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Published in:
Dynamics, Bifurcations and Symmetry
(ed. P. Chossat). NATO ASI Series
Vol. 437, Kluwer, Dordrecht, 1994.

Abstract

We show how the path formulation of bifurcation theory can be made to work, and that
it is (essentially) equivalent to the usual parametrized contact equivalence of Golubitsky
and Schaeffer.

Introduction

In their original paper on imperfect bifurcation theory [GS79], Golubitsky and Schaeffer
consider the so-called path formulation of bifurcation theory. However they had to abandon
this approach as the calculations were mostly intractable, and they replaced it by their
now standard distinguished parameter formulation. In this paper I describe how the path
approach can be made to work thanks to recent advances in Singularity Theory, and I will
show that it is (almost) equivalent to the distinguished parameter formulation. The new
technology available, allowing the path formulation to work is two-fold: firstly, computations
are facilitated by the development of computer algebra packages, and secondly the path-
formulation itself is clarified by the introduction by J. Damon of KV -equivalence [D87].

As far as the computations go, Golubitsky and Schaeffer found the distinguished parame-
ter approach more tractable thanks to a lemma ensuring that a bifurcation problem is finitely
determined with respect to distinguished parameter contact equivalence if and only if it is
finitely determined with respect to a restricted form of equivalence which is easier to com-
pute. However, this lemma fails to hold as soon as there is more than 1 parameter, and in
that case the computations of the full distinguished parameter equivalence are considerably
harder than those of the path formulation. See for example [P].

There is one drawback at present to a coherent path formulation, and that is the distinc-
tion between the smooth (C∞) and analytic theories. The problem arises as the modules of
smooth vector fields tangent to certain varieties (discriminants) are not necessarily finitely
generated. However, in the analytic category, all such modules are finitely generated. One
can argue that this is not a problem, since one is dealing with finitely determined bifurcation
problems, so that after a change of coordinates, they are analytic, and even polynomial. It
seems that this shortcoming may be able to be overcome, but the details are still to be worked
out.

Part of the object of this paper is to give a general description of Singularity Theory for
the non-specialist; this is done in Section 1. This point of view which groups all the different
equivalence relations together and puts “bifurcation equivalence” in a wider perspective, is
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not evident in Golubitsky and Schaeffer [GS85]. The remainder of the paper is organized as
follows. Section 2 introduces Damon’s notion of KV -equivalence. In Section 3, we give the
main theorem (paragraph (3.3)), and in Section 4 we describe how one calculates generators
of Derlog(∆), necessary for calculating K∆-tangent spaces. We conclude with some remarks
and questions for symmetric bifurcations.

1 Singularities, Bifurcations and Paths

In this section we give a brief overview of the salient points of singularity theory necessary
for understanding the results of this paper. We will be considering families of maps (or
map-germs) from Rn to Rp, and occasionally families of families of maps. The parameter
spaces for the families will be denoted Λ, V or U according to the interpretation. Λ will be
for the parameter space of a given bifurcation problem, U will always denote the parameter
space (or base space) of a versal deformation, and V will be the base space for an arbitrary
deformation. An excellent reference for the main results of singularity theory is C.T.C. Wall’s
survey paper [W], although much progress and consolidation has been made since then, and
in particular Damon’s introduction of Geometric Subgroups of A and K [D84], as the general
class for singularity theoretic equivalences.

It should be borne in mind that we are really considering germs of maps and germs of
deformations, so that all spaces such as Rn and Rp should really be considered as (small)
neighbourhoods of the origin in Rn and Rp respectively. Similarly, although we say Λ = Rk,
we really mean that Λ is a neighbourhood of the origin in Rk. We will not usually refer
explicitly to germs, though there are occasional lapses — either through inconsistency or to
remind the reader!

It should also be borne in mind that although we only make explicit reference in this
section to real (C∞) maps, one could equally well consider real analytic or complex analytic
maps (or germs!). However, in Sections 2 and 3, there are certain results that only hold in
the analytic categories.

(1.1) Bifurcation problems

For the purposes of this paper, a bifurcation problem is an equation of the form

g(x, λ) = 0,

where g : Rn × Λ → Rp is a map-germ defined at (0, 0) ∈ Rn × Λ, and Λ = Rk. We view
Λ as parameter space, and this distinction between Λ and Rn is reflected in the notion of
equivalence used in bifurcation theory. Thus, a bifurcation problem is a system of p equations
in n unknowns, with k parameters. In applications, it is common that n = p; however it
makes no difference to the theory. We often refer to the map g as the bifurcation problem,
with the equation g = 0 understood.

(1.2) Organizing centre

The organizing centre of (1.1) is obtained by putting λ = 0:

g0(x) = g(x, 0),
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so that g0 : Rn → Rn.

