
Aluminium foam data reconstruction using CGLS
and TV Regularisation - 100 and 200 projection

data.

Wadeson, Nicola

2015

MIMS EPrint: 2015.25

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Aluminium foam data reconstruction using CGLS

and TV Regularisation - 100 and 200 projection

data.

Nicola Wadeson

1st August 2012

1 Introduction

In x-ray cone-beam CT we have the problem of reconstructing the attenuation coeffi-

cient of an object, f(x) for x ∈ R3, given a discrete set of M line-integrals through the

object,

bi = −log(I0/I) =

∫
x·θ=s

f(sθ + x) dx, (1)

for some θ ∈ S2, s ∈ R, where i = 1, . . . ,M . The most common reconstruction

algorithms used for cone-beam x-ray CT systems are variants of the filtered back-

projection (FBP) algorithm. These algorithms have specific requirements, in terms of

ray sampling, and in some cases data acquisition to suit these requirements can be

time consuming.

Another approach is to perform an algebraic reconstruction [8]. Although these

algorithms are much slower, require large amounts of computer memory and are less

accurate when sampling requirements are met, they are more flexible in terms of data

sampling. Advances in computer memory and processing speed over the years means

that these methods, once infeasible, are now worth studying, particularly when recon-

struction speed is not the top priority.

The Nikon Metris Custom Bay, situated in the Henry Moseley X-ray Imaging Fa-

cility at the University of Manchester, is a large walk-in 3D x-ray imaging system

capable of scanning a large range of sample sizes. Typical scan times range from 20 to

120 minutes, and resolution ranges from 5 microns (for samples up to 1 cm) to ∼100

microns for the largest samples. The machine geometry consists of a single rotating

x-ray source opposite a rotating, flat-panel, 2D detector array consisting of 2000 ×

1



2000 detector pixels. The scanning speed is limited by the mechanical rotation of the

source and detector array, with typically 2000 projections being taken to acquire a full

projection set.

This investigation is motivated by a desire to decrease the data acquisition time,

thus allowing more data to be collected in a shorter space of time and lending itself to

possible 4D reconstruction. This, in turn, should lead to a more desirable machine for

customers, resulting in better value for money as well as exciting new possibilities for

sample studies. The aim is to reduce the number of projections to as few as possible,

thereby reducing the data set, with minimal reduction in image quality.

In these initial investigations the sample data used is of a cylindrical aluminium

foam sample, with a 10mm diameter, which was imaged whilst being very slowly com-

pressed over time. In order to apply the compression, the sample was placed inside

a perspex cylinder which was not fully contained inside the field of view. Only one

revolution of the projection data is considered here for reconstruction image quality

comparisons and, due to the slow speed of compression, the sample is assumed to

be static. All samples were imaged using a 75kVp polyenergetic x-ray beam from a

Tungsten target.

2 Algebraic Reconstruction

To represent the problem algebraically, we imagine the image volume is discretised into

N small voxels, xj for j = 1, . . . , N , each considered to have a constant value f(x). If

wij is the length of intersection of ray i with voxel j, assuming an infinitely thin ray,

then an approximation to the integral equation is given by,∑
j

wijxj = bi. (2)

If ray i does not intersect voxel j then wij is zero. Thus the majority of wij’s are

zero, as a particular ray only intersect a few of the voxels. If we consider all of the

projection data, bi, then we have a system of equations, Ax = b, where,

A =


w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wM1 wM2 · · · wMN


and A is known as the projection matrix. This matrix is of size M × N where M is

2



the number of rays and N is the number of voxels. Thus we have M equations in

N unknowns. When reconstructing at a high resolution and limiting the number of

projections, this matrix will be under-determined.

Since the system is too large to be solved by direct matrix inversion or related

methods such as SVD/pseudo-inverse, iterative algorithms are necessary. There are

a number of different possible methods, differing in accuracy and stability. Methods

created specifically for x-ray CT are ART, SIRT and SART. In terms of established

mathematical methods, ART is essentially an implementation of the generalised Kacz-

marz method, SIRT is an implementation of Landwebber method and SART is a com-

bination of the two algorithms to give better quality images and faster convergence.

These methods have been developed with a view to efficiency rather than accuracy.

Approaching the problem from a mathematical direction there are a number of

existing, more complex, algorithms that are suitable for solving this type of problem,

with good accuracy and convergence properties, Since we only wish to reduce scanning

time and not reconstruction time, we do not consider time to be an obstacle. The

conjugate gradient least squares algorithm (CGLS) is commonly used for solving large

systems of equations due to its good convergence properties. We begin by applying the

CGLS algorithm to reduced projection data sets and then move on to Total Variation

Regularisation (TV) which is an iterative de-noising algorithm, currently implemented

to perform 5 iterations of CGLS as a starting point.

2.1 Forward and back projection

When we apply the projection matrix A to a vector x we are performing a forward

projection (FP). That is, we are taking volume data (values provided for the voxels

in the discretisation given above) and calculating ray, or projection, data. When we

apply AT to a vector b, we are performing a back projection (BP). That is, we are

calculating the volume data given the ray data. Depending on the size of the vectors x

and b, representing the number of voxels and rays respectively, the projection process

can be memory and time consuming. The time taken to compute a reconstruction

is largely dependent on the number of forward and back projections required in the

reconstruction algorithm.

