1(P) reveal right eigenvec-

tors of P, while those in L2(P) reveal left eigenvectors.
• for regular P, almost all pencils in these spaces are strong linearizations for P.

Furthermore, each of these spaces is of dimension k(k− 1)n2 + k. Thus each rep-
resents a relatively large subspace of the full pencil space (which has dimension



Polynomial Eigenvalue Problems: Theory, Computation, and Structure 9

2k2n2), and hence is a large source of potential linearizations for P, In fact, these
spaces are so large, that for any choice of ansatz vector there are many degrees of
freedom available for choosing a potential linearization in L1(P) or L2(P).

The aim of identifying smaller, but interesting subspaces of these ansatz spaces
brings the double ansatz subspace DL(P) := L1(P)∩L2(P) into focus. One sees
right away that linearizations in DL(P) enjoy a two-sided eigenvector recovery
property. But a DL(P)-pencil also has an unexpected feature: its right and left ansatz
vectors are identical, with this common vector uniquely determining the pencil. An
isomorphism between DL(P) and Fk now follows, which in turn induces a natu-
ral basis for DL(P). Described in [38], a pencil λXi +Yi in this basis has special
structure. Every Xi and Yi is block diagonal, with the diagonal blocks being block-
Hankel. In a surprising twist, a completely different construction of Lancaster [48]
dating back to the 1960’s is proved to also generate this natural basis for DL(P).

The unique vector v ∈ Fk associated with L(λ ) ∈ DL(P) gives us a way to test
when L(λ ) is a linearization for P, and show that almost all pencils in DL(P) are
linearizations for P.

Theorem 2 (Eigenvalue Exclusion Theorem [55]).
Let P(λ ) be a regular matrix polynomial of grade k and let L(λ ) ∈ DL(P) with
ansatz vector v = [v1,v2, . . . ,vk]

T ∈ Fk. Then L(λ ) is a linearization for P(λ ) if and
only if no root of the grade k−1 scalar polynomial

q(λ ) = v1λ
k−1 + v2λ

k−2 + · · ·+ vk−1λ + vk (9)

is an eigenvalue of P(λ ). We include ∞ as one of the possible roots of q(λ ), or as
one of the possible eigenvalues of P(λ ).

The systematizing of the construction of linearizations [55] has spurred exciting
new research in this area. The ansatz spaces L1(P) and L2(P) were recently revisited
from a new vantage point [80]. By regarding block matrices as a device to record
the matrix coefficients of a bivariate matrix polynomial, and by using the concepts
of the Bézoutian function and associated Bézout matrix, shorter proofs of the key
results in [55] were obtained, while simultaneously generalizing them from regular
matrix polynomials expressed in the standard monomial basis to regular polynomi-
als expressed in any degree-graded basis.

What can be said about the pencils in L1(P) and L2(P) when the n× n matrix
polynomial P is singular? As was shown recently in [18], almost all of them are
still linearizations for P that now allow easy recovery of the left and right minimal
indices and minimal bases of P.

Are there linearizations for P that are not in L1(P) or L2(P)? Yes! Consider the
cubic matrix polynomial P(λ ) = λ 3A3 +λ 2A2 +λA1 +A0. In [6], the pencil

L(λ ) = λ

0 A3 0
I A2 0
0 0 I

+
−I 0 0

0 A1 A0
0 −I 0
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was shown to be a linearization for P; but L(λ ) is neither in L1(P) nor L2(P), as
observed in [55]. We turn next to the discussion of these pencils.

3.2 Fiedler Pencils

Another source of linearizations for matrix polynomials was inspired by a 2003
paper of Fiedler [29], in which he showed that the usual companion matrix C of a
scalar polynomial p(λ ) = Σ k

i=1aiλ
i of degree k can be factored into a product of n

sparse matrices Mi which differ only slightly from the n×n identity matrix:

C =


−ak−1 −ak−2 . . . −a1 −a0

1 0 . . . 0 0
0 1

. . .
......

. . . . . . 0
0 . . . 0 1 0

 = Mk−1Mk−2 · · ·M0 ,

where

M j :=


Ik− j−1

−a j 1
1 0

I j−1

 for j = 1, . . . ,k−1 , and M0 :=

[
Ik−1

−a0

]
.

Fiedler observed that any permutation of the factors Mi produces a matrix that is
similar to C, and hence also a companion matrix for p(λ ). Furthermore, certain
permutations produce companion matrices that are of low bandwidth, i.e., pentadi-
agonal.

The first step in extending Fiedler’s results to matrix polynomials was taken by
Antoniou and Vologiannidis in [6]. The Fiedler factors are now block matrices:

M j :=


In(k− j−1)

−A j In
In 0

In( j−1)

 for j = 1, . . . ,k−1, M0 :=

[
Ik−1

−A0

]
,

and one extra block matrix, Mk := diag[Ak, In(k−1) ], which is needed because matrix
polynomials cannot, without loss of generality, be assumed to be monic. For any
permutation σ = ( j0, j1, . . . , jk−1) of the indices (0,1,2, . . . ,k− 1), one can now
define the associated Fiedler pencil

Fσ (λ ) := λMk −M j0M j1 · · ·M jk−1 . (10)

Each member of this family of Fiedler pencils was shown in [6] to be a strong lin-
earization when P is a regular matrix polynomial over C, by demonstrating strict
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equivalence to the Frobenius companion pencil. The regularity assumption is essen-
tial for this proof strategy to work, so to prove that the Fiedler pencils remain strong
linearizations when P is singular requires different techniques. This was done in
[19], with the restriction on the field lifted. It was also shown that the left and right
minimal indices of a singular P are recoverable from any of its Fiedler pencils. Ad-
ditionally, eigenvectors can be recovered without added computational cost.

