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GENERALIZED RATIONAL KRYLOV DECOMPOSITIONS
WITH AN APPLICATION TO RATIONAL APPROXIMATION

MARIO BERLJAFA
∗

AND STEFAN GÜTTEL
∗

Abstract. Generalized rational Krylov decompositions are matrix relations which, under certain
conditions, are associated with rational Krylov spaces. We study the algebraic properties of such
decompositions and present an implicit Q theorem for rational Krylov spaces. Transformations on
rational Krylov decompositions allow for changing the poles of a rational Krylov space without
recomputation, and two algorithms are presented for this task. Using such transformations we
develop a rational Krylov method for rational least squares fitting. Numerical experiments indicate
that the proposed method converges fast and robustly. A MATLAB toolbox with implementations
of the presented algorithms and experiments is provided.
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1. Introduction. Numerical methods based on rational Krylov spaces have be-
come an indispensable tool of scientific computing. Rational Krylov spaces were
initially proposed by Ruhe in the 1980s for the purpose of solving large sparse eigen-
value problems [37, 39, 40]. Since then many more applications have been found
in model order reduction [22, 17], large-scale matrix functions and matrix equations
[13, 15, 1, 26, 27], and nonlinear eigenvalue problems [41, 30, 47, 28], to name a few.

In this paper we study various algebraic properties of rational Krylov spaces,
using as starting point a generalized rational Krylov decomposition

AVm+1Km = Vm+1Hm, (1.1)

where A ∈ CN×N is a given matrix, and the matrices Vm+1 ∈ CN×(m+1) and

{Km, Hm} ⊂ C(m+1)×m are of maximal rank. Throughout this paper the underlined
matrices have one more row than they have columns.

The rational Arnoldi algorithm by Ruhe [39, 40] naturally generates decomposi-
tions of the form (1.1) in which case it is known (by construction) that the columns of
Vm+1 are an (orthonormal) basis of a rational Krylov space. Different choices of the
so-called continuation vectors in the rational Arnoldi algorithm give rise to different
decompositions, but all of them correspond to the same rational Krylov space. In this
work we answer the converse question of when a decomposition (1.1) is associated
with a rational Krylov space, and how transformations of such a decomposition affect
the parameters of the rational Krylov space.

Our approach is inspired by the work of Stewart [43, 45] who studied transforma-
tions on a (polynomial) Krylov decomposition

AVm = Vm+1Hm, (1.2)

which is a special case of (1.1) with Km = Im, the m ×m identity matrix with an
appended row of zeros. Indeed, all results in this paper apply to polynomial Krylov
spaces as well.
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2 M. BERLJAFA AND S. GÜTTEL

The outline of this work is as follows: in section 2 we study algebraic properties
of rational Arnoldi decompositions (a special case of (1.1) where (Hm,Km) is an
unreduced upper-Hessenberg pencil) and relate these decompositions to the poles
and the starting vector of a rational Krylov space. Section 3 provides a rational
implicit Q theorem about the uniqueness of rational Arnoldi decompositions. We also
show how the rational functions associated with the rational Krylov space can be
evaluated at any point z ∈ C by computing a full QR factorization of zKm −Hm. In
section 4 we show that when the lower m×m part of the pencil (Hm,Km) is regular
then the range of Vm+1 in (1.1) is a rational Krylov space. Via transformations on
such decompositions we are able to move the poles of a rational Krylov space to
arbitrary positions (even to the eigenvalues of A), and we give two algorithms for this
task. Finally, in section 5 we incorporate one of these algorithms into an iterative
method, called RKFIT. Given matrices {A,F} ⊂ CN×N and a vector v ∈ CN , RKFIT
attempts to find a rational function Rm of type (m,m) such that Rm(A)v ≈ Fv in
the Euclidian norm.

All algorithms and numerical experiments presented in this paper are contained
in a MATLAB toolbox [2] available for download.1

Notation. Matrices are labeled with uppercase Latin letters and their elements
with the corresponding lowercase letter, e.g., A =

[
aij
]
, Hm =

[
hij
]
. Vectors are

labeled with lowercase letters in bold, e.g., b or vk. Hence, we also use Vm+1 =[
v1 . . . vm+1

]
to partition Vm+1 in columns. Depending on the context, hk may

represent just the leading k rows of the kth column of Hm, whilst hk the leading k+1
rows. The kth canonical vector is denoted by ek. By R(V ) we denote the range of
a matrix V . The linear space of polynomials of degree at most m is denoted by Pm.
Finally, C := C ∪ {∞} and C∗ := C \ {0}.

2. Rational Arnoldi decompositions. Given a matrix A ∈ CN×N , a starting
vector v ∈ CN , and an integer m < N , the associated polynomial Krylov space of
order m+1 is defined as Km+1 = Km+1(A, v) = span{v , Av , . . . , Amv}. There exists
an integer M ≤ N , called the invariance index for (A, v), such that

K1 ⊂ K2 ⊂ · · · ⊂ KM−1 ⊂ KM = KM+1.

Throughout this work we assume that 0 < m < M , in which case the space Km+1 is
isomorphic to Pm, i.e., any w ∈ Km+1 corresponds to a polynomial p ∈ Pm satisfying
w = p(A)v , and vice versa.

Given a nonzero polynomial qm ∈ Pm with roots disjoint from the spectrum Λ(A),
we define the associated rational Krylov space as

Qm+1 = Qm+1(A, v , qm) := qm(A)−1Km+1(A, v). (2.1)

Note that qm(A) is nonsingular since no root of qm is an eigenvalue of A and there-
fore Qm+1(A, v , qm) is well defined. Further, for the starting vector we have v ∈
Qm+1(A, v , qm). The assumption that qm(A) is nonsingular and the relation (2.1)
also imply that the spaces Qm+1 and Km+1(A, v) are of the same dimension for
all m. Therefore Qm+1 is A-variant (i.e., AQm+1 6⊆ Qm+1) if and only if m+ 1 < M .

The roots of qm are called poles of the rational Krylov space and denoted by
ξ1, ξ2, . . . , ξm. If deg(qm) < m then m − deg(qm) of the poles are set to ∞. In this

1
http://guettel.com/rktoolbox as of November 2014.
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case we refer to∞ as a formal (multiple) root of qm. We now show that the poles of a
rational Krylov space are uniquely determined by the starting vector and vice versa.

Lemma 2.1. Let Qm+1(A, v , qm) be a given A-variant rational Krylov space,
i.e., m + 1 < M . Then the poles of Qm+1(A, v , qm) are uniquely determined by the
starting vector v , or equivalently, the starting vector of Qm+1(A, v , qm) is uniquely,
up to scaling, determined by the roots of qm.

Proof. We first show that given anA-variant polynomial Krylov spaceKm+1(A, q),
all vectors w ∈ Km+1(A, q) that satisfy Km+1(A, q) = Km+1(A,w) are of the form
w = αq , α 6= 0. Assume to the contrary that there exists a polynomial pj with

1 ≤ deg(pj) = j ≤ m such that w = pj(A)q . Then Am+1−jw ∈ Km+1(A,w), but

for the same vector we have Am+1−jw = Am+1−jpj(A)q 6∈ Km+1(A, q). This is a
contradiction to Km+1(A, q) = Km+1(A,w).

To show that the poles are uniquely determined by the starting vector v , assume
that Qm+1(A, v , qm) = Qm+1(A, v , q̂m). Using the definition of a rational Krylov

space (2.1), this is equivalent to Km+1(A, qm(A)−1v) = Km+1(A, q̂m(A)−1v), which in
turn is equivalent to Km+1(A, q̂m(A)v) = Km+1(A, qm(A)v). This space is A-variant,
hence by the above argument we know that qm(A)v = αq̂m(A)v , α 6= 0. This vector
is an element of Km+1(A, v) which is isomorphic to Pm. Therefore qm = αq̂m and
hence qm and q̂m have identical roots. Similarly one shows that if Qm+1(A, v , qm) =
Qm+1(A, v̂ , qm), then v = αv̂ with α 6= 0.

In the following we aim to establish a one-to-one correspondence between rational
Krylov spaces and a particular type of matrix decompositions. As a consequence
we are able to study the algebraic properties of rational Krylov spaces using these

decompositions. Recall that a matrix Hm ∈ C(m+1)×m is called upper-Hessenberg if
all the elements below the first subdiagonal are zero, i.e., if i > j + 1 implies hij = 0.
Further, we say that Hm is unreduced if none of the elements on the first subdiagonal
are zero, i.e., hj+1,j 6= 0. For convenience, we now generalize this terminology from
matrices to pencils

(
Hm,Km

)
.

