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Abstract

We give a geometric description of the adjoint and coadjoint orbits of the special Euclidean group. We

implement the method of little subgroups as introduced by Rawnsley in 1975 and the method of types

by Burgoyne and Cushman in 1977 to classify these orbits completely. The orbits are diffeomorphic to

affine flag manifolds, whose definition and geometry we also explore. Since coadjoint orbits are naturally

symplectic, such manifolds provide us with interesting examples of symplectic homogeneous spaces.

As discovered by Cushman and van der Kallen in 2006, we identify a bijection between the coadjoint

and adjoint orbits of the Euclidean group. Furthermore, we show that orbits corresponding under this

bijection are homotopy equivalent. Whether the bijection for other groups, and especially the Poincaré

group, preserves homotopy type of orbits remains an open question.

1 Introduction

For any compact or semisimple Lie group, the adjoint and coadjoint representations are equivalent (in both

cases because there is an invariant quadratic form on the Lie algebra). However, for general Lie groups

this is not true. In a recent paper [4], Cushman and van der Kallen showed that, for real affine orthogonal

groups, where the actions are not isomorphic, there is nonetheless a surprising 1–1 correspondence be-

tween the adjoint and coadjoint orbits and this correspondence respects certain moduli of the orbits. These

groups include both the Euclidean and Poincaré groups. In this paper we consider the geometry behind

this correspondence for the (special) Euclidean group SE (n).

Given a matrix Lie group H ⊂ GL(V ) one is concerned with describing the coadjoint orbits of the affine

group G := H ⋉V . An answer to this question was found by Rawnsley in [1]; the coadjoint orbits are in a

one-to-one correspondence with certain fibre bundles defined by what is referred to in the literature as a

“little subgroup". Cushman and van der Kallen used the method of types in [4] to classify the (co)adjoint

orbits (building on work done in [2]) of affine orthogonal groups, in particular the Poincaré group and in [5]

the odd real symplectic group. In this paper we will use the methods illustrated in these works to explicitly

describe the geometry of the (co)adjoint orbits for the special Euclidean group SE (n) = SO(n)⋉R
n . This

example provides us with an intriguing collection of affine flag manifolds and exhibits a canonical sym-

plectic structure on them. As remarked in [4] we establish a bijection between coadjoint and adjoint orbits

preserving the modulus. Moreover we show that this orbit correspondence preserves homotopy type.

We begin by reviewing the situation in some generality before restricting attention to SE (n). Our discussion

here follows that given in [1]. We may write g = h×V and g∗ = h∗ ×V ∗. Let Ω ∈ h∗ and ζ ∈ V ∗ so that

(Ω,ζ) ∈ g∗ and (a, v) belong to G where a ∈ H and v ∈V . The coadjoint action of G on g∗ is given by,

Coad(a,v)(Ω,ζ) =
(
CoadaΩ+v ⊙a−∗ζ, a−∗ζ

)
. (1.1)
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Here a∗ denotes the adjoint of a and a−∗ the adjoint of a−1. Following [3] we use the notation v ⊙ζ, where

v ∈V and ζ ∈V ∗ to denote the element in h∗ defined by satisfying,

〈v ⊙ζ, A〉 = 〈ζ, Av〉, ∀A ∈ h.

The map µ : V ×V ∗ → h sending (v,ζ) to v ⊙ζ is the momentum map for the action of H on the cotangent

bundle T ∗V ∼= V ×V ∗. Let GΩ,ζ be the isotropy subgroup fixing (Ω,ζ) under the coadjoint action of G . For

(a, v) to belong to GΩ,ζ we clearly require a−∗ζ = ζ. Define Hζ to be the subgroup consisting of all a ∈ H

satisfying a−∗ζ= ζ. The group Hζ is often referred to as the little subgroup. The Lie algebra hζ of Hζ consists

of all A ∈ h such that A−∗ζ= 0. Given (a, v)∈GΩ,ζ we must have,

CoadaΩ+v ⊙ζ=Ω. (1.2)

Let v ∈V be arbitrary and consider v⊙ζ. Since 〈v⊙ζ, A〉 = 〈ζ, Av〉 for all A we also have, 〈v⊙ζ, A〉 = 〈A−∗ζ, v〉.

If A ∈ hζ it follows that 〈v ⊙ζ, A〉 = 0 and hence that v ⊙ζ belongs to the annihilator h◦
ζ

of hζ. In fact it can be

shown that

h◦ζ = {v ⊙ζ|v ∈V }. (1.3)

We may therefore restrict (1.2) to hζ and hence project away the term v ⊙ζ to get,

(CoadaΩ) |hζ =Ω|hζ ,

=⇒ Coada

(
Ω|hζ

)
=Ω|hζ .