Antoniou and Vologiannidis also introduced in [6] a kind of “generalized”
Fiedler pencil; exploiting the fact that every M j for j = 1, . . . ,k− 1 is invertible,
we can “shift” some of the M j factors to the λ -term. For example, Fσ (λ ) :=
λMk −M j0M j1 · · ·M jk−1 is strictly equivalent to

F̃σ (λ ) = λM−1
j1 M−1

j0 MkM−1
jk−1
−M j2 · · ·M jk−2 ,

so F̃σ (λ ) is also a strong linearization. These generalized Fiedler pencils can have
additional nice properties, as illustrated by the following example for a general
square polynomial P(λ ) of degree k = 5.

S(λ ) = λM5M−1
3 M−1

1 −M4M2M0

=


λA5 +A4 −In
−In 0 λ In

λ In λA3 +A2 −In
−In 0 λ In

λ In λA1 +A0

 .
This pencil S(λ ) is not only a strong linearization for P(λ ), it is also block-
tridiagonal. The low bandwidth property of certain Fiedler (and generalized Fiedler)
pencils thus opens up the possibility of developing fast algorithms to compute the
eigenstructure of high degree matrix polynomials. The eigenvector and minimal ba-
sis recovery properties of these generalized Fiedler pencils have been studied in
[13].

In more recent work [83], Vologiannidis and Antoniou have extended Fiedler
pencils even further, showing that repetitions of the Fiedler factors Mi can some-
times be allowed in the construction of Fσ (λ ) in (10), and template-like strong lin-
earizations for P will still be produced. These pencils are sometimes referred to as
Fiedler pencils with repetition, and have been shown to be yet another source of
structured linearizations [14, 83].

Fiedler pencils have also been shown [21] to be adaptable to rectangular ma-
trix polynomials P. In this case, however, the product representation in (10) is no
longer tractable, and other techniques for constructing these pencils are required.
Each Fiedler pencil now has its own characteristic size as well as block pattern, but
each rectangular Fiedler pencil is still a strong linearization for P. This concretely il-
lustrates a distinctive feature of rectangular matrix polynomials, as contrasted with
regular (square) matrix polynomials; a rectangular m× n matrix polynomial with
m 6= n always has strong linearizations of many different sizes, while a regular
matrix polynomial has strong linearizations of only one possible size. This phe-
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nomenon is explored in more detail in [22]. For more on the impact of Fiedler’s
work on our understanding of linearizations, see [53].

4 Matrix Polynomial Structures

There are several kinds of algebraic structure commonly encountered in matrix poly-
nomials arising in the analysis and numerical solution of systems of ordinary, partial,
and delay differential equations. To concisely define these structures, we define the
? -adjoint of matrix polynomials, where the symbol ? is used to denote transpose T
in the real case F= R, and either transpose T or conjugate transpose ∗ in the com-
plex case F = C. Note that the structures under consideration apply only to square
matrix polynomials.

Definition 8 (Adjoint of Matrix Polynomials).
Let P(λ ) = ∑

k
i=0 λ iAi where Ai ∈ Fn×n with F= R or C be a matrix polynomial of

grade k. Then

P?(λ ) :=
k

∑
i=0

λ
iA?i (11)

defines the ? -adjoint P?(λ ).

The three most important matrix polynomial structures in applications are

Hermitian/symmetric: P?(λ ) = P(λ ) , (12)
? -alternating: P?(−λ ) =±P(λ ) , (13)

and ? -palindromic: revP?(λ ) =±P(λ ) . (14)

Also of interest are skew-symmetric matrix polynomials, defined by PT (λ ) =
−P(λ ), and the following alternative types of alternating and palindromic struc-
ture. Letting R ∈ Rn×n denote an arbitrary involution (i.e., R2 = I), then P(λ ) is
said to be RCR-palindromic if R revP(λ )R = ±P(λ ), and RCR-alternating2 if
RP(−λ )R = ±P(λ ). We remark that the name ? -alternating was suggested by
Mehrmann and Watkins in [71], because the matrix coefficients of such polyno-
mials strictly alternate between symmetric and skew-symmetric (or Hermitian and
skew-Hermitian) matrices.

Matrix polynomials (especially quadratic polynomials) with Hermitian structure
are well known from the classical problem of vibration analysis, and have been ex-
tensively studied for many years [31, 32, 48, 79]. The analysis of rail noise caused
by high speed trains also leads to a quadratic eigenproblem (QEP), but one with a
complex T -palindromic matrix polynomial. Real and complex T -palindromic QEPs

2 Note that the C in the names RCR-palindromic and RCR-alternating refers to the conjugation
operation in the definitions.
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also arise in the numerical simulation of the behavior of periodic surface acous-
tic wave (SAW) filters [43, 85]. Quadratic eigenproblems with T -alternating poly-
nomials arise in the study of corner singularities in anisotropic elastic materials
[7, 8, 70]. Gyroscopic systems [25, 48, 49] also lead to quadratic T -alternating ma-
trix polynomials. Higher degree ∗-alternating and ∗-palindromic polynomial eigen-
problems arise in the linear-quadratic optimal control problem; the continuous-time
case leads to ∗-alternating polynomials, while the discrete-time problem produces
∗-palindromic ones [15]. The stability analysis of delay-differential equations leads
to an RCR-palindromic QEP [28], while a variant of RCR-alternating structure
(without conjugation) arises in linear response theory from quantum chemistry [66].
Further details on these and other applications can be found in [52, 69, 79], chapter What about chapter 2 and 6, too?

3 of this Festschrift, and the references therein.
An important feature of the structured matrix polynomials described above are

the special symmetry properties of their spectra, some of which are described in the
following result. The proof of this composite theorem may be found in [52] or [56],
together with [28].

