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In this thesis we develop new theoretical and numerical results for matrix poly-
nomials and polynomial eigenproblems. This includes the cases of standard and
generalized eigenproblems.

Two chapters concern quadratic eigenproblems (Mλ2 +Dλ+K)x = 0, where
M , D and K enjoy special properties that are commonly encountered in modal
analysis. We discuss this application in some detail, in particular the mathematics
behind discrete dampers. We show how the physical intuition of a damper that gets
stronger and stronger can be mathematically proved using matrix analysis. We then
develop an algorithm for quadratic eigenvalue problems with low rank damping,
which outperforms existing algorithm both in terms of speed and accuracy. The
first part of our algorithm requires the solution of a generalized eigenproblem
with semidefinite coefficient matrices. To solve this problem we develop a new
algorithm based on an algorithm proposed by Wang and Zhao [SIAM J. Matrix
Anal. Appl. 12-4 (1991), pp. 654–660]. The new algorithm computes all eigenvalues
in a backward stable and symmetry preserving manner.

The next two chapters are about equivalences of matrix polynomials. We show,
for an algebraically closed field F, that any matrix polynomial P (λ) ∈ F[λ]n×m,
n ≤ m, can be reduced to triangular form, while preserving the degree and the
finite and infinite elementary divisors. We then show that the same result holds for
real matrix polynomials if we replace “triangular” with “quasi-triangular,” that
is, block-triangular with diagonal blocks of size 1× 1 and 2× 2. The proofs are
constructive in the sense that we build up triangular and quasi-triangular matrix
polynomials starting the Smith form. In this sense we are solving structured inverse
problems. In particular, our results imply that the necessary constraints that make
list of elementary divisors admissible for a real square matrix polynomial of degree
` are also sufficient conditions. For the case of matrix polynomials with invertible
leading coefficients, we show how triangular/quasi-triangular forms, as well as
diagonal and Hessenberg forms, can be computed numerically.

Finally, we present a backward error analysis of the shift-and-invert Arnoldi
algorithm for matrices. This algorithm is also of interest to polynomial eigenprob-
lems with easily constructible monic linearizations. The analysis shows how errors
from the linear system solves and orthonormalization process affect the Arnoldi
recurrence. Residual bounds for linear systems and columnwise backward error
bounds for QR factorizations come to play, so we discuss these in some detail.
The main result is a set of backward error bounds that can be estimated cheaply.
We also use our error analysis to define a sensible condition for “breakdown,” that
is, a condition for when the Arnoldi iteration should be stopped.
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Chapter

1

Introduction

In this thesis we study matrix polynomials and polynomial eigenproblems, both

from a theoretical and an algorithmic point of view. This includes the special

cases of standard and generalized eigenproblems. With a matrix polynomial we

mean a matrix with entries in a polynomial ring F[λ]. Here F can be any field,

but we shall only be concerned with algebraically closed fields and the field of real

numbers. We may, equivalently, consider a matrix polynomial as an expression

P (λ) = A`λ
` + A`−1λ

`−1 + · · ·+ A0,

where the Aj are matrices over F. We assume that matrix polynomials written in

this notation always have nonzero leading coefficients A`. Here ` is the degree of

the matrix polynomial, and if A` = I we say that P (λ) is monic.

Much of the theory that exists for matrices over fields has been generalized to

matrix polynomials. From a practical point of view, most important is probably the

theory of eigenvalues and eigenspaces. In particular the generalizations to regular

matrix polynomials, that is, square matrix polynomials with determinants that do

not vanish identically.1 If P (λ) is regular, its finite eigenvalues are the points λ0

such that P (λ0) is singular. We further say that P (λ) has an eigenvalue at infinity

if its leading coefficient A` is singular . The set of all eigenvalues, including infinity

if A` is singular, is called the spectrum of P (λ). If λ0 is a finite eigenvalue, the

1In some of the early works on matrix polynomials, e.g., [50], the term “regular” refers to
matrix polynomials with invertible leading coefficient.
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9 Chapter 1. Introduction

null spaces of P (λ0)T and P (λ0) are the left and right eigenspaces, respectively.2

Similarly, the left and right eigenspaces associated with infinity are defined as

the null spaces of AT` and A`, respectively. As usual, a left eigenvector associated

with an eigenvalue is a nonzero vector in the corresponding left eigenspace, and

similarly a right eigenvector is one in the corresponding right eigenspace. When

there is no confusion, we use the convention to omit the prefix “right” when

referring to right eigenvectors and eigenspaces.

