
New Algorithms for Computing the Matrix Sine
and Cosine Separately or Simultaneously

Al-Mohy, Awad H. and Higham, Nicholas J. and Relton,
Samuel D.

2015

MIMS EPrint: 2014.31

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

SIAM J. SCI. COMPUT. c© 2015 SIAM. Published by SIAM under the terms
Vol. 37, No. 1, pp. A456–A487 of the Creative Commons 4.0 license

NEW ALGORITHMS FOR COMPUTING THE MATRIX SINE AND
COSINE SEPARATELY OR SIMULTANEOUSLY∗

AWAD H. AL-MOHY†, NICHOLAS J. HIGHAM‡ , AND SAMUEL D. RELTON‡

Abstract. Several existing algorithms for computing the matrix cosine employ polynomial or
rational approximations combined with scaling and use of a double angle formula. Their derivations
are based on forward error bounds. We derive new algorithms for computing the matrix cosine, the
matrix sine, and both simultaneously that are backward stable in exact arithmetic and behave in a
forward stable manner in floating point arithmetic. Our new algorithms employ both Padé approxi-
mants of sinx and new rational approximants to cos x and sinx obtained from Padé approximants to
ex. The amount of scaling and the degree of the approximants are chosen to minimize the computa-
tional cost subject to backward stability in exact arithmetic. Numerical experiments show that the
new algorithms have backward and forward errors that rival or surpass those of existing algorithms
and are particularly favorable for triangular matrices.

Key words. matrix sine, matrix cosine, matrix exponential, matrix function, backward error,
forward error, rational approximation, Padé approximation, MATLAB, double angle formula, triple
angle formula

AMS subject classifications. 65F30, 65F60

DOI. 10.1137/140973979

1. Introduction. In recent years research into the computation of matrix func-
tions has primarily focused on the matrix exponential, the logarithm, and matrix
powers. Also of interest are the matrix sine and cosine, which can be defined for
A ∈ Cn×n by their Maclaurin series

sinA = A− A3

3!
+
A5

5!
− A7

7!
+ · · · ,(1.1)

cosA = I − A2

2!
+
A4

4!
− A6

6!
+ · · · .(1.2)

Their importance stems from their role in second order differential equations. For
example, the second order system

(1.3) y′′(t) +Ay(t) = g(t), y(0) = y0, y′(0) = y′0,

which arises in finite element semidiscretization of the wave equation, has solution

(1.4) y(t) = cos(
√
At)y0 + (

√
A)−1 sin(

√
At)y′0 +

∫ t

0

(
√
A)−1 sin

(√
A(t− s))g(s) ds,

where
√
A denotes any square root of A [13, p. 124], [32]; see also [21, Prob. 4.1] for

the case g(t) = 0. In practical computation a Krylov subspace method can be used

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section June 23,
2014; accepted for publication (in revised form) January 9, 2015; published electronically February
12, 2015. This work was supported by European Research Council Advanced Grant MATFUN
(267526) and Engineering and Physical Sciences Research Council grant EP/I03112X/1.

http://www.siam.org/journals/sisc/37-1/97397.html
†Department of Mathematics, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

(aalmohy@hotmail.com, http://www.maths.manchester.ac.uk/˜almohy).
‡School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/˜higham, samuel.relton@
manchester.ac.uk, http://www.maths.manchester.ac.uk/˜srelton).

A456

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://www.siam.org/journals/sisc/37-1/97397.html
mailto:aalmohy@hotmail.com
http://www.maths.manchester.ac.uk/~almohy
mailto:nick.higham@manchester.ac.uk
http://www.maths.manchester.ac.uk/~higham
mailto:samuel.relton@manchester.ac.uk
mailto:samuel.relton@manchester.ac.uk
http://www.maths.manchester.ac.uk/~srelton

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A457

to produce an approximation to (1.4) in which the same expression occurs with the
potentially large matrix A replaced by a much smaller matrix [14].

More generally, (1.3) arises with a right-hand side of the form g(t, y(t), y′(t))
in a wide variety of applications, and these problems can have highly oscillatory
solutions [36] or be stiff with A having large norm [29]. Further generalizations of (1.3)
whose solutions involve the matrix sine and cosine have a right-hand side f(t, y(t)) +
Bu(t), where u(t) is a control vector and B a matrix [34], possibly with a delayed
linear term Ay(t− τ) for a constant delay τ > 0 [9].

Serbin and Blalock [33] proposed the following algorithm for the matrix cosine,
which has served as a basis for several subsequent algorithms. It employs the double
angle formula cos(2X) = 2 cos2X − I [21, Thm. 12.1].

Algorithm 1.1. Given A ∈ Cn×n this algorithm computes an approximation Y
to cosA.

1 Choose an integer s ≥ 0 such that X = 2−sA has small norm.
2 C0 = r(X), where r(X) approximates cosX .
3 for i = 1: s
4 Ci = 2C2

i−1 − I
5 end
6 Y = Cs

The algorithm has two parameters: the amount of scaling s and the function r,
which is either a truncated Taylor series or a Padé approximant.

Serbin and Blalock do not propose any specific algorithmic parameters. Higham
and Smith [25] develop an algorithm based on the [8/8] Padé approximant with the
scaling parameter s chosen with the aid of a forward error bound. Hargreaves and
Higham [15] derive an algorithm with a variable choice of Padé degree (up to degree
20), again based on forward error bounds. They also give an algorithm that computes
cosA and sinA simultaneously at a lower computational cost than computing the
two functions separately. However they do not give an algorithm to compute sinA
alone because the double angle formula sin(2X) = 2 sinX cosX for the sine involves
the cosine. Indeed, as far as we are aware, no algorithm of the general form in
Algorithm 1.1 has been proposed for computing sinA directly.

Recently Sastre et al. [31] have derived a new algorithm for the cosine that com-
bines Taylor series approximations of degree up to 40 with sharper forward error
bounds derived using ideas similar to those in [1, sect. 4].

In this work we develop three new algorithms for the sine and cosine that are
based on backward error analysis and are backward stable in exact arithmetic. Our
backward error analysis has two advantages over the forward error analyses used in
the derivation of existing algorithms. First, the backward error analysis applies to the
overall algorithm, whereas the forward error analyses bound the forward error of the
function of the scaled matrix only, and the best overall forward error bound contains
a term exponential in the number of double angle steps [21, Thm. 12.5]. Second,
the current forward error-based algorithms actually bound the absolute error of the
function of the scaled matrix rather than the relative error, which is a heuristic choice
based on numerical experiments. With backward error analysis there is no need for
such considerations, as relative backward errors are unequivocally appropriate.

A second key feature of our algorithms is that they exploit triangularity. They op-
tionally reduce the original matrix to Schur form, but particular benefits are obtained
when the original matrix is (real quasi-)triangular.

The algorithm for the matrix cosine follows the outline of Algorithm 1.1 but uses

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A458 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

Padé approximants of the exponential rather than the cosine. The algorithm for the
matrix sine scales by powers of 3 rather than 2, employs Padé approximants to the
sine and the exponential, and uses the triple angle formula to undo the effects of the
scaling. The algorithm for computing the cosine and the sine simultaneously makes
use of a new choice of double angle formula that improves stability.

The outline of the paper is as follows. In section 2 we perform backward error
analysis of the Padé approximants for the sine and cosine and show how certain
limitations can be overcome using alternative rational approximations based on the
matrix exponential. In section 3 we give explicit formulas for the cosine and sine of
2 × 2 (real quasi-)triangular matrices, which are used in the algorithms for better
accuracy. In sections 4–6 we design cost-effective methods for computing the matrix
cosine and sine (separately and simultaneously) using the double and triple angle
formulas. We then compare our algorithms numerically against existing alternatives
in section 7 and give some concluding remarks in section 8.

2. Backward error analysis for the sine and cosine. We begin by ana-
lyzing the backward error of Padé approximants to the matrix sine and cosine. We
find that the backward error analysis restricts the range of applicability of the Padé
approximants—so much so for the cosine as to make the approximants unusable. We
therefore propose and analyze an alternative method of approximation based on Padé
approximants to the exponential.

2.1. Padé approximants of matrix sine. Let rm(x) = pm(x)/qm(x) denote
the [m/m] Padé approximant to the sine function. Since the sine function is odd the
Padé table splits into 2× 2 blocks containing identical entries having odd numerator
pm and even denominator qm [5, p. 65]. From this we can show that for k ≥ 2 the
number of matrix multiplications required to form r2k is equal to that for forming
r2k+1, and hence we need only consider diagonal Padé approximants of odd order
after r1 and r2. For a similar discussion on the Padé table of the cosine see [28] and
[35, p. 245].

We begin our analysis by defining h2m+1 : C→ C as

(2.1) h2m+1(x) := arcsin rm(x)− x,

where arcsinx denotes the principal arc sine, that is, the one for which arcsinx ∈
[−π/2, π/2] for x on the interval [−1, 1]. For x ∈ C with |x| ≤ 1 we have sin arcsinx =
x. It follows that for X ∈ Cn×n with ρ(rm(X)) ≤ 1, where ρ denotes the spectral
radius, arcsin rm(X) is defined and, from (2.1),

(2.2) rm(X) = sin(X + h2m+1(X)) =: sin(X +ΔX).

This means that ΔX = h2m+1(X) represents the backward error of approximating
sinX by the [m/m] Padé approximant, assuming that ρ(rm(X)) ≤ 1.