The projection process is parallelisable and its implementation, used in this study,

utilises OpenMP to apply multithreading. All reconstructions were performed on a

AMD opteron 2212 processor with a clock rate of 2GHz, with the number of threads

set to eight.

3



3 Conjugate Gradient Least Squares Algorithm

Unlike the FDK algorithm, which approximates the rays to lie in a plane when using

cone-beam data and performs reconstructions of 2D slices, CGLS can be used for direct

3D reconstruction. This requires a lot of memory as the whole data set is required at

once, unlike FDK where each projection can be processed at a time.

The conjugate gradient method finds the minimum to the quadratic form

f(x) =
1

2
xTAx− bTx+ c, (3)

where c is a scalar constant. If the matrix A is symmetric, and positive-definite then

this minimized solution is the solution to Ax = b. Any matrix, A, can be transformed

into a symmetric positive definite matrix by multiplying by AT . Thus instead we

find the solution to ATAx = AT b which is the least squares solution (hence conjugate

gradient least squares) which minimises the error.

A good description of the Conjugate gradient method, along with meaningful il-

lustrations is given in [6]. A brief description is as follows: Pick a starting point, xk,

move in a search direction, dk, by a step of length αk and calculate the new value xk+1,

then repeat for a new search direction. The search directions, dk, are chosen to be

A-orthogonal and are calculated from the M linearly-independent vectors, or residuals,

rk = AT (b−Axk). This is essentially the method of steepest descent with A-orthogonal

rather than orthogonal search directions.

In a perfect scenario with no rounding errors, convergence to the least squares solu-

tion would be obtain after M iterations (since ATA has size M). In reality the solution

is obtained within some specified error bound, or when a chosen number of iterations

have been computed.

The Algorithm

1. x0 = 0

2. d0 = r0 = AT (b− Axk)

3. αk =
rTk rk

dTkA
TAdk

=
rTk rk

(Adk)TAdk

4. rk+1 = rk + αkA
TAdk

5. βk+1 =
rTk+1rk+1

rTk rk
, dk+1 = rk+1 + βk+1dk

4



(a) (b)

Figure 1: A 2D CGLS reconstruction of the central slice, using the original 100 projection
data with (a) no beam hardening correction and (b) beam hardening correction.

Repeat steps 2 - 5 until desired solution is achieved.

Algorithm Notes

• We choose x0 = 0 such that d0 = AT b, which is just a backprojection of the data

b.

• ATA is never actually calculated. First, calculate Adk (FP) and then apply AT

(BP) in 4. In calculating dTkA
TAdk in 2, since dTkA

T = (Adk)
T we simply multiply

AdTk and Adk.

• A total of one initial BP and (one FP + one BP) per iteration is required. That

is, 1 + 2*K projections for K iterations. As few as 10 iterations have been shown

to give good results.

• As a benchmark for speed, when using 8 threads, the 2D CGLS reconstruction

onto 2000 × 2000 voxels using 2000 × 100 rays took approximately 50 seconds.

4 CGLS Results: 100 projection data

A typical data set would consist of 2000 projections and be reconstructed onto a 2000

× 2000 × 2000 voxel grid, giving a voxel size of 30.8 µm. We begin by reducing this

20 times by taking only 100 projections per source revolution. Initially the raw data is

reconstructed in 2D, considering the central slice only, using the full 2000 × 100 data

set and retaining the reconstruction resolution of 30.8 µm (with 2000 × 2000 voxels).

5



(a)

(b) (c)

Figure 2: A 2D CGLS reconstruction of the cylinder data is shown in (a), and the central
profiles (voxel row 1001) plotted in (b) for reconstructions of the original data; original
data with beam hardening correction; data with cylinder subtracted; data with cylinder
subtracted plus beam hardening correction. Fig.(c) plots only the profiles from the original
data reconstruction and final data reconstructions for clarity.

6



(a) (b)

Figure 3: A 2D CGLS reconstruction of the central slice, using (a) the cylinder corrected
data and (b) with additional beam hardening correction.

The solution, after 10 iterations, is displayed in Fig. 1a. Evidently this image is

not very good as the values at the edge of the outer cylinder are much higher than

elsewhere. This is attributed to two problems: Firstly, this is a limited data problem,

as the cylinder containing the aluminium sample is not fully contained within the ROI

and secondly, the results are subject to the effects of beam hardening.

The next step is to apply a simple b2 beam hardening correction (i.e. the data is

squared before reconstruction) and to reconstruct as before, see Fig. 1b. Significant

changes are observed, with some of the outer ring artifacts removed, and an approxi-

mate doubling of the reconstructed values for the aluminium foam.

The outer perspex cylinder is approximated analytically to reduce the incomplete

data problem. This is achieved by calculating the intersection length, dc, of each ray,

in each projection, with a cylinder with an inner radius of 20mm and an outer radius

of 35mm (matching the true dimensions) of infinite length. The attenuation coefficient

of the cylinder is calculated heuristically, resulting in a value of µc = 0.28cm−1, which

relates to an effective energy of approximately 34.3 keV. Subtracting µcdc from the

original data b gives the final projection data for reconstruction. A 2D reconstruction

of the central slice of the cylinder data is displayed in Fig. 2a.