(1.3) Equivalence of bifurcation problems
Following Golubitsky and Schaeffer [GS85], two bifurcation problems

f, g : Rn × Λ → Rn

are said to be equivalent if there is a diffeomorphism (x, λ) 7→ (H(x, λ), h(λ)) and an invertible
p× p matrix S(x, λ) depending on x and λ such that

f(H(x, λ), h(λ)) = S(x, λ)g(x, λ).

We say f and g are bifurcation equivalent, or B-equivalent. In the special case that h is the
identity, the equivalence is called restricted bifurcation equivalence.

Putting λ = 0 we arrive at a natural equivalence of organizing centres,

f0(H(x)) = S(x)g0(x),

where now S is a p × p matrix depending only on x, and H is a change of coordinates
on Rn. This equivalence is called contact equivalence, or K-equivalence; it was introduced
into singularity theory by J. Mather in the late 1960’s. (It is also sometimes known as
V -equivalence [AGV].) Thus, bifurcation equivalence is a parametrized version of contact
equivalence — see the next paragraph.

(1.4) Deformations and their equivalence
One of the important applications of singularity theory is to the study of how maps deform.
One is able to deal in the same way with many types of equivalence (contact, bifurcation,
right, left-right, equivariant, . . .).

Let f : X → Y be a map (e.g. X = Rn for contact equivalence, X = Rn×Λ for bifurcation
equivalence). A deformation of f is a map

F : X × U → Y

satisfying F (·, 0) = f . The deformed (or perturbed) map x 7→ F (x, u) is denoted Fu. If F
is a deformation of f , then any map γ : V → U defines another deformation of f , denoted
γ∗F , by

γ∗F (x, v) := F (x, γ(v)).

The deformation γ∗F is said to be induced from F by γ. This idea is central to what follows.
(Note that since we are really talking about germs, we automatically have γ(0) = 0.)

Suppose now that G is one of the equivalence relations of singularity theory (contact,
bifurcation, . . .). Then G defines an equivalence of deformations, sometimes denoted Gun,
as follows. Let F1 : X × U1 → Y and F2 : X × U2 → Y be two deformations of f . Then F1

and F2 are said to be Gun-equivalent if there is a diffeomorphism h : U1 → U2 such that F1,u

is G-equivalent to F2,h(u) for all u ∈ U1. Moreover, the equivalences must depend smoothly
on the parameter.

For contact equivalence (G = K), equivalence of deformations is precisely bifurcation
equivalence. Thus Kun = B.
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For bifurcation equivalence, equivalence of deformations is a little more complex. A
deformation of a bifurcation problem g(x, λ) is a map

g̃ : Rn × Λ × V → Rp

such that g(x, λ) = g̃(x, λ, 0). Two deformations g̃1 and g̃2 of a bifurcation problem g
are deformation bifurcation equivalent (Bun-equivalent) if there are changes of coordinates
(x, λ, v) 7→ (H(x, λ, v), h1(λ, v), h2(v)) and a matrix S(x, λ, v) such that

g̃1(x, λ, v) = S(x, λ, v) g̃2(H(x, λ, v), h1(λ, v), h2(v)).

(1.5) Versal deformations
One of the basic notions of singularity theory is that of a versal deformation; it applies to
all the usual equivalences. A versal deformation is a deformation which contains (up to the
equivalence in question) any deformation of the singularity. For contact equivalence, this
reads as follows.

Let g0 : Rn → Rp be given, and let G : Rn × U → Rp be a deformation of g0 (so
that g0 = G(·, 0)). One says that G is a versal deformation of g0 if for any deformation
g : Rn × V → Rp of g0 there is a map γ : V → U such that g(x, v) is parametrized contact
equivalent to G(x, γ(v)).

A deformation
G : Rn × Λ × U → Rp

of a bifurcation problem g : Rn × Λ → Rp is said to be a versal deformation of g if for every
deformation g̃ : Rn × Λ × V → Rp of g there is a map γ : V → U such that g̃(x, λ, v) and
G(x, λ, γ(v)) are parametrized bifurcation equivalent.

There is a simple algebraic criterion for deciding whether a given deformation is versal,
in terms of the tangent or normal spaces — see paragraph (1.9).

(1.6) Example
Consider the organizing centre g0(x) = x3 (here n = p = 1). There are several well-known
bifurcation problems with this organizing centre. For example,

Pitchfork: g(x, λ) = x3 − λx;

Hysteresis: g(x, λ) = x3 − λ.

A versal deformation of g0 is given by

G(x, u1, u2) = x3 + u1x+ u2,

where U = R2. The two bifurcation problems are induced by the maps γ : R → R2 given by,

Pitchfork: γ(λ) = (−λ, 0);

Hysteresis: γ(λ) = (0,−λ).