Figure 1 shows the order stars for the Padé approximants rm, that is, the regions
of the complex plane where |rm(x)| ≤ 1 for a range of m [6], [27]. For a given value of
m, if all the eigenvalues of X lie within this region then our backward error analysis
holds. Since the regions are not circular it is difficult to check this criterion in practice,
but we found numerically that for m = 1: 13 the largest circular disk centered at the
origin that lies within all the regions has radius approximately arcsinh 1 ≈ 0.881.
Therefore it is sufficient to check that ρ(X) ≤ arcsinh 1 for our analysis to hold.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A459

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
m = 1

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5
m = 3

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5
m = 5

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5
m = 7

Fig. 1. The boundary of the region within which |rm(x)| ≤ 1, where rm(x) is the [m/m] Padé
approximant to the sine function, for m = 1, 3, 5, 7.

Since rm(x) = sinx+O(x2m+1) we have h2m+1(x) = arcsin rm(x)−x = O(x2m+1),
and because arcsin and sin are odd functions we can write

(2.3) h2m+1(X) = X

∞∑
k=0

cm,kX
2(m+k)

for some coefficients cm,k. Taking the norm of this equation, using [1, Thm. 4.2(b)],
and recalling that ΔX = h2m+1(X), we can bound the normwise relative backward
error by

(2.4)
‖ΔX‖
‖X‖ ≤

∞∑
k=0

|cm,k|αp(X)2(m+k),

where

(2.5) αp(X) = max
(‖X2p‖1/(2p), ‖X2p+2‖1/(2p+2)

)
and the integer p ≥ 1 is such that m ≥ p(p − 1). Note that we have ρ(X) ≤
αp(X) ≤ ‖X‖ and αp(X) can be much smaller than ‖X‖ for nonnormal X , so the
gains from working with (2.4) instead of the corresponding bound expressed solely in
terms of ‖X‖ can be significant. It is easy to show that α3(X) ≤ α2(X) ≤ α1(X) and
α4(X) ≤ α2(X), but the relationship between α3(X), α4(X), and α5(X) depends on
X , so we need to compute or estimate all of the latter three quantities and use the
smallest, subject to the constraint m ≥ p(p− 1).

To ensure maximum accuracy we would like to bound the backward error (2.4)
by the unit roundoff u = 2−53 ≈ 1.1× 10−16 in IEEE double precision arithmetic. If
we define

(2.6) βm = max

{
β :

∞∑
k=0

|cm,k|β2(m+k) ≤ u
}
,

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A460 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

−2 0 2
−1.5

−1

−0.5

0

0.5

1

1.5
m = 2

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5
m = 4

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5
m = 6

−10 0 10
−1.5

−1

−0.5

0

0.5

1

1.5
m = 8

Fig. 2. Boundary of the region within which |rm(x)| ≤ 1, where rm(x) is the [m/m] Padé
approximant to the cosine function.

then αp(X) ≤ βm ≤ arcsinh 1 implies that ‖ΔX‖/‖X‖ ≤ u for m ≤ 13. In the second
row of Table 2 we show the values βm calculated using variable precision arithmetic in
the Symbolic Math Toolbox for several values of m. We have βm > arcsinh 1 ≈ 0.881
for m ≥ 9, but our backward error bounds require that ρ(X) ≤ arcsinh 1. This means
that for β7 < αp(X) ≤ arcsinh1 we can use m = 9, but for arcsinh 1 < αp(X) ≤ β9
our backward error results are not applicable, so we artificially reduce β9 to 0.881.
From this point on we will not consider m > 9.

2.2. Padé approximants of matrix cosine. For the matrix cosine we can
attempt a similar analysis. Let rm(x) be the [m/m] Padé approximant to the cosine
and define h2m(x) = arccos rm(x)− x, where arccos denotes the principal arc cosine,
which maps [−1, 1] to [0, π]. Analogously to the argument in the previous section, in
order to obtain a backward error relation we need |x| ≤ 1.

Figure 2 shows the order stars of rm for a range of m. Requiring the eigenvalues
of X to lie inside the order stars imposes tight restrictions on them. Even more
prohibitively, the eigenvalues must also lie in the strip of the right half-plane with real
part between 0 and π, so that the principal branch of arccos gives arccos cosx = x.

As we are not aware of any satisfactory way to overcome these restrictions we will
use an alternative rational approximation whose backward error analysis is applicable
for every set of eigenvalues.

2.3. Exploiting Padé approximants of the exponential. Let the [m/m]
Padé approximant to ex be denoted by rm(x) = pm(x)/qm(x). Al-Mohy and Higham
[1, sect. 3] show that if ρ(e−Xrm(X)− I) < 1 and ρ(X) < min{ |t| : qm(t) = 0 } then
(2.7) rm(X) = eX+h2m+1(X),

where h2m+1(X) := log(e−Xrm(X)), with log the principal logarithm. As shown in
[1, sect. 5], h2m+1 is an odd function, so h2m+1(−X) = −h2m+1(X). Hence

(2.8) rm(−X) = e−(X+h2m+1(X)).

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A461

Furthermore, writing h2m+1(X) =
∑∞

k=m cm,kX
2k+1 one can easily show that

(2.9) h2m+1(iX) = i

∞∑
k=m

(−1)kcm,kX
2k+1 =: iφ(X).

Now [21, eq. (12.2)]

(2.10) cosX =
eiX + e−iX

2
, sinX =

eiX − e−iX

2i
,

which suggests using as approximations the rational functions with real coefficients

(2.11) cm(x) =
rm(ix) + rm(−ix)

2
, sm(x) =

rm(ix)− rm(−ix)
2i

.

From (2.7) and (2.9) we have

cm(X) =
rm(iX) + rm(−iX)

2
=
ei(X+φ(X)) + e−i(X+φ(X))

2
= cos(X + φ(X)),(2.12)

sm(X) =
rm(iX)− rm(−iX)

2i
=
ei(X+φ(X)) − e−i(X+φ(X))

2i
= sin(X + φ(X)),(2.13)

so the two approximations have the same backward error, φ(X). To bound this back-
ward error, for a power series p(x) let p̃(x) be the power series where each coefficient

of p(x) is replaced by its modulus. Then φ̃(x) =
∑∞

k=m |ck,m|x2k+1 and so we have

(2.14)
‖φ(X)‖
‖X‖ ≤ φ̃(‖X‖)

‖X‖ =
h̃2m+1(‖X‖)
‖X‖ ,

since φ̃(x) = h̃2m+1(x). From [1, sect. 3] it follows that ‖φ(X)‖/‖X‖ ≤ u if αp(X) ≤
θm, where the θm are given in Table 1 (reproduced from [20, Table 2.1]) and p is
chosen to minimize αp(X) in (2.5) subject to m ≥ p(p− 1).

For the cosine we will use cm but for the sine we will use a mixture of sm and Padé
approximants to sinx. We now need to devise a strategy for choosing the parameters
s (the amount of scaling) and m (the degree of the Padé approximant). We have
θm ≥ βm for m ≤ 21, as can partially be seen from Tables 1 and 2, which means that
less scaling is required if we approximate sinX by sm than if we approximate sinX
by the Padé approximant rm. On the other hand, the numerator and denominator
polynomials of cm and sm are of higher degree than those of the Padé approximants
of the cosine and sine, so cm and sm will be more expensive to evaluate. In all cases
considered here, sm is a [2m − 1/2m] order rational approximant whereas cm is of
order [2m/2m]. For example

s3(x) =

x+
7x3

60
− x5

600

1 +
x2

20
+

x4

600
+

x6

14400

, c3(x) =

1− 9x2

20
+

11x4

600
− x6

14400

1 +
x2

20
+

x4

600
+

x6

14400

.

In sections 4–6 we explain how to balance the degree of the rational approximant with
the amount of scaling in order to achieve the desired backward error at minimal cost.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A462 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

2.4. Backward error propagation in multiple angle formulas. We have
shown how to achieve a small backward error for the rational approximation of the
sine or cosine of the scaled matrix. We now show that this backward error propagates
linearly through the multiple angle formula phase of the algorithm (lines 3–5 of Al-
gorithm 1.1), resulting in a small overall backward error. We state the result for the
cosine; an analogous result holds for the sine.

Lemma 2.1. Let A ∈ Cn×n and X = η−sA for a positive integer η and non-
negative integer s, and suppose that r(X) = cos(X + ΔX) for a rational func-
tion r. Then the approximation Y from the “scaling and multiple angle” method
satisfies Y = cos(A + ΔA), where ΔA = ηsΔX in exact arithmetic, and hence
‖ΔA‖/‖A‖ = ‖ΔX‖/‖X‖.

Proof. We prove the result for η = 2 (the double angle formula) for simplicity,
though the same argument can be applied for any integer η (and the corresponding
multiple angle formula).

By assumption, the initial approximation to the cosine from the rational approx-
imant is C0 = cos(X +ΔX), where X = 2−sA. Applying the double angle formula s
times gives

C1 = 2C2
0 − I =cos(2X + 2ΔX),

C2 = 2C2
1 − I =cos(4X + 4ΔX),

...

Cs = 2C2
s−1 − I =cos(2sX + 2sΔX).

Therefore we have cosA ≈ Y = Cs = cos(A + ΔA) where ΔA = 2sΔX , and
‖ΔX‖/‖X‖ = ‖2sΔX‖/‖2sX‖ = ‖ΔA‖/‖A‖.