The effect each of the corrections has on the reconstructed data is illustrated in

Figs. 2b and 2c. The central profile, relating to voxel row 1001, for reconstructions of

the original data, the original data with beam hardening, the data with the cylinder

subtracted, and with cylinder removed plus beam hardening correction are plotted for

10 iterations of the CGLS algorithm. The final data that will be used in the reconstruc-

tions is that with cylinder removed plus beam hardening correction. Comparing this

7



Figure 4: A slice of the 3D FDK sub-section reconstruction.

to the original data reconstruction, small changes are observed to the reconstructed

attenuation coefficient of the aluminium foam sample, but removing the high outer val-

ues leads to better contrast between aluminium foam and background. This final data

reconstructed with and without the beam hardening correction applied is displayed in

Figs. 3a and 3b

Reconstructions are now obtained for direct comparison with the inbuilt FDK recon-

struction. A slice of the 3D FDK reconstruction is displayed in Fig. 4, where evidently

only a small region has been reconstructed. A beam hardening correction has been

applied, but it is unknown if any additional filtering has taken place. This reconstruc-

tion suffers from a noisy background and it is difficult to discern the object from the

background in some places, particularly at the sample edges.

By reading the details of the FDK reconstruction in from file, to determine which

rays and voxels to reconstruct and any shift in the data, a reconstruction can be per-

formed using CGLS with the same parameters. A 2D CGLS sub-section reconstruction

of the central slice, using the original raw data with 5 and 10 iterations is displayed in

Figs. 5a and 5b. Although less voxels are used for the reconstruction the resolution is

fixed at 30.8 µm.

Trying to directly reconstruct the data using CGLS onto the same sub-region as the

FDK reconstruction is greatly affected by the incomplete data. This is mathematically

inconsistent and does not converge to a solution as can be seen from the large jump

in reconstructed values from 5 iterations to 10 iterations. The FDK reconstruction

doesn’t seem to suffer so much from the incomplete data problem, although we are not

comparing reconstructed attenuation coefficients here.

8



(a) (b)

Figure 5: A 2D CGLS sub-section reconstruction of the central slice, using the original data
with (a) 5 iterations and (b) 10 iterations.

(a) (b)

Figure 6: A 2D CGLS reconstruction of the central slice, using the data with analytic cylinder
correction for (a) 5 iterations and (b) 10 iterations.

9



(a) (b)

(c)

Figure 7: A 2D CGLS reconstruction of the central slice, using the data with analytic cylinder
correction and simple beam hardening correction (x2) for (a) 5 iterations, (b) 10 iterations
and (c) 15 iterations.

10



Therefore, the data with the cylinder correction must be used for the CGLS re-

constructions. Without any beam hardening correction the solution appears to be

improved after 5 iterations, but quickly diverges as the iterations increase, Fig. 6.

Therefore, a beam hardening correction is also necessary (Fig. 7), resulting in a solu-

tion that now changes gradually with increasing number of iterations, with 10 iterations

providing the best solution.

With the number of iterations set to 10, a 3D CGLS reconstruction is now performed

on the same sub-region as the FDK reconstruction, using the corrected data. Three

slices of the 3D reconstruction by FDK and CGLS are compared in Fig. 8, with FDK

on the left and CGLS on the right. The background in the CGLS images is less noisy

which aids the segmentation process, but with as few as 100 projections it is difficult

to separate the object from the background for both algorithms. CGLS may show

increased performance relative to FDK for a larger sample.

11



Figure 8: Three different slices of the 3D FDK reconstruction span the left column, with the
3D CGLS reconstruction, after 10 iterations, of the corresponding slices on the right.

12



5 Total Variation Regularisation

Total Variation (TV) Regularisation is a de-noising process that aims to compute

meaningful reconstructions whilst preserving object edges. The Total Variation Regu-

larisation algorithm used in this work is a practical implementation of Nesterovs opti-

mal first-order method [4], implemented in MATLAB by Jensen et al., and described

in the paper [2]. This implementation required the matrix A to be pre-calculated and

stored, so the code has been adapted to use the forward and back projection algorithms

described previously. That is, to calculate Ax and AT b directly.

The Total Variation (TV) of a function g(t) (proposed by Rudin, [5]), with t ∈ Ω ⊂
Rp, is defined as,

T (g(t)) =

∫
Ω

‖∇g(t)‖2 dt. (4)

Since this function is non-differentiable a smoothed version of the TV functional is

instead used, with a discrete version given by,

Tτ (x) =
N∑
j=1

Φτ (Djx), (5)

where Φτ is the Huber function,

Φτ (z) =

‖z‖2 − 1
2
τ, if ‖z‖2 ≥ τ,

1
2
τ‖z‖2, else,

(6)

and Djx ∈ R3 is the forward difference approximation to the gradient at x ∈ R3. The

discrete TV regularisation problem is to find the minimum to the equation,

f(x) =
1

2
‖Ax− b‖2

2 + αTτ (x), (7)

in the range [0, 1], where α > 0 is the regularisation parameter applied to the TV

term, Tτ (x). Setting α = 0, and thus removing the regularisation term, gives the least

squares solution. The idea is to stay close to this solution whilst decreasing the total

variation, so the higher the value of α, the smaller the total variation and the further

away we are from the least squares solution.