Versal deformations of the two bifurcation problems are given by

Pitchfork: G̃(x, λ, u1, u2) = x3 − λx+ u1 + u2λ;
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Hysteresis: G̃(x, λ, u) = x3 − λ+ ux.

Versal deformations are often called universal unfoldings [GS85]. The word versal is used
in singularity theory rather than universal, since the prefix ‘uni’ refers to uniqueness, and
versal deformations are not unique. The difference between a deformation and an unfolding
is mainly notational, and need not concern us here.

(1.7) Tangent spaces

Associated to any map (germ), and any equivalence relation in singularity theory, is the
‘tangent space’ of the map in question. It is essentially the tangent space to the equivalence
class containing the map. To calculate it, one uses the given class of diffeomorphisms, and
differentiates to obtain a tangent space. It is a subset of all infinitesimal deformations of the
given map.

Notation: We denote by En the ring of C∞ functions on Rn, by EΛ the functions on Λ, and
En,λ consists of the functions on Rn × Λ. Similarly, Θn denotes the En-module of vector
fields on Rn. The (maximal) ideal of functions vanishing at 0 ∈ Rp is denoted mp, and
consequently mpΘp is the Ep-module of vector fields on Rp that vanish at the origin. Finally,
we denote by Θn,λ the En,λ-module of vector fields on Rn parametrized by λ ∈ Λ.

Let f be a map (organizing centre, bifurcation problem, or whatever), and G an equiva-
lence relation (contact, bifurcation, or whatever). The space of infinitesimal deformations of
f is denoted Θf consists of vector fields along f , that is, vector fields on Ra with values in
Rb (more brutally, if f ∈ C∞(Ra,Rb) then Θf = C∞(Ra,Rb)). The G-tangent space of f is
a subspace of Θf , denoted TGe ·f (the e is for ‘extended’1). Note that Θf is a module over
the ring of smooth functions on Ra.

For g0 : Rn → Rp, and K-equivalence, one finds that

TKe ·g0 = tg0(Θn) + g∗0(mpΘp).

The term tg0(Θn) is the image of vector fields under the tangent mapping tg0 of g0; the term
g∗0(mpΘp) is the En-module generated by the pull-backs of vector fields on Rp, that is by the
set of vector fields of the form v ◦g0, with v ∈ mpΘp. Such composites are vector fields along
g0.

For a bifurcation problem g : Rn ×Λ → Rp, the tangent space for bifurcation equivalence
is given by

TBe ·g = t1g(Θn,λ) + g∗(Θp,λ) + t2g(ΘΛ).

Here t1g and t2g mean differentiating with respect to the first (Rn) and second (Λ) variables,
respectively. Note that each of the first two terms is an En,λ-module, while the third term is
merely an EΛ-module. The whole is therefore only an EΛ-module. Golubtsky and Schaeffer
[GS85] denote this tangent space by T (g). Their restricted tangent space RT (g) is given by
the first two terms only (the third is omitted by forbidding changes in the parameter) and is
therefore an En,λ-module. In [MM], RT (g) is denoted TKrel ·g.

1The ‘unextended’ tangent space TG ·f is defined in the same way, but using only the vector fields that
vanish at 0; it is used in conditions for finite determinacy.



6 J. Montaldi

(1.8) Normal spaces
Given the (extended) tangent space TGe·f ⊂ Θf one defines the normal space as the quotient:

NG·f =
Θf

TGe ·f
.

This of course holds for G = K,B etc. The codimension of f with respect to G-equivalence is
defined to be,

codG f = dimRNG·f.

In the case that dim Λ = 1, one has that T (g) has finite codimension if and only if
RT (g) does [GS85, p. 127]. This fact allows Golubitsky and Schaeffer to make their theory
computable: being an En,λ-module makes RT (g) much easier to compute than T (g) = TBe·g.

(1.9) Versality theorem
One of the basic theorems of singularity theory gives a simple criterion for determining
whether a given deformation is versal (which works for all equivalence relations G such as
contact, bifurcation, . . .all “geometric subgroups” of A and K [D84]).

Let f be a map (germ) and G one of the singularity theory equivalences appropriate to f .
Let F = f + u1φ1 + · · · urφr be a deformation of f , with φ1, . . . , φr ∈ Θf . Then F is a versal
deformation if and only if {φ1, . . . , φr} spans NG·f as a real vector space. In other words, F
is versal if and only if

TGe ·f + R{φ1, . . . , φr} = Θf .

The codimension of a singularity is thus the number of parameters needed for a versal
deformation. The space U is called the base space of the versal deformation.