Lemma 2.1 shows that there is no growth in the relative backward error during
the multiple angle phase in exact arithmetic. Hence by choosing the parameters s
and m so that ‖ΔX‖/‖X‖ ≤ u we achieve an overall backward error bounded by u.
This contrasts with the algorithms for the matrix cosine in [15], [21, Alg. 12.6], [31],
which choose r to make ‖r(X)− cosX‖ small, since the overall error ‖r(A) − cosA‖
bears no simple relation to ‖r(X)− cosX‖.

3. Recomputing the cosine and sine of 2× 2 matrices. If we begin with
an initial (real) Schur decomposition of our input matrix A, so that we are working
with upper (quasi-)triangular matrices, then we can obtain higher overall accuracy by
explicitly computing (instead of approximating) the diagonal blocks (including all of
the first superdiagonal) explicitly throughout the algorithm. This idea has been used
to good effect in recent algorithms for the matrix exponential [1], the logarithm [2],
[3], and matrix powers [22], [23].

For 2× 2 triangular matrices T =
[
λ1 t
0 λ2

]
it is known that [21, eq. (4.16)]

(3.1) f(T) =

[
f(λ1) tf [λ1, λ2]
0 f(λ2)

]
,

where f [λ1, λ2] is the divided difference

(3.2) f [λ1, λ2] =

{
(f(λ1)− f(λ2))/(λ1 − λ2) if λ1 	= λ2,

f ′(λ1) if λ1 = λ2.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A463

For the cosine and sine we can avoid subtractive cancellation in the numerator of the
divided difference when λ1 ≈ λ2 by computing

cos[λ1, λ2] = −
[
sin

(
λ1 + λ2

2

)
sin

(
λ1 − λ2

2

)] / (
λ1 − λ2

2

)
,(3.3)

sin[λ1, λ2] =

[
cos

(
λ1 + λ2

2

)]
sin

(
λ1 − λ2

2

) / (
λ1 − λ2

2

)
.(3.4)

These formulas are evaluated to high relative accuracy in floating point arithmetic
when λ1 ≈ λ2 because the function sinx/x is well conditioned for small |x|; moreover,
for λ1 ≈ λ2 the difference λ1 − λ2 is evaluated exactly [19, sec. 2.5].

A 2× 2 block of a real upper quasi-triangular matrix computed by the LAPACK
Schur decomposition code dgees [4] has the form

(3.5) B =

[
a b
c a

]
, bc < 0.

We can use the polynomial definition of a matrix function [21, Def. 1.4] to show that

cosB =

[
cos a cosh θ −θ−1b sina sinh θ

−θ−1c sina sinh θ cos a cosh θ

]
,(3.6)

sinB =

[
sin a cosh θ b cosa sinh θ

θ−1c cos a sinh θ sina cosh θ

]
,(3.7)

where θ = (−bc)1/2. Assuming that accurate implementations of sinh and cosh are
available these formulae will compute the cosine and sine of 2 × 2 matrices to high
componentwise accuracy without any subtractive cancellation.

4. Algorithm for the matrix cosine. We now build an algorithm for the
matrix cosine based upon the rational approximation cm of (2.11) along with the
double angle formula.

The cost of our algorithm will be dominated by the matrix multiplications per-
formed when forming the rational approximant and during the repeated application
of the double angle formula. Each multiplication costs 2n3 flops for full matrices or
n3/3 flops for (quasi-)triangular matrices if a Schur decomposition is used.

We choose the two parameters m, the order of approximation, and s, the num-
ber of scalings, to minimize the number of matrix multiplications while ensuring a
backward error of order u (in exact arithmetic).

First we discuss which values of m need to be considered for the approximant
cm(X). We will consider m = 1: mmax, where mmax is defined as the largest m
for which the denominator of cm(X) has condition number, in the appropriate norm,
smaller than 10 for anyX in the region where αp(X) ≤ θm. The appropriate norm is as
follows: for any ε > 0 there exists a norm ‖·‖ε satisfying ‖X‖ε ≤ ρ(X)+ε ≤ αp(X)+ε,
where we will choose ε = u to be the unit roundoff. This norm is necessary since we
intend to choose the value of m using αp(X), which is potentially much smaller than
‖X‖, and therefore we have no a priori knowledge of how large ‖X‖ will be. In this
norm the corresponding condition number of the denominator qm(X) of cm(X) can

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A464 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

Table 1

The number of matrix multiplications π(cm(X)) required to evaluate cm(X), values of θm,
values of p to be considered, and upper bounds κm for the condition number in the ‖ · ‖ε norm of
the denominator polynomial of cm (and sm) for αp(X) ≤ θm. Values of m for which π(cm(X)) =
π(cm+1(X)) are not shown as they provide no benefit. For m = 21, θ21 is artificially reduced from
13.95 to 13 in order to ensure κ21 ≤ 10.

m 1 2 3 4 6 8
π(cm(X)) 1 2 3 4 5 6

θm 3.6e-8 5.3e-4 1.5e-2 8.5e-2 5.4e-1 1.47
p 1 2 2 2 3 3
κm 1 1 1 1 1.01 1.07

m 10 12 15 18 21
π(cm(X)) 7 8 9 10 11

θm 2.8 4.46 7.34 10.54 13.95 (13)
p 3 3, 4 3, 4 3, 4 3, 4, 5
κm 1.2 1.54 2.53 4.89 7.86

be bounded above (see [1, p. 982]) as

‖qm(X)‖ε‖qm(X)−1‖ε ≤ q̃m(αp(X) + ε)

∞∑
k=0

|ak|(αp(X) + ε)k(4.1)

≤ q̃m(θm + ε)

∞∑
k=0

|ak|(θm + ε)k =: κm,(4.2)

where
∑∞

k=0 akx
k is the Taylor series of qm(x)−1 and q̃m is the same polynomial as

qm with all coefficients replaced by their absolute values.
Using 250 digit arithmetic and calculating the first 350 terms of the Taylor series

in the bound (4.2), we found that for the matrix cosine this means consideringmmax =
21, where θ21 is reduced from 13.95, which has corresponding condition number 10.75,
to 13 with condition number 7.86 for additional stability. Note that this part of our
analysis also applies to the matrix sine since cm and sm share the same denominator
polynomial.

This condition ensures that solving the multiple right-hand side system to form
the rational approximant does not introduce significant errors into the computation—
at least as long as ‖·‖ε is not too badly scaled. The upper bounds κm on the condition
number for each m of interest are shown in Table 1.

Now that we have a range of m to consider, we must find those values for which
cm can be formed in the smallest number of matrix multiplications. There are many
ways to evaluate the rational approximants: in the appendix we show that applying
the Paterson–Stockmeyer scheme [21, pp. 73–74], [30] is more efficient than explicit
computation of the necessary powers. Evaluating the numerator and denominator
polynomials using the Paterson–Stockmeyer scheme as described in the appendix we
see that, for example, c7(X) and c8(X) can both be formed using a minimum of six
matrix multiplications. Since c8(X) can be applied to X with a larger value of αp(X)
it renders c7(X) redundant.

Table 1 contains the relevant values ofm and θm along with the number of matrix
multiplications required to form cm(X). It also shows the values of p that we need to
consider in order to minimize αp(X) in (2.5) for each m.

Finally, we consider the choice of the parameters s (where X = 2−sA) and m.
It may sometimes be cheaper to perform a stronger scaling on A and use a lower
order approximant. In particular, each invocation of the double angle formula costs

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A465

one matrix multiplication and therefore it is worth increasing s by q if more than q
multiplications can be saved when evaluating the rational approximant. (Note that
this logic applies equally well to full matrices and triangular matrices.) From Table 1
we see that there are a number of places where such an increase in s is desirable. For
example when θ10 < α3(X) ≤ 2θ8 we can perform one extra scaling and use c8(X)
instead of c12(X), saving one multiplication.

We also point out that computing αp(X) can sometimes require more powers
of X than the rational approximant. For instance when m = 2 we need α2(X) =
min(‖X4‖1/4, ‖X6‖1/6), but forming c2(X) requires only X4 (we use explicit powers
form ≤ 4, which have the same cost as the Paterson–Stockmeyer scheme: see Table 4).
However, we will use the 1-norm, for which we can estimate the norm of X� for any
integer � > 0, without calculating the matrix power explicitly, using the block 1-norm
estimator of Higham and Tisseur [26]. A further optimization is that after eliminating
m = 1 as a possibility, for example, all higher order approximants cm(X) require X4

so we can compute and store X4 and hence use ‖X4‖1/41 rather than an estimate of it
in the logical tests. A similar optimization can be performed after eliminating m = 2
and m = 6. Taking all these issues into account leads to the following algorithm to
determine the parameters s and m. The many logical tests are the price we pay for
making the most efficient choice of parameters.

Algorithm 4.1. Given A ∈ Cn×n this algorithm determines the parameters s
and m such that the algorithm for approximating cosA based on cm(2−sA) and the
double angle formula produces (in exact arithmetic) a backward error bounded by u.
The algorithm uses the parameters θm given in Table 1.

1 s = 0
2 Compute and store A2.

3 α1(A) = ‖A2‖1/21

4 if α1(A) ≤ θ1, m = 1, quit, end
5 Compute and store A4.