We remark that unlike the case of constant matrices, eigenvectors associated

with different eigenvalues are not necessarily linearly independent. For exam-

ple, [1, 0]T is an eigenvector associated with all finite eigenvalues of the matrix

polynomial [
p(λ) 1

0 1

]
, deg p(λ) > 1,

regardless of what the roots of p(λ) are.

A polynomial eigenvalue problem (PEP), or simply a polynomial eigenproblem,

is to find some or all eigenvalues, and possibly also the associated eigenvectors, of

a given matrix polynomial. We note that the standard and generalized eigenvalue

problems, Ax = λx and Ax = λBx, are the special cases obtained by setting

P (λ) = Iλ− A and P (λ) = Bλ− A, respectively. Inverse polynomial eigenvalue

problems are also of interest. These are problems where we are given a set of

eigenvalues and possible other data (such as eigenvectors, degree, etc.) and the

question is whether the given data is admissible by some matrix polynomial and

in that case, can we build one?

1.1 Differential equations

The polynomial eigenvalue problem has received a lot of attention due to its

close connection to systems of differential equations with constant coefficients.

Such equations appear frequently in various engineering applications; in particular

equations of second order, which corresponds to quadratic eigenproblems (QEPs).

We discuss one of these applications, namely modal analysis, in more detail in

chapters 3 and 4. For more applications where polynomial eigenproblems arise see

[10, 83] and the references therein. For now, we discuss the connection between

differential equations and PEPs in more general terms. Consider the following

2It is important to note the transpose in this definition. There different conventions in the
literature and sometimes, when the underlying field is C, the conjugate transpose is used instead.
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differential equation:

P

(
d

dt

)
u(t) =

(
A`

d`

dt`
+ A`−1

d`−1

dt`−1
+ · · ·+ A0

)
u(t) = f(t), (1.1)

where the Ai are complex matrices and t ∈ [0, T ]. If we assume that P (λ) is

regular with a finite eigenvalue λj and associated eigenvector xj , then it is easy to

see that u(t) = etλjxj is a solution of the homogeneous problem

P

(
d

dt

)
u(t) = 0. (1.2)

Using a canonical form for matrix polynomials called the Smith form (introduced

in Chapter 2), it can be shown that the solution space of (1.2) has dimension

deg detP (λ). This is known as Chrystal’s theorem after George Chrystal [18]. See

also [32, Theorem S1.6] or [51, p. 276] for a proof. It follows that when all finite

eigenvalues of P (λ) are semisimple, that is, their multiplicities as roots of detP (λ)

coincide with the dimension of the associated eigenspaces, it holds that the general

solution of (1.2) can be written as

uh(t) =

deg detP (λ)∑
j=1

αje
λjtxj, (1.3)

where the αj are arbitrary constants that depend on the initial conditions, the

λj are the finite (not necessarily distinct) eigenvalues and the xj are associated

eigenvectors such that those corresponding to the same eigenvalue are linearly

independent.

We now restrict our attention to differential equations of the form (1.1) with

the additional assumptions that the leading coefficient is invertible and that all

eigenvalues of P (λ) are semisimple. Since the general homogeneous solution is

given by (1.3), we only discuss how to find a particular solution. We follow the

approach taken by Lancaster [50]. It can be shown [50, pp. 60–65] that

λkP (λ)−1 =
n∑̀
j=1

λkjxjy
T
j

λ− λj
+ δk`A

−1
` , k = 0: `, (1.4)

where δk` is the Kronecker delta, the λj are the eigenvalues of P (λ) and the xj

and yj are associated right and left eigenvectors, respectively, chosen such that

yTi P
′(λj)xj = δij if λi = λj. (1.5)
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To find a particular solution up(t) of (1.1), we use (1.4) and write

up(t) = P

(
d

dt

)−1

f(t) =
n∑̀
j=1

xjy
T
j

(
d

dt
− λj

)−1

f(t). (1.6)

To give this expression a meaning we define (d/dt− λj)−1f(t) to be any function

g(t) such that (
d

dt
− λj

)
g(t) = f(t), t ∈ [0, T ].