13



5.1 Parameters µ and L

The function f(x) is strongly convex with strong convexity parameter µ > 0 such that,

f(x) ≥ f(y) +∇f(y)T (x− y) +
1

2
µ‖x− y‖2

2, ∀x, y ∈ R3. (8)

The function f(x) has Lipschitz continuous gradient with Lipschitz constant L, such

that,

f(x) ≤ f(y) +∇f(y)T (x− y) +
1

2
L‖x− y‖2

2, ∀x, y ∈ R3, (9)

which is a smoothness requirement on f . It is clear that µ ≤ L. Nesterov’s optimal

first-order method requires that these two parameters, µ and L, be known in advance.

For f(x) as defined in Eqn 8 we have,

µ = λmin(ATA) =

0, if rank(A) < N,

σmin(A)2, else,
and L = ‖A‖2

2 +
α

τ
‖D‖2

2, (10)

where λmin and σmin denote the smallest eigenvalue and the smallest singular value

respectively and ‖D‖2
2 ≤ 12 in the 3D case. Due to the inequalities used in these

calculations it is only possible to compute bounds on µ and L.

Since µ and L are not known in practice, the MATLAB implementation estimates

µ and L during the iterations (µk and Lk). Lk is chosen to satisfy

f(xk+1) ≤ f(yk) +∇f(yk)
T (xk+1 − yk) +

1

2
Lk‖xk+1 − yk‖2

2, (11)

by using backtracking on Lk and

µk = min{µk−1,M(xk, yk)}, (12)

where

M =


f(x)− f(y)−∇f(y)T (x− y)

1
2
‖x− y‖2

2

, if x 6= y,

∞, else,

(13)

that is, the largest µk that satisfies (8) for xk and yk. A restart procedure is written

in the code as the estimate can be too large. So all that is required now is an initial

estimate of µ̄ and L̄, where,

µ̄ ≥ µ, L̄ ≤ L and µ ≤ L, (14)

14



currently implemented as,

L̄ = (‖A‖2
2 + 12

α

τ
)/100, and µ̄ = min{L/50, ‖A‖2

2}, (15)

where ‖A‖2
2 is the squared largest singular value of A (replace 12 with 8 for the 2D

case). In order to compute this singular value the stored matrix A is required as input.

In the new implementation the matrix is not stored and µ̄ and L̄ are currently chosen

artibrarily, satisfying the requirements in (14) only. A central slice of the data is always

reconstructed in 2D initially, to determine the preferred values of α and τ , with the

final values of µ and L being output to screen. These final values, corresponding to the

chosen values of α and τ , are then input as µ̄ and L̄ for the final 3D reconstruction.

The tight values of µ and L are not necessarily achieved in either case.

5.2 Functions PQ and GL

If we take a projected step of length pk in the direction of steepest descent, with the

additional constraint that the result lies in some set, Q, then we have the gradient

projection method,

xk+1 = PQ(xk + pk∇f(xk)), k = 0, 1, 2, . . . (16)

The function PQ is the Euclidean projection onto the convex set Q, which is defined

here as Q = {x ∈ RN | 0 ≤ xj ≤ 1,∀j}.

For constrained convex problems the gradient map, defined by,

GL(x) = L(x− PQ(x− L−1∇f(x))), (17)

is a generalisation of the gradient, ∇f(x), for unconstrained problems. The norm of

the gradient map provides a measure of how far we are from the minimum, and is

suitable for use in a stopping criteria such that,

‖GL(x)‖2 ≤ ε̄, (18)

where ε̄ is a user specified tolerance. With all the definitions complete, the algorithm

is now given in Fig. 9.

Algorithm Notes

• As described previously, the algorithm now requires initial estimates of µ and

15



L as well as chosen values of α and τ . Two more initial values are required as

input; the initial vector x0 and the requested accuracy ε̄. The initial vector x0

is currently implemented as 5 iterations of the CGLS algorithm and the default

value of ε̄ = 1e−6 is used in all reconstructions.

• Each calculation of f requires one FP and each calculation of ∇f requires one

BP. This results in three initial FP plus one initial BP and an additional a*FP,

where a is the number of times the while loop is executed in initial backtracking.

Subsequently each iteration requires two FP and two BP plus ck*FP, where ck is

the number of times the while loop is executed in the backtracking for iteration

k. This gives a total of (4 + a) + (4 + ck)*K, where K is the total number of

iterations. Since the number of iterations required can be in the hundreds and

possibly the thousands, this is much slower that CGLS.

• As a benchmark for speed, when using 8 threads, one iteration of the sub-region

TV Reg reconstruction took approximately 0.85 seconds per iteration.