6 d4 = ‖A4‖1/41

7 Estimate d6 = ‖A6‖1/61 .
8 α2(A) = max(d4, d6)
9 if α2(A) ≤ θ2, m = 2, quit, end

10 Compute and store A6.

11 d6 = ‖A6‖1/61 % Compute exact value and update α2.
12 α2(A) = max(d4, d6)
13 if α2(A) ≤ θ3, m = 3, quit, end
14 if α2(A) ≤ θ4, m = 4, quit, end

15 Estimate d8 = ‖A8‖1/81 .
16 α3(A) = max(d6, d8)
17 if α3(A) ≤ θ6, m = 6, quit, end
18 Compute and store A8.

19 d8 = ‖A8‖1/81 % Compute exact value and update α3.
20 α3(A) = max(d6, d8)
21 if α3(A) ≤ θ8, m = 8, quit, end
22 if α3(A) ≤ θ10, m = 10, quit, end
23 if α3(A) ≤ 2θ8, s = 1, m = 8, quit, end

24 Estimate d10 = ‖A10‖1/101 .
25 α4(A) = max(d8, d10)

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A466 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

26 α3/4 = min(α3(A), α4(A))
27 if α3/4(A) ≤ θ12, m = 12, quit, end
28 if α3(A) ≤ 2θ10, s = 1, m = 10, quit, end
29 if α3(A) ≤ 4θ8, s = 2, m = 8, quit, end
30 % Note that s = 0 at this point
31 if α3/4(A) ≤ θ15, m = 15, quit, end
32 if α3/4(A) ≤ 2θ12, s = s+ 1, m = 12, quit, end
33 if α3(A) ≤ 4θ10, s = s+ 2, m = 10, quit, end
34 if α3(A) ≤ 8θ8, s = s+ 3, m = 8, quit, end
35 if α3/4(A) ≤ θ18, m = 18, quit, end
36 if α3/4(A) ≤ 2θ15, s = s+ 1, m = 15, quit, end
37 if α3/4(A) ≤ 4θ12, s = s+ 2, m = 12, quit, end
38 if α3(A) ≤ 8θ10, s = s+ 3, m = 10, quit, end

39 Estimate d12 = ‖A12‖1/121 .
40 α5(A) = max(d10, d12)
41 α3/4/5(A) = min(α3, α4, α5)
42 if α3/4/5(A) ≤ θ21, m = 21, quit, end
43 % A needs to be scaled. After scaling, 6.5 ≈ θ21/2 < α3/4/5(A) ≤ θ21.
44 s =

⌈
log2(α3/4/5(A)/θ21)

⌉
45 α3(A) = α3(A)/2

s

46 α3/4(A) = α3/4(A)/2
s

47 α3/4/5(A) = α3/4/5(A)/2
s

48 Execute lines 31–38.
49 m = 21
We can now present our full algorithm for computing the matrix cosine, which is

backward stable in exact arithmetic. The algorithm is written using an initial Schur
decomposition, but a transformation-free algorithm can be obtained by removing
lines 5, 8, and 10 and replacing line 1 with T = A.

Algorithm 4.2. Given A ∈ Cn×n this algorithm computes C = cosA. The
algorithm is designed for use with IEEE double precision arithmetic.

1 Compute the (real if A ∈ Rn×n) Schur decomposition A = QTQ∗.
2 Obtain s and m from Algorithm 4.1 applied to T .
3 T ← 2−sT and T k ← 2−skT k for any powers T k stored during line 2.
4 Compute C = cm(T): use the Paterson–Stockmeyer scheme to compute the

numerator pm(X) and denominator qm(X) and then solve qm(T)C = pm(T).
5 Recompute the diagonal blocks of C using (3.1), (3.3), (3.6)
6 for j = 1: s
7 C ← 2C2 − I
8 Recompute the diagonal blocks of C = cos(2jT) using (3.1) (3.3), (3.6).
9 end

10 C ← QCQ∗

Cost. (28 + (π + s + 1)/3)n3 flops where π denotes the number of matrix mul-
tiplications needed to form cm(x). The transformation-free version of the algorithm
costs (2(s+ π) + 8/3)n3 flops. Comparing these two we see that it is cheaper to use
the Schur decomposition if π + s ≥ 16. The latter inequality is readily satisfied, for
example if A = 448I, and using the Schur decomposition allows us to carry out the
accurate recomputation of the diagonal blocks.

5. Algorithm for the matrix sine. In this section we design an algorithm to
compute the matrix sine. Whereas for the cosine we used the rational approximations

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A467

Table 2

The number of matrix multiplications π(·) required to evaluate rm(x), values of βm in (2.6),
values of p to be considered, and an upper bound κm for the condition number of the denominator
polynomial of rm for αp(X) ≤ βm. Values of m for which π(rm(X)) = π(rm+1(X)) are not shown
as they provide no benefit. The value of β9 has been artificially reduced from 1.14 to 8.81e-1 as
required by our backward error analysis in section 2.1; this changes the value of κ9.

m 1 3 5 7 9
π(rm(X)) 0 2 3 4 5

βm 2.58e-8 8.93e-3 1.47e-1 5.36e-1 1.14 (8.81e-1)
p 1 2 2 3 3
κm 1 1 1 1.01 1.05 (1.03)

cm(X), for the sine we must consider both sm(X) and the Padé approximants for
optimal efficiency. Another difference from the cosine case is that we will use the
triple angle formula sin(3X) = 3 sinX − 4 sin3X instead of the double-angle formula
sin(2X) = 2 sinX cosX , as the latter formula requires cosX .

Table 2 shows the number of matrix multiplications required to form the Padé
approximants rm(X), denoted π(rm(X)). The values of π(sm(X)) are π(s1(X)) = 1
and form ≥ 2 we have π(sm(X)) = π(cm(X))+1, where π(cm(X)) is given in Table 1.
The table also contains the values of p that we need to consider and the values βm
such that αp(X) ≤ βm implies that the backward error of the result is bounded by
u in exact arithmetic. The last row of the table shows an upper bound κm on the
condition number of the denominator polynomial of rm(X) for αp(X) ≤ βm, for the
‖ · ‖ε norm defined in the previous section. For sm(X) the values for θm, p, and κm
exactly match those already given for the cosine in Table 1: the values of θm match
due to the relationship to the matrix exponential (see section 2.3), the p match due
to the degree of the approximants, and the κm match as cm and sm have identical
denominator polynomials.

For the Padé approximants rm, the maximum order of approximation considered
is m = 9 in order to ensure the validity of the bounds, as explained in section 2.1. On
the other hand, as for the matrix cosine, we consider up to m = 21 for the alternative
rational approximants sm(X). The use of sm(X) allows larger p within the values
αp(X) used in our backward error bounds and can therefore reduce the amount of
scaling required. For example, suppose A is nilpotent of degree 10 with α3(A)� β9.
Using only Padé approximants we would require a large amount of scaling, but since
A is nilpotent we know that α5(A) = 0, allowing the use of s21(A) with no scaling
required.

We scale X = 3−sA and each application of the triple angle formula requires
two matrix multiplications. Hence it is beneficial to increase s by q if we can save
more than 2q matrix multiplications in forming sm. For example, suppose that θ12 <
min(α3(X), α4(X)) ≤ θ15 but additionally α3(X) ≤ 9β9; then by performing two
extra scalings we can use r9(X) at a cost of 4 + π(r9(X)) = 9 multiplications, as
opposed to π(s15(X)) = 10 multiplications. For each X we choose among the rm and
sm approximants, while considering extra scaling as above, always striving for the
parameters with minimal cost subject to the backward error constraint.

This discussion leads to the following parameter selection algorithm.

Algorithm 5.1. Given A ∈ Cn×n this algorithm determines the scaling param-
eter s and rational approximant ϕ, equal to rm or sm, such that the algorithm for
approximating sinA based on ϕ(3−sA) and the triple angle formula produces (in exact
arithmetic) a backward error bounded by u. The algorithm uses the parameters θm

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A468 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

and βm given in Tables 1 and 2, respectively.

1 s = 0

2 Estimate d2 = ‖A2‖1/21 .
3 α1(A) = d2
4 if α1(A) ≤ β1, ϕ(x) = r1(x), quit, end
5 Compute and store A2.

6 d2 = ‖A2‖1/21 % Compute exact value and update α1.
7 α1(A) = d2
8 if α1(A) ≤ θ1, ϕ(x) = s1(x), quit, end

9 Estimate d4 = ‖A4‖1/41 and d6 = ‖A6‖1/61 .
10 α2(A) = max(d4, d6)
11 if α2(A) ≤ β3, ϕ(x) = r3(x), quit, end
12 Compute and store A4.

13 d4 = ‖A4‖1/41 % Compute exact value and update α2.
14 α2(A) = max(d4, d6)
15 if α2(A) ≤ β5, ϕ(x) = r5(x), quit, end
16 Compute and store A6.

17 d6 = ‖A6‖1/61

18 Estimate d8 = ‖A8‖1/81 .
19 α3(A) = max(d6, d8)
20 if α3(A) ≤ β7, ϕ(x) = r7(x), quit, end
21 if α3(A) ≤ β9, ϕ(x) = r9(x), quit, end
22 if α3(A) ≤ 3β7, s = 1, ϕ(x) = r7(x), quit, end
23 if α3(A) ≤ 3β9, s = 1, ϕ(x) = r9(x), quit, end
24 if α3(A) ≤ θ10, ϕ(x) = s10(x), quit, end
25 if α3(A) ≤ 9β7, s = 2, ϕ(x) = r7(x), quit, end
26 Compute and store A8.