(1.10) Discriminant
Let G : Rn × U → Rp be a versal deformation of the map g0 : Rn → Rp (with respect to
K-equivalence). For each u ∈ U , let Gu : Rn → Rp be the map given by

Gu(x) = G(x, u).

The following conditions on u ∈ U are equivalent:

(i) there is an x ∈ Rn such that G(x, u) = 0 and Gu is singular at x, and

(ii) u is a singular value of the projection πG : G−1(0) → U given by πG(x, u) = u.

This fact is easy to prove. The set of all such u is called the discriminant of the versal
deformation G, denoted ∆ = ∆G. It is the basic geometric object for the remainder of this
paper. It is a hypersurface in U , i.e. given by one equation h(u) = 0 with h : U → R.

For example, in the case n = p (central to bifurcation theory), for each u ∈ U the set
G−1

u (0) is finite (otherwise g0 would not be of finite codimension, and so would not have a
versal deformation). The number of elements in G−1

u (0) is locally constant on an open dense
set in U , whose complement is precisely the discriminant. Thus, the discriminant consists of
those points u for which Gu has multiple roots. Over C, the number of elements in G−1

u (0)
is constant, for u 6∈ ∆, not merely locally constant.

It is a central observation for this paper that:
Suppose g = γ∗G, then bifurcation points of g correspond under γ to points of image(γ)∩∆G.
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2 K∆-equivalence

A new equivalence relation on maps was introduced a few years ago by J. Damon [D87], called
KV -equivalence (or K∆-equivalence). It is a generalization of Mather’s contact equivalence
(see (1.3) above), which has been finding many applications. For an application to caustics
see [M] and to bifurcations of periodic points see [BF].

Consider maps γ : Λ → U and a subset (subvariety) ∆ ⊂ U . The geometrical notion
captured by K∆ equivalence is the contact of γ with ∆, which is clearly important since
bifurcations correspond to points of intersection of γ with the discriminant ∆.

(2.1) Definition
Two maps γ1, γ2 : Λ → U are said to be K∆-equivalent if there exist diffeomorphisms h of Λ,
and H of Λ × U satisfying

• H(λ, u) = (h(λ), H̄(λ, u)), for some H̄ : Λ × U → U ,

• u ∈ ∆ ⇒ H̄(λ, u) ∈ ∆, and

• γ1(h(λ)) = H̄(λ, γ2(λ)), for all λ ∈ Λ.

In other words, H maps the graph of γ2 to the graph of γ1, whilst preserving ∆. In the case
that ∆ = {0}, then K∆-equivalence reduces to K-equivalence. It is clear that if γ1 and γ2 are
K∆ equivalent, then γ−1

1 (∆) and γ−1
2 (∆) are diffeomorphic; however in general the converse

is not true (it is true if ∆ is smooth).

(2.2) Derlog(∆)
For most varieties ∆ ⊂ U , it is not easy to characterize the set of diffeomorphisms preserving
∆. However, the infinitesimal version is often not so hard. For a vector field ξ ∈ ΘU

to integrate to a 1-parameter family of diffeomorphisms preserving ∆, it is necessary and
sufficient that ξ be tangent to ∆. Note that if ∆ is singular, then tangent to ∆ means
tangent to each stratum of some natural stratification of ∆.

The EU -module of vector fields tangent to ∆ has the unfortunate name Derlog(∆), for
reasons that go well beyond this paper [S].

A few words about the structure of Derlog(∆) are in order. Firstly, ∆ is a hypersurface,
given by the equation h(u) = 0, so that

Derlog(∆) = {θ ∈ ΘU | θ(h) ∈ 〈h〉},

where 〈h〉 is the ideal generated by h. This is because if θ is tangent to ∆ and as h is constant
on ∆, then θ(h) = 0 on ∆. In other words, θ ∈ Derlog(∆) if and only if there exists f ∈ EU

for which θ(h) = fh.
We can define a submodule Derlog(h) ⊂ Derlog(∆), by

Derlog(h) = {θ ∈ ΘU | θ(h) = 0}.

It consists of those vector fields that are tangent to all level sets of h, and not just to the zero
level set ∆. Clearly, Derlog(h) depends on the choice of function used to define ∆, whereas
Derlog(∆) does not.
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Suppose now that h is weighted homogeneous, so that there are integers w1, . . . , wℓ (where
ℓ = dimU), such that

h(tw1u1, . . . , t
wℓuℓ) = tdh(u1, . . . , uℓ),

for some d — the degree of h with respect to the given weights. Then Euler’s formula states

ℓ
∑

j=1

wjuj
∂

∂uj
h = d.h.