Definition 2.2. Let {Km, Hm} ⊂ C(m+1)×m be upper-Hessenberg matrices. We

say that
(
Hm,Km

)
is an unreduced upper-Hessenberg pencil if |hj+1,j |+ |kj+1,j | 6= 0

for all j = 1, . . . ,m.
We are now ready to introduce the notion of a rational Arnoldi decomposition,

which is a generalization of decompositions generated by Ruhe’s rational Arnoldi
algorithm [39, 40]; see also [9, Definition 2.2] and [26, Definition 5.5].

Definition 2.3. Let A ∈ CN×N be a given matrix. A relation of the form

AVm+1Km = Vm+1Hm (2.2)

is called a rational Arnoldi decomposition (RAD) if Vm+1 ∈ CN×(m+1) is of full
column rank,

(
Hm,Km

)
is an unreduced upper-Hessenberg pencil of size (m+ 1)×m,

and the quotients hj+1,j/kj+1,j, called poles of the decomposition, are outside the
spectrum Λ(A) for j = 1, . . . ,m.

The columns of Vm+1 are called the basis of the decomposition and they span
the space of the decomposition. If Vm+1 is orthonormal, we say that (2.2) is an
orthonormal RAD.

It is noteworthy that both Hm and Km in the RAD (2.2) are of full rank. To see
this take any ξ ∈ C and subtract ξVm+1Km from both sides of (2.2). This leads to

(A− ξI)Vm+1Km = Vm+1(Hm − ξKm). (2.3)
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Since
(
Hm,Km

)
is unreduced there are at most m numbers ξ such that Hm− ξKm is

not unreduced. For any other ξ the right-hand side in (2.3) is of full rank and so must
be the left-hand side. Therefore Km is of full rank. If A is nonsingular, comparing the
ranks of the left- and right-hand side in (2.2) we now see that Hm is of full rank as
well. If A is singular, then zero is not an allowed pole and therefore Hm is unreduced
and hence of full rank.

Furthermore, any RAD (2.2) can be transformed into an orthonormal RAD using

the thin QR factorization Vm+1 = QR. Setting V̂m+1 = Q, K̂m = RKm, and Ĥm =

RHm, we obtain the decomposition AV̂m+1K̂m = V̂m+1Ĥm, satisfying R(V̂m+1) =

R(Vm+1), and hj+1,j/kj+1,j = ĥj+1,j/k̂j+1,j for all j = 1, . . . ,m. We call these two
RADs equivalent.

Definition 2.4. Two RADs with the same matrix A ∈ CN×N are equivalent if
they span the same space and have the same poles.

Note that we do not impose equal ordering of the poles for two RADs to be
equivalent. From now on we assume all RADs to be orthonormal. In Theorem 2.5
we show that for every rational Krylov space Qm+1(A, v , qm) there exists an RAD
(2.2) spanning Qm+1(A, v , qm) and conversely, if such a decomposition exists it spans
a rational Krylov space. To proceed it is convenient to write the polynomial qm in
factored form, and to label separately all the leading factors

q0(z) = 1, and qj(z) =

j∏
i=1

(
hi+1,i − ki+1,iz

)
, j = 1, . . . ,m, (2.4)

with some scalars {hi+1,i, ki+1,i}mi=1 ⊂ C such that ξi = hi+1,i/ki+1,i. Since (2.1) is
independent of the scaling of qm any choice of the scalars hi+1,i and ki+1,i is valid as
long as their ratio is ξi. When we make use of (2.4) without specifying the order of
appearance of the poles, we mean any order. The fact that qj | qj+1 gives rise to a
sequence of nested rational Krylov spaces

Q1 ⊂ Q2 ⊂ · · · ⊂ Qm+1,

where Qj+1 = Qj+1(A, v , qj) for j = 0, 1, . . . ,m.

Theorem 2.5. Let Vm+1 be a vector space of dimension m+ 1. Then Vm+1 is a
rational Krylov space with starting vector v ∈ Vm+1 and poles ξ1, . . . , ξm if and only
if there exists an RAD (2.2) with R(Vm+1) = Vm+1, v1 = v , and poles ξ1, . . . , ξm.

Proof. Let (2.2) hold and define the polynomials {qj}mj=0 as in (2.4). Note that
these are nonzero polynomials since the pencil

(
Hm,Km

)
is unreduced. We show by

induction that

Vj+1 := span
{
v1, v2, . . . , vj+1

}
= qj(A)−1Kj+1(A, v), (2.5)

for j = 1, . . . ,m, and with v = v1. In particular, for j = m we obtain Vm+1 =

qm(A)−1Km+1(A, v). Consider j = 1. Reading (2.2) column-wise, first column only,
and rearranging the terms yields

q1(A)v2 = (h21I − k21A) v2 = (k11A− h11I) v1. (2.6)

Therefore, v2 = q1(A)−1 (k11A− h11I) v1 ∈ q1(A)−1K2(A, v) which together with the
fact v1 ∈ q1(A)−1K2(A, v) proves (2.5) for j = 1. Let us assume that (2.5) holds for
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j = 1, . . . , n − 1 < m. We now consider the case j = n. Comparing the nth column
on the left- and the right-hand side in (2.2) and rearranging the terms gives

(
hn+1,nI − kn+1,nA

)
vn+1 =

n∑
i=1

(kinA− hinI) vi, (2.7)

and hence qn(A)vn+1 =

n∑
i=1

(kinA− hinI) qn−1(A)vi. (2.8)

By the induction hypothesis vi ∈ qn−1(A)−1Kn(A, v), therefore

(kinA− hinI) qn−1(A)vi ∈ Kn+1(A, v), i = 1, . . . , n. (2.9)

It follows from (2.8) and (2.9) that vn+1 ∈ qn(A)−1Kn+1(A, v). The induction hy-

pothesis asserts {v1, v2, . . . , vn} ⊆ qn(A)−1Kn+1(A, v) which concludes this direction.

Alternatively, let Vm+1 = qm(A)−1Km+1(A, v) be a rational Krylov space with a
basis {v1, . . . , vm+1} satisfying (2.5). Thus for n = 1, . . . ,m there holds

vn+1 ∈ qn(A)−1Kn+1(A, v)⇔
(
hn+1,nI − kn+1,nA

)
vn+1 ∈ qn−1(A)−1Kn+1(A, v).

Since Kn+1(A, v) = Kn(A, v) + AKn(A, v) we have qn−1(A)−1Kn+1(A, v) = Qn +
AQn. Consequently, there exist numbers {hin, kin}ni=1 ⊂ C such that (2.7) holds.
These relations can be merged into matrix form to get (2.2) with the pencil

(
Hm,Km

)
being unreduced as a consequence of qm being a nonzero polynomial.

Elaborating further on the proof of the previous theorem, we retrieve an explicit
formula for the vectors vj , given in Theorem 2.6 below. This result appears to some
extent in [37, 39], correct up to a normalization factor and given without proof. We
stress that the result holds irrespectively of the RAD (2.2) being orthonormal or not.

Theorem 2.6. Let the RAD (2.2) be given. Then

vj+1 = pj(A)qj(A)−1v1, j = 0, 1, . . . ,m, (2.10)

where p0(z) = 1 and pj(z) = det
(
zKj −Hj

)
, for j = 1, . . . ,m. The polynomials qj

are given by (2.4).
Proof. The proof goes by induction on j. For j = 0 the relation (2.10) holds, and

from (2.6) it follows for j = 1.
Assume (2.10) has been established for j = 1, . . . , n < m and insert it into (2.8),

giving rise to

qn(A)vn+1 =

n∑
i=1

(kinA− hinI) qn−1(A)pi−1(A)qi−1(A)−1v1. (2.11)

We obtain (2.10) for j = n+1 by noticing that the right-hand side of (2.11) represents
the Laplace expansion of det (zKn −Hn) along the last column. Indeed

qn(A)vn+1 =

n∑
i=1

(−1)i+n (kinA− hinI) pi−1(A)(−1)n−iqi−1(A)−1qn−1(A)v1.

See also Figure 2.1 for an illustration.
Note that pj(z) is the determinant of the upper j × j submatrix of zKj − Hj ,

whilst (−1)jqj(z) is the determinant of its lower j × j submatrix.
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zK6 −H6 =

××××××
¬×××××

­××××
®××⊗

¯××
°×

±

××××××
¬×××××

­××××
®××⊗

¯××
°×

±




(a) Upper-Hessenberg structure.

det


×××××
¬××××

­×××
¯×

°



 = p3(z) (−1)2q3(z)−1q5(z)

(b) Contribution from a minor.

Fig. 2.1: Sketch illustrating the proof of Theorem 2.6. Part (a) shows the upper-Hessenberg
structure of the shifted pencil zKj −Hj, for j = 6. The elements marked with numbers, like

¬ = zk21−h21, are those carrying the poles. The contribution of the element ⊗ = zk46−h46

in the Laplace expansion of the determinant det(zK6 − H6) along the last column of the
matrix is (−1)

4+6
(zk46 − h46) det(M⊗). Here, M⊗ is the minor of zK6 −H6 resulting from

the removal of the 4th row and last column, and is shown in part (b).