16



The Algorithm
The algorithm consists of three parts; the main algorithm (UPN - Unknown Parameter
Nesterov); the backtracking algorithm (BT) and the restart algorithm (RUPN),

UPN

1. Input: x0, µ̄, L̄, ε̄

2. [x1, L0] = BT(x0, L̄)

3. y1 = x1, θ1 =

√
µ̄

L0

4. [xk+1, Lk] = BT(yk, Lk−1)

5. [x̃k+1, L̃k+1] = BT(xk+1, Lk)

6. if ‖GL̃k+1
(xk+1)‖2 ≤ ε̄, Return x̃k+1

7. if ‖GLk
(yk)‖2 ≤ ε̄ Return xk+1

8. µk = min{µk−1,M(xk, yk)}

9. RUPN

10. θk+1 = 1
2

(
−(θ2

k+q)+
√

(θ2
k + q)2 + 4θ2

k

)
11. βk =

θk(1− θk)
θ2
k + θk+1

12. yk+1 = xk+1 + βk(xk+1 − xk)

Repeat steps 4 - 12 unless 6 or 7 is satisfied.

[x,L] = BT(y,L̂))

1. L = L̂

2. x = PQ(y − L−1∇f(y))

3. while equation 9 is not satisfied

4. L = ρLL

5. x = PQ(y − L−1∇f(y))

RUPN

1. γ1 = θ1(θ1L1 − µ1)/(1− θ1)

2. if µk 6= 0 and equation 19 is not
satisfied

3. Abort UPN

4. Restart UPN with
x0 = xk+1, µ̄ = ρµµk, L̄ = Lk

1

2
L̃−1
k+1‖GL̃k+1

(xk+1)‖2
2 ≤

k∏
j=1

(
1−

√
µj
Lj

)(
2

µk
− 1

2L0

+
2γ1

µ2
k

)
‖GL0(x0)‖2

2 (19)

Figure 9:

17



Figure 10: Total Variation Regularisation (TV Reg) 2D reconstructions of the central slice
for varying parameters, α and τ .

5.3 TV Reg Results: 100 projection data

Total Variation regularisation reconstructions are performed on the cylinder and beam

hardening corrected data. To test initial values of µ and L, as well as varying values

of α and τ , we begin with 2D reconstructions of the central slice. Results are obtained

for α = 0.1/0.01/0.001 and τ = 1e−2/1e−4/1e−6, see Fig. 10. Decreasing α increases

the image sharpness, whilst decreasing τ leads to a smoother background with less

artifacts.

Initial input parameters and corresponding output parameters are displayed in Ta-

ble 1, in the order that the reconstructions were performed, with K giving the total

number of iterations. Values of µ̄ and L̄ were chosen to be the output values µ and

L from previously attempted reconstructions. As expected, better convergence rates

resulted from smaller α and larger τ . Fig. 11 illustrates the different results obtained

18



Input parameters Output parameters

α τ L̄ µ̄ L µ K

0.1 1e−4 6930 1.5 6930 1.5 404

0.01 1e−4 6930 0.75 6930 0.75 561

0.001 1e−4 6930 0.148 6930 0.148 521

0.1 1e−2 6930 1.46 6930 1.46 266

0.01 1e−2 6930 0.75 6930 0.404 437

0.001 1e−2 6930 0.148 6930 0.148 492

0.1 1e−6 599000 1.46 779000 0.148 8641

0.01 1e−6 779000 0.148 73500 0.148 1429

0.001 1e−6 73500 0.148 73500 0.148 1826

Table 1: TV Reg reconstruction input and output parameters relating to images in Fig. 10.

Input parameters Output parameters

α τ L̄ µ̄ L µ i

0.005 1e−4 6930 0.5 6930 0.5 536

0.0025 1e−4 6930 0.5 6930 0.43 562

0.003 1e−4 6930 0.5 6930 0.5 552

0.003 1e−5 6930 0.5 6930 0.5 575

0.01 1e−6 6930 0.5 15200 0.5 771

Table 2: Extra TV Reg reconstruction input and output parameters.

(a) L̄ = L = 1000, µ̄ = µ = 0.01 (b) L̄ = L = 1000, µ̄ = µ = 0.1

Figure 11:

19



(a) CGLS (b) TV Reg

Figure 12: Taking the CGLS solution as reference, the best TV Reg solution in terms of the
reconstructed values is given for α = 0.003 and τ = 0.0001.

when different starting values of L̄ and µ̄ lead to different final values of L and µ for

fixed values of α and τ (for 200 projection data).

Since the reconstructed values change with different input parameters, the CGLS

solution is used as reference to determine the best TV Reg solution. The values were

chosen experimentally, with the best result given by α = 0.003 and τ = 0.0001, Fig. 12.

The TV Reg solution provides a smoother background than CGLS for these parameters.

As it may be of interest for further development of the algorithm, input and output

parameters of other 2D TV Reg reconstructions that are not shown here are displayed

in Table 2.

These values of α = 0.003 and τ = 0.0001 are then used to perform a 3D TV Reg

reconstruction with the values of µ̄ and L̄ chosen as the output parameters µ and L

from the 2D reconstruction. The reconstructed volume size was reduced from 655 ×
644 × 417 voxels (used in the FDK and CGLS 3D reconstructions) to 655 × 644 ×
41, due to the long computation time for large volumes. The reconstruction converged

after 184 iterations, with µ = µ̄ and L = L̄, and took approximately four hours to

compute, using 8 threads. In contrast, the matching CGLS reconstruction onto the

same number of voxels took only approximately four minutes.