We abbreviate Ω|hζ to Ω. For the above expression to hold we need a ∈ H
Ω,ζ where now H

Ω,ζ is the subgroup

of Hζ such that CoadaΩ=Ω. Conversely let a ∈ H
Ω,ζ. Then CoadaΩ−Ω= 0, so then CoadaΩ−Ω ∈ h•

ζ
. But

then by (1.3) ∃v ∈ V such that CoadaΩ−Ω = v × ζ. We therefore have a homomorphism j : GΩ,ζ → H
Ω,ζ

which sends (a, v) to a. The kernel of j is (e, v) where v must satisfy v ⊙ ζ = 0. Hence we have an exact

sequence,

0 −→ {v |v ⊙ζ= 0}
i

−→GΩ,ζ
j

−→ HH ,ζ −→ 1 (1.4)

where i sends v to (e, v). Thus we have proved equation (1) of [1];

Theorem 1. GΩ,ζ is an extension of H
Ω,ζ by a vector space.

As pointed out in [1], this extension is not usually split; however, in our example where G = SE (n) it will be.

Thus GΩ,ζ will be a semidirect product. We will see in section 3 how this isotropy group defines an affine

flag manifold as an orbit.

2 Flags and affine flags

2.1 Definitions

A flag in R
n is defined to be a strictly ascending sequence of subspaces,

0 ⊂ E1 ⊂E2 ⊂ ... ⊂ Ek =R
n . (2.1)

If we equip R
n with the standard metric, we may reinterpret the flag uniquely as being an ordered sequence

of mutually orthogonal subspaces V1, ...Vk , where V1 =E1 and Ei+1 =Ei ⊕Vi+1;

0 ⊂V1 ⊂V1 ⊕V2 ⊂ ... ⊂
k⊕

i=1

Vi =R
n . (2.2)
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Let di denote the dimension of each Vi . Given (d1, ...dk ) with Σi di = n define the flag manifold of signature

(d1, ...,dk ), F (d1, ...,dk ) to be the manifold of all such flags as in (2.2). If each di is equal to one (and hence

k = n) we say that the flag is a full flag and call F (1, ...,1) the manifold of full flags in R
n . If the flag is not

a full flag it is called a partial flag. The real projective space and Grassmannians are all examples of partial

flag manifolds: RP n =F (1,n −1); Gr (k ;n −k) =F (k ;n −k).

An oriented flag is one where each subspace Ei as in (2.1) is given an orientation. Note that this is equivalent

to each Vi acquiring an orientation. We denote the manifold of oriented flags with signature (d1, ...,dk ) as

F̃ (d1, ...dk ). We can also define a mixed flag to be one where only specific subspaces receive an orientation.

We denote such a flag manifold as F (d̃1, ..., d̃k ), where the tilde above a given di indicates that Vi receives

an orientation.

For our purposes it will also be useful to define the notion of a Hermitian flag. This is a flag where each Ei

is given a complex structure compatible with the metric on R
n (note therefore that each di must be even).

Note also that this is equivalent to each Vi having a complex structure, that is an automorphism Ji : Vi →Vi

satisfying J 2
i
= −I and with Ji oriented and orthogonal. We will denote the manifold of Hermitian flags by

H F (d1, ..dk ). We will also need to consider mixed flags whereupon certain subspaces Ei are given a com-

plex structure, an orientation or nothing at all. We will write such a mixed flag manifold as F (d1, d̃2, ...,dk
C),

where di
C indicates that Ei has a complex structure and the tilde an orientation as before.

The group SO(n) acts naturally on flags by sending each subspace Vi to a ·Vi for a ∈ SO(n). If the flag is

Hermitian then each complex structure Ji defined on Vi is sent to a◦ Ji ◦a−1 on a ·Vi . We can therefore write

the manifold of flags as a homogeneous SO(n)-space;

F (d1, ..., d̃2, ...,dC

3 ) =
SO(n)

S
(
O(d1)×·· ·×SO(d2)×·· ·×U (

d3

2 )
) (2.3)

The isotropy group of the flag requires some explanation. Clearly for a to fix a flag it must leave invariant

each subspace Vi . The restriction of a to each subspace is orthogonal. Therefore a must belong to the

subgroup S (O(d1)×·· ·×O(dk )). If Vi is oriented then the corresponding action of a on Vi must restrict to

an element of SO(di ). Finally should Vi possess a complex structure given by Ji ∈ Aut (Vi ) then the action

of a restricted to Vi must satisfy a Ji a−1 = Ji . If we identity Vi with C
di /2 (which we may using the complex

structure Ji ) then this condition is precisely that which says that a acting on C
di /2 should commute with

multiplication by i . This is equivalent to saying that a is a complex linear map on C
di /2. Moreover the map

is unitary since a is orthogonal. Note that since U (1) ∼= SO(2), a complex structure on a plane is equivalent

to a choice of orientation.

Given a flag F we can displace each of its subspaces Ei by a fixed vector x ∈R
n to get an affine flag F +x. The

bottom subspace V1+x has added significance since the flag F +x is invariant under translations belonging

to V1. Given such an affine flag we refer to the space V1 +x as the flag pole.