The vector field

e =
ℓ
∑

j=1

wjuj
∂

∂uj
,

is called the Euler vector field for these weights, and we have e(h) = d.h.
Suppose now that θ ∈ Derlog(∆), with θ(h) = fh. Then the vector field θ̄ = θ −

d−1fe satisfies θ̄ ∈ Derlog(h), as is easy to see. Consequently, there is a natural projection
Derlog(∆) −→ Derlog(h), θ → θ̄ whose kernel is precisely EU .e. Thus, in the weighted
homogeneous case,

Derlog(∆) = EU .e ⊕ Derlog(h),

a direct sum of EU -modules. It is generally easier to calculate Derlog(h) than Derlog(∆).

(2.3) Liftable vector fields
There is an important geometric characterization of elements of Derlog(∆) when ∆ is the
discriminant of a map πG : G−1(0) → U , namely they are the liftable vector fields. However,
this only holds in the analytic categories (real and complex), and not in general for C∞ maps
and vector fields.

In general, let f : X → U be a map. A vector field η ∈ ΘU is said to be liftable over f (or
via f) if there is a vector field ξ ∈ ΘX such that dfx(ξx) = ηf(x). It is not hard to show that
any liftable vector field must be tangent to the discriminant ∆(f) of f (integrating ξ and η
give diffeomorphisms r of X and ℓ of U such that f ◦r = ℓ◦f , so that ℓ must preserve ∆(f)).

For certain maps the converse is also true. In particular, Looijenga proved [L] that if
G : Rn × U → Rp is a versal deformation, and πG : G−1(0) → U the associated projection,
then a vector field η ∈ ΘU is liftable over πG if and only if η ∈ Derlog(∆G) (recall that ∆G

is the discriminant of πG, see (1.10)).
More recently the general relationship between liftable vector fields and vector fields

tangent to a discriminant has been clarified by Bruce, du Plessis and Wilson [BdPW].

(2.4) Example
Let U = R2 and ∆ be defined by the equation h(u1, u2) = 4u3

1+27u2
2 = 0 (this is the equation

for the discriminant of the versal deformation of g0(x) = x3 given in (1.6)). Then Derlog(∆)
is generated over EU by the two vector fields

e =

(

2u1

3u2

)

and

(

9u2

−2u2
1

)

.

It is easy to show that any vector field annihilating h is a multiple of the second generator.

Here

(

α
β

)

= α ∂
∂u1

+ β ∂
∂u2

.



Path Formulation of Bifurcation Theory 9

Note that as discussed in the previous paragraph, these two vector fields are indeed

liftable. The Euler field e lifts to





x
2u1

3u2



, while the other generator lifts to





3x2 + 2u1

9u2

−2u2
1



.

These vector fields on R × U are both tangent to G−1(0), as is easily checked.
For futher examples, see Section 4 below.

(2.5) K∆ tangent and normal spaces
Let γ : Λ → U , and ∆ ⊂ U a subvariety. Then the extended K∆-tangent space to γ is

TK∆,e ·γ = tγ(ΘΛ) + γ∗ Derlog(∆).

Notice how this is very similar to the ordinary K-tangent space, except that mpΘp has been
replaced by Derlog(∆). This is because instead of diffeomorphisms preserving the origin in
Rp, here we are considering diffeomorphisms preserving ∆.

The K∆-normal space is of course defined by

NK∆ ·γ = Θγ/TK∆,e ·γ.

(2.6) Example
For the paths defining the pitchfork and hysteresis bifurcations (1.6), and the discriminant
∆ ⊂ U , we can compute the K∆ tangent and normal spaces. Generators of the module
Derlog(∆) are given in (2.4).

For the pitchfork γ(λ) = (−λ, 0), so that

tγ(ΘΛ) = (EΛ, 0),

while
γ∗(Derlog(∆)) = (λEΛ, λ

2EΛ).

A similar calculation for the hysteresis bifurcation gives

tγ(ΘΛ) = (0, EΛ),

γ∗(Derlog(∆)) = (λEΛ, λEΛ).

Pitchfork: TK∆,e ·γ = (EΛ, λ
2EΛ),

Hysteresis: TK∆,e ·γ = (λEΛ, EΛ).

The normal spaces are thus given by

Pitchfork: NK∆ ·γ ≃ R{(0, 1), (0, λ)},

Hysteresis: NK∆ ·γ ≃ R{(1, 0)}.

The K∆-codimension of the first path is thus 2, while that of the second is only 1.
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(2.7) K∆-versal deformations

As with other equivalence relations, a deformation Γ : Λ×V → U of γ is said to be K∆-versal
if any deformation of γ is equivalent to one induced from Γ. Also as with other equivalence
relations (of the singularity theory type) one has the following result:

The deformation Γ of γ given by

Γ(λ, v1, . . . , vr) = γ(λ) +
∑

j

vjφj(γ)

is versal if and only if the φj span NK∆ ·γ.