3. A rational implicit Q theorem. A special case of an orthonormal rational
Arnoldi decomposition (2.2) is the polynomial Arnoldi decomposition (1.2). The
corresponding polynomial qm is constant and R(Vm+1) = Km+1(A, v1). The implicit
Q theorem, see [44, Theorem 3.3], states that once the first column of Vm+1 is fixed,
so is, up to column scaling, the whole matrix Vm+1. Since Hm = V ∗m+1AVm any

scaling of Vm+1 also affects Hm. If Vm+1 is rescaled to V̂m+1 = Vm+1Dm+1, with

|Dm+1| = Im+1, then Ĥm = D∗m+1HmDm. There is no essential difference between

Vm+1 and Hm on one side and V̂m+1 and Ĥm on the other. In this sense we say that
Vm+1 and Hm are essentially uniquely determined by the first column of Vm+1. With
Theorem 3.2 below we now generalize this result to RADs.

Apart from the column scaling of Vm+1, in the rational case the decomposition
(2.2) is also invariant (in the sense that it spans the same space, the poles remain un-
changed, and the upper-Hessenberg structure is preserved) under right-multiplication
by upper-triangular nonsingular matrices Tm. We make this precise.

Definition 3.1. Two orthonormal RADs, namely, AVm+1Km = Vm+1Hm and

AV̂m+1K̂m = V̂m+1Ĥm, are called essentially equal if there exist a unitary diagonal
matrix Dm+1 of size m+1 and an upper-triangular nonsingular matrix Tm of size m,

such that V̂m+1 = Vm+1Dm+1, Ĥm = D∗m+1HmTm, and K̂m = D∗m+1KmTm.

Essentially equal orthonormal RADs form an equivalence class and we call any
of its elements essentially unique.

Note that two orthonormal RADs may be equivalent but not essentially equal, as
the poles may be ordered differently. We are now ready to generalize the implicit Q
theorem to the rational case.

Theorem 3.2. Let A ∈ CN×N satisfy an orthonormal rational Arnoldi decom-
position AVm+1Km = Vm+1Hm with poles ξj = hj+1,j/kj+1,j. For every j = 1, . . . ,m

the orthonormal matrix Vj+1 and the pencil
(
Hj ,Kj

)
are essentially uniquely deter-

mined by the first column of Vm+1 and the poles ξ1, . . . , ξj.

Proof. Let AV̂m+1K̂m = V̂m+1Ĥm be an orthonormal RAD with V̂m+1e1 =

Vm+1e1 and ĥj+1,j/k̂j+1,j = hj+1,j/kj+1,j for all j = 1, . . . ,m. We show by induction

that AV̂m+1K̂m = V̂m+1Ĥm is essentially equal to AVm+1Km = Vm+1Hm.

We assume without loss of generality that hj+1,j 6= 0 for all j = 1, . . . ,m.
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Otherwise, if hj+1,j = 0 for some j, then 0 = ξj /∈ Λ(A) and we can consider

Vm+1Km = A−1Vm+1Hm at that step j, thus interchanging the roles of Hm and Km

and using A−1 instead of A. Since
(
Hm,Km

)
is unreduced, kj+1,j 6= 0 if hj+1,j = 0.

The relation AVm+1Km = Vm+1Hm can be shifted for all ξ ∈ C∗ \ Λ(A) to provide

A(ξ)Vm+1L
(ξ)
m = Vm+1Hm, (3.1)

where A(ξ) := (I −A/ξ)−1A and L(ξ)
m :=

(
Km − Hm/ξ

)
. We make frequent use of

this relation, reading it column-wise. It is worth noticing that the jth column of L
(ξj)
m

has all but eventually the leading j components equal to zero, and that L
(ξ)
j is of full

rank for all j and ξ. Analogous results hold for AV̂m+1K̂m = V̂m+1Ĥm. We are now
ready to prove the statement.

Define d1 := 1, so that v̂1 = d1v1. The first column in (3.1) for ξ = ξ1 yields

`
(ξ1)
11 A(ξ1)v1 = h11v1 + h21v2.

Since v∗1 v1 = 1 and v∗1 v2 = 0, we have

h11 = `
(ξ1)
11 v∗1A

(ξ1)v1.

We then have

h21v2 = `
(ξ1)
11 A(ξ1)v1 − h11v1,

v2 = `
(ξ1)
11

[
A(ξ1)v1 −

(
v∗1A

(ξ1)v1
)
v1
]
/h21.

Since ‖v2‖2 = 1 and h21 6= 0 by assumption, we have `
(ξ1)
11 6= 0. Analogously

ĥ11 = ̂̀(ξ1)
11 v∗1A

(ξ1)v1, v̂2 = ̂̀(ξ1)
11

[
A(ξ1)v1 −

(
v∗1A

(ξ1)v1
)
v1
]
/ĥ21, and ̂̀(ξ1)11 6= 0.

Obviously, v2 and v̂2 are collinear and since they are both of unit 2-norm, there exists

a unimodular scalar d2 ∈ C such that v̂2 = d2v . Defining t1 := ̂̀(ξ1)
1 /`

(ξ1)
1 , and D2 :=

diag(d1, d2), and making use of A(ξ1)v1 −
(
v∗1A

(ξ1)v1
)
v1 = ĥ21v̂2/̂̀(ξ1)11 = h21v2/`

(ξ1)
11 ,

we obtain Ĥ1 = D∗2H1T1. From K1 = L
(ξ1)
1 +H1/ξ1 and K̂1 = L̂

(ξ1)
1 + Ĥ1/ξ1 we see

that indeed K̂1 = D∗2K1T1. This proves the statement for j = 1.

Suppose that, for 2 ≤ j ≤ m, we have V̂j = VjDj , Ĥj−1 = D∗jHj−1Tj−1, and

K̂j−1 = D∗jKj−1Tj−1, for a diagonal unitary matrix Dj = diag(d1, . . . , dj) and upper-

triangular nonsingular matrix Tj−1.
The jth column in (3.1) for ξ = ξj gives

A(ξj)Vj l
(ξj)

j = Vj+1hj .

Since v1, . . . , vj+1 are orthonormal we have

hj = V ∗j A
(ξj)Vj l

(ξj)

j .

Rearranging the two equations above we deduce

hj+1,jvj+1 = A(ξj)Vj l
(ξj)

j − Vjhj
= A(ξj)Vj l

(ξj)

j − VjV ∗j A(ξj)Vj l
(ξj)

j

=
(
I − VjV ∗j

)
A(ξj)Vj l

(ξj)

j .
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Expanding l
(ξj)

j as l
(ξj)

j =: L
(ξj)

j−1zj−1 + qj , where q∗j L
(ξj)

j−1 = 0∗, gives

hj+1,jvj+1 =
(
I − VjV ∗j

)
A(ξj)Vj

(
L
(ξj)

j−1zj−1 + qj

)
=
(
I − VjV ∗j

)
A(ξj)VjL

(ξj)

j−1zj−1 +
(
I − VjV ∗j

)
A(ξj)Vjqj

=
(
I − VjV ∗j

)
A(ξj)Vjqj . (3.2)

To obtain the last equality we have used A(ξj)VjL
(ξj)

j−1 = VjHj−1, which are the first

j − 1 columns in (3.1) with ξ = ξj . Note that since hj+1,j 6= 0 the vector qj is also

nonzero. We label analogously l̂
(ξj)

j =: L̂
(ξj)

j−1ẑj−1+ q̂j , where q̂∗j L̂
(ξj)

j−1 = 0∗, and obtain

ĥj+1,j v̂j+1 =
(
I − V̂j V̂ ∗j

)
A(ξj)V̂j q̂j , q̂∗j L̂

(ξj)

j−1 = 0∗,

ĥj+1,j v̂j+1 =
(
I − VjV ∗j

)
A(ξj)VjDj q̂j , q̂∗jD

∗
jL

(ξj)

j−1 = 0∗,

where in the last equality above we have applied post-multiplication by T−1j−1. Since

L
(ξj)

j−1 ∈ Cj×(j−1) is of full column rank, qj and Dj q̂j are collinear, i.e., there exists a

nonzero scalar 0 6= γ ∈ C such that Dj q̂j = γqj . As a consequence vj+1 and v̂j+1 are
collinear as well. Furthermore, as ‖vj+1‖2 = ‖v̂j+1‖2 = 1, there exists a unimodular

scalar dj+1 ∈ C such that v̂j+1 = dj+1vj+1. We also observe ĥj+1,j = d∗j+1γhj+1,j .