Given a flag manifold F we can define a tautological vector bundle TautF by defining the fibre over each

flag F to be
⊕k

i=2 Vi , i.e. the sum of all subspaces but the first. The construction of this bundle is analogous to

the tautological bundle over a projective space or grassmannian. Now consider the manifold of affine flags

AffF (d1;d2, ...,dk ). We can define a bijection between this manifold and TautF (d1;d2, ...,dk ) as follows; the

affine flag F + x is determined uniquely by F and the flag pole V1 + x. However the flag pole V1 + x is deter-

mined uniquely by its intersection with the orthogonal complement V ⊥
1 =

⊕k
i=2 Vi . We may identify the flag

F +x uniquely to a particular F and a point in
⊕k

i=2 Vi . This defines a unique point in TautF (d1;d2, ...,dk ).

This bijection between the two spaces is clearly smooth. We have thus proved the following proposition;

Proposition 2.1. The tautological bundle over a flag manifold, TautF (d1;d2, ...,dk ) is diffeomorphic to the

affine flag manifold AffF (d1;d2, ...,dk ).

3



There is a transitive action of SE (n) on AffF (d1;d2, ...,dk ) defined by sending F +x to a ·F + (ax +v) where

(a, v) ∈ SO(n)⋉R
n = SE (n). Affine flag manifolds are then homogeneous SE (n)-spaces with isotropy sub-

group isomorphic to HF ⋉R
d1 where HF is the isotropy subgroup of SO(n) fixing a flag in F (d1,d2, ...,dk )

and d1 is the dimension of the flag pole;

AffF (d1;d2, ...,dk ) =
SE (n)

HF ⋉Rd1
. (2.4)

2.2 Symplectic structure on Hermitian flags

It is possible to define a symplectic structure on certain flag manifolds in a canonical way. In order to do

this we must first describe the tangent space to a flag manifold.

Proposition 2.2. Given a flag F = 0 ⊂V1 ⊂ ... ⊂
⊕s

i=1 Vi =R
n in F (d1, ...,ds ) we can identify the tangent space

with a series of linear maps,

TF F =

s⊕

i=1

L (Vi ,Ei
⊥), (2.5)

where L (V ,W ) is the set of linear maps V →W between vector spaces V ,W .

Proof. Let F (t ) be a curve in F so that F (0) = F and Vi (t ) ∈F (di ,n −di ) the corresponding subspaces. Let

Ai (t ) be a curve in L (Rn ,Rn−di ) satisfying KerAi (t ) = Vi (t ) for all t . Let γ1(t ) be an arbitrary curve in R
n

such that γ1(t )∈V1(t ) for all t . Differentiating the identity A1(t )γ1(t ) = 0 at t = 0 gives,

A1(0)γ′1(0)+ A′
1(0)γ1(0) = 0.

The tangent vector is determined by A′
1(t ) and γ1(0) up to KerA1(0) = V1 and hence defines a class γ1(0)+

V1 ∈R
n /V1 which we may identify with a unique γ̃1(0) ∈V ⊥

1 . The map sending γ1(0) to γ̃1(0) is linear. Hence

we have a linear map in L (V1,V ⊥
1 ) = L (V1,E⊥

1 ) determined uniquely by V ′
1(0). Fix an i and suppose for

induction that for ∀ j < i , V ′
j
(0) has been determined by a map in L (V j ,E⊥

j
). Consider arbitrary curves

γ1(t ), ...,γi (t ) in R
n each satisfying γ j (t ) ∈V j (t ) for all t and j ≤ i . Differentiating Ai (t )γi (t )= 0 at t = 0 gives

as before,

Ai (0)γ′i (0)+ A′
i (0)γi (0) = 0.

We may then suppose that γ′
i
(0) is in V ⊥

i
as before. However since the Vi (t ) are mutually orthogonal we

additionally require that 〈γi (t ),γ j (t )〉 = 0 for all j ≤ i . Differentiating this at t = 0 gives,

〈γ′i (0),γ j (0)〉+〈γi (0),γ′j (0)〉 = 0.

This condition along with the fact that the γ j s were arbitrary implies that the projections of γ′
i
(0) onto each

V j , ( j < i ) are determined by γi (0) and γ′
j
(0). The vector γ′

i
(0) therefore defines a class γ̃i (0) in V ⊥

i

⋂
j<i V ⊥

j
=

E⊥
i

. The map γi (0) → γ̃i (0) is linear. Therefore V ′
i

(0) determines a unique map in L (Vi ,E⊥
i

).

If the flag contains Hermitian subspaces then our tangent space needs to incorporate tangent vectors which

arise from fixing each subspace of the flag but varying the complex structures. Let V be a Hermitian sub-

space of the flag F and J : V → V its complex structure. Define C (V ) to be the manifold of oriented and

orthogonal complex structures on V . Let J(t ) be a curve in C (V ) such that J(0) = J . By differentiating

the constraints J(t )J T (t ) = I and J(t )2 = −I we may identify TJ C (V ) with the set {H ∈ L (V ,V ) : [H , J ] =

0, H +H T = 0}.