Theorem 3 (Eigenvalue Pairings of Structured Matrix Polynomials).
Let P(λ ) = ∑

k
i=0 λ iAi , Ak 6= 0 be a regular matrix polynomial that has one of the

palindromic or alternating structures described above. Then the spectrum of P(λ )
has the pairing depicted in Table 1. Moreover, the algebraic, geometric, and partial
multiplicities of the two eigenvalues in each such pair are equal. Note that λ = 0 is
included here as a possible eigenvalue, with the reciprocal partner 1/λ or 1/λ to
be interpreted as the eigenvalue ∞.

Table 1: Spectral symmetries

Structure of P(λ ) eigenvalue pairing

T -palindromic (λ ,1/λ )

∗-palindromic (λ ,1/λ )

RCR-palindromic (λ ,1/λ )

T -alternating (λ ,−λ )

∗-alternating (λ ,−λ )

RCR-alternating (λ ,−λ )

The eigenvalue pairings seen in this theorem are sometimes referred to as sym-
plectic spectrum and Hamiltonian spectrum, because they parallel the eigenvalue
structure of symplectic and Hamiltonian matrices. Indeed, this is one of several
ways in which palindromic and alternating matrix polynomials may be viewed as
generalizations of symplectic and Hamiltonian matrices, respectively. For more on
this connection see [52].

Although Theorem 3 says quite a lot about the spectral structure of palindromic
and alternating matrix polynomials, there are several issues that are not addressed
by this result. For example, do these spectral symmetries still hold in the singular
case? And what happens when the spectral pairings degenerate, e.g., at λ0 =±1 for
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T -palindromic polynomials, and at λ0 = 0 or ∞ for T -alternating polynomials? Are
there any additional constraints on the spectra at these degenerate points?

In joint work with Mehrmann [58, 59], these questions were resolved by charac-
terizing the Smith forms for these structure classes using a novel technique based
on the properties of compound matrices. This work showed that the eigenvalue pair-
ings found in Theorem 3 do indeed extend to singular polynomials in these classes.
Degenerate eigenvalues, however, have some nontrivial fine structure in their ad-
missible Jordan characteristics. The details are somewhat technical, but the main
message can be simply stated. For each of these structure classes, the constraints on
the admissible spectral structures of odd grade polynomials in a class differ from
the constraints on the even grade polynomials in that class. It is interesting to note,
though, that this dichotomy between odd and even grade appears only in the fine
structure of the partial multiplicities at the degenerate eigenvalues.

Next, the same compound matrix techniques were brought to bear on skew-
symmetric matrix polynomials [60]. A characterization of their Smith forms re-
vealed even multiplicity for all elementary divisors, with no odd/even grade di-
chotomy in the admissible spectral structures.

4.1 Möbius Transformations

A useful investigative tool developed by Mehrmann and his co-authors in the last
few years is the extension of linear fractional rational transformations (i.e., Möbius
transformations) to transformations that act on matrix polynomials [61]. One of the
main motivations for this work is understanding the relationships between differ-
ent classes of structured matrix polynomials. Clearly such a study can be greatly
aided by fashioning transformations that allow results about one structured class to
be translated into results about another structured class. This inquiry has its origin
in particular examples such as the classical Cayley transformation for converting
one matrix structure (e.g., skew-Hermitian or Hamiltonian) into another (unitary or
symplectic, respectively). This Cayley transformation was extended from matrices
to matrix pencils in [50], and in a 1996 paper by Mehrmann [67]. It was then gen-
eralized to matrix polynomials in 2006 by Mehrmann and co-authors [56], where
it was shown how palindromic and alternating structures are related via a Cayley
transformation of matrix polynomials. The definition of general Möbius transfor-
mations in [61] completes this development, providing an important and flexible
tool for working with matrix polynomials.

Definition 9 (Möbius Transformation).
Let V be the vector space of all m×n matrix polynomials of grade k over the field
F, and let A ∈ GL(2,F). Then the Möbius transformation on V induced by A is the
map MA : V →V defined by
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MA

(
k

∑
i=0

Biλ
i

)
(µ) =

k

∑
i=0

Bi (aµ +b)i(cµ +d)k−i, where A =

[
a b
c d

]
.

It is worth emphasizing that a Möbius transformation acts on graded polynomi-
als, returning polynomials of the same grade (although the degree may increase,
decrease, or stay the same, depending on the polynomial). In fact, MA is a linear
operator on V . Observe that the Möbius transformations induced by the matrices

A+1 =

[
1 1
−1 1

]
and A−1 =

[
1 −1
1 1

]
are exactly the Cayley transformations C+1(P) and C−1(P), respectively, introduced
in [56]. Also note that the reversal operation described in Definition 3 is the Möbius
transformation MR corresponding to the matrix

R =

[
0 1
1 0

]
.

Some of the significant properties of general Möbius transformations proved in [61]
include the following:

(1) Möbius transformations affect the eigenvalues of P and their partial multiplicity
sequences in a simple and uniform way. In particular, if mA(λ ) =

aλ+b
cλ+d

denotes
the scalar Möbius function on F∪{∞} corresponding to the matrix A =

[
a b
c d

]
∈

GL(2,F), then we have that

J
(
MA(P), µ0

)
≡ J

(
P,mA(µ0)

)
(15)

for any µ0 ∈ F∪{∞}.
(2) Eigenvectors are preserved by Möbius transformations, but Jordan chains are

not. By (15), though, the lengths of Jordan chains are preserved.
(3) Möbius transformations preserve minimal indices, and transform minimal bases

in a simple and uniform way.
(4) Möbius transformations preserve the property of being a strong linearization;

that is, if L(λ ) is a strong linearization for P(λ ), then MA(L) is a strong lin-
earization for MA(P). More generally, Möbius transformations preserve the
spectral equivalence relation.