In the example above, versal deformations of γ are given by

Pitchfork: Γ(λ, u1, u2) = (−λ, u1 + u2λ),

Hysteresis: Γ(λ, u) = (u,−λ).

These expressions should be compared to the versal deformations of the two bifurcation
problems given in (1.6)

(2.8) Finite determinacy

Another property of maps considered in singularity theory is finite determinacy. For K∆-
equivalence, this reads as follows.

A path γ : Λ → U is k-determined with respect to K∆-equivalence if

m
k+1
Λ Θγ ⊂ TK∆ ·γ,

where TK∆ ·γ ⊂ TK∆,e ·γ is the tangent space given by

TK∆ ·γ = tγ(mnΘn) + γ∗ Derlog0(∆).

Here Derlog0(∆) = Derlog(∆) ∩ mUΘU consists of those vector fields tangent to ∆ that
vanish at 0. Note that if G is a miniversal deformation (i.e. dimU is as small as possible)
then Derlog0(∆) = Derlog(∆), since then {0} is a stratum of ∆. The proof of this is similar
to the standard proofs of finite determinacy for R- and K-equivalence using the homotopy
method and Nakayama’s lemma, see for example [AGV].

3 Paths and bifurcation problems

To recapitulate, let g0 : Rn → Rp be a K-finite map (germ), and G : Rn × U → Rp be a
versal deformation of g0. Any path (map) γ : Λ → U , induces a deformation (or bifurcation
problem) γ∗G of g0 given by

(γ∗G)(x, λ) = G(x, γ(λ)).

Moreover, the bifurcation points of γ∗G are the points λ ∈ Λ for which γ(λ) ∈ ∆G. For this
section, we assume that all maps are (real or complex) analytic.

Since G is versal, any deformation g(x, λ) of g0 is (bifurcation) equivalent to one of the
form γ∗G for some path γ, as explained in (1.5).
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Rn × Λ
H

H
H

H
H

H
Hj

γ∗G

(idRn , γ)

?

Rp

�
�

�
�

�
�
�*

G

Rn × U

Thus, for a given organizing centre g0, we have a map

paths [Λ → U ] −→ bifurcation problems with organizing centre g0.

The precise form of this map depends, of course, on our choice of versal deformation.

(3.1) Deformations of paths and bifurcation problems
Suppose now that we deform the path γ. Let Γ : Λ × V → U be such a deformation (V is
the parameter space), so that Γ(λ, 0) = γ(λ). This then induces a deformation Γ∗G of the
bifurcation problem γ∗G by

Γ∗G : Rn × Λ × V −→ Rp

(x, λ, v) 7→ G(x,Γ(λ, v)).

(3.2) The morphism Ψγ

This correspondence from deformations of γ to deformations of γ∗G can be infinitesimalized,
to obtain a map associating to any infinitesimal deformation of γ an infinitesimal deformation
of the bifurcation problem g = γ∗G:

Ψγ : Θγ −→ Θg,

where g = γ∗G. If G(x, u) = g0(x) +
∑d

j=1 ujφj(x) then it is easy to see that

Ψγ(ξ1(λ), . . . , ξd(λ)) = ξ1(λ)φ1(x) + · · · + ξd(λ)φd(x).

The map Ψγ is EΛ-linear; in other words, it is a morphism of EΛ-modules. Note that a priori
Θg is an En,λ-module, and can therefore be considered as an EΛ-module, although as such it
is not finitely generated.

As has already been pointed out, the important geometry of a perturbation of γ is how it
meets the discriminant ∆: bifurcation points of γ∗G correspond to points of γ−1(∆). It is thus
reasonable to consider K∆-equivalence of paths γ, as an alternative to bifurcation equivalence
of bifurcation problems g. The following theorem shows that given γ and g = γ∗G, the notions
of codimension of the two coincide, and moreover Γ is a versal deformation of γ if and only
if Γ∗G is a versal deformation of g.
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(3.3) Isomorphism Theorem
Suppose g0 : Rn → Rp is an analytic K-finite map-germ (at 0), and that G : Rn×U → Rp is
a versal deformation of g0. Let γ : Λ → U be an analytic map-germ, and let g = γ∗G be the
bifurcation problem induced by γ (with organizing centre g0). The morphism Ψγ : Θγ → Θg

of EΛ-modules (defined above) induces an isomorphism

ψγ : NK∆ ·γ
≃

−→ NB·g.