Now consider the flag manifold F =F (dC

1 , ...,dC

s−1,ds ) where all subspaces V1, ...,Vs are Hermitian with the

optional exception of Vs . Since we may vary the subspaces Vi and their complex structures independently
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we may identify the tangent space with;

TF F =

s⊕

i=1

(
L (Vi ,E⊥

i )⊕TJi
C (Vi )

)
. (2.6)

We can define a canonical symplectic form on TF F . Let A =
⊕

1≤i≤s(Ai , Hi ) and B =
⊕

1≤i≤s(Bi ,Ki ) be

tangent vectors in the sense of (2.6). That is Ai ,Bi ∈ L (Vi ,E⊥
i

) and Hi ,Ki ∈ {H ∈ L (Vi ,Vi ) : [H , Ji ] = 0, H +

H T = 0}. Define the following bilinear map;

ωF (A,B) =
1

2

s∑

i=1

(
Tr (Ai Ji B T

i )+Tr (Hi Ji K T
i )

)
.

This form is clearly skew-symmetric. Furthermore it is non-degenerate since for Ai 6= 0, Tr (Ai Ji (Ai Ji )T ) =

Tr (Ai AT
i

) > 0. Also notice that since L (Vs ,E⊥
s ) is trivial that we do not need a complex structure on Vs .

Thus we have a symplectic form ωF on TF F . This form varies smoothly with the fibres since each Ji also

varies smoothly. It follows that ω is a symplectic form on the flag F .

Furthermore we can define a symplectic form on the flag manifolds AffF (1̃;dC

2 , ...,dC

s−1,ds ). That is, those

affine flags with a one dimensional directed flag pole and the remaining subspaces Hermitian except for per-

haps the last. Begin by observing that there is a fibre bundle structure AffF (1̃;dC

2 , ...,dC

s−1,ds ) → AffF̃ (1,n−1)

with fibre F (dC

2 , ...,dC

s−1,ds ) defined by projecting the affine flag onto its flag pole. We have already defined

a symplectic form ωF on each fibre F (dC

2 , ...,dC

s−1,ds ). It suffices to show that the base space is symplectic

with form ωB to define a symplectic form ωB ⊕ωF fibrewise on AffF ((1̃;dC

2 , ...,dC

s−1,ds ). By Proposition 2.1

AffF̃ (1,n −1) is diffeomorphic to the tautological bundle over the manifold of directed lines in R
n . This is

known to be equal to the cotangent bundle of a sphere, T ∗Sn−1. We may then take ωB to be the canonical

symplectic form on the cotangent bundle.

There is an alternative construction which is more geometric in flavour. Using a similar argument to before

the tangent space to an affine directed line l + x in AffF̃ (1,n −1) may be identified with the vector space

AffL (l , l⊥) of affine linear maps of l into l⊥ ,i.e. affine linear maps R→ R
n−1. Such a map defines an affine

line in R
n−1. We identify such a line with a pair [a, v ] of vectors a, v ∈R

n−1 such that a is a unit vector parallel

to the line and v a vector orthogonal to a determining the translation of the line. Given two tangent vectors

[a, v ] and [b, w ] identified in this way we may define the following symplectic form on AffL (l , l⊥);

ωF ([a, v ], [b, w ])= aT w −bT v.

Such a form ωF can be shown to be symplectic and equivalent to the canonical form on T ∗Sn−1 using our

identification of T ∗Sn−1 with AffF̃ (1,n −1). We have proved the following;

Proposition 2.3. The flag manifolds F (dC

2 , ...,dC

s−1,ds ) and AffF (1̃;dC

2 , ...,dC

s−1,ds ), (where Vs may or may

not be a Hermitian subspace) are symplectic.

This result is important as it concurs with our later result that such flag manifolds occur as the coadjoint

orbits of SO(n) and SE (n).

3 Orbits

3.1 Orbits of SO(n)

We begin by reviewing the orbits for H = SO(n). Since the group is compact the adjoint and coadjoint

representations are equivalent so it suffices to describe the adjoint orbits. Let A ∈ h = so(n), i.e. A is a

5



real anti-symmetric matrix. A is diagonalizable over C with purely imaginary eigenvalues which occur in

pairs. That is if iρ is an eigenvalue (ρ ∈ R) then so is −iρ. To each non-zero eigenvalue pair (iρ,−iρ) with

multiplicity one there exists a unique invariant plane Πρ ⊂ R
n and a basis x, y of orthogonal vectors that

span Πρ for which the action of A on Πρ is given by the 2×2 matrix,

ρ :=

(
0 −ρ

ρ 0

)
.

Assume the non-zero eigenvalues satisfy ρ1 ≤ ... ≤ ρr . For ρ 6= 0 with multiplicity m there are m such invari-

ant planes which are all orthogonal and for which the action on each plane is that of ρ .For all non-zero

eigenvalue pairs (iρk ,−iρk) the invariant planes are orthogonal. Hence there exists a basis of orthogonal

vectors in R
n such that A is a matrix of the form,




0

ρ1

. . .