(5) Möbius transformations preserve sparsity patterns; for example, if P is upper
triangular, then MA(P) is also upper triangular.

For the study of structured matrix polynomials, perhaps the most significant prop-
erty of all is that Möbius transformations provide a rich source of bijections between
classes of structured polynomials, that allow us to conveniently transfer intuition
and results about one class to another. Important examples include correspondences
between

T -palindromic and T -alternating polynomials,
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as well as between the three classes of

Hermitian, ∗-palindromic, and ∗-alternating matrix polynomials.

These last correspondences provide an opportunity to transfer over to ∗-palindromic
and ∗-alternating polynomials much of the existing wealth of knowledge about Her-
mitian matrix polynomials, including results about such special subclasses as hyper-
bolic polynomials, definite polynomials [40], and other types of Hermitian matrix
polynomials with all-real spectrum [4].

Finally, it is worth noting that the idea of linear fractional transformations act-
ing on matrix polynomials has been extended even further to more general rational
transformations in [73].

5 Structured Linearizations

I’m pickin’ up good vibrations – The Beach Boys

When a matrix polynomial P(λ ) has structure, the linearization strategy for solv-
ing the associated polynomial eigenproblem has two parts: first find a suitable struc-
tured linearization L(λ ) for P(λ ), and then compute the eigenvalues of L(λ ) using
a structure-preserving algorithm. Although our focus is on the first part of this strat-
egy, it is important to note that there has also been much work on the development
of structure-preserving algorithms for matrix pencils in the last decade. Examples of
some of this work can be found in the papers [28, 45, 47, 57, 65, 68, 70, 71, 75], as
well as in the chapters “Large-Scale Structured Eigenvalue Problems” and “Palin-
dromic Eigenvalue Problems in Applications” of this Festschrift.

We now turn to developments of the last decade concerning structure-preserving
linearizations, focusing mainly on the “big three” types of structure — Hermitian,
palindromic and alternating.

5.1 In Ansatz Spaces

The pencil spaces L1(P) and L2(P) introduced by Mehrmann and co-authors [55]
were shown in a follow-up paper [56] to provide a rich arena in which to look
for linearizations with additional properties like structure preservation or improved
numerics, thus realizing the original purpose for their development. Subspaces of
pencils that inherit the ?-palindromic or ?-alternating structure of P were identified,
a constructive method to generate these structured pencils described, and necessary
and sufficient conditions for them to be strong linearizations established.

There is a close connection between the structure of a pencil in L1(P) and the
structure of its ansatz vectors. Loosely put, if P is palindromic, then a palindromic
pencil in L1(P) will have a palindromic ansatz vector, while if P is alternating, then
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an alternating pencil in L1(P) will have an alternating ansatz vector. When P is
structured, there is also a very close connection between the double ansatz space
DL(P) and pencils in L1(P) that reflect the structure of P. More precisely, let R be
the reverse identity matrix, and Σ a diagonal matrix of alternating signs,

Rk :=

[
1

. . .
1

]
k×k

and Σk :=

[
(−1)k−1

. . .
(−1)0

]
k×k

(16)

and let L(λ ) ∈ L1(P) with ansatz vector v. If P is a palindromic matrix polynomial,
e.g., if revPT (λ ) = P(λ ), then

revLT (λ ) = L(λ )⇐⇒
(

Rv = v, and (R⊗ I)L(λ ) ∈ DL(P) with ansatz vector v
)
.

So to find a palindromic pencil in L1(P), begin with a palindromic ansatz vector.
Now there is a unique pencil in DL(P) corresponding to that vector. This pencil
can be explictly constructed using the natural basis for DL(P) mentioned in Section
3.1, and described in detail in [56]. Then reversing the order of the block rows of
that DL(P)-pencil turns it into a palindromic pencil in L1(P). Will this pencil be a
linearization for P ? The Eigenvalue Exclusion Theorem stated in Section 3.1 and
proved in [55], determines whether the answer is yea or nay. If the answer is yea,
and P is regular, this linearization is automatically also a strong linearization [55].

On the other hand, if P is alternating, say PT (−λ ) =P(λ ), then for L(λ )∈L1(P)
we have

LT (−λ ) = L(λ )⇐⇒
(

Σv = v, and (Σ ⊗ I)L(λ ) ∈ DL(P) with ansatz vector v
)
,

which, as in the palindromic case detailed before, can be used mutatis mutandis to
construct an alternating linearization for P. Similar results were proved for the other
flavors of palindromicity and alternation, and concrete examples given in [56].

An unexpected property of DL(P) itself was proved in [38]. Consider the block
transpose of a block matrix, defined as follows.

Definition 10. The block transpose of a block k× ` matrix A with m×n blocks Ai j
is the block `× k matrix AB with m×n blocks (AB)i j = A ji.

Now consider the subspace B(P) of all block symmetric (with respect to n× n
blocks) pencils in L1(P), that is,

B(P) := {λX +Y ∈ L1(P) : XB = X , Y B = Y}.

Then for any P, the subspaces B(P) and DL(P) are identical! Thus pencils in DL(P)
always have block symmetric coefficients, even when there is no structure in the
matrix coefficients of P. What happens when P is structured? As shown in [38],
when P is symmetric, the collection of all symmetric pencils in L1(P) is exactly
DL(P), while for Hermitian P the Hermitian pencils in L1(P) form a proper (but
nontrivial) subspace H(P)⊂ DL(P).