27 d8 = ‖A8‖1/81 % Compute exact value and update α3.
28 α3(A) = max(d6, d8)
29 Compute and store A10.

30 d10 = ‖A10‖1/101

31 α4(A) = max(d8, d10)
32 α3/4 = min(α3(A), α4(A))
33 % Note that s = 0 at this point.
34 if α3/4(A) ≤ θ12, ϕ(x) = s12(x), quit, end
35 if α3(A) ≤ 9β9, s = s+ 2, ϕ(x) = r9(x), quit, end
36 if α3/4(A) ≤ θ15, ϕ(x) = s15(x), quit, end
37 if α3(A) ≤ 3θ10, s = s+ 1, ϕ(x) = s10(x), quit, end
38 if α3/4(A) ≤ θ18, ϕ(x) = s18(x), quit, end
39 if α3/4(A) ≤ 3θ12, s = s+ 1, ϕ(x) = s12(x), quit, end

40 Estimate d12 = ‖A12‖1/121 .
41 α5(A) = max(d10, d12)
42 α3/4/5 = min(α3, α4, α5)
43 if α3/4/5(A) ≤ θ21, ϕ(x) = s21(x), quit, end
44 % A needs to be scaled. After scaling, 4.3 ≈ θ21/3 < α3/4/5(A) ≤ θ21.
45 s =

⌈
log3(α3/4/5(A)/θ21)

⌉
46 α3(A) = α3(A)/3

s

47 α3/4(A) = α3/4(A)/3
s

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A469

Table 3

Number of matrix multiplications πm required to evaluate both cm and sm.

m 1 2 3 4 5 6 8 10 12 14 16 18 21
πm 1 3 4 5 6 7 8 9 10 11 12 13 14

48 α3/4/5(A) = α3/4/5(A)/3
s

49 if α3(A) ≤ 9β7, s = s+ 2, ϕ(x) = r7(x), quit, end
50 Execute lines 34–39.
51 ϕ(x) = s21(x)
We now present our full algorithm for computing the matrix sine. As for the

matrix cosine, the algorithm uses a Schur decomposition. To obtain a transformation-
free algorithm lines 5, 8, and 10 should be removed and line 1 replaced with T = A.

Algorithm 5.2. Given A ∈ C
n×n this algorithm computes S = sinA. The

algorithm is designed for use with IEEE double precision arithmetic.
1 Compute the (real if A ∈ Rn×n) Schur decomposition A = QTQ∗.
2 Obtain s and ϕ(x) from Algorithm 5.1 applied to T .
3 T ← 3−sT and T k ← 3−skT k for any powers of T stored during line 2.
4 Compute S = ϕ(T): use the Paterson–Stockmeyer scheme to compute the

numerator p(X) and denominator q(X) and then solve q(T)S = p(T).
5 Recompute the diagonal blocks of S using (3.1), (3.4), (3.7)
6 for j = 1: s
7 S ← S(3I − 4S2)
8 Recompute the diagonal blocks of S = sin(3jT) using (3.1), (3.4), (3.7).
9 end

10 S ← QSQ∗

Cost. (28 + (π + 2s+ 1)/3)n3 flops, where π denotes the number of matrix mul-
tiplications needed to form ϕ(x). The corresponding transformation-free algorithm
costs (2(π + 2s) + 8/3)n3 flops. Comparing these two costs we see that it is cheaper
to use the Schur decomposition if π + 2s ≥ 16.

6. Algorithm for simultaneous computation of the matrix cosine and
sine. We now design an algorithm to compute the matrix cosine and sine simultane-
ously, a requirement that arises in the evaluation of (1.4), for example. We use the
rational approximants cm(x) and sm(x) introduced in section 2.3, since they have the
same denominator polynomial: this saves a significant amount of computation since
we need only compute one denominator for both approximants and furthermore we
can reuse an LU factorization of the denominator when computing cm(X) and sm(X).

Since we are now computing both the cosine and sine we can use the double angle
formulas for both. However for the cosine there are two such formulas for us to choose
from:

(6.1) cos(2X) = 2 cos2X − I, cos(2X) = I − 2 sin2X.

We have found empirically that using cos(2X) = I− 2 sin2X generally gives more ac-
curate computed results, sometimes significantly so, though a theoretical explanation
for this observation is currently lacking.

In Table 3 we show the number of matrix multiplications πm required to form
both cm(x) and sm(x) using the Paterson–Stockmeyer scheme (see appendix). Since
each invocation of the double angle formulas for the cosine and sine costs two matrix
multiplications in total, it is worth performing q extra scalings if more than 2q matrix

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A470 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

multiplications can be saved in the formation of the rational approximant. This results
in the following parameter selection algorithm.

Algorithm 6.1. Given A ∈ Cn×n this algorithm determines the parameters s
and m such that the algorithm for approximating cosA and sinA based on cm(2−sA)
and sm(2−sA) and the double angle formulas produces (in exact arithmetic) backward
errors bounded by u for both functions. The algorithm uses the parameters θm given
in Table 1.

1 s = 0
2 Compute and store A2.

3 d2 = ‖A2‖1/21

4 α1(A) = d2
5 if α1(A) ≤ θ1, m = 1, quit, end
6 Compute and store A4.

7 d4 = ‖A4‖1/41

8 Estimate d6 = ‖A6‖1/61 .
9 α2(A) = max(d4, d6)

10 if α2(A) ≤ θ2, m = 2, quit, end
11 Compute and store A6.

12 d6 = ‖A6‖1/61 % Compute exact value and update α2.
13 α2(A) = max(d4, d6)
14 if α2(A) ≤ θ3, m = 3, quit, end
15 if α2(A) ≤ θ4, m = 4, quit, end
16 if α2(A) ≤ θ5, m = 5, quit, end

17 Estimate d8 = ‖A8‖1/81 .
18 α3(A) = max(d6, d8)
19 if α3(A) ≤ θ6, m = 6, quit, end
20 Compute and store A8.

21 d8 = ‖A8‖1/81 % Compute exact value and update α3.
22 α3(A) = max(d6, d8)
23 if α3(A) ≤ θ8, m = 8, quit, end
24 Compute and store A10.
25 if α3(A) ≤ θ10, m = 10, quit, end
26 Compute and store A12.

27 d10 = ‖A10‖1/101

28 α4(A) = max(d8, d10)
29 α3/4(A) = min(α3, α4)
30 if α3/4(A) ≤ θ12, m = 12, quit, end
31 if α3/4(A) ≤ θ14, m = 14, quit, end
32 % Note that s = 0 at this point.
33 if α3/4(A) ≤ θ16, m = 16, quit, end
34 if α3/4(A) ≤ 2θ12, s = s+ 1, m = 12, quit, end
35 if α3/4(A) ≤ θ18, m = 18, quit, end
36 if α3/4(A) ≤ 2θ14, s = s+ 1, m = 14, quit, end

37 d12 = ‖A12‖1/121

38 α5(A) = max(d10, d12)
39 α3/4/5(A) = min(α3, α4, α5)
40 if α3/4/5(A) ≤ θ21, m = 21, quit, end
41 % A needs to be scaled. After scaling, 6.5 ≈ θ21/2 ≤ α3/4/5(A) ≤ θ21.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A471

42 s =
⌈
log2(α3/4/5(A)/θ21)

⌉
43 α3/4(A) = α3/4(A)/2

s

44 α3/4/5(A) = α3/4/5(A)/2
s

45 Execute lines 33–36.
46 m = 21

We now state our algorithm for computing the matrix cosine and sine. To obtain
the corresponding transformation-free algorithm lines 7, 11, 13, and 15–16 should be
removed and line 1 replaced by T = A.

Algorithm 6.2. Given A ∈ Cn×n the following algorithm computes both C =
cosA and S = sinA. The common denominator of cm(x) and sm(x) is denoted
by ω(x) so that cm(x) = ĉm(x)/ω(x) and sm(x) = ŝm(x)/ω(x). This algorithm is
designed for use with IEEE double precision arithmetic.

1 Compute the (real if A ∈ Rn×n) Schur decomposition A = QTQ∗.
2 Obtain s and m from Algorithm 6.1 applied to T .
3 T ← 2−sT and T k ← 2−skT k for any powers of T stored during line 2.
4 Compute the shared denominator ωm(X) and the numerators ĉm(X) and
ŝm(X) using the Paterson–Stockmeyer method (see appendix).

5 Compute an LU factorization with partial pivoting LU = ωm(X).
6 Compute S = U−1L−1ŝm(X) and C = U−1L−1ĉm(X) by substitution

using the LU factorization.
7 Recompute the block diagonals of S and C using (3.1)–(3.7).
8 for j = 1: s
9 Sold = S

10 S = 2SC
11 Recompute the block diagonals of S = sin(2jT) using (3.1), (3.4), (3.7).
12 C = I − 2S2

old

13 Recompute the block diagonals of C = cos(2jT) using (3.1), (3.3), (3.6).
14 end
15 S ← QSQ∗

16 C ← QCQ∗

Cost. (95/3 + (π + 2s)/3)n3 flops where π denotes the number of matrix multi-
plications needed to form both approximants. The corresponding transformation-free
algorithm costs (14/3+ 2(π + 2s))n3 flops. Comparing these two costs we see that it
is cheaper to use the Schur decomposition if π + 2s ≥ 17.