ρk




(3.1)

Here 0 is a k ×k matrix where k is the dimension of K er A. Therefore A is conjugate to a matrix of the form

above. The decomposition of A into this form is referred to as a type decomposition. Borrowing notation

from [2] we write this decomposition as

∆A =∆0 + ...+∆0︸ ︷︷ ︸
k

+∆ρ1
+ ...+∆ρk

The orbit through A depends entirely on this type decomposition which is unique to A. The task of distin-

guishing all orbits now reduces to the task of classifying all such type decompositions for A. This is a fairly

easy problem and is covered in [2]. We now claim that these orbits are flags.

Proposition 3.1. There exists an SO(n)-equivariant diffeomorphism F : OAd(A) → F , where OAd(A) is the

adjoint orbit through A ∈ so(n) and F a particular flag manifold in R
n determined by the type decomposition

∆A of A.

Proof. Let K denote the kernel of A. For the non-zero eigenvalue pairs (iρk ,−iρk) consider the collection

of invariant planes Πk . For any λ ∈ R,λ 6= 0 define Vλ to be the sum of invariant planes Πi with ρi = λ.

That is we group together the planes with a common eigenvalue to form a collection of even dimensional

subspaces V1, ...,Vs . The action of A on each Vi is given by λi ⊕ ...⊕ λi where the sum is taken over each Π

in Vi . We can define a complex structure Ji on each Vi by setting Ji (v) = 1
λi

(
λi ⊕ ...⊕ λi

)
. The action of A

on each Vi is now determined by the complex structure Ji and the corresponding eigenvalue λi . We define

the following flag F (A),

F (A) := 0 ⊂ K ⊂ K ⊕V1 ⊂ ... ⊂ K ⊕

s⊕

i=1

Vi =R
n .

Note that this flag is a Hermitian flag on all spaces except for the first subspace K . F (A) ∈ F (k ,dC

1 , ...,dC
s )

where di /2 is the multiplicity of each eigenvalue λi . We aim to show that F (a Aa−1) = a ·F (A). This is easy

to see since the invariant subspaces for a Aa−1 are a ·K , a ·V1, ..., a ·Vs which are precisely the subspaces of the

flag a ·F (A) and each complex structure Ji on a ·Vi is a Ji a−1. It follows that we have an SO(n)-equivariant

map,

F : OAd(A) →F (k ,dC

1 , ...,dC

s ).

Injectivity of the map comes from the fact that the action of A on R
n is determined uniquely by the eigen-

values λ1, ...,λs , the kernel K and the invariant subspaces together with their complex structures (Vi , Ji ).
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Surjectivity follows from the fact that the action of SO(n) on F (k ,dC

1 , ...,dC
s ) is transitive. Thus we have

a G-equivariant bijection between smooth manifolds. Smoothness of G = SO(n) implies that the map is

smooth.

Since F (k ,dC

1 , ...,dC

k
) ∼= F (dC

1 , ...,dC

k
,k) we have from (2.3) that these orbits are symplectic. This is as ex-

pected since coadjoint orbits are naturally symplectic.

Example: For SO(4) we list below the possible type decompositions for A ∈ so(4) along with the correspond-

ing isotropy subgroup and adjoint orbit through A.

∆A StabAd(A) OAd(A) Not es

4∆0 SO(4) Poi nt .

∆ρ+∆κ S (U (1)×U (1)) H F (2,2) = G̃r (2;2),ρ 6=κ

2∆ρ U (2) H F (4) = Complex structures on R
4.

2∆0 +∆ρ S (O(2)×U (1)) F (2,2C) = G̃r (2;2).

(3.2)

3.2 Adjoint orbits of SE (n)

We now proceed to describe the adjoint orbits of SE (n). There is a faithful representation of SE (n) in GL(n+

1) defined by sending (a, v) to the matrix

(
a v

0 1

)
, where a ∈ SO(n) and v ∈R

n . Using this representation we

can write out the adjoint action of SE (n) on a Lie algebra element (A, X ) ∈ so(n)×V ;

(
a v

0 1

)(
A X

0 0

)(
a−1 −a−1v

0 1

)−1

=

(
a Aa−1 −a Aa−1v +aX

0 0

)
.

Therefore we have,

Ad(a,v)(A, X ) = (Ada A, aX − (Ada A)v) . (3.3)

Hence the orbit is a bundle over the adjoint orbit OAd(A) in so(n). We will separate the orbits into three

cases.

Case 1: This is the trivial case of the orbit through the point (0,0). The orbit is clearly that of a point. We

define A1 to be the set consisting solely of this point.

Case 2: We consider the orbit through a point belonging to the following set,

A2 := {(A, X )|X ∈ ImA, A 6= 0}.