(3.4) Discussion of proof
To begin with of course it is necessary to prove that the map ψ is well-defined; that is,

that Ψγ(TK∆,e ·γ) ⊂ TBe ·g.
Firstly, it is clear from the definitions that Ψγ(tγ(ΘΛ)) = t2g(ΘΛ). It therefore remains

to show that Ψγ(γ∗ Derlog(∆)) ⊂ TKrel ·g, where TKrel ·g = RT (g) is the sum of the first
two terms in the expression for TBe·g given in (1.7). One can actually show more, see [MM,
Lemma 3.2]:

γ∗ Derlog(∆) = Ψ−1
γ (TKrel ·g).

This relies heavily on the characterization of elements of Derlog(∆) as liftable vector fields
over the map πG : G−1(0) → U , as described in paragraph (2.3).

The map Ψγ thus descends to an injective map

ψγ : NK∆ ·γ−→NB·g.

The surjectivity of ψ follows from the preparation theorem. See [MM, Section 3].

(3.5) Example
Consider the organizing centre g0(x) = x3, its versal deformation G(x, u1, u2) = x3 +u1x+u2

and the pitchfork and hysteresis bifurcations (paragraphs (1.6), (2.6) and (2.7)).
Applying Ψγ to each of the K∆-versal deformations in (2.7) (i.e. substituting for Γ in G)

we get:

Pitchfork: (x, λ, u1, u2) 7→ x3 − λx+ u1 + u2λ,

Hysteresis: (x, λ, u) 7→ x3 − λ+ u.

These agree with the versal deformations G̃ of the bifurcation problems given in (1.6).

(3.6) Equivalence of path and parametrized-contact formulations
We have been concentrating on the equivalence between the unfolding theories for g and for γ.
However there is a more fundamental question that we have not addressed. Namely, whether
K∆-equivalence of paths is equivalent to bifurcation equivalence of the induced bifurcation
problems.

Suppose that γ1 and γ2 induces two bifurcation problems g1 and g2 from a versal defor-
mation G, with all maps assumed to be analytic. One can show the following.

If γ1 and γ2 are K∆-equivalent, then g1 and g2 are bifurcation equivalent.
The proof of this fact is based on the fact that a diffeomorphism of U that preserves the

discriminant ∆ of πG is liftable over πG, which is a particular case of general results of du
Plessis, Gaffney and Wilson. See for example [dPGW].

On the other hand, although it is probably true, I do not have a proof of the converse.
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4 Calculations of Derlog(∆)

There are some theoretical results giving more or less explicit generators for Derlog(∆),
where ∆ is the discriminant of a versal deformation, without calculating an equation for the
discriminant. In the case p = 1, this is due to Bruce [B], and in the general case (with n ≥ p)
to Goryunov [G]. The basic result in these cases is Looijenga’s theorem that Derlog(∆) is a
free EU -module [L], and so has dim(U) generators. (It has at least that many, otherwise one
could not obtain all vector fields away from ∆. If it had more, then there would be relations
between the generators, and the module would not be free.)

In spite of the existence of theoretical results, calculations of Derlog(∆) are more easily
done by brute force using computer algebra packages. The two most adapted to the sort of
calculations necessary are Macaulay and Singular2, though with some extra work it is possible
to adapt other packages to do this type of computation.

The calculation proceeds as follows. First calculate the (an) equation h(u) = 0 for ∆.
This is done by eliminating x from the equations G(x, u) = ∂G(x, u)/∂xj = 0. Using Grobner
bases, this can be done very efficiently (finding the Grobner bases though can use a great
deal of computer time).

To find elements of Derlog(∆), one uses the fact that a vector field

θ(u) =
d
∑

j

aj(u)
∂

∂uj

is in Derlog(∆) if and only if
d
∑

j

aj(u)
∂h

∂uj
− fh = 0

for some function f ∈ EU . The (d+ 1)-tuple

(a1, . . . , ad,−f) ∈ Ed+1
U

defines a relation between the elements
(

∂h
∂u1

, . . . , ∂h
∂ud

, h
)

. Thus relations between the partial

deriviatives of h and h itself correspond to elements of Derlog(∆); the correspondence being
given by omitting the last term (here called f). It is also possible to take advantage of the
decomposition

Derlog(∆) = EU .e ⊕ Derlog(h)

described in (2.2), by omitting the last term throughout.
Finding relations between elements of a ring (here EU ) is also easy once Grobner bases

have been calculated, and Macaulay and Singular are both purpose built for this type of task.
Some results of such calculations are listed in the table below. A column vector is identified

with a vector field in alphabetical order, so that the first row is the coefficient of ∂
∂a

the second

of ∂
∂b

and so on. The first four singularities are all corank 1, while the other two are of corank
2. Note that the first of the generators of Derlog(∆) is the Euler field, while the others are
generators of Derlog(h) (for a suitable choice of h, namely for h quasihomogeneous).