18 D. Steven Mackey, Niloufer Mackey and Françoise Tisseur

Among Hermitian matrix polynomials, perhaps the most important are those
with all-real spectrum [4]. This includes the definite polynomials, a class of Her-
mitian polynomials introduced in [40] as a common generalization for hyperbolic
polynomials and definite pencils. In this setting, the natural structured linearization
question is whether every definite Hermitian polynomial has a linearization that is a
definite pencil. This is answered affirmatively in [40]; indeed, it is shown that a Her-
mitian matrix polynomial P is definite if and only if it has a definite linearization in
H(P), the set of Hermitian pencils in L1(P). Thus we see that L1(P) is rich enough
to provide a structured-preserving (strong) linearization for any definite Hermitian
polynomial. It is also worth noting that the results in [40] had a significant impact
on the later characterization results of [4].

The double ansatz space has also appeared as the star player in other structured
settings. The stability analysis of time-delay systems leads to a palindromic poly-
nomial eigenproblem [28] with an involutory twist — the n× n complex matrix
polynomial P(λ ) in this problem satisfies

R · revP(λ ) ·R = P(λ ) , (17)

where R is a real involution (i.e., R2 = In), thus making P an RCR-palindromic
matrix polynomial in the sense described in Section 4. In order to find structured
linearizations in this context, the first issue is to specify an appropriate class of
structured pencils to search in; in other words, a suitable involution on the space
of nk× nk pencils must be chosen. In [28] it is shown that the block anti-diagonal
matrix R̂ :=Rk⊗R, where Rk is the k×k backwards identity matrix as in (16), gives
a compatible choice of involution. With this choice of involution, it now follows
that the right ansatz vector v ∈ Ck of any R̂CR̂-palindromic pencil in L1(P) must
satisfy Rv = v. For any such vector v, there are many R̂CR̂-palindromic pencils
in L1(P) with this right ansatz vector, exactly one of which will also be in DL(P).
These results, along with a constructive procedure to build these structured DL(P)-
pencils, were presented in [28], where they were also extended to the other variants
of RCR-structure mentioned in Section 4 by using the linearization theory and
techniques developed in [55, 56].

The techniques developed in [56] had an impact on eigenvalue computations oc-
curring in the vibration analysis of rail tracks under excitation from high speed trains
[42, 46]; see also the chapter “Palindromic Eigenvalue Problems in Applications”
of this Festschrift. This eigenvalue problem has the form(

λA(ω)+B(ω)+
1
λ

A(ω)T
)

x = 0, (18)

where A,B are large, sparse, parameter-dependent, complex square matrices, with B
complex symmetric, and A highly singular. Clearly, for any fixed value of ω , multi-
plying (18) by λ leads to a T -palindromic eigenvalue problem. Solving this problem
directly with the QZ-algorithm without respecting its structure resulted in erroneous
eigenvalues. However, the use of a T -palindromic linearization from [56] allowed
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structured deflation of the zero and infinite eigenvalues. The computed frequencies
were now accurate to within the range of the discretization error. Thus we see that
the computation of “good vibrations” is aided by the use of “good linearizations”.

5.1.1 Problematic eigenvalues

For regular matrix polynomials P, the pencils in DL(P) have repeatedly shown
themselves to be prolific sources of structured linearizations3. However, pencils in
DL(P) have one significant drawback. Because of the eigenvalue exclusion prop-
erty described in Theorem 2, for any L(λ ) ∈ DL(P) there is always at least one
“problematic eigenvalue” that may prevent L from being a linearization for P; these
problematic eigenvalues are just the roots of the scalar polynomial q(λ ) in (9), as-
sociated with the ansatz vector v for L.

In many situations, this obstruction to L(λ )∈DL(P) being a linearization can be
easily side-stepped simply by shifting consideration to a different pencil in DL(P),
since almost every pencil in DL(P) is a linearization. However, in a structured set-
ting, where the goal is to find a structured linearization, this problematic eigenvalue
obstruction sometimes cannot be avoided, no matter what pencil in DL(P) is used.

Consider, for example, the case of a T -palindromic matrix polynomial P of any
even grade k ≥ 2. As described in Section 5.1, any T -palindromic pencil in L1(P)
is strictly equivalent to a pencil in DL(P) possessing a palindromic ansatz vector v,
i.e., a v ∈ Fk such that Rv = v. But the scalar polynomial q(λ ) in (9) corresponding
to any such v is necessarily palindromic of odd grade, and thus must always have
−1 as a root. Consequently, any T -palindromic polynomial P of even grade that has
the eigenvalue λ0 =−1 will never have any structured linearization in L1(P)!

This phenomenon of having an unavoidable problematic eigenvalue obstruction
to the existence of any structured linearizations in L1(P) occurs for other structures
in addition to T -palindromic structure (see [56]). However, it is significant to note
that this is only known to occur for structured polynomials of even grade.

5.2 Among Fiedler Pencils

Modified versions of the generalized Fiedler pencils and Fiedler pencils with rep-
etition described in Section 3.2 have shown themselves to be particularly valuable
sources for not just structure-preserving linearizations, but for structured compan-
ion forms. Here by the term “companion form” we mean a template for producing a
pencil associated to each matrix polynomial P of some fixed size and grade that:

• is constructed directly from the matrix coefficients of P, without any matrix op-
erations on these coefficients, and

3 The story is quite different for singular polynomials P. In that case, none of the pencils in DL(P)
is ever a linearization for P, even when P has no structure [18].
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• produces a strong linearization for every polynomial P of the given size and grade
(both regular and singular if the polynomials are square).

Every Fiedler and generalized Fiedler pencil is a companion form in this sense;
by contrast, none of the pencils in DL(P) is ever a companion form because of
Theorem 2.