Since we may simply verify that up(t) is a solution in the end, no justification of

this definition is necessary. By the method of integrating factor, we get that

g(t) =

∫ t

0

eλj(t−s)f(s) ds

is one such function, and one function is enough since we are only looking for a

particular solution. Substituting this expression into (1.6), yields

up(t) =
n∑̀
j=1

xjy
T
j

∫ t

0

eλj(t−s)f(s) ds . (1.7)

To see that (1.7) is a solution of (1.1), we note that (1.4) yields

n∑̀
j=1

λ` − λ`j
λ− λj

xjy
T
j = A−1

` ⇐⇒
n∑̀
j=1

(λ`−1 + λ`−2λj + · · ·+ λ`−1
j )xjy

T
j = A−1

` ,

which in turn, by comparing the coefficients, implies that

n∑̀
j=1

λkjxjy
T
j = δk(`−1)A

−1
` , k = 0: `− 1.

If we bear this in mind while differentiating (1.7), it is easy to see that

dk

dtk
up(t) =

n∑̀
j=1

λkjxjy
T
j

∫ t

0

eλj(t−s)f(s) ds+δk`A
−1
` f(t).

With these expressions for the derivatives, it is straightforward to verify that (1.7)

is indeed a solution of (1.1).

Now, suppose the right hand side of (1.1) is f(t) = f0e
θt for some θ outside

the spectrum of P (λ) . This choice is interesting in view of the superposition
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Figure 1.1: Plot of real part of the function ψj(t) in (1.9) for θ = 5i and λj =
−0.1 + 5.1i.

principle, since many practical right hand sides can be expanded in Fourier series

and hence are sums of such functions. Substituting f(t) = f0e
θt into (1.7) yields

up(t) =
n∑̀
j=1

xjy
T
j f0

eθt − eλjt

θ − λj
. (1.8)

The quotients in this expression are important: when θ is sufficiently close to λj

and t is not too large, we get

ψj(t) :=
eθt − eλjt

θ − λj
= (t+O((θ − λj)t2))eλjt ≈ teλjt. (1.9)

If λj has small real part and a moderate to large imaginary part, we see that

Re(ψj(t)) oscillates with increasing amplitude (Figure 1.1). This is the reason

behind the phenomenon called resonance, but it is not the full story. It may

happen that yTj f0 = 0, in which case ψj(t) has no influence on the solution. We

remark that the left and right eigenvectors yj and xj are normalized according

to (1.5), so their norms depend on λj. Thus ‖xj‖|yTj f0||ψj(t)| may be small even

if ψj(t) is huge. It is also possible to have arbitrarily large terms xjy
T
j ψj(t) that

cancel each other out when forming the sum (1.8). We will come back to this in

Chapter 3.

Finally, we mention that more general differential equations of the form (1.1)
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are also strongly connected to the underlying matrix polynomials. In Chapter 2 we

will briefly discuss the case when the leading coefficient is invertible and there is no

semisimplicity constraint on the eigenvalues. For other types of matrix polynomials

it gets more complicated. We refer the interested reader to [32, Chapter 8] for the

case of regular matrix polynomials with singular leading coefficients, and to [27,

Chapter VII, § 7],[16] and [48], for the case of non-regular matrix polynomials.

1.2 Thesis outline

In Chapter 2 we introduce definitions and results, most of which are not new, that

are of relevance to more than one chapter.

Chapter 3 concerns modal analysis of vibrating systems with discrete dampers.

We discuss this application in some detail and connect the physics with the

underlying mathematical quantities. We then show that the physical intuition of

a damper that gets stronger and stronger can be proved using matrix analysis. In

essence, it is shown that a structure with only very strong dampers appears to be

practically undamped. We also prove a real symmetric version of (1.4), and use

this formula to study particular solutions of the forced response problem.