2Both Macaulay and Singular are free and can be obtained by anonymous ftp; the first from
zariski.harvard.edu, and the second from Kaiserslautern
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Generators for Derlog(∆) for organizing centres of low codimension: see text for
explanations

Type G(x, u) Generators of Derlog(∆)

A1 x2 + a a.

A2 x3 + ax + b

(

2a

3b

)

;

(

9b

−2a2

)

.

A3 x4 + ax2 + bx + c

(

2a

3b

4c

)

;

(

6b

8c − 2a2

−ab

)

,

(

48c − 4a2

−12ab

16ac − 9b2

)

.

A4 x5 + ax3 + bx2 + cx + d







2a

3b

4c

5d






;







15b

20c − 6a2

25d − 4ab

−2ac






,







40c − 6a2

50d − 17ab

8ac − 12b2

15ad − 6bc






,







50d − 2ab

−4ac − 3b2

30ad − 10bc

15bd − 8c2






.

A5 x6 + ax4 + bx3 + cx2 + dx + e









2a

3b

4c

5d

6e









;









9b

12c − 4a2

15d − 3ab

18e − 2ac

−ad









,









40c − 8a2

50d − 22ab

60e + 4ac − 15b2

10ad − 10bc

16ae − 5bd









,









75d − 6ab

90e − 10ac − 9b2

45ad − 27bc

15bd + 30ae − 20c2

27be − 10cd









,









180e − 4ac

−6bc − 10ad

120ae − 8c2
− 15bd

90be − 30cd

48ce − 25d2









.

I2,2 (x2
− y2 + ax + by + c, xy + d)







a

b

2c

2d






;







3b

−3a

4d + 2ab

−c






,







16c − 3a2

32d + ab

2ac − 24bd

6ad






,







32d + ab

−16c − 3b2

2bc + 24ad

6bd






.

II2,2 (x2 + ay + c, y2 + bx + d)







a

b

2c

2d






;







3a

−3b

2c

−2d






,







0
8d

3a2b

−8bc






,







8c

0
−8ad

3ab2






.
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5 Symmetric Bifurcations

Throughout this section we assume that H is a finite group acting linearly on Rn and Rp

and that g0 : Rn → Rp is H-equivariant. We also assume that g0 is of finite K-codimension
as usual (which is the reason we assume H is finite).

One can then choose the versal deformation G : Rn × U → Rp to be equivariant, with a
suitable action on U . The discriminant ∆G ⊂ U is then invariant under H.

If H acts on a set S, we let SH denote Fix(H;S), the subset of S consisting of all points
fixed by H.

The actions of H on Rn, Rp and U induce actions on each of the spaces Θn, Θp, and on
Θγ if γ : Λ → U is equivariant, as well as on the tangent spaces TK·g0, TBe·g, TK∆,e·γ, and
consequently on the normal spaces NB·g and NK∆·γ. The proof of Theorem 3.3 shows that
provided γ is equivariant, then the isomorphism ψγ is also H-equivariant.

Consider the situation where the H-action on Λ is trivial, so that for γ to be equivariant it
is necessary (and sufficient) that γ(Λ) ⊂ UH . If one only considers perturbations of g = γ∗G
that are equivariant, then it is natural to consider the subspace

(TBe ·g)
H = TBe ·g ∩ ΘH

g ⊂ TBe ·g,

which is isomorphic to (TK∆,e ·γ)
H .

However, it usually happens that equivariant organizing centres have high codimension,
so that dim(U) is large, and the calculations of Derlog(∆) become impractical. It is therefore
natural to ask whether it is possible to restrict to UH before calculating the normal spaces.
This comes down to the following:

Question For γ as above, are (TK∆,e ·γ)
H and TK∆H ,e ·γ isomorphic?

It is known (simple linear algebra) that (TK∆,e ·γ)
H is that part of TK∆,e ·γ obtained by

using only equivariant vector fields: (TK∆,e ·γ)
H = tγ(ΘH

Λ ) + γ∗ Derlog(∆)H . Moreover, any
element of Derlog(∆)H (i.e. any equivariant vector field tangent to ∆) restricts to a vector
field on UH tangent to ∆ ∩ UH = ∆H . Thus there is a natural map given by restriction to
UH ,

Derlog(∆)H −→ Derlog(∆H),

and the question would be answered if one knew that this map was surjective.

Similar questions arise if the action of H is not trivial, corresponding to forced symmetry
breaking bifurcation problems. Further problems arise if g0 does not have a finite dimensional
versal deformation, but it does have a finite dimensional equivariant deformation.
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