For comparison, the cost of calling Algorithms 4.2 and 5.2 separately—but us-
ing only one Schur decomposition—is (31 + (πc + πs + sc + ss + 2)/3)n3 flops, or
(16/3+ 2(πc + πs + sc + ss))n

3 flops if the transformation-free version is used, where
the subscripts c and s denote the values obtained from the cosine and sine algorithms,
respectively. To illustrate the benefit to the overall cost gained by computing the ma-
trix cosine and sine simultaneously consider the matrix A = gallery(’frank’,1000):
we obtain the values πc = 9, πs = 5, sc = 14, ss = 11 when using Algorithms 4.2 and
5.2, and π = 14, s = 14 when using Algorithm 6.2. Therefore the cost of comput-
ing the matrix cosine and sine separately is (220/3)n3 and (316/3)n3 flops (with and
without a Schur decomposition, respectively) as opposed to (137/3)n3 and (266/3)n3

flops when computing both functions simultaneously. For the Schur decomposition
algorithm this is a computational saving of around 38 percent.

7. Numerical experiments. All our experiments are performed in MATLAB
2013b. The test matrices are mainly 15 × 15 matrices adapted from the Matrix
Computation Toolbox [17], the MATLAB gallery function, and the matrix function

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A472 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

literature. We select matrices for which none of the algorithms overflow and multiply
them by a uniform random scalar between 1 and 60 to ensure that some scaling will
occur in the algorithms. Each matrix is then used once in this form and a second
time multiplied by the imaginary unit i in order to test the algorithms for complex
matrices. In total 76 matrices are used. Similar test matrices were used in recent
work on the matrix cosine [15], [21, chap. 12], [31].

Our numerical experiments compare the normwise forward and backward errors
of the competing methods. If Y denotes the computed value of f(A) then the forward
error is

(7.1)
‖Y − f(A)‖1
‖f(A)‖1

and the backward error is

(7.2) ψ(Y) = min { ‖E‖1/‖A‖1 : Y = f(A+ E) } .
The backward error is difficult to compute exactly so we make a linearized approx-
imation of it, which is justified as we are interested in cases where ψ(Y) � 1. Our
approximation is based on the first order expansion

(7.3) Y = f(A+ E) ≈ f(A) + Lf (A,E),

where Lf (A,E) is the Fréchet derivative of f at A in the direction E, which is equiv-
alent to

(7.4) Kf (A) vec(E) ≈ vec(Y − f(A)),

where Kf(A) ∈ Cn2×n2

is the Kronecker matrix and vec(E) stacks the columns of
E vertically from first to last [21, chap. 3], [24]. We approximate the backward
error ψ(Y) by the minimum 2-norm solution of (7.4), where the Kronecker matrix
(obtained using [21, Alg. 3.17]) and f(A) are computed, and the system solved, in
250 digit arithmetic. A similar idea is used effectively by Deadman and Higham in
[8, sect. 5] to compute linearized backward errors of functional identities.

Since we showed in Lemma 2.1 that all our algorithms are backward stable in exact
arithmetic we expect the relative error (7.1) to be bounded by a modest multiple of
cond(f,A)u, where the condition number cond(f,A) is defined in [21, chap. 3].

Accurate values of cosA and sinA for use in (7.1) and (7.4) are generated in 250
digit arithmetic using the Symbolic Toolbox by adding a random perturbation of norm
10−125 to A, then diagonalizing it, and taking the cosine (or sine) of the eigenvalues;
the perturbation ensures the eigenvalues are distinct so that the diagonalization is
always possible. This idea is based on [7] and has been used successfully in [3], [23],
and [24]. The condition number of f is estimated using the code funm condest1 from
the Matrix Function Toolbox [18], [21, Alg. 3.20].

We test our new algorithms against the existing alternatives:
• cosm for cosA from [18], which implements an algorithm of Hargreaves and
Higham [15, Alg. 3.1], [21, Alg. 12.6].
• cosmsinm for cosA and sinA from [18], which implements an algorithm of
Hargreaves and Higham [15, Alg. 5.1], [21, Alg. 12.8].
• costay1 for cosA from Sastre et al. [31].

1M-file retrieved from http://personales.upv.es/∼jorsasma/costay.m on May 2, 2013.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://personales.upv.es/~jorsasma/costay.m

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A473

The first two algorithms use variable degree Padé approximants, while costay uses
a variable degree truncated Taylor series. None of these algorithms performs a Schur
decomposition of the input matrix or recomputes the diagonal blocks (as described in
section 3), and all are based on forward error analysis. We will perform comparisons
both with and without the initial Schur decomposition within our algorithms.

Our first three experiments are designed to test our new algorithms against the
aforementioned alternatives on full matrices. We denote our new algorithms by

• cosm new: Algorithm 4.2,
• sinm new: Algorithm 5.2,
• cosmsinm new: Algorithm 6.2.

In each case we plot our results in a 4 × 2 grid. Each plot in the (1, 1) position
shows the forward errors (7.1), with the new algorithm in transformation-free form,
along with an estimate of cond(f,A)u. The (1, 2) plot presents the same relative
errors as a performance profile [11], [16, sect. 22.4], to which we apply the strategy
from [10] to avoid tiny relative errors skewing the results. Briefly, for a given curve
on the performance profile and a given α the corresponding p value is the proportion
of problems for which the error for that method was within a factor α of the smallest
error over all methods. The (2, 1) plot shows the backward errors (7.2), and the
(2, 2) plot is a performance profile for the backward error results. The remaining four
plots show the same results when we allow our new algorithms to compute an initial
Schur decomposition, allowing recomputation of the diagonal blocks (section 3). The
colored triangles in each plot show any cases where the algorithm returned an error
greater than one.

Our next experiment tests each algorithm on matrices that are already triangu-
lar: we precompute the Schur decomposition of each test matrix before sending the
triangular factor to the algorithms. This shows how well the algorithms exploit trian-
gularity. In some applications the original matrices are triangular; see, for example,
[37] in the case of the matrix exponential.

The final experiment compares the accuracy of cosm new and costay on a matrix
resulting from the semidiscretization of a nonlinear wave problem [12, Prob. 4]. We
compare the two algorithms for a range of discretization points, where the matrix
becomes more nonnormal (and hence the problem more difficult) as the resolution
increases.

7.1. Matrix cosine. Figure 3 shows the results for the matrix cosine. For the
transformation-free case of cosm new we see from the (1, 2) plot that costay was the
most accurate algorithm for about 60 percent of the matrices, as shown by the α = 1
ordinate, but was less reliable than cosm new, as shown by the relative position of the
curves for α ≥ 2. Indeed visible in the (1, 1) plot is one relative error returned by
costay (represented by the green triangle), which was�1, as opposed to 9e-8 and 3e-2
for cosm new and cosm, respectively. The condition number of this problem was 4.8e9,
so we would expect a forward error of order 10−7 from a forward stable algorithm.
From the (2, 1) and (2, 2) plots we see that none of the algorithms is always backward
stable and that cosm new shows a small advantage over costay. The largest backward
errors were �1, 2.1e1, and 1.4e-2 for costay, cosm, and cosm new, respectively.

Also visible in the (1, 1) plot is one case where cosm returned a relative error > 1
(denoted by the black triangle) while cosm new returned an answer with essentially
full accuracy.

For the tests in which a Schur decomposition is used (the lower four plots) we
see an improvement in backward stability of cosm new at the expense of some slight

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A474 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

deterioration in the forward error.

The (1, 1) and (1, 2) plots of Figure 6 show the cost of each algorithm in multiples
of n3 flops using the transformation-free and Schur versions, respectively. We see
that the transformation-free version of cosm new is marginally more expensive than
costay and cosm in most cases but is significantly cheaper than the latter on occasion.
The Schur version has a relatively stable cost of around 32n3 flops, due to the fixed
overhead of the Schur decomposition, which could be advantageous for highly oscilla-
tory differential equations [36], where the matrices have large eigenvalues and hence
a heavy scaling may be needed, requiring a large number of (now triangular) matrix
multiplications. The precise criterion under which the Schur algorithm is cheaper
than the transformation-free version was explained at the end of section 4.

7.2. Matrix sine. For our second experiment, since there are no other algo-
rithms dedicated to computing the matrix sine, we compare sinm new against the use
of costay to compute sinA = cos(A−πI/2). Our comparison of these two algorithms
is shown in Figure 4. For the transformation-free algorithm we see that sinm new has
significantly better forward error and backward error performance than costay. The
use of the Schur decomposition improves the forward stability of sinm new: the for-
ward errors in the (3, 1) plot are always within a factor 15 of the condition number
times u as opposed to 186 for the (1, 1) plot. As in the previous experiment we see
that costay is not reliable as it returns a relative error and a backward error � 1 in
one test case.

The cost of each algorithm is given in the (2, 1) and (2, 2) plots of Figure 6 for
the transformation-free and Schur versions, respectively. In each case sinm new is
generally more expensive than costay, and using the Schur decomposition gives a
fairly stable cost of around 32n3 flops.

7.3. Matrix cosine and sine. Our third experiment compares cosmsinm new

to cosmsinm. For each test matrix we show the largest of the two errors in evaluating
the matrix cosine and sine: if a particular test matrix results in backward or forward
errors ec and es for the cosine and sine, respectively, we plot max(ec, es). In the plots
the quantity cond(f,A)u denotes the larger of cond(cos, A)u and cond(sin, A)u. It
is clear from Figure 5 that the new algorithm has significantly better forward and
backward error performance than cosmsinm. Plots of the individual errors for the
sine and cosine have similar forms. The largest relative errors returned by cosmsinm

were 2.9e2 and 1e3 for the matrix cosine and sine, respectively (both achieved for the
first test matrix in the plot), while the corresponding errors for cosmsinm new were
1.5e-7 and 5e-7.