Three slices of the 3D TV Reg reconstruction are displayed alongside the same slices

produced by the FDK reconstruction in Fig. 13. The background is much smoother

with less artifacts than the corresponding FDK slices, although the aluminium foam

is still difficult to separate from the background at the edges. The same TV Reg

slices are displayed alongside CGLS reconstructions in Fig. 14. Again the background

does appear less distorted in the TV Reg reconstructions, but the difference is less

20



Figure 13: Three different slices of the 3D FDK reconstruction span the left column, with the
3D TV Reg reconstruction of the corresponding slices on the right (α = 0.003, τ = 0.0001).

21



Figure 14: Three different slices of the 3D CGLS reconstruction (10 iterations) span the
left column, with the 3D TV Reg reconstruction of the corresponding slices on the right
(α = 0.003, τ = 0.0001).

22



pronounced as with the FDK.

5.4 Conclusions and Further work

The initial results show that both CGLS and TV Regularisation reconstructions show

some improvement in the reconstruction of the aluminium foam sample in terms of

background artifacts. Further quantitative analysis is needed, and more data sets

must be reconstructed, before any firm conclusions can be drawn.

A further study of inital values L̄ and µ̄ is required for TV Regularisation, to

determine if the tight values are being found, and what effect these values have on

the number of iterations required for convergence, along with the parameters µ and τ .

If backtracking could be removed this would significantly reduce the number of time

consuming forward and back projections required.

Code efficiency has not been investigated here either, so reconstruction speed is

not optimised. An investigation into whether it is possible to speed up the TV Reg

reconstruction process is imperative. The reconstruction times given in this report are

only approximated and will depend on how many other processes were running at the

same time. The machine used for reconstruction is a few years old and there have been

significant increases in processing power and memory since then.

It may be the case that the quality of the FDK, CGLS and TV Reg reconstructions

differs for different data sets, or that one is desirable over the others in different sce-

narios. Thus, it would, in the long term, be worthwhile offering the user the option of

determining which reconstruction is best suited to their needs by reconstructing a 2D

slice of their data using each of the algorithms. For TV Reg, multiple 2D reconstruc-

tions would be required to determine the most suitable input parameters. After their

choice is made, a 3D reconstruction would be performed.

References

[1] F. Jacobs, E. Sundermann, B. De Sutter, M. Christiaens, and I. Lemahieu. A fast

algorithm to calculate the exact radiological path through a pixel or voxel space.

Journal of computing and information technology, 6(1):89–94, 1998.

[2] T.L. Jensen, J.H. Jørgensen, P.C. Hansen, and S.H. Jensen. Implementation of an

optimal first-order method for strongly convex total variation regularization. BIT

Numerical Mathematics, pages 1–28, 2011.

23



[3] T. Liu. Direct central ray determination in computed microtomography. Optical

Engineering, 48:046501, 2009.

[4] Y. Nesterov and I.U.E. Nesterov. Introductory lectures on convex optimization: A

basic course, volume 87. Springer, 2004.

[5] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal

algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[6] J.R. Shewchuk. An introduction to the conjugate gradient method without the

agonizing pain, 1994.

[7] R.L. Siddon. Fast calculation of the exact radiological path for a three-dimensional

ct array. Medical Physics, 12:252, 1985.

[8] M. Slaney and A. Kak. Principles of computerized tomographic imaging. SIAM,

Philadelphia, 1988.

24



(a) (b)

(c)

Figure 15: A 2D CGLS reconstruction of the central slice, using the 200 projection data with
analytic cylinder correction and simple beam hardening correction (x2) for (a) 5 iterations,
(b) 10 iterations and (c) 15 iterations. The best solution is given after 10 iterations.

A CGLS and TV Reg Results: 200 projection data

The same reconstructions are also applied to 200 projection data and displayed in Figs. 15 - 20. Input
and output parameters for all 200 projection reconstructions, including those displayed here, are given
in Table. 3

25



Figure 16: Three different slices of the 3D FDK reconstruction span the left column, with
the 3D CGLS reconstruction of the corresponding slices on the right.

26



Figure 17: Total Variation Regularisation (TV Reg) 2D reconstructions of the central slice for
varying parameters, α and τ . Decreasing α increases the image sharpness, whilst decreasing
τ leads to a smoother background with less artifacts. The cylinder and beam-hardening
corrected 200 projection data is used here.

27



Input parameters Output parameters

α τ L̄ µ̄ L µ i

0.1 1e−4 6930 2.08 6930 1.46 485

0.01 1e−4 6930 1.46 6930 0.75 682

0.001 1e−4 6930 0.75 6930 0.148 870

0.1 1e−2 6930 1.46 6930 1.46 284

0.01 1e−2 6930 0.75 6930 0.496 459

0.001 1e−2 6930 0.5 6930 0.112 774

0.1 1e−6 6930 1.46 599000 1.46 3687

0.01 1e−6 59900 0.75 59900 0.75 1858

0.001 1e−6 59900 0.148 59900 0.148 1991

0.003 1e−4 6930 0.5 6930 0.5 237

0.0025 1e−4 6930 0.5 6930 0.5 689

0.006 1e−4 6930 0.5 6930 0.5 546

0.005 1e−4 6930 0.5 6930 0.5 559

Table 3: TV Reg reconstruction input and output parameters relating to images in Fig. 10.