Let (A, X ) ∈ A2 and w a vector satisfying Aw = X . By acting on (A, X ) by (I , w ) we may wlog consider the

orbit through a point (A,0). If we identify Ada A with F (Ada A) then the orbit becomes a vector bundle

with fibre Im(Ada A) over F (Ada A). Since F (Ada A) = a ·F (A) and Im(Ada A) = a · ImA, the orbit is the

vector bundle over the flag manifold FA determined by the type decomposition ∆A with fibre equal to the

subspace
⊕

i≥1 Vi for each flag. We recognise that this orbit is then the tautological bundle over FA with

V1
∼= KerA. It follows from Proposition 2.1 that this orbit is the affine flag with signature determined by ∆A

and flag pole a subspace isomorphic to KerA. Note that if A is non-singular then the orbit is the trivial vector

bundle FA ×R
n . This may be thought of as an affine flag in R

n where the flag pole is a point. In summary

then we have the following proposition;

Proposition 3.2. For any point (A, X ) ∈ A2 the orbit is an affine flag with signature and modulus determined

by the type decomposition ∆A. The flag pole is isomorphic to the kernel of A. The orbit is a vector bundle over

OAd(A) with fibre isomorphic to ImA.
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Alternatively we can see this proposition by calculating the isotropy subgroup of (A,0). Clearly a must satisfy

Ada A = A. That is a ∈ StabAd(A). Additionally v must belong to the kernel of A. Hence the isotropy subgroup

is StabAd(A)⋉KerA. Thanks to Proposition 3.1 StabAd(A) is isomorphic to the isotropy subgroup HF of the

flag FA . Proposition 3.2 now follows from (2.4).

Case 3: The final set to consider is,

A3 = {(A, X )|X ∉ ImA}.

Since the image and kernel of A are orthogonal complements of each other we may uniquely write X as

X = Xk + X ⊥
k

where Xk ∈ KerA and X ⊥
k
∈ ImA. Via the same method as in case 2 we may project away the

part X ⊥
k

and hence wlog assume that X is a non-zero element of KerA. We may also assume wlog that the

kernel contains e1 where e1, ...,en is the standard orthogonal basis on R
n . By applying a suitable action we

may further assume wlog that X is of the form |X |e1. Now to describe the isotropy group. Clearly a must be

in StabAd(A). We must then have that

aX −X = Av.

The left hand side of this expression belongs to KerA (since AaX = a AX = 0) while the right hand side

belongs to ImA. Since these two sets have trivial intersection we must have that aX = X and v ∈ KerA. Thus

the isotropy group is (
SO(n)e1

∩StabAd(A)
)
⋉KerA. (3.4)

The group
(
SO(n)e1

∩StabAd(A)
)

is isomorphic to the group StabAd(A) where A indicates the restriction and

projection of A to 〈e2, ...,en〉. We have established the following proposition which completes our classifica-

tion of the adjoint orbits of SE (n).

Proposition 3.3. The orbit through a point (A, X ) in A3 has isotropy group isomorphic to StabAd(A)⋉KerA.

The modulus of the orbit is parametrised by |X | ∈R
>0 and the type decomposition ∆A.

Example: SE (4). In this example we break the orbits down into the cases for A1, A2 and A3. Trivially the

orbit through A1 is a point. Below we describe the orbits and isotropy groups for points through A2. Recall

from Proposition 3.2 that the orbit depends on the type decomposition ∆A.

∆A StabAd(A,0) Or bi t

∆ρ+∆κ S (U (1)⋉U (1)) R
4 ×H F (2,2)

2∆ρ U (2) R
4 ×H F (4)

2∆0 +∆ρ S (O(2)×U (1))⋉R
2 AffF (2;2C)

(3.5)

These orbits have 2, 1 and 1 moduli respectively. Now for orbits through A3. The modulus of the orbit

is determined by ∆A and |X |. Wlog suppose that X = e1. This way ∆A may be understood as the type

decomposition for an element A ∈ so(3). The orbits are classified below.

∆A StabAd(A)⋉KerA

3∆0 SO(3)⋉R
4

∆0 +∆ρ S (O(1)×U (1))⋉R
2

(3.6)

These orbits have 1 and 2 moduli respectively. Observe that for ∆A = 3∆0 the orbit is that through (0, X ). It

is clear from both the isotropy subgroup and (3.3) that for any n the resulting orbit is a sphere Sn−1 ⊂R
n .

3.3 Coadjoint orbits of SE (n)

Turning to the coadjoint orbits of SE (n) we consider a point in the dual of the Lie algebra (Ω,ζ) ∈ so(n)∗×

R
n∗

= se(n)∗ and let (A, X ) ∈ se(n) be arbitrary. By definition we have,

〈Coad(a,v)(Ω,ζ), (A, X )〉 = 〈(Ω,ζ),Ad(a,v)−1 (A, X )〉,
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where 〈·, ·〉 is the standard pairing of se(n)∗ with se(n). By using (3.3) we may rewrite the above as,

〈Coad(a,v)(Ω,ζ), (A, X )〉 = 〈Ω,Ada−1 A〉+〈ζ, a−1X 〉+〈ζ, a−1 Av〉

= 〈CoadaΩ, A〉+〈a−⋆ζ, X 〉+〈ζ, a−1 Av〉.