A companion form is said to be structured with respect to a class C of matrix
polynomials, if for every P ∈ C , the associated companion pencil is also in C . Thus
we might have Hermitian companion forms, palindromic companion forms, und so
weiter. Structured companion forms derived from generalized Fiedler pencils have
appeared in a number of papers [6, 14, 20, 58, 59, 60, 83], for a variety of structure
classes, including Hermitian, T -palindromic, and T -alternating matrix polynomials.

Here are some simple examples from those papers. Suppose

P(λ ) = λ
5A5 +λ

4A4 + · · ·+λA1 +A0

is a general n× n polynomial of grade 5. Then in [58] it is shown that the block-
tridiagonal pencil template

SP(λ ) =


λA1 +A0 λ I

λ I 0 I
I λA3 +A2 λ I

λ I 0 I
I λA5 +A4


5n×5n

(19)

is a companion form for the set of all n× n matrix polynomials of grade 5. Note
that SP(λ ) in (19) is a simplified version of an example that first appeared in [6].
It is clear how SP(λ ) can be extended to a companion form for any other odd
grade. Also noteworthy is that SP(λ ) is not just a companion form, it is also both
a symmetric and a Hermitian companion form; i.e., if P is symmetric (Hermitian),
then SP will also be symmetric (Hermitian). Many more symmetric and Hermitian
companion forms can be constructed by the methods developed in [83].

Pre-multiplying SP by a certain diagonal ±1 matrix (a strict equivalence) now
immediately produces a T -even companion form

EP(λ ) =


λA1 +A0 λ I
−λ I 0 −I

−I −λA3−A2 −λ I
λ I 0 I

I λA5 +A4


5n×5n

,

as shown in [58]. Pre-multiplication of SP by Rk⊗ In (another strict equivalence)
reverses the order of the block rows, giving
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PP(λ ) =


I λA5 +A4

λ I 0 I
I λA3 +A2 λ I

λ I 0 I
λA1 +A0 λ I


5n×5n

,

which is a T -palindromic companion form [59]. Many more palindromic companion
forms are constructed in [14] and [20], all for odd grade polynomials. Indeed, all the
known structured companion forms arising from Fiedler pencils are for odd grade
matrix polynomials.

The lack of any Fiedler-based structured companion forms for even grade poly-
nomials is curious; is this just an oddity4 of Fiedler pencils, or is it a sign of some
intrinsic limitation on all pencils?

5.3 Existence: Leave it to Smith

“The first thing to do,” said Psmith, “is to ascertain that such a place as Clapham Common really
exists. One has heard of it, of course, but has its existence ever been proved? I think not.”

– P.G. Wodehouse, Psmith in the City [84]

Several phenomena now contribute to the suspicion that structured even grade
polynomials may be intrinsically “harder” to linearize (at least by a structured com-
panion form) than structured matrix polynomials of odd grade. Among these are the
plenitude of Fiedler-based structured companion forms for odd grade as contrasted
with the absence of any known for even grade; another is the presence of “problem-
atic eigenvalues” that block the existence of any structured linearization in the ansatz
spaces for certain even grade structured matrix polynomials. The resolution of this
issue was finally achieved by the detailed investigation of the Smith forms of vari-
ous types of structured matrix polynomials in the Smith form trilogy [58, 59, 60],
described at the end of Section 4.

A structured companion form for even grade would be able to simultaneously
provide a structured linearization for every structured polynomial of that even grade.
But the Smith form results of [58] and [59] show that the admissible Jordan charac-
teristics of even and odd grade polynomials in the palindromic (or the alternating)
structure class are not the same. Consequently, for each structure class there are al-
ways structured polynomials of each even grade whose elementary divisor structure
is incompatible with that of every pencil in that structure class. This elementary di-
visor incompatibility thus precludes the existence of any structured companion form
for any even grade, for either palindromic or alternating matrix polynomials.

The existence or non-existence of Hermitian or symmetric companion forms for
even grades cannot be settled by a similar argument; for these structures there are

4 Pun intended5.
5 The previous footnote3, and this footnote4 to that footnote3, are here especially for Volker.
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no comparable elementary divisor incompatibilities between even and odd grade.
Nonetheless, the impossibility of such structured companion forms for even grades
has recently been shown in [22]; the argument given there is based on minimal
index incompatibilities between even and odd grade structured polynomials that are
singular.

The impossibility of any even grade structured companion form, for any of these
three most important structure classes, suggests that a reduction to a spectrally
equivalent quadratic matrix polynomial might be a more natural alternative to lin-
earization for even grade structured polynomials. This is one motivation to inves-
tigate the possibility of structure-preserving quadratifications, as part of a wider
investigation of the properties of quadratic matrix polynomials [23, 54], quadrati-
fications more generally, and the development of algorithms that work directly on
a quadratic polynomial, without any intervening linearization. Some initial work in
this direction can be found in [44] for palindromic structure. From a characterization
of the possible elementary divisor and singular structures of quadratic palindromic
polynomials [24], it has been recently shown that every even grade palindromic
polynomial has a palindromic (strong) quadratification. Similar results are also now
known to hold for even grade alternating polynomials [24], and for even grade Her-
mitian matrix polynomials [63].