Plots showing the cost of each algorithm, both avoiding and utilizing an initial
Schur decomposition, are given in the (3, 1) and (3, 2) positions of Figure 6, respec-
tively. We see that the transformation-free version of cosmsinm new is slightly more
expensive than cosmsinm, but allowing an initial Schur decomposition makes our new
algorithm cheaper in some of the test cases.

7.4. Triangular matrices. Figures 7–9 show the results of applying the algo-
rithms to matrices that are already (quasi)-triangular, obtained by taking the (real)
Schur form of each matrix before passing it to the competing algorithms. The new
algorithms are greatly superior to the existing ones in terms of both forward and
backward error, often achieving values of order u. By comparison with Figures 3–5 it
is clear that the Schur decomposition is a significant source of error in our algorithms.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A475

The cost of the competing algorithms for triangular matrices is shown in Figure 10.
In the majority of cases our new algorithms are more efficient than the alternatives.

7.5. Wave discretization problem. Our final experiment compares the for-
ward errors of cosm new and costay when computing the cosine of a matrix arising
from the semidiscretization of the wave equation [12, Problem 4]

(7.5)
∂2u

∂t2
− a(x)∂

2u

∂x2
+ αu = f(t, x, u),

where x ∈ (0, 1), t > 0, and

(7.6) f(t, x, u) = u5 − a(x)2u3 + a(x)5

4
sin2(20t) cos(10t), a(x) = 4x(1 − x).

With Dirichlet boundary conditions the solution is u(x, t) = a(x) cos(10t). If we
perform a semidiscretization in the spatial variable with mesh size 1/n we obtain a
system of the form (1.3) with parametrized matrix

(7.7) A = n2

⎡⎢⎢⎢⎢⎢⎣
2a(x1) −a(x1)
−a(x2) 2a(x2) −a(x2)

. . .
. . .

. . .

−a(xn−2) 2a(xn−2) −a(xn−2)
−a(xn−1) 2a(xn−1)

⎤⎥⎥⎥⎥⎥⎦+ αI.

This matrix becomes increasingly nonnormal as n grows.

In Figure 11 we show the forward errors of the two algorithms when computing
cosA for a range of n as α varies between 0 and 10. The results shown are for the
transformation-free version of cosm new; similar results were obtained using the Schur
decomposition. For n = 10, both algorithms behave in a forward stable manner, with
costay generally more accurate. As n increases cosm new becomes significantly more
accurate than costay, the latter showing signs of forward instability and having errors
varying much less smoothly with α.

8. Concluding remarks. The goal of this work was to derive algorithms for
computing the matrix sine and cosine—both separately and together—that are back-
ward stable in exact arithmetic, thereby providing a more rigorous foundation than
for previous algorithms, all of which are based on bounding absolute or forward errors
of the function of a scaled matrix. Algorithms with this form of backward stability
are already available for the matrix exponential and matrix logarithm. A key finding
is that Padé approximants of the matrix cosine do not lend themselves to deriving
backward stable algorithms, while those for the matrix sine put strong constraints on
the spectral radius of the matrix. We therefore introduced new rational approximants
obtained from Padé approximants of the exponential, which yield backward stable ap-
proximants of the sine and cosine with no a priori limit on the spectral radius. We
also gave the first multiple angle formula-based algorithm for the matrix sine, which
uses the triple angle formula in order to avoid the cosines that would be needed by the
double angle formula. Experiments show that the new algorithms behave in a forward
stable manner in floating point arithmetic, have better backward stability properties
than their competitors, and are especially effective for triangular matrices.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A476 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

Table 4

The number of matrix multiplications required to form cm(X) by explicit computation of the
powers and by the Paterson–Stockmeyer scheme, along with a parameter τ that attains this cost for
the latter.

m 1 2 3 4 6 8 10 12 15 18 21
Explicit powers 1 2 3 4 6 8 10 12 15 18 21

Paterson–Stockmeyer 1 2 3 4 5 6 7 8 9 10 11
τ 1 1 1 1 3 4 5 6 5 6 7

A remaining open question is why the second double angle formula in (6.1) per-
forms better in floating point arithmetic than the first in Algorithm 6.2 for simulta-
neous computation of the sine and cosine.

Appendix. Evaluating rational approximants with the Paterson–
Stockmeyer method.

It was mentioned in sections 4–6 that we can efficiently compute the rational
approximants cm and sm using the Paterson–Stockmeyer scheme [30]. Given a matrix
polynomial pm(X) =

∑m
k=0 akX

k we can write it in the form

(A.1) pm(X) =
�∑

k=0

gk(X)(Xτ)k,

where τ = 1: m is some integer, � =
m/τ�, and

(A.2) gk(X) =

{
aτk+τ−1X

τ−1 + · · ·+ aτkI, k = 0: �− 1,

amX
m−τ� + · · ·+ aτ�I, k = �.

From this it can be shown that the cost (in matrix multiplications) of evaluating the
polynomial, using Horner’s method for (A.1), is

(A.3) τ + �− 1− φ(τ,m),

where φ(τ,m) = 1 if τ divides m and is equal to 0 otherwise [21, pp. 73–74]. We can
find the optimal τ by minimizing the cost function (A.3) over τ = 1: m.

To apply this to the matrix cosine, we see that the rational approximations ob-
tained in section 2.2 are of the form

(A.4) cm(x) =

∑m
k=0 akx

2k∑m
k=0 bkx

2k
,

so the numerator and denominator of cm(x) are degree m polynomials in B = X2. If
we evaluate the denominator using the procedure above, reusing the same value of τ
for the numerator, then the overall cost is

(A.5) 2
⌊m
τ

⌋
+ τ − 2φ(τ,m).

The values π(cm(X)) in Table 1 were generated by minimizing (A.5) over τ = 1 : m
for each m.

To show that this Paterson–Stockmeyer scheme is more efficient than computing
the necessary powers of X explicitly we show the number of matrix multiplications
needed to compute cm(X) for some values of m between 1 and 21 using our scheme
and explicit powers in Table 4. A bound on the accuracy of these two evaluation
schemes (the same bound applies to both) can be found in [21, Thm. 4.5].

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A477

0 20 40 60

10 -15

10 -10

10 -5

10 0

Relative Error - No Schur

cosm_new
cosm
costay
cond(cos, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Relative Error - No Schur

cosm_new
cosm
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Backward Error - No Schur

cosm_new
cosm
costay

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Backward Error - No Schur

cosm_new
cosm
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Relative Error - Schur

cosm_new
cosm
costay
cond(cos, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Relative Error - Schur

cosm_new
cosm
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Backward Error - Schur

cosm_new
cosm
costay

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Backward Error - Schur

cosm_new
cosm
costay

Fig. 3. The forward and backward errors of competing algorithms for the matrix cosine, for
the 76 test matrices. The first four plots are for the transformation-free version of Algorithm 4.2,
whereas for the remaining four plots an initial Schur decomposition is used. The results are ordered
by decreasing condition number. Colored triangles indicate errors > 1.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A478 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

0 20 40 60

10 -15

10 -10

10 -5

10 0

Relative Error - No Schur

sinm_new
costay
cond(sin, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Relative Error - No Schur

sinm_new
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Backward Error - No Schur

sinm_new
costay

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Backward Error - No Schur

sinm_new
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Relative Error - Schur

sinm_new
costay
cond(sin, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Relative Error - Schur

sinm_new
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Backward Error - Schur

sinm_new
costay

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Backward Error - Schur

sinm_new
costay

Fig. 4. The forward and backward errors of competing algorithms for the matrix sine, for
the 76 test matrices. The first four plots are for the transformation-free version of Algorithm 5.2,
whereas for the remaining four plots an initial Schur decomposition is used. The results are ordered
by decreasing condition number. Colored triangles indicate errors > 1.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A479

0 20 40 60

10 -15

10 -10

10 -5

10 0

Max Relative Error - No Schur

cosmsinm_new
cosmsinm
cond(f, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Max Relative Error - No Schur

cosmsinm_new
cosmsinm

0 20 40 60

10 -15

10 -10

10 -5

10 0

Max Backward Error - No Schur

cosmsinm_new
cosmsinm

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Max Backward Error - No Schur

cosmsinm_new
cosmsinm

0 20 40 60

10 -15

10 -10

10 -5

10 0

Max Relative Error - Schur

cosmsinm_new
cosmsinm
cond(f, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Max Relative Error - Schur

cosmsinm_new
cosmsinm

0 20 40 60

10 -15

10 -10

10 -5

10 0

Max Backward Error - Schur

cosmsinm_new
cosmsinm

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Max Backward Error - Schur

cosmsinm_new
cosmsinm

Fig. 5. The maximum forward and backward errors of competing algorithms for the matrix
cosine and sine, for the 76 test matrices. The first four plots are for the transformation-free version
of Algorithm 6.2, while an initial Schur decomposition is used for the lower four plots. The results
are ordered by decreasing condition number. Colored triangles indicate errors > 1.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A480 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