We now introduce an isomorphism between dual spaces by using the inner products 〈ζ, X 〉 = ζT X for el-

ements ζ, X in V and 〈Ω, A〉 = 1
2

Tr (ΩT A) for Ω, A ∈ so(n). In Section 1 we introduced the ⊙ operator on

V ×V ∗. We shall do the same and rewrite the term 〈ζ, a−1 Av〉 so that it is a pairing of elements in so(n)

instead of Rn .

〈ζ, a−1 Av〉 = Tr (ζT a−1 Av)

=
1

2
Tr (vζT a−1 A)+

1

2
Tr (v T AT a−T ζ)

=
1

2
Tr

(
(aζv T

−vζT aT )T A
)

.

In this calculation we have used the cyclic property of the trace, aaT = I and A+ AT = 0. We rewrite aζv T −

vζT aT as aζ∧v where w ∧v is defined to equal w v T −v w T . It can be checked that aζ∧v is antisymmetric

and hence belongs to so(n). Therefore we have shown that 〈ζ, a−1 Av〉 = 〈aζ∧ v, A〉. We have thus derived

the following expression for the coadjoint action which is an analogue of the more general (1.1);

Coad(a,v)(Ω,ζ) = (CoadaΩ+aζ∧v, aζ). (3.7)

Observe that the orbits for ζ 6= 0 are bundles over spheres Sn−1 ⊂ R
n . As in the adjoint case we will separate

the orbits into three classes defined by what points they pass through. We partition se(n)∗ into three disjoint

sets, C1,C2 and C3;

C1 = {(0,0}

C2 = {(Ω,0)|Ω 6= 0}

C3 = {(Ω,ζ)|ζ 6= 0}

Case 1: Trivially the orbit through C1 is a point.

Case 2: From (3.7) it follows that the orbit through a point (Ω,0) in C2 is OCoad(Ω)× {0}. Since the coadjoint

and adjoint representation are equivalent this orbit is diffeomorphic to OAd(Ω) in so(n) where we have iden-

tified Ω as an element in so(n). Consequently we have;

Proposition 3.4. The orbit through a point (Ω,0) in C2 is diffeomorphic to OAd(Ω) and is hence defined by the

type decomposition ∆Ω.

Case 3: We consider a point (Ω,ζ) ∈ C3. We can apply an action of the group so that ζ is sent to |ζ|e1.

Wlog then we assume that ζ = e1 and register that |ζ| is a modulus for the orbit. Since ζ = e1, the matrix

corresponding to ζ∧v is given by,

ζ∧v =




0 v2 · · ·vn

−v2

0
...

−vn


 . (3.8)

We can therefore simplify the situation further by acting by a suitable (I , v) so that Ω has all zeros in its

first row and column. The remaining components for Ω are given by Ω, the projection and restriction to

〈e2, ...,en〉.

For (a, v) to stabilize the point (Ω,e1) we clearly require that a ∈ SO(n)e1
, that is ae1 = e1. We are left with

the following condition to hold,

CoadaΩ−Ω= v ∧e1.
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Since we are identifying so(n)∗ with so(n) we may replace CoadaΩ with AdaΩ since the representations are

equivalent. We must therefore satisfy aΩa−1−Ω= v ∧e1. Since we are assuming Ω has zeros in the first row

and column it is easily seen that so must the left hand side of this expression. For (a, v) to be in the isotropy

subgroup for (Ω,e1) is then equivalent to a satisfying CoadaΩ=Ω and v such that v ∧ e1 = 0. The isotropy

subgroup is thus, (
SO(n)e1

∩StabCoad(Ω)
)
⋉R ·e1 (3.9)

This group is isomorphic to StabCoad(Ω), the isotropy subgroup for the coadjoint action of SO(n − 1) on

so(n−1)∗. We collect this result in a proposition;

Proposition 3.5. The coadjoint orbit through a point (Ω,ζ) in C3 is determined by |ζ| ∈ R
>0 and the type

classification ∆
Ω

. The isotropy subgroup is isomorphic to the group,

StabCoad(Ω)⋉R ·ζ.

From (2.3) we see that this group is the isotropy group for an affine flag with one dimensional directed flag

pole and with the remaining subspaces determined by ∆
Ω

, (we have previously established from Proposi-

tion 2.3 that this is a symplectic manifold). Furthermore note that such an orbit fibres over F̃ (1,n −1) with

fibre equal to the flag manifold F
Ω

.

Example:SE (4). Trivially the orbit through C1 is a point. For points (Ω,0) ∈ C2 we classify the orbits in the

table below. Recall that they are defined by ∆Ω and are diffeemorphic to OAd(A)× {0}.

∆Ω OCoad(Ω,0)

∆ρ+∆κ H F (2,2)× {0}

2∆ρ H F (4)×0

2∆0 +∆ρ F (2,2C)× {0}

(3.10)

These orbits have modulus 2, 1 and 1 respectively. For (Ω,ζ) ∈ C3 recall that the modulus and orbit are

determined by ∆
Ω

and |ζ|. Wlog suppose that ζ= e1. We classify the orbits and isotropy groups in the table

below.
∆
Ω

StabCoad(Ω)⋉R ·ζ OCoad(Ω,ζ)

3∆0 SO(3)⋉R AffF̃ (1;n −1)

∆0 +∆ρ S (O(1)×U (1))⋉R AffF (1̃; 1̃,2C)

(3.11)

These two orbits have modulus 1 and 2 respectively.