(a) CGLS (b) TV Reg

Figure 18: Taking the CGLS solution as reference, the best TV Reg solution in terms of the
reconstructed values is given for α = 0.005 and τ = 0.0001.

28



Figure 19: Three different slices of the 3D FDK reconstruction span the left column, with the
3D TV Reg reconstruction of the corresponding slices on the right (α = 0.005, τ = 0.0001).

29



Figure 20: Three different slices of the 3D CGLS reconstruction (10 iterations) span the
left column, with the 3D TV Reg reconstruction of the corresponding slices on the right
(α = 0.003, τ = 0.0001).

30



B The CGLS Implementation

B.1 CGLS code description

The base directory is cgls XTek. The main part of the code is contained in cgls XTek single.m,
which contains the CGLS algorithm given in Section 3. The forward, Ax, and back, AT b, projection
processes are implemented efficiently using a fast implementation of Jacob’s ray tracing method, [1],
[7]. A description of the code is given below, with more information provided within each file itself.

In cgls XTek folder:

• cgls XTek single.m // The main function

• setup.m // Script for building mex files

• reconPhantomTest.m // Quick test to check algorithm is working

• reconPhantom.m // Reconstruct a 3-cube phantom with small Xtek geometry

• recon2D.m // Reconstruct the central slice in 2-D using data from file

• recon3D.m // Reconstruct in 3D using data from file

In cgls XTek/tools folder:

• create phantom.m: // Create phantom data and set-up geometry of small XTek ma-
chine

• load data.m // Read data and geometry parameters in from file

• convert2D.m // Convert the data to 2D (central slice only)

• centre geom.m // Find the centre of rotation (give link to paper)
⇒ find centre.m

• CBproject single.m: // This calls the mex function CBproject single newgeom c.c which
// performs the forward projection Ax

• CBbackproject single.m: // This calls the mex function CBproject single newgeom c.c which
// performs the back projection AT b

• scrollView.m: // View the data with a slider to scroll through the last dimension

In cgls XTek/c folder:

• CBproject single newgeom c.c // Perform forward projection using Jacobs ray tracing
⇒ project singledata.c

• CBbackproject single newgeom c.c // Perform back projection using Jacobs ray tracing
⇒ backproject singledata.c

• jacobs rays.h // Header file for projections

Implementation Notes

• The original ray tracing code (and ScrollView) was written by David Szotten

• This code was adapted to perform forward and back projections by Will Thompson

• Further changes have been made by myself (Nicola Wadeson)

31



B.2 Using the Code

Notes

• Warning... You will require a lot of RAM...

• Muliple processors are desirable

• TV Reg also uses 5 iterations of CGLS code as a starting point

• Instructions are given for 64bit linux machines. If using windows, refer to document links below
for how to compile mex files.

Mex Files
For an introduction to mex files, and information on setting up and using mex files, follow the links
below:

http://www.mathworks.co.uk/help/techdoc/matlab_external/f29322.html (Introducing mex files)
http://www.mathworks.co.uk/help/techdoc/matlab_external/f23674.html (Building mex files)
http://www.mathworks.co.uk/help/techdoc/apiref/bqoqnz0.html (List of mex functions)

OpenMP
Uses open MP for parallel programming for forward and backward projections. If T is the number of
threads you wish to use then before opening MATLAB type the following command in the bash shell
(OpenSuse):

$ export OMP NUM THREADS=T

MATLAB commands: Setting up the code and testing with phantom data

• Load matlab

• Change to cgls Xtek folder

• If this is a first time using mex files type:

>> mex -setup

and select the compiler you wish to use.

• Build the mex files by running

>> setup

to build the code, with largeArrayDims option and flags for OpenMP. Re-run this command
any time changes are made to mex files

• Test everything works by running the example script:

>> reconPhantomTest

This is a test script for the cgls algorithm with few rays and voxels. (open the script for more
information - try changing the parameters)

• For a more realistic test with number of rays as in small Xtek machine run:

>> reconPhantom

The geometry is that of the small Xtek machine with number of rays relating to number of
detectors. The phantom consists of three cubes, and the data is created by forward projection
(using ray tracing methods) and then adding noise to this data. This data (b) is then passed
to the cgls algorithm to solve for A.

32

http://www.mathworks.co.uk/help/techdoc/matlab_external/f29322.html
http://www.mathworks.co.uk/help/techdoc/matlab_external/f23674.html
http://www.mathworks.co.uk/help/techdoc/apiref/bqoqnz0.html


• Play with the number of reconstruction voxels - the reconstruction volume is fixed so this will
change the size of the voxels.

MATLAB commands: Reconstructing real data

• It is advisable to reconstruct the central slice in 2D first to check everything is ok.