6 Impact on Numerical Practice

In order to analyze the numerical properties of algorithms for the polynomial eigen-
problem, both left and right eigenvectors of a matrix polynomial P must be consid-
ered. In this context, then, the polynomial eigenproblem is more properly formulated
as

P(λ )x = 0, y∗P(λ ) = 0 , (20)

where x 6= 0 is a right eigenvector, and y 6= 0 is a left eigenvector for P(λ ). For this
analysis, it is also usually assumed that P is regular, which we do throughout this
section. The associated generalized eigenvalue problem

L(λ )z = 0, w∗L(λ ) = 0 (21)

for a linearization L of P can now be solved using standard techniques and readily
available software. In particular, if the size of L is not very large, dense transformation-
based methods can be used to solve (21), such as the QZ algorithm [72], or a
structure-preserving algorithm when L is a structured linearization [28, 47, 57, 65,
75, 79]. Krylov methods can be used for large sparse problems [9, 64, 68, 70, 79].
Among the infinitely many linearizations L of P, we are interested in those which
preserve the structure, if any, and whose right and left eigenvectors permit easy re-
covery of the corresponding eigenvectors of P. So all the linearizations described in
Sections 3 and 5 are obvious candidates.
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The introduction of these new structured and unstructured linearizations in the
last decade has led to not only the development of structure-preserving algorithms,
but also the development of techniques to analyze the influence of the linearization
process on the accuracy and stability of the computed solution, so as to guide us in
our choice of linearization. To indicate the key idea we assume that P is expressed
in the monomial basis as in (1). Let x and y denote right and left eigenvectors of
P, and let z and w denote right and left eigenvectors of L, all corresponding to a
simple, nonzero, finite eigenvalue λ . Eigenvalue condition numbers are given, in
the 2-norm, by the following expressions [78, Thm. 5]:

κP(λ ) =

(
∑

k
i=0 |λ |i ‖Ai‖2

)
‖y‖2‖x‖2

|λ | |y∗P′(λ )x|
, κL(λ ) =

(
|λ |‖X‖2 +‖Y‖2

)
‖w‖2‖z‖2

|λ | |w∗L′(λ )z|
.

These condition numbers measure the sensitivity of the eigenvalue λ of P and L,
respectively, to small perturbations of P and L measured in a normwise relative
fashion. Different linearizations of the same matrix polynomial can have widely
varying eigenvalue condition numbers. Unless the block structure of the lineariza-
tion is respected (and it is not by standard algorithms), the conditioning of the larger
linear problem can be worse than that of the original matrix polynomial, since the
class of admissible perturbations is larger. For example, eigenvalues that are well-
conditioned for P(λ ) may be ill-conditioned for L(λ ) [39, 41, 78]. Ideally, when
solving (20) via (21) we would like to have κP(λ ) ≈ κL(λ ). Most linearizations in
Sections 3 and 5 satisfy one-sided factorizations of the form

L(λ )F(λ ) = G(λ )P(λ ), E(λ )L(λ ) = P(λ )H(λ ), (22)

where G(λ ),HT (λ ),F(λ ) and E(λ )T are kn× n matrix functions. Assume that
F(λ ) is of full rank in a neighborhood of a finite eigenvalue λ of P and L, and
that y := G(λ )∗w 6= 0. Then it follows from (22) that z = F(λ )x is a right eigenvec-
tor of L, y is a left eigenvector of P, and w∗L′(λ )z = y∗P′(λ )x (see [34, Lemma 3.2])
so that

κL(λ )

κP(λ )
=
|λ |‖X‖2 +‖Y‖2

∑
k
j=0 |λ | j ‖A j‖2

· ‖w‖2‖z‖2

‖y‖2‖x‖2
. (23)

This expression can now be used to investigate the size of the ratio κL(λ )/κP(λ ) as
L varies, for fixed P, where the L-dependent terms are X , Y , w, and z. This is done
for example in [39] for pencils L ∈ DL(P), where minimization of the ratio over L
is considered.

Backward errors characterize the stability of a numerical method for solving a
problem by measuring how far the problem has to be perturbed for an approximate
solution to be an exact solution of the perturbed problem. Let (x,λ ) be an approx-
imate right eigenpair for P(λ ) obtained from an approximate right eigenpair (z,λ )
for L(λ ) = λX +Y . The relative backward errors for (x,λ ) and (z,λ ) are given in
the 2-norm by
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ηP(x,λ ) =
‖P(λ )x‖2(

∑
k
i=0 |λ i|‖Ai‖2

)
‖x‖2

, ηL(z,λ ) =
‖L(λ )z‖2

(|λ |‖X‖2 +‖Y‖2)‖z‖2
. (24)

There are analogous formulae for approximate left eigenpairs.
We would like the linearization L that we use to lead, after recovering an approx-

imate eigenpair of P from one of L, to a backward error for P of the same order
of magnitude as that for L. To relate backward errors for L and P we need to as-
sume that the pencil L satisfies a left-sided factorization as in the right hand-side of
(22), with E(λ ) of full rank, and that x is recovered from z via x = H(λ )z. Then
E(λ )L(λ )z = P(λ )x so that

ηP(x,λ )
ηL(z,λ )

≤ |λ |‖X‖2 +‖Y‖2

∑
k
i=0 |λ i|‖Ai‖2

· ‖E(λ )‖2‖z‖2

‖x‖2
. (25)

This bound, which largely separates the dependence on L, P, and λ (in the first
term) from the dependence on E and z (in the second term), can then be analyzed
for a given linearization. This was done for Frobenius companion linearizations and
DL(P) linearizations in [37].

For Frobenius companion linearizations, a straightforward analysis of the ra-
tio (23) and the upper bound (25) shows that if ‖Ai‖2 ≈ 1 for i = 0, . . . ,k, then
κL(x)≈ κP(λ ) and the upper bound in (25) will be of order 1; this suggests that scal-
ing the polynomial eigenproblem to try to achieve this condition before computing
the eigenpairs via a Frobenius companion linearization could be numerically advan-
tageous. Fan, Lin, and Van Dooren [27] considered the following scaling strategy for
quadratics, which converts P(λ ) = λ 2A2 +λA1 +A0 to P̃(µ) = µ2Ã2 +µÃ1 + Ã0,
where

λ = γµ, P(λ )δ = µ
2(γ2

δA2)+µ(γδA1)+δA0 ≡ P̃(µ),

and is dependent on two nonzero scalar parameters γ and δ . They showed that when
A0 and A2 are nonzero, γ =

√
‖A0‖2/‖A2‖2 and δ = 2/(‖A0‖2+‖A1‖2γ) solves the

problem of minimizing the maximum distance of the coefficient matrix norms from
1:

min
γ,δ

max{‖Ã0‖2−1,‖Ã1‖2−1,‖Ã2‖2−1}.