3.4 Orbit bijection

Compare (3.5) with (3.10) and (3.6) with (3.11). Notice that there is a bijection between the orbit types which

preserves the modulus. Moreover we claim that this bijection is a homotopy equivalence between the or-

bits. That this bijection should be true for all SE (n) is the main objective of this paper. To prove this we first

need a well-known topological result; that a vector bundle is homotopic to the base space.

Lemma. Given a vector bundle p : E → B, the total space E and the base space B are homotopic.

Theorem 2. There exists a one-to-one correspondence between the coadjoint and adjoint orbit types of SE (n)

on se(n)∗ and se(n) respectively. This correspondence preserves the modulus of each orbit. Furthermore two

corresponding orbits are homotopic.
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Proof. Let A1, A2, A3,C1,C2,C3 be the sets defined before. Each orbit is contained in precisely one of these

sets. For each set we have given an algebraic classification for the possible isotropy subgroups and moduli

for an orbit passing through this set. It is this classification that defines what we mean when we say orbit

type. We will prove that between each Ai and Ci there is a bijection of orbit types.

Case 1: For A1 and C1 the orbits are both a single point. Trivially these are homotopic.

Case 2: From Proposition 3.2 any point (A, X ) in A2 has an orbit determined uniquely by the type decompo-

sition ∆A. The orbit is a vector bundle over OAd(A). By Proposition 3.4 the orbit through a point (Ω,0) in C2

is diffeomorphic to OAd(Ω) and determined uniquely by ∆Ω. We can therefore identify the adjoint and coad-

joint orbits with the same type decomposition, that is ∆A = ∆Ω. Since the adjoint orbit is a vector bundle

over the coadjoint orbit then from the lemma we have that the identified orbits are homotopic.

Case 3: Let (A, X ) ∈ A3.We may wlog instead consider the point (A,λe1) where λ> 0. The isotropy subgroup

for this point is given in (3.4) by
(
SO(n)e1

∩StabAd(A)
)
⋉KerA which we will denote by G A,X . By Proposition

3.3 this orbit is determined by λ and∆A where A is the projection and restriction to 〈e2, ...,en〉. Now consider

a point in C3. Similarly we may suppose the point is of the form (Ω,µe1) where µ> 0. From Proposition 3.5

and (3.9) the orbit is determined by µ and ∆
Ω

and has isotropy group GΩ,ζ =
(
SO(n)e1

∩StabCoad(Ω)
)
⋉R ·e1.

We may then identify the orbits which share the same modulus, that is if (λ,∆A) = (µ,∆
Ω

). Since the coad-

joint and adjoint representations are equivalent we can identify the two groups StabCoad(Ω) ≡ StabAd(A). It

can then be seen that for ∆A =∆
Ω

we have,

SO(n)e1
∩StabCoad(Ω) = SO(n)e1

∩StabAd(A).

Therefore the isotropy subgroup GΩ,ζ is a subgroup of G A,X . There is a natural projection map OCoad(Ω,ζ) →

OAd(A, X ) defined by,

OCoad(Ω,ζ) =
SE (n)

GΩ,ζ
→

SE (n)

G A,X
=OAd(A, X ).

This projection is defined coset-wise and is a principal bundle with fibre G A,X /GΩ,ζ which is isomorphic to

KerA/R ·e1, (where recall we have assumed e1 ∈ KerA). The fibre is a vector space and so it follows from the

lemma that this projection map between adjoint and coadjoint orbits is a homotopy equivalence.

4 Further study

The methods outlined in this paper can, with slight modifications, be applied to any affine unitary or or-

thogonal group, definite and indefinite. Such groups yield a forthcoming description of the term v ⊙w in

equation (1.1) analogous to our use of the term v ∧w . In the case where H = SU (n) the orbits are complex

flag manifolds and the orbits of G = SU (n)⋉C
n are affine complex flags. For an indefinite group some care

must be taken in handling timelike, null and spacelike vectors (that is vectors with positive, zero and nega-

tive length respectively). As with SE (n) the orbits of the affine group are fibre bundles over a flag of directed

lines with fibre equal to the coadjoint orbit of a little subgroup of H . It would be interesting to consider the

orbits of the group G =σ(H )⋉W where σ : H →GL(W ) is an alternative representation of H in a larger vec-

tor space W . Rawnsley considered this more general situation and showed that such orbits are still defined

by a little subgroup and (1.4) still holds for an isotropy subgroup. Recent work by Mykytyuk [6] generalizes

the situation to describing the coadjoint orbits of a Lie algbera g containing an ideal n and proves that the

orbits are bundles with affine spaces for fibres. It would be interesting to see whether under such generality

a result relating the adjoint and coadjoint orbits similar to Theorem 2 holds.
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