In Chapter 4 we develop an algorithm for quadratic eigenproblems with damping

matrices of low rank. Such QEPs appear in modal analysis of structures with

discrete dampers. To this end, we first develop a new algorithm, based on an

algorithm proposed by Wang and Zhao [89], that solves the associated undamped

problem. The new algorithm is, to the author’s knowledge, the first one that can

find all eigenvalues of a regular pencil A−Bλ, where both A and B are Hermitian

and semidefinite, in a backward stable and symmetry preserving manner. That is,

the algorithm computes two diagonal nonnegative matrices D1 and D2, such that

D1 −D2λ is congruent to a pencil (A+ ∆A)− (B + ∆B)λ, where ∆A and ∆B

are Hermitian and small in norm with respect to A and B, respectively. We then

use our new algorithm in combination with an efficient Ehrlich-Aberth iteration.

Finally, if the eigenvectors are desired, we compute these using an inverse iteration

that is based on the Takagi factorization for complex symmetric matrices. Both the

Ehrlich-Aberth iteration and the inverse iteration work exclusively with vectors

and tall skinny matrices and contribute only with lower order terms to the total

flop count. We show with numerical experiments that the proposed algorithm is

both fast and accurate.

In Chapter 5 we discuss triangularization of matrix polynomials. Any square

matrix over an algebraically closed field is similar to a triangular matrix (its Jordan
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form, for example). If the field is the set of real numbers, then the result still

holds if we replace triangular by quasi-triangular. Here the prefix quasi means

that the diagonal blocks are of size 1× 1 and 2× 2. We generalize these results

to matrix polynomials. More precisely, we show that for any matrix polynomial

of degree ` in F[λ]n×m, where n ≤ m and F is algebraically closed, there is a

triangular/trapezoidal matrix polynomial of the same size and degree, and with the

same eigenstructure (defined in Section 2.1). If F = R we show that the same result

holds if we replace triangular/trapezoidal by quasi-triangular/quasi-trapezoidal.

Our proofs are constructive in the sense that we build up matrix polynomials

starting from a list of invariants called elementary divisors (defined in Section 2.1).

This means that we solve structured inverse eigenvalue problems. In particular,

our results imply that the necessary conditions for a list of elementary divisors to

be admissible for a real square matrix polynomial of degree `, are also sufficient

conditions. Finally, we show that any regular Hermitian matrix polynomial (that

is, one with Hermitian coefficient matrices) has the same eigenstructure as some

real matrix polynomial of the same size and degree. We conjecture that the other

direction is true too. That is, that each regular real matrix polynomial has the

same eigenstructure as some Hermitian matrix polynomial of the same size and

degree.

In Chapter 6 we derive algorithms for reducing a complex matrix polynomial

with nonsingular leading coefficient to triangular, diagonal and Hessenberg form,

while preserving the eigenstructure, the size and the degree. If the matrix poly-

nomial is real, we describe how to obtain quasi-diagonal and quasi-triangular

forms, using similar techniques in real arithmetic. For almost all square matrix

polynomials, it is shown that this is not much harder than computing the cor-

responding reduced from of any monic linearization (defined in Section 2.4). As

part of the theory, we give a rigorous algebraic argument, based on the celebrated

Abel-Ruffini theorem, for why we cannot, in general, find the eigenvalues of a

matrix by applying a finite number of Givens rotations or Householder reflectors

that eliminates matrix entries in the usual manner. Even though this end result is

well-known in the numerical linear algebra community, it is often presented with

reference to a weaker statement of the Abel-Ruffini theorem which is not strong

enough to draw the desired conclusion.

Chapter 7 is about the shift-and-invert Arnoldi algorithm for constant matrices.

This is also of interest to PEPs with easily constructible monic linearizations.

We study the algorithm via a backward error analysis and show how errors from

the linear system solves and the orthonormalization process affect the Arnoldi
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recurrence. It turns out that residual bounds for linear systems and columnwise

backward error bounds for QR factorizations are important, so we discuss these

in some detail. The main result is a collection of backward error bounds for

various versions of the algorithm, including the Hermitian shift-and-invert Lanczos

algorithm with full orthogonalization. Finally, we use our error analysis to define

a sensible condition for “breakdown,” that is, when the small Hessenberg matrix

that is computed in the algorithm should be considered to be reduced and the

iteration should stop.



Chapter

2

Background material

In this chapter we collect definitions and results that are of relevance to several

chapters. With the exception of Corollary 2