• The .xtekct file contains all the parameters used in the data collection process (with projection
angles contained in ctdata.txt). This can be found in the folder along with the projection
data. The pathname and filename of the data to be reconstructed must be set before running
recon2D/recon3D. The pathname being the absolute path to the data directory and the filename
being the name of the .xtekct file (without the extension), in this directory. (examples are given)

>> pathname = ’/disk2/Aluminium foam/FoamLoadSpeed1/’;

>> filename = ’FoamLoadSpeed1 0.05mmmin 3’;

• When the data is FDK reconstructed, another file ending in *reconstruction.xtekct is created
with details of the parameters used in the reconstruction, such as number of voxels, voxelSize,
etc... If you wish to reconstruct the data with the same parameters for direct comparison then
set the path and filename of this file to pathname2 and filename2, for example,

>> pathname2 = ’/home/nwadeson/Aluminium foam/FDK reconstructions/’;

>> filename2 = ’FoamLoadSpeed1 0.05mmmin 3 reconstruction’;

• This second path and file name is optional. There are two options for the call to the load data
function in recon2D and recon3D depending on whether you are using one file or two. You
must uncomment the relevant one.

• Perform the chosen reconstruction:

>> recon2D

OR

>> recon3D

• Play with the parameters at the beginning of recon*.m for different reconstructions.

recon2D.m (Brief description: See file for more details)

• Sets parameters at the beginning of the file

• Loads data and geometrical parameters from file

• Converts data to 2D (central slice only)

• Finds the centre of rotation (This uses the method given in [3])

• Optionally performs simple beam hardening correction

• Calls cgls main function (Final output is cglsOut).

recon3D.m (Brief description: See file for more details)

• Sets parameters at the beginning of the file

• Loads data and geometrical parameters from file

• Finds the centre of rotation

• Optionally performs simple beam hardening correction

• Calls cgls main function (Final output is cglsOut).

If using optional second file, the voxel size and number of voxels will be read in from file, so the
parameter specified in recon*.m is overwritten. If NOT using optional second file, the number of
voxels is that given as a parameter.

33



C The TV Regularisation Implementation

C.1 TV Reg code description

The base directory is newTV Reg. The original MATLAB implementation, developed by Tobias
Lindstrøm Jensen et.al, can be downloaded from http://www2.imm.dtu.dk/~pch/TVReg/, along with
detailed documentation. The adapted implementation used here no longer reads in a matrix A, but
uses the forward and back projection methods as in the CGLS implementation, to allow much larger
3D volume calculations. The CGLS code described in the previous section is also called here, with 5
iterations providing a starting vector x0. The main part of the code containing the algorithm described
in Fig. 9 is contained in newTV Reg/c/tv core.c. A description of the code is given below, with more
information provided within each file itself.

In newTV Reg folder:

• tvreg upn.m // The main MATLAB function

• install linux64.m // Script for building mex files

• recon2D TV.m // Reconstruct the central slice in 2-D using data from file

• recon3D TV.m // Reconstruct in 3D using data from file

In newTV Reg/c folder:

• tvreg upn c.c // Mex function which calls the main TV Reg function

• tv core.c // The main TV Reg function

• project singledata.c // Perform forward projection using Jacobs ray tracing

• backproject singledata.c // Perform back projection using Jacobs ray tracing

• tools.c // Contains a number of functions used in tv core

• jacobs rays.h // Header file for projections

• tools.h // Header file for tools

• tv core.h // Header file for tv core

Implementation Notes

• The original code was created by Tobias Lindstrøm Jensen, Jakob Heide Jørgensen, Per Chris-
tian Hansen, and Søren Holdt Jensen.

• Implementation amended to remove stored matrix A by Nicola Wadeson.

C.2 Using the Code

For details of mex file setup and multiple threading of projections see Section B.2. Change the file
paths (addpath commands) in recon2D TV.m and recon3D TV.m to point to your cgls XTek folder.

MATLAB commands: Setting up the code and reconstructing real data

• Load matlab

• Change to newTV Reg folder

34

http://www2.imm.dtu.dk/~pch/TVReg/


• Build the mex files if necessary by running

>> install linux64

and re-run each time changes are made to the code.

• Reconstruct the central slice in 2D first with different values of α, τ , L and µ. These parameters
are set in the script recon2D TV.m or recon3D TV.m. More details are provided in these files.

• As in Section. B.2 enter the path and filename of the data to be reconstructed, for example,

>> pathname = ’/disk2/Aluminium foam/FoamLoadSpeed1/’;

>> filename = ’FoamLoadSpeed1 0.05mmmin 3’;

• Add the (optional) path and filename of the FDK reconstruction file,

>> pathname2 = ’/home/nwadeson/Aluminium foam/FDK reconstructions/’;

>> filename2 = ’FoamLoadSpeed1 0.05mmmin 3 reconstruction’;

• Uncomment the relevant load data function call in recon2D or recon3D.

• Perform the chosen reconstruction:

>> recon2D TV

OR

>> recon3D TV

In order to reconstruct on the same number of voxels as FDK in x and y (using second file option)
but with a smaller number of z voxels (for speed), you must uncomment these lines in tvreg upn.m
and cgls XTek single.m:

else

geom.nVoxels(3) = 41;

replacing 41 with the number of z voxels you desire.

35