It remains to find such tj ∈ Cj that Tj =
[
Tj−1 tj

]
is nonsingular and that

additionally Ĥj = D∗j+1HjTj and K̂j = D∗j+1KjTj . From Dj q̂j = γqj we infer

Dj

(
l̂
(ξj)

j − L̂(ξj)

j−1ẑj−1

)
= γ

(
l
(ξj)

j − L(ξj)

j−1zj−1

)
,

l̂
(ξj)

j = D∗jL
(ξj)

j−1
(
Tj−1ẑj−1 − γzj−1

)
+ γD∗j l

(ξj)

j ,

l̂
(ξj)

j = D∗jL
(ξj)

j tj ,

where tj =

[
Tj−1ẑj−1 − γzj−1

γ

]
. Finally, using the equation above, the relation ĥj =

V̂ ∗j A
(ξj)V̂j l̂

(ξj)

j , and again A(ξj)VjL
(ξj)

j−1 = VjHj−1, we derive ĥj = D∗jHjtj . With

ĥj+1,j = d∗j+1γhj+1,j we get Ĥj = D∗j+1HjTj . We can consider K̂j similarly.

A further comment for the case m = N − 1 is required. For the polynomial
case, i.e., KN−1 = IN−1, we have AVN−1 = VNHN−1. The vector hN = V ∗NAVNeN
is uniquely defined by the starting vector and A and AVN = VNHN holds. This
last decomposition is usually stated as the (polynomial) implicit Q theorem and es-
sential uniqueness of HN is claimed. Let us consider a more general RAD, namely,
AVNKN−1 = VNHN−1. Defining hN := V ∗NAVNkN for an arbitrary kN ∈ CN we

see that AVNKN = VNHN . Therefore we cannot say that
(
HN ,KN

)
is essentially

unique. In fact, essential uniqueness is related to both Vm+1 and the pencil
(
Hm,Km

)
concurrently.

As already mentioned, a polynomial Krylov space Km+1(A, v) with orthonormal
basis Vm+1 is related to a decomposition of the form

AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m, (3.3)
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where Hm is upper-Hessenberg. For a rational Krylov space we have an RAD (2.2)
with an upper-Hessenberg pencil

(
Hm,Km

)
rather than a single upper-Hessenberg

matrix Hm. It has been shown, for example in [16, 46, 48, 33], that decompositions

of the form (3.3) with Hm being semiseparable plus diagonal2 are related to rational
Krylov spaces in the same way as RADs are. Corresponding implicit Q theorems
have been developed. The semiseparable structure can be used to develop (short)
recurrences related to rational Krylov spaces, see for instance [29, 36].

We prefer to work with the pencil
(
Hm,Km

)
instead of the semiseparable plus

diagonal representation since the former is widely used in practice. In fact, this pencil
is a by-product of the rational Krylov method used to construct rational Krylov bases,
and which is stated in Algorithm 3.1. We use the notation

A(ξ) =

{
(I −A/ξ)−1A, if ξ ∈ C∗ \ Λ(A),

A−1, if ξ = 0 and A is nonsingular,

and correspondingly

L(ξ)
m =

{
Km −Hm/ξ, if ξ ∈ C∗,
Hm, otherwise.

We merely remark that the application of A(ξ) in line 3 of Alg. 3.1 corresponds to
the solution of a (large sparse) linear system (if ξ 6=∞) or matrix-vector product (if
ξ =∞). Typically this is the computationally most expensive step per iteration.

The vector qj in Alg. 3.1 is often called continuation combination as it specifies
onto which linear combination of the previously computed basis vectors v1, . . . , vj the

operator A(ξ) is applied to. The choice made in line 7 is due to Ruhe [40] and it
guarantees that the new vector w will be linearly independent of the previous vectors
and hence expand the space, provided that we have not reached the invariance index.
This can be argued as follows.

From Theorem 2.5 we know that for any rational Krylov space (of full dimen-
sion) there exists an orthonormal RAD spanning it. Equation (3.2) shows that the

continuation combination qj , with the operator transformed to A(ξj), indeed expands
the space. Moreover, a continuation combination must have a nonzero direction in
qj in order to expand the space. Otherwise, if the continuation combination is of the

form L
(ξj)

j−1zj−1, then (3.1) with m replaced by j − 1 implies w := A(ξj)VjL
(ξj)

j−1zj−1 =

VjHj−1zj−1 ∈ Qj(A, v , qj−1) and the space is not expanded.

In (2.10) we have given explicit formulas for the orthonormal vectors vj+1, im-
plicitly defined by the starting vector v1 and the poles ξ1, . . . , ξj . Note that the
determinants appearing in the formulas do not change if the pencil

(
Hj ,Kj

)
is right-

multiplied by an upper-triangular nonsingular matrix. We now give a formula for (a

multiple of) the continuation vector qj+1 = q
(ξj+1)

j+1 used in Alg. 3.1.

2
A matrix S is called (upper) semiseparable if all submatrices consisting of elements in the

lower-triangular part of S only are of rank at most 1. Examples of semiseparable matrices are
inverse upper-Hessenberg matrices. The diagonal matrix D in Hm = S + D carries the finite poles
ξj whilst the infinite ones can be replaced by any finite number. The structure of S captures the
difference between finite and infinite poles.
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Algorithm 3.1 Rational Krylov method [37, 39, 40]. RK Toolbox: rat krylov

Input: A ∈ CN×N , v ∈ CN and poles {ξj}mj=1 ⊂ C \ Λ(A) with m < M .
Output: RAD AVm+1Km = Vm+1Hm spanning Qm+1(A, v) with poles {ξj}mj=1.

1. Set v1 := v/‖v‖2, and q1 := [1].
2. for j = 1, . . . ,m do

3. Compute w := A(ξj)Vjqj .
4. Project hj := V ∗j w , and compute hj+1,j := ‖w − Vjhj‖2.
5. Compute vj+1 :=

(
w − Vjhj

)
/hj+1,j orthogonal to v1, . . . , vj .

6. if ξj 6= 0 then Set kj := qj + hj/ξj .

else Set kj := hj , and replace hj := qj . end if

7. For j 6= m set qj+1 := q
(ξj+1)

j+1 , where L
(ξj+1)

j =: Q
(ξj+1)

j+1 Rj is a QR factorization.

8. end for

Theorem 3.3. Let (2.2) be an RAD associated with an A-variant space R(Vm+1),
and let the polynomials pj , qj ∈ Pj be as in (2.10). Define the polynomials

p
[m]
j (z) := qm(z)qj(z)

−1pj(z) ∈ Pm, j = 0, 1, . . . ,m.

Equivalently, p
[m]
j (z) is the determinant of the m×m minor of zKm −Hm resulting

from the removal of the jth row. Then for any ξ ∈ C there holds

q
(ξ)
m+1 6= 0 and

(
q
(ξ)
m+1

)∗
L(ξ)
m = 0∗,

where q
(ξ)
m+1 :=

[
p
[m]
0 (ξ) p

[m]
1 (ξ) . . . p[m]

m (ξ)
]∗
.

Proof. Let ξ ∈ C be an arbitrary scalar. Label the roots of pj(z) as ϑ
[j]
1 , . . . , ϑ

[j]
j ,

for j = 1, . . . ,m, and the roots of qm as ξ1, . . . , ξm, eventual roots at infinity included.

It follows from (2.10) that for all j = 1, . . . ,m and i = 1, . . . , j we have ξj 6= ϑ
[j]
i .

Otherwise we would have vj+1 ∈ Qj(A, v1, qj−1) and Vj+1 would not be of full column

rank. We are ready to prove that q
(ξ)
m+1 6= 0. Assume that q

(ξ)
m+1 = 0. In particular,

the first component of q
(ξ)
m+1 is zero, and thus so is p

[m]
0 (ξ) = 0. Hence ξ ∈ {ξ1, . . . , ξm}.

Since p
[m]
1 (ξ) = 0 and ξ1 6= ϑ

[1]
1 we may further restrict ξ ∈ {ξ2, . . . , ξm}. Looking at

p
[m]
j (ξ) = 0 for the remaining j = 2, . . . ,m we exclude one by one all the ξj and have

ξ ∈ ∅. Hence there is no ξ such that q
(ξ)
m+1 = 0.

Let us now prove that
(
q
(ξ)
m+1

)∗
L(ξ)
m = 0∗. Note thatR(Vm+1) = Qm+1(A, v1, qm)

implies R(qm(A)Vm+1) = Km+1(A, v1), and further, Km+1(A, v1) is A-variant since
R(Vm+1) is. Left-multiplying the RAD (2.2) with qm(A) yields Aqm(A)Vm+1Km =

qm(A)Vm+1Hm. The columns of V̆m+1 := qm(A)Vm+1 satisfy v̆j = p
[m]
j−1(A)v1 and

span theA-variant spaceKm+1(A, v1). The natural isomorphism betweenKm+1(A, v1)
and Pm allows us to write the decomposition in scalar form as

z
[
p
[m]
0 (z) p

[m]
1 (z) . . . p[m]

m (z)
]
Km =

[
p
[m]
0 (z) p

[m]
1 (z) . . . p[m]

m (z)
]
Hm,

for all z ∈ C. If ξ = 0 the result follows by setting z = 0. Otherwise, using z = ξ, and

subtracting
[
p
[m]
0 (ξ) p

[m]
1 (ξ) . . . p[m]

m (ξ)
]
Hm, gives the result for ξ 6= 0.
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Remark 3.4 (Evaluating rational functions). The introduction of polynomials

p
[m]
j is necessary only for the case when qm(ξ) = 0, since then qm(ξ)−1 is infinite.

When qm(ξ) 6= 0, we can replace equivalently the evaluation p
[m]
j (ξ) with the eval-

uation of the rational functions rj(ξ) := qj(ξ)
−1pj(ξ), for all j = 0, . . . ,m. As

r0(ξ) = 1, we see that rj(ξ) = q
(ξ)
j+1,m+1/q

(ξ)
1,m+1, the ratio of the (j + 1)st and

first element of the vector q
(ξ)
m+1. The rational functions rj are such that Vm+1 =[

r0(A)v1 r1(A)v1 . . . rm(A)v1
]
, and Theorem 3.3 can be used to evaluate the

functions rj(z) at arbitrary points z ∈ C.

4. Moving the poles. Let us give a brief resume. For a fixed rational Krylov
space Qm+1 = Qm+1(A, v , qm) the poles are uniquely defined by the starting vector
v and, up to scaling of v , the reverse is true. Further, by Theorem 2.5, there exists an
orthonormal RAD (2.2) spanning Qm+1 with starting vector v and poles qm. Upon
fixing the order of appearance of the poles, Theorem 3.2 guarantees the RAD to be
essentially unique.

Observe that Qm+1 can be interpreted as a rational Krylov space with starting
vector being almost any vector fromQm+1. Indeed, let a nonzero polynomial q̆m ∈ Pm
have roots disjoint from Λ(A), then

Qm+1(A, v , qm) = Qm+1(A, q̆m(A)qm(A)−1v , q̆m). (4.1)

We are now interested in transforming an RAD (2.2) for Qm+1(A, v , qm) into one for

Qm+1(A, q̆m(A)qm(A)−1v , q̆m). For the moment this is only of theoretical importance,
however, in subsection 4.3 we show a connection with implicit filtering and provide
references to the literature. Further, an application of the ideas developed here to
rational approximation is given in section 5.

To get an RAD for Qm+1(A, q̆m(A)qm(A)−1v , q̆m) one can focus on either the
“new starting vector” or the “new poles”. The result is essentially the same and both
the starting vector and poles change. We first look at the case when the new starting
vector is given as v̆ = Vm+1c, for a nonzero c ∈ Cm+1, and later we focus on the case
when the new poles q̆m are prescribed.

4.1. Moving the poles implicitly. Let v̆ = Vm+1c ∈ Qm+1(A, v , qm) be a
nonzero vector and take any nonsingular matrix P of size m+ 1 such that Pe1 = c.
Then

AV̆m+1K̆m = V̆m+1H̆m, (4.2)

where V̆m+1 = Vm+1P , H̆m = P−1Hm, and K̆m = P−1Km. This construction

guarantees the first column v̆1 of V̆m+1 to be v̆ , however, the pencil
(
H̆m, K̆m

)
may

loose the upper-Hessenberg structure. In the following we aim at recovering this
structure in (4.2) without affecting v̆1. For that purpose we generalize the notion

of RADs by first giving a technical definition. For a matrix Xm ∈ C(m+1)×m the
notation X−m is used to denote its lower m×m submatrix.

Definition 4.1. Let {K̆m, H̆m} ⊂ C(m+1)×m be matrices. We say that the

pencil
(
H̆m, K̆m

)
is regular if the lower m×m subpencil

(
H̆−m, K̆−m

)
is regular, i.e.,

q̆m(z) = det
(
zK̆−m − H̆−m

)
is not identically equal to zero.

Note that an upper-Hessenberg pencil of size (m + 1) × m is unreduced if and
only if it is regular. We are now ready to introduce decompositions of the form (4.2).
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Algorithm 4.1 Implicit pole placement. RK Toolbox: move poles impl

Input: Generalized RAD AVm+1Km = Vm+1Hm and unit 2-norm e1 6= c ∈ Cm+1.
Output: Generalized RAD (4.2) spanning R(Vm+1) with v̆1 = Vm+1c.

1. Define P := Im+1 − 2uu∗, where u := (c − e1)/‖c − e1‖2.
2. Find unitary Q = blkdiag(1, Qm) and Z, of order m+ 1 and m respectively, such

that Q∗PHmZ and Q∗PKmZ are both upper-Hessenberg.

3. Define V̆m+1 := Vm+1PQ, H̆m := Q∗PHmZ and K̆m := Q∗PKmZ.

Definition 4.2. A relation of the form (4.2) where V̆m+1 is of full column rank

and
(
H̆m, K̆m

)
is regular is called a generalized rational Krylov decomposition. The

generalized eigenvalues of
(
H̆−m, K̆−m

)
are called poles of the decomposition. If the

poles of (4.2) are outside the spectrum Λ(A), then (4.2) is called a rational Krylov
decomposition (RKD).

The notion of (orthonormal) basis, space and equivalent decompositions are the
same as for RADs. We call a generalized RKD with an upper-Hessenberg pencil a
generalized RAD. The two definitions above let us speculate that the unique poles
associated with v̆ are the eigenvalues of

(
H̆−m, K̆−m

)
. The justification follows from

Theorem 2.5 (or Theorem 3.2) and the following result.
Theorem 4.3. Any generalized RKD is equivalent to a generalized RAD with

the same starting vector.
Proof. Let (4.2) be a generalized RKD. We need to bring both H̆m and K̆m into

upper-Hessenberg form. To achieve this it suffices to bring
(
H̆−m, K̆−m

)
into general-

ized Schur form. The existence of unitary Qm, Zm ∈ Cm×m such that Q∗mH̆−mZm and

Q∗mK̆−mZm are both upper-triangular follows from [19, Theorem 7.7.1]. Multiplying

AV̆m+1H̆m = V̆m+1K̆m from the right with Zm and “inserting” Im+1 = Qm+1Q
∗
m+1,

where Qm+1 = blkdiag(1, Qm), we obtain the generalized RAD

A
(
V̆m+1Qm+1

)︸ ︷︷ ︸
Vm+1

Q∗m+1K̆mZm︸ ︷︷ ︸
Km

=
(
V̆m+1Qm+1

)︸ ︷︷ ︸
Vm+1

Q∗m+1H̆mZm︸ ︷︷ ︸
Hm

.

Note that R(V̆m+1) = R(Vm+1) with the poles of
(
H̆m, K̆m

)
and

(
Hm,Km

)
being

identical. The first vector v̆1 = v1 is unaffected.
This discussion is summarized in Algorithm 4.1, used to replace the starting vector

v with v̆ = Vm+1c. Note that there is no guarantee that by transforming an RAD the
resulting decomposition is also an RAD, i.e., some poles may be moved to eigenvalues
of A. We prove later (cf. Theorem 4.4) that if v̆ = Vm+1c = pm(A)qm(A)−1v then
the poles of the decomposition are always the roots of pm, even if they coincide with
eigenvalues of A.

4.2. Moving the poles explicitly. If the vector v̆ is not given as a linear com-
bination v̆ = Vm+1c of the basis vectors Vm+1 but rather by specifying the new poles

q̆m one can compute c = V ∗m+1v̆ , where v̆ = q̆m(A)qm(A)−1v , and still use Alg. 4.1

to recover the new decomposition. The vector v̆ = q̆m(A)qm(A)−1v can be computed
cheaply as a rational Arnoldi approximation v̆ = Vm+1q̆m(Am+1)qm(Am+1)−1V ∗m+1v ,
where Am+1 := V ∗m+1AVm+1, see for instance [27]. In the following we present an ap-
proach that works directly with the pencil

(
Hm,Km

)
, changing the poles iteratively
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one by one, and thence requires no information about the reduced matrix Am+1.
Moving the first pole. The poles are the ratios of the subdiagonal elements of(

Hm,Km

)
. Applying a Givens rotation G acting on planes (1, 2) from the left of the

pencil does not destroy the upper-Hessenberg structure and, as we show, can move
the first pole anywhere. We now derive the formulas for s = eiφ sinϑ and c = cosϑ
satisfying c2 + |s|2 = 1 and such that the Givens rotation

G = blkdiag

([
c −s
s c

]
, Im−1

)
replaces the pole ξ1 with ξ̆1 when applied to the pencil from the left. Define H̆m =

GHm and K̆m = GKm. This gives

h̆11 = ch11 − sh21, k̆11 = ck11 − sk21,
h̆21 = sh11 + ch21, k̆21 = sk11 + ck21.

(4.3)

Additionally, G is chosen so that ξ̆1 = h̆21/k̆21. Using the notation t = s/c, we derive

t =

{
−k21/k11, ξ̆1 =∞,(
ξ̆1k21 − h21

)
/
(
h11 − ξ̆1k11

)
, ξ̆1 6=∞.

Using standard trigonometric relations we arrive at

s =
t√

1 + |t|2
, c =

1√
1 + |t|2

if t 6=∞, and otherwise, s = 1 and c = 0.
Formula (4.1) asserts (with the roots of q̆m being ξ̆1, ξ2, . . . , ξm) that this process

replaces the starting vector v1 with a multiple of
(
A− ξ̆1I

)(
A− ξ1I

)−1
v1, where for

notational convenience only we assume both ξ1 and ξ̆1 to be finite. Let us verify that.
Define V̆n+1 = Vn+1G

∗. In particular,

v̆1 = cv1 − sv2. (4.4)

Recall that (2.6) reads
(
h21I − k21A

)
v2 =

(
k11A−h11I

)
v1. Hence, using the relation

(2.6) within (4.4) together with (4.3) provides(
h21I − k21A

)
v̆1 =

[
c
(
h21I − k21A

)
− s
(
k11A− h11I

)]
v1 =

(
h̆21I − k̆21A

)
v1. (4.5)

Note that (2.6) holds even if h21/k21 = ξ1 ∈ Λ(A) as long as the generalized RAD

(2.2) exists. As we impose no constraints on ξ̆1, we conclude that (4.5) holds even if

ξ̆1 ∈ Λ(A) and/or ξ1 ∈ Λ(A). If however ξ1 /∈ Λ(A) we can further write

v̆1 =
(
h̆21I − k̆21A

)(
h21I − k21A

)−1
v1.

Moving all poles. Changing the other ratios with Givens rotations results in
the loss of the upper-Hessenberg structure. However, the poles are the eigenvalues of
the pencil

(
H−m,K−m

)
which is (already) in generalized Schur form. After changing

the first pole, using the Givens rotation approach just described, the poles can be
reordered (see for instance [31, 32]) with the aim of bringing an unchanged pole to
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Algorithm 4.2 Explicit pole placement. RK Toolbox: move poles expl

Input: Generalized RAD AVm+1Km = Vm+1Hm and ξ̆ = {ξ̆j}kj=1 ⊂ C, 1 ≤ k ≤ m.

Output: Generalized RAD (4.2) spanning R(Vm+1) and having poles ξ̆∪{ξj}mj=k+1.

1. Set V̆m+1 := Vm+1, H̆m := Hm, and K̆m := Km.
2. Label ξj := hj+1,j/kj+1,j for j = 1, . . . , k.
3. for j = 1, . . . , k do
4. Find Givens rotation G to replace the pole ξj with ξ̆` where ` = k − j + 1.

5. Update V̆m+1 := V̆m+1G
∗, H̆m := GH̆m, and K̆m := GK̆m.

6. Find unitary Qm+1 = blkdiag(1, Q`, Im−`) and Zm = blkdiag(Z`, Im−`), to
circularly shift the ` poles from position (2, 1) to position (`+1, `) for one place

forward so that ξ̆` gets pushed back to position (`+ 1, `).
7. Update V̆m+1 := V̆m+1Qm+1, H̆m := Q∗m+1H̆mZm, and K̆m := Q∗m+1K̆mZm.
8. end for
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(a) Applying the first Givens rotation to replace ξ1 = ¬/À with ξ̆2 = ·/Ë.
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(b) Reordering the generalized Schur form of the lower 5× 5 part.
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(c) Applying the second Givens rotation to replace ξ2 = ­/Á with ξ̆1 = ¶/Ê.
×××××
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(d) Reordering the generalized Schur form of size 4.

Fig. 4.1: Looking at the 6× 5 upper-Hessenberg pencil while Algorithm 4.2 is applied on the
corresponding RAD with k = 2. The original poles are the ratios ¬/À,. . . , °/Ä. The first
two poles are replaced with ·/Ë and ¶/Ê. The transition from × to ⊗ symbolizes that the
element potentially changes.
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the front of the decomposition so that it can be changed using a Givens rotation. This
process is formalized in Algorithm 4.2 and an illustration is presented in Figure 4.1.

Let us now consider Alg. 4.2 when k = m. For notational convenience only, we
assume the poles to be finite. As we have shown in (4.5), after applying the first

Givens rotation the starting vector v1 gets replaced with v
[1]
1 satisfying(

A− ξ1I
)
v
[1]
1 = γ1

(
A− ξ̆mI

)
v1, (4.6)

where 0 6= γ1 ∈ C is a scaling factor. By reordering the poles we do not affect

the “new starting vector” v
[1]
1 and bring ξ2 to the leading positions, i.e., second

row, first column, where the next Givens rotation acts. Thus, for j = 2 the Givens

rotation replaces v
[1]
1 with v

[2]
1 satisfying

(
A− ξ2I

)
v
[2]
1 = γ2

(
A− ξ̆m−1I

)
v
[1]
1 , for some

0 6= γ2 ∈ C. Using (4.6) we obtain(
A− ξ1I

)(
A− ξ2I

)
v
[2]
1 = γ1γ2

(
A− ξ̆m−1I

)(
A− ξ̆mI

)
v1.

Reasoning inductively we deduce

qm(A)v̆1 = γq̆m(A)v1, (4.7)

where 0 6= γ ∈ C is a scalar, v̆1 = v
[m]
1 , qm is given by (2.4), and q̆m is defined in an

analogous manner. The above discussion is the gist of the following result.
Theorem 4.4. Let Qm+1 = Qm+1(A, v , qm) be A-variant. If the generalized

RKD AV̆m+1K̆m = V̆m+1H̆m with poles q̆m spans Qm+1 then v̆1 = γq̆m(A)qm(A)−1v

with a scalar 0 6= γ ∈ C. Alternatively, if v̆1 = q̆m(A)qm(A)−1v then there exists a
generalized RKD AV̆m+1K̆m = V̆m+1H̆m with poles q̆m spanning Qm+1.

Proof. If AV̆m+1K̆m = V̆m+1H̆m spans Qm+1 we can transform it into an equiva-
lent generalized RAD (cf. Theorem 4.3) and then, using Alg. 4.2, into AVm+1Km =
Vm+1Hm, having poles qm and still spanning Qm+1. According to Lemma 2.1, v1
is collinear with v . Therefore, it follows from (4.7) that v̆1 = γq̆m(A)qm(A)−1v for
some scalar 0 6= γ ∈ C. The other direction follows from Theorem 2.5 and (4.7) after
using Alg. 4.2.

Theorem 4.4 shows that Alg. 4.1 and Alg. 4.2 are equivalent, provided that equiv-
alent input data are given. It also shows, together with Theorem 2.5 and Theorem 4.3,
that an (m+1)-dimensional space Vm+1 is a rational Krylov space if and only if there
exist a generalized RKD spanning Vm+1.

Remark 4.5 (Recovering the polynomial Krylov space). With q̆m(z) = 1, there
holds Qm+1(A, v , qm) = Qm+1(A, qm(A)−1v , q̆m) = Km+1(A, qm(A)−1v), and we can

recover a polynomial Arnoldi decomposition for Km+1(A, qm(A)−1v) from an RAD

for Qm+1(A, v , qm) using Alg. 4.2 with all poles ξ̆j set to infinity. In this particular
case, a simpler method is to bring the pencil

(
Hm,Km

)
from upper-Hessenberg–upper-

Hessenberg to upper-Hessenberg–upper-triangular form using just Givens rotations;
see, e.g., [42, p. 495]. Bringing the pencil to upper-triangular–upper-Hessenberg form
would move all the poles to zero.

4.3. Implicit filters in the rational Krylov method. Implicit filtering aims
at compressing the space Qm+1(A, v1, qm) into Qm+1−k(A, pk(A)qk(A)−1v1, q̆m−k),
where 1 ≤ k ≤ m, qm = qk · q̆m−k, and pk ∈ Pk is a polynomial with roots (infinity
allowed) in the region we want to filter out. In applications this technique is usually
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used to deal with large memory requirements or orthogonalization costs for Vm+1, or
to purge unwanted or spurious eigenvalues (see, e.g., [5, 8, 9] and the references given
therein). Implicit filtering for RADs was first introduced in [9] and further studied in
[8]. Alg. 4.2 can easily be used for implicit filtering. In fact, applying Alg. 4.2 with

the k poles ξ̆j being the roots of pk implicitly applies the filter pk(A)qk(A)−1 to the

RAD. The k “new” poles correspond to the rightmost k columns in V̆m+1, K̆m and

H̆m, cf. Figure 4.1. Hence, truncating the decomposition to the leading m + 1 − k
columns completes the process. The derivation and algorithms in [8, 9] are different,
and it would perhaps be interesting to compare them. This is, however, not done
here. Pertinent ideas for polynomial Krylov methods have recently appeared in [5]
where the authors relate implicit filtering in the Krylov–Schur algorithm [43, 45] with
partial eigenvalue assignment.

As an alternative to Alg. 3.1 for a Hermitian matrix A, it was proposed in [34] to
use the spectral transformation Lanczos method with change of (the repeated) pole.
The approach for changing poles taken here is different and more general.

5. An application to rational least squares approximation. Given matri-
ces {A,F} ⊂ CN×N and a unit 2-norm vector v ∈ CN , we consider in this section the
following rational least squares problem: find a rational function Rm of type (m,m),
with m < M , such that

‖Fv −Rm(A)v‖2 → min . (5.1)

This is a nonlinear approximation problem as the denominator of Rm is unknown.
Hence an iterative algorithm is required.

Let qm ∈ Pm with no roots in Λ(A) be a given polynomial and consider the
linear space of rational functions of type (m,m) with denominator qm, denoted by
Pm/qm. Each element Rm ∈ Pm/qm is in a one-to-one correspondence with an
element Rm(A)v of Qm+1(A, v , qm). Instead of (5.1) we now consider a linear ap-
proximation problem: find a unit 2-norm vector v̆ ∈ Qm+1 = Qm+1(A, v , qm) as

v̆ = argmin
y∈Qm+1

‖y‖2=1

min
Rm∈Pm/qm

‖Fy −Rm(A)v‖2. (5.2)

This means that F v̆ is best approximated by an element of Qm+1(A, v , qm). Problem

(5.2) is easy to solve. Let Vm+1 ∈ CN×(m+1) be an orthonormal basis of Qm+1 and

write y = Vm+1c with c ∈ Cm+1 and ‖c‖2 = 1. Then the inner minimum in (5.2) is a
linear least squares problem whose solution Rm(A)v is given by orthogonal projection
of Fy onto Qm+1, i.e., Rm(A)v = Vm+1V

∗
m+1Fy minimizes ‖Fy − Rm(A)v‖2 for a

fixed vector y . Hence (5.2) reduces to

v̆ = argmin
y=Vm+1c
‖c‖2=1

‖(I − Vm+1V
∗
m+1)Fy‖2.

A minimizing coefficient vector c = V ∗m+1y can be obtained as a right singular vector
of (I − Vm+1V

∗
m+1)FVm+1 corresponding to a smallest singular value σmin. We now

exploit that by Theorem 4.4 we can associate with v̆ a “new” rational Krylov space
Qm+1(A, v̆ , q̆m) = Qm+1(A, v , qm), where the roots of q̆m, the “new” poles, can be
computed from c using Alg. 4.1. The vector–pole pair (v̆ , q̆m) is optimal in the sense
that ‖F v̆ − R̆m(A)v̆‖2 is minimal (and equal to σmin) among all R̆m ∈ Pm/q̆m, and
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Algorithm 5.1 Rational Krylov fitting (RKFIT). RK Toolbox: rkfit

Input: {A,F} ⊂ CN×N , v ∈ CN and poles {ξj}mj=1 ⊂ C \ Λ(A) with m < M .

Output: Poles ξ1, ξ2, . . . , ξm and coefficient vector c ∈ Cm+1.

1. repeat
2. Compute RAD AVm+1Km = Vm+1Hm with v1 = v/‖v‖2 and poles {ξj}mj=1.

3. Compute a right singular vector c ∈ Cm+1 of (FVm+1 − Vm+1V
∗
m+1FVm+1)

corresponding to a smallest singular value σmin.
4. Form AV̆m+1H̆m = V̆m+1K̆m spanning R(Vm+1) with v̆1 = Vm+1c, cf. Alg. 4.1.

5. Obtain new poles ξ1, ξ2, . . . , ξm as the poles of (H̆m, K̆m).
6. until σmin is small enough or a maximal iteration count is exceeded.
7. Compute RAD AVm+1Km = Vm+1Hm with v1 = v/‖v‖2 and poles {ξj}mj=1.

8. Compute c = V ∗m+1Fv .

there is no better vector–pole pair associated with Qm+1(A, v , qm). Replacing v̆ back
to v , we hope that the new rational Krylov space Qm+1(A, v , q̆m) contains a better
approximation to Fv than Qm+1(A, v , qm). In this case we have found an improved
denominator q̆m for the rational function Rm in (5.1).

The procedure described is iterated, computing a new rational Krylov space at
each iteration and changing the poles by modifying the starting vector. The complete
procedure is given in Algorithm 5.1 under the name RKFIT, which stands for Rational
Krylov Fitting. A MATLAB implementation of RKFIT is available in [2].

Discussion. In this and the following subsections we briefly discuss Alg. 5.1 in
a list of comments and some numerical experiments. A more detailed analysis will be
given in a separate publication [3].

1. IfA = diag(λj) and F = diag(ϕj) are diagonal matrices, and v = [v1, . . . , vN ]T ,
then (5.1) corresponds to a rational weighted least squares problem

‖Fv −Rm(A)v‖22 =

N∑
j=1

|vj |2 · |ϕj −Rm(λj)|2 → min .

Nonlinear rational optimization problems of this type are nonconvex and hence no
numerical solution method can come with a guarantee to find a global minimum. In
fact, the existence of a minimum is not even guaranteed, but this has not prevented
the development of solution methods for these practically important problems. One
popular approach is known as vector fitting [25, 23], which similarly to Alg. 5.1 is
based on the iterative relocation of poles of rational functions. In contrast to Alg. 5.1,
vector fitting uses a partial fraction representation of the rational functions [25].

2. The use of partial fractions as basis functions may result in poorly conditioned
linear algebra problems to be solved, and orthonormal vector fitting [11] tries to over-
come this problem by using instead an expansion of Rm into orthonormal rational
functions; orthonormal with respect to a measure supported on the imaginary axis.
The orthonormal rational functions in [11] are computed by a Gram–Schmidt pro-
cedure applied to partial fractions, which merely transforms an ill-conditioned basis
into an orthonormal basis and still incurs numerical problems of ill-conditioning, see
[24]. If the sampling points λj can be chosen freely, then one way to improve stability
is to choose them based on quadrature rules associated with orthogonal polynomials
(see, e.g., the discussion of quadrature-based vector fitting in [12]).
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3. In the case that A is a normal matrix, RKFIT can be interpreted as an
orthonormal vector fitting algorithm where two rational functions rm and r̆m with
common denominator qm are orthonormal with respect to a discrete inner product
defined as

〈rm, r̆m〉 := (r̆m(A)v)∗(rm(A)v)/‖v‖22.

(See [6, 10] for the theory of orthogonal rational functions and their relation to ra-
tional Krylov spaces.) RKFIT is different from orthonormal vector fitting in that it
uses a discrete inner product defined by a measure not necessarily supported on the
imaginary axis. The orthonormal rational functions are computed by the rational
Krylov method without the need for explicit quadrature. In [7] it is advocated to use
orthogonal rational basis functions with fixed poles for least squares fitting. This leads
to a linear least squares problem but does not resolve the problem of pole relocation.

4. If A has Jordan blocks of size 2 or greater then also derivatives of Rm(z) at
(some of) the eigenvalues of A are fitted. Consider, for example,

A =


λ 1

λ
. . .

. . . 1
λ

 , and Rm(A) =


Rm(λ) R′m(λ) · · · R

(N−1)
m (λ)
(N−1)!

Rm(λ)
. . .

...
. . . R′m(λ)

Rm(λ)

 .

Then each component of Rm(A)v is a weighted sum of derivatives R(j)
m (λ) and one

can use v to choose the weights as required. This generalizes naturally to matrices A
with more than one Jordan block.

5. If F = f(A), each iteration of Alg. 5.1 requires the computation of f(A)Vm+1.
If one is interested in scalar rational approximation problems where A is a diagonal
matrix (see point 1), or a Jordan block matrix (see point 4), then f(A) is easy to
compute. Otherwise rational Krylov techniques can be used to approximate f(A)Vm+1

directly (see, e.g., the review [27]).
6. If A, F , and v are real-valued and the initial poles {ξj}mj=1 appear in complex

conjugate pairs, it is natural to enforce real arithmetic in all operations of Alg. 5.1.
This can be achieved by using the real form of the rational Krylov method [38] instead
of Alg. 3.1, and a generalized real Schur form (see, e.g., [44, § 3.1]) in Step 2 of Alg. 4.1.
Our RKFIT implementation [2] provides a ’real’ option for this purpose.

7. The output vector c ∈ Cm+1 returned by Alg. 5.1 collects the coefficients of
the approximant Rm(A)v in the rational Krylov basis Vm+1, i.e., Rm(A)v = Vm+1c.
Using Theorem 3.3 and Remark 3.4 we find that Rm(z) can be evaluated for any
point z ∈ C by computing a full QR factorization of zKm−Hm and forming an inner

product of c with the last column q
(z)
m+1 of the Q factor scaled by its first entry, i.e.,

Rm(z) =
(q

(z)
m+1)∗c

(q
(z)
m+1)∗e1

.

In the following we discuss three experiments with the aim of providing further
insight and showing the applicability of RKFIT. Accompanying MATLAB scripts
to reproduce these experiments are available as part of [2]. All computations were
performed with MATLAB version R2013a on an Intel Core i5-3570 processor running
Scientific Linux, Release 6.4 (Carbon).
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Fig. 5.1: Least-squares approximation of a rational function F (z) of type (19, 18) using
RKFIT and the vector fitting code VFIT. Left: Relative error ‖F (A)v−Rm(A)v‖2/‖F (A)v‖2
after each iteration of RKFIT (solid red) and VFIT (dashed blue). The two convergence
curves for each method correspond to different choices for the initial poles Ξ1 (circles), Ξ2

(squares), and Ξ3 (triangles), respectively. Right: Plot of |F (z)| over an interval on the
imaginary axis overlaid with the approximants |Rm(z)| obtained after 10 iterations of RKFIT
and VFIT with initial poles Ξ1 (the curves are visually indistinguishable).

5.1. Experiment 1: Fitting an artificial frequency response. We first
consider a diagonal matrix A ∈ CN×N with N = 200 linearly spaced eigenvalues in
the interval [10−5i, 105i]. The matrix F = F (A) is a rational matrix function of type

(19, 18) given in partial fraction form in [25, subsection 4.1], and v = [1, 1, . . . , 1]T .
We compare RKFIT to the vector fitting code VFIT [25, 23] which is available online.3

We consider three different sets of starting poles, namely
• Ξ1: 9 log-spaced poles in [103i, 105i] and their complex conjugates;
• Ξ2: 12 log-spaced poles in [106i, 109i] and their complex conjugates;
• Ξ3: 18 infinite poles (applicable to RKFIT only);

and run 10 iterations of RKFIT and VFIT, respectively.
The numerical results are shown in Figure 5.1. On the left we see the relative

error ‖F (A)v − Rm(A)v‖2/‖F (A)v‖2 after each iteration. We observe that RKFIT
converges within the first 2 iterations for all three sets of initial poles Ξ1, Ξ2, and Ξ3.
VFIT requires 3 iterations starting with Ξ1 and it fails to converge within 10 iterations
when being initialized with the poles Ξ2. In the later case MATLAB warnings about
solves of close-to-singular linear systems seem to indicate that the partial fraction
basis used in VFIT is ill-conditioned. RKFIT, on the other hand, always uses discrete
orthonormal rational bases and performs robustly with respect to changes in the
initial poles. The choice of infinite initial poles Ξ3 is interesting in that it requires no
a-priori knowledge of the pole location (choosing all poles to be infinite is not possible
in the available VFIT code). On the right of Figure 5.1 we show a plot |F (z)| over
an interval on the imaginary axis together with the RKFIT and VFIT approximants
|Rm(z)|. This plot essentially coincides with [25, Figure 1] (it does not exactly coincide
as apparently the figure in that paper has been produced with a smaller number of
sampling points, causing some “spikes” to be missed or reduced).

3
http://www.sintef.no/Projectweb/VECTFIT/Downloads/VFUT3/ as of November 2014.
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Fig. 5.2: Least-squares approximation of the function F (z) = z
1/2

using RKFIT and the
vector fitting code VFIT. Left: This plot shows the relative approximation error ‖F (A)v −
Rm(A)v‖2/‖F (A)v‖2 after each iteration of RKFIT (solid red) and VFIT (dashed blue).
The convergence curves for each method correspond to different choices for the initial poles
Ξ1 (circles), Ξ2 (squares), and Ξ3 (triangles), respectively. Right: This is the plot of |F (z)−
Rm(z)| over an interval on the positive real axis obtained after 10 iterations of RKFIT and
VFIT with initial poles Ξ1. The vertical lines indicate the spectral interval of A.

5.2. Experiment 2: Square root of a symmetric matrix. We consider the

approximation of Fv with the matrix square root F = A1/2, A = tridiag(−1, 2,−1) ∈
R100×100, and v = [1, 0, . . . , 0]T . Again, we test different sets of initial poles, namely

• Ξ1: 16 log-spaced poles in [−108,−10−8];
• Ξ2: 16 linearly spaced poles in [0, 4];
• Ξ3: 16 infinite poles (applicable to RKFIT only).

Note that the initial poles Ξ1 are placed on the branch cut of z1/2, which is a
reasonable initial guess for the poles of Rm. Some of the poles Ξ2 are located very
close to the eigenvalues of A whose spectral interval is approximately [0, 4]. The
convergence of the relative error per iteration of RKFIT and VFIT is shown on the
left of Figure 5.2. In order to use VFIT for this problem we have diagonalized A
and provided the code with weights corresponding to the components of v in the
eigenvector basis of A. All tests converge within at most 9 iterations, with the fastest
convergence achieved by RKFIT with initial guess Ξ1. On the right of Figure 5.2 we

show the error |z1/2 −Rm(z)| over an interval containing the spectrum of A.

5.3. Experiment 3: Exponential of a nonnormal matrix. We consider the
approximation of Fv with the matrix exponential F = exp(A) of a Grcar matrix A
of size N = 100 generated in MATLAB via A = -5*gallery(’grcar’,N,3). The
eigenvalues and 10−6-pseudospectrum of A are shown on the right of Figure 5.3. The
vector is v = [1, 1, . . . , 1]T and we consider different sets of initial poles for RKFIT,

• Ξ1: 16 poles equal to 0;
• Ξ2: 16 poles equal to −10;
• Ξ3: 16 infinite poles.

Note that A is not diagonalizable and therefore VFIT cannot be applied as in the
previous two experiments. On the left of Figure 5.3 we observe excellent convergence
of RKFIT within 2 iterations starting with the initial poles Ξ1 and Ξ3.
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Fig. 5.3: Least-squares approximation of the function F (z) = exp(z) using RKFIT. Left:
This plot shows the relative approximation error ‖F (A)v −Rm(A)v‖2/‖F (A)v‖2 after each
iteration of RKFIT (solid red) for different choices of initial poles Ξ1, Ξ2, and Ξ3, respec-
tively. Right: A plot of |F (z)−Rm(z)| over a region in the complex plane together with the
poles of Rm (green crosses), where Rm is the rational least squares approximant obtained
after 10 iterations of RKFIT with initial poles Ξ1. The eigenvalues of the Grcar matrix and
its 10

−6
-pseudospectrum are also shown.

With the initial poles Ξ2 the error stagnates on a higher level, possibly trapped
nearby a non-global minimum. As is the case with any nonlinear iteration, RKFIT is
not guaranteed to converge to a global minimum (if it even exists). We currently do
not have a good explanation why the initial guess Ξ2 is bad, but we have verified that
ξ = −10 lies in the 10−6-pseudospectrum of A and hence the initial rational Krylov
space may have too large components in just a few eigendirections of A.

6. Summary and future work. We introduced the notion of generalized ratio-
nal Krylov decompositions and studied their connections with rational Krylov spaces.
We generalized the implicit Q theorem to the rational case and have provided some
insight for the continuation combination proposed by Ruhe [40] for building rational
Krylov spaces. Algorithms for transforming generalized RKDs and thereby changing
the poles and starting vector of the associated spaces were presented. These algo-
rithms, in particular Alg. 4.2, can also be employed for implicit restarting in polyno-
mial and rational Krylov decompositions and even eigenvalue assignment, cf. [5]. A
comparison with existing algorithms for the same purpose might be interesting.

We introduced the RKFIT algorithm for rational least squares approximation. A
more detailed analysis of the convergence properties will be subject of future work.
We will extend the MATLAB code in [2] to return the computed rational approxi-
mant in partial fraction form, although this conversion itself may be ill-conditioned in
particular when the poles of the approximant are close to each other and/or far away
from the eigenvalues of A. A further extension of RKFIT will handle “lucky break-
downs” in the case when the rational Krylov space becomes (nearly) A-invariant. It
should be possible to robustify RKFIT as it was done for linearized least squares and
Padé approximation in [21, 20], where close-to-zero singular values lead to a reduction
of the approximation degree. In an upcoming work [3] we demonstrate how RKFIT
can be used to numerically solve some pole optimization problems associated with
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matrix function approximation, similar to those solved analytically in [14, 18, 35].
Following the idea developed in [4], our approach is based on a surrogate diagonal
matrix D having similar spectral properties as A but being much cheaper to invert in
the pre-computation of the poles.
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