It is shown in [37] that with this choice of parameters and for not too heavily
damped quadratics, that is, ‖A1‖2

2
<∼ ‖A0‖2‖A2‖2, then κP ≈ κL for all eigenval-

ues and ηP ≈ ηL for both left and right eigenpairs. Hence, with this scaling the
linearization process does not affect the eigenvalue condition numbers, and if the
generalized eigenvalue problem (21) is solved by a backward stable algorithm such
as the QZ algorithm, then the computed eigenpairs for P will have small backward
errors. These ideas have been implemented in an algorithm for the complete solu-
tion of quadratic eigenvalue problems by Hammarling, Munro, and Tisseur [36].
The case of heavily damped quadratics has been addressed by Zeng and Su [86].

It is now well established that for structured polynomial eigenproblems, it is
important to use algorithms that preserve the structure of the problem when com-
puting its eigenvalues, so that the eigenvalue pairings are preserved. This has lead
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to the development of a number of structure-preserving algorithms for structured
linearizations of structured eigenproblems [45, 47, 65, 68, 70, 75, 79], as well as
the derivation of structured backward errors and structured condition numbers cor-
responding to structured pertubations [1, 2, 3, 11, 12].

7 Related Recent Developments

The linearization strategy for the polynomial eigenproblem continues to be actively
developed for more types of matrix polynomials; this strategy is even beginning to
be extended to other types of nonlinear eigenproblems.

In recent research on matrix polynomials, for example, a new theme has started
to attract increasing attention — finding simple, template-like ways to construct
linearizations when the polynomial

P(λ ) =
k

∑
i=0

Aiφi(λ ) (26)

is expressed in some non-standard basis {φi(λ )}. Particularly important for numeri-
cal computation are the classical examples of such bases, e.g., those associated with
the names Chebyshev, Newton, Hermite, Lagrange, and Bernstein. It is tempting to
simply convert P(λ ) in (26) to the standard basis, and then leverage the existing
body of knowledge about linearizations. However, it is important to avoid reformu-
lating P into the standard basis, since a change of basis has the potential to introduce
numerical errors not present in the original problem. Instead we should look for tem-
plates that construct linearizations for P(λ ) directly from the coefficients Ai in (26),
without any matrix additions, multiplications, or inverses. This could be viewed as
another kind of structure preservation, i.e., a preservation of the polynomial basis.

Although there are precedents for doing this for scalar polynomials in [10], and
even earlier in [33], the first serious effort in this direction for matrix polynomials
was [5] and the earlier [17], where concrete templates for producing strong lineariza-
tions were provided, one for each of several classical polynomial bases, including
Chebyshev, Newton, Lagrange, and Bernstein bases. This work has been used in
[26], as part of a Chebyshev interpolation method for solving non-polynomial non-
linear eigenproblems. Additional examples for the Hermite and Lagrange bases have
been developed and used in [81, 82]. More systematic methods for constructing
large families of template-like linearizations for matrix polynomials expressed in
non-standard bases can be found in the very recent papers [62, 74, 80].

The linearization strategy has been so effective for polynomial eigenproblems
that researchers have started to consider ways to extend this strategy to other non-
linear eigenproblems, especially to rational eigenproblems P(λ )x = 0, where the
scalar φi(λ ) functions in P(λ ) as in (26) are now rational functions of λ rather than
just polynomials. Significant advances in this direction have been made in [77], and
more recently in [35].
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8 Concluding Remarks

Wer wirklich Neues erdenken will, muss hin und wieder ein wenig spinnen.
– Quote on Room MA 466, TU Berlin.

We hope this review has shown how the discovery of new families of lineariza-
tions in the last decade has propelled research on polynomial eigenproblems for-
ward, with significant advances made in the development of theory and algorithms
for structured problems. Volker has contributed much to this effort, as a researcher
and, equally importantly, as a stimulating mentor. There is still more waiting to be
discovered, and more fun to be had in uncovering it. As Volker taught us to say to
one another, “Es gibt viel zu tun, fangt schon mal an!”
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68. V. Mehrmann, C. Schröder, and V. Simoncini. An implicitly-restarted Krylov method for real
symmetric/skew-symmetric eigenproblems. Linear Algebra Appl., 436(10):4070–4087, 2012.

69. V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: a challenge for modern eigenvalue
methods. GAMM Mitt. Ges. Angew. Math. Mech. 27(2):121–152, 2004.

70. V. Mehrmann and D. Watkins. Structure-preserving methods for computing eigenpairs of large
sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput. 22:1905–1925, 2001.

71. V. Mehrmann and D. Watkins. Polynomial eigenvalue problems with Hamiltonian structure.
Electron. Trans. Numer. Anal. 13:106–118, 2002.

72. C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems.
SIAM J. Numer. Anal., 10(2):241–256, 1973.

73. V. Noferini. The behavior of the complete eigenstructure of a polynomial matrix under a
generic rational transformation. Electron. J. Linear Algebra, 23:607–624, 2012.

74. V. Perović and D. S. Mackey. Linearizations of matrix polynomials in Newton basis. In
preparation, 2014.
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