0 20 40 60

n
3
 fl

op
s

0

10

20

30

40

50

60

70

80

90
Cos - No Schur

cosm_new
cosm
costay

0 20 40 60

n
3
 fl

op
s

0

10

20

30

40

50

60

70

80

90
Cos - Schur

cosm_new
cosm
costay

0 20 40 60

n
3
 fl

op
s

0

20

40

60

80

100
Sin - No Schur

sinm_new
costay

0 20 40 60

n
3
 fl

op
s

10

20

30

40

50

60

70
Sin - Schur

sinm_new
costay

0 20 40 60

n
3
 fl

op
s

0

20

40

60

80

100

120

140
Cos Sin - No Schur

cosmsinm_new
cosmsinm

0 20 40 60

n
3
 fl

op
s

0

20

40

60

80

100

120

140
Cos Sin - Schur

cosmsinm_new
cosmsinm

Fig. 6. Cost plots for the experiments in sections 7.1, 7.2, and 7.3. The first row shows the
cost of computing the matrix cosine, while the second and third rows show the cost of computing
the matrix sine and both functions together. The left column corresponds to the transformation-free
versions of our new algorithms, while the right corresponds to an initial Schur decomposition. All
plots are ordered by decreasing cost of our new algorithms.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A481

0 20 40 60

10 -15

10 -10

10 -5

10 0

Relative Error - Tri

cosm_new
cosm
costay
cond(cos, A)u

2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Relative Error - Tri

cosm_new
cosm
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Backward Error - Tri

cosm_new
cosm
costay

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Backward Error - Tri

cosm_new
cosm
costay

Fig. 7. Forward and backward errors of competing algorithms for the matrix cosine for the
triangular Schur form of the 76 test matrices. The results are ordered by decreasing condition
number. Colored triangles indicate errors > 1.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A482 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

0 20 40 60

10 -15

10 -10

10 -5

10 0

Relative Error - Tri

sinm_new
costay
cond(sin, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Relative Error - Tri

sinm_new
costay

0 20 40 60

10 -15

10 -10

10 -5

10 0

Backward Error - Tri

sinm_new
costay

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Backward Error - Tri

sinm_new
costay

Fig. 8. The forward and backward errors of competing algorithms for the matrix sine for
the triangular Schur form of the 76 test matrices. The results are ordered by decreasing condition
number. Colored triangles indicate errors > 1.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A483

0 20 40 60

10 -15

10 -10

10 -5

10 0

Max Relative Error - Tri

cosmsinm_new
cosmsinm
cond(f, A)u

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Max Relative Error - Tri

cosmsinm_new
cosmsinm

0 20 40 60

10 -15

10 -10

10 -5

10 0

Max Backward Error - Tri

cosmsinm_new
cosmsinm

α
2 4 6 8 10

p

0

0.2

0.4

0.6

0.8

1
Max Backward Error - Tri

cosmsinm_new
cosmsinm

Fig. 9. The maximum forward and backward errors of competing algorithms for the matrix
cosine and sine, for the triangular Schur form of the 76 test matrices. The results are ordered by
decreasing condition number. Colored triangles indicate errors > 1.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A484 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

0 20 40 60

n
3
 fl

op
s

-5

0

5

10

15

20

25

30
Cos - Tri

cosm_new
cosm
costay

0 20 40 60

n
3
 fl

op
s

0

5

10

15

20

25
Sin - Tri

sinm_new
costay

0 20 40 60

n
3
 fl

op
s

0

5

10

15

20

25

30

35

40

45
Cos Sin - Tri

cosmsinm_new
cosmsinm

Fig. 10. Cost plots for all the algorithms run on triangular matrices. All plots are ordered by
decreasing cost of our new algorithms.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A485

α

10 -10 10 -5 10 0

R
el

. E
rr

.

10 -14

10 -13

10 -12 Wave equation - n = 10

cosm_new
costay
cond(cos, A)u

α

10 -10 10 -5 10 0

R
el

. E
rr

.

10 -13

10 -12

10 -11

10 -10 Wave equation - n = 50

cosm_new
costay
cond(cos, A)u

α

10 -10 10 -5 10 0

R
el

. E
rr

.

10 -12

10 -11

10 -10 Wave equation - n = 100

cosm_new
costay
cond(cos, A)u

α

10 -10 10 -5 10 0

R
el

. E
rr

.

10 -11

10 -10

10 -9 Wave equation - n = 200

cosm_new
costay
cond(cos, A)u

Fig. 11. Forward errors of cosm new and costay for the matrix (7.7) that arises from the
semidiscretization of a nonlinear wave equation with parameter α. The matrix becomes increasingly
nonnormal as n increases.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A486 A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix
exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989.

[2] A. H. Al-Mohy and N. J. Higham, Improved inverse scaling and squaring algorithms for the
matrix logarithm, SIAM J. Sci. Comput., 34 (2012), pp. C153–C169.

[3] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, Computing the Fréchet derivative of the
matrix logarithm and estimating the condition number, SIAM J. Sci. Comput., 35 (2013),
pp. C394–C410.

[4] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J.

Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen,
LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia, 1999.

[5] G. A. Baker, Jr., Essentials of Padé Approximants, Academic Press, New York, 1975.
[6] J. P. Coleman, Rational approximations for the cosine function; P-acceptability and order,

Numer. Algorithms, 3 (1992), pp. 143–158.
[7] E. B. Davies, Approximate diagonalization, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1051–

1064.
[8] E. Deadman and N. J. Higham, Testing matrix function algorithms using identities, MIMS

EPrint 2014.13, Manchester Institute for Mathematical Sciences, The University of Manch-
ester, Manchester, UK, 2014; ACM Trans. Math. Software, to appear.

[9] J. Dibĺık, D. Ya. Khusainov, J. Lukáčová, and M. Růžičková, Control of oscillating sys-
tems with a single delay, Adv. Difference Equ., 2010 (2010), 108218.

[10] N. J. Dingle and N. J. Higham, Reducing the influence of tiny normwise relative errors on
performance profiles, ACM Trans. Math. Software, 39 (2013), 24.

[11] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Programming, 91 (2002), pp. 201–213.

[12] J. M. Franco, New methods for oscillatory systems based on ARKN methods, Appl. Numer.
Math., 56 (2006), pp. 1040–1053.

[13] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
[14] V. Grimm and M. Hochbruck, Rational approximation to trigonometric operators, BIT, 48

(2008), pp. 215–229.
[15] G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and sine,

Numer. Algorithms, 40 (2005), pp. 383–400.
[16] D. J. Higham and N. J. Higham, MATLAB Guide, 2nd ed., SIAM, Philadelphia, 2005.
[17] N. J. Higham, The Matrix Computation Toolbox, http://www.maths.manchester.ac.uk/

∼higham/mctoolbox/.
[18] N. J. Higham, The Matrix Function Toolbox, http://www.maths.manchester.ac.uk/∼higham/

mftoolbox/.
[19] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,

2002.
[20] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J.

Matrix Anal. Appl., 26 (2005), pp. 1179–1193.
[21] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[22] N. J. Higham and L. Lin, A Schur–Padé algorithm for fractional powers of a matrix, SIAM

J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078.
[23] N. J. Higham and L. Lin, An improved Schur–Padé algorithm for fractional powers of a matrix

and their Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1341–1360.
[24] N. J. Higham and S. D. Relton, Higher order Fréchet derivatives of matrix functions and

the level-2 condition number, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 1019–1037.
[25] N. J. Higham and M. I. Smith, Computing the matrix cosine, Numer. Algorithms, 34 (2003),

pp. 13–26.
[26] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with an

application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1185–
1201.

[27] A. Iserles and S. P. Nørsett, Order Stars, Chapman and Hall, London, 1991.
[28] A. Magnus and J. Wynn, On the Padé table of cos z, Proc. Amer. Math. Soc., 47 (1975),

pp. 361–367.
[29] D. L. Michels, G. A. Sobottka, and A. G. Weber, Exponential integrators for stiff elasto-

dynamic problems, ACM Trans. Graph., 33 (2014), 7.
[30] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications necessary

to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://www.maths.manchester.ac.uk/~higham/mctoolbox/
http://www.maths.manchester.ac.uk/~higham/mctoolbox/
http://www.maths.manchester.ac.uk/~higham/mftoolbox/
http://www.maths.manchester.ac.uk/~higham/mftoolbox/

NEW ALGORITHMS FOR THE MATRIX SINE AND COSINE A487

[31] J. Sastre, J. Ibáñez, P. Ruiz, and E. Defez, Efficient computation of the matrix cosine,
Appl. Math. Comput., 219 (2013), pp. 7575–7585.

[32] S. M. Serbin, Rational approximations of trigonometric matrices with application to second-
order systems of differential equations, Appl. Math. Comput., 5 (1979), pp. 75–92.

[33] S. M. Serbin and S. A. Blalock, An algorithm for computing the matrix cosine, SIAM J.
Sci. Statist. Comput., 1 (1980), pp. 198–204.

[34] J. P. Sharma and R. K. George, Controllability of matrix second order systems: A trigono-
metric matrix approach, Electron. J. Differential Equations, 2007 (2007), pp. 1–14.

[35] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
2013.

[36] B. Wang, K. Liu, and X. Wu, A Filon-type asymptotic approach to solving highly oscillatory
second-order initial value problems, J. Comput. Phys., 243 (2013), pp. 210–223.

[37] D. Yuan and W. Kernan, Explicit solutions for exit-only radioactive decay chains, J. Appl.
Phys., 101 (2007), 094907.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

02
/1

3/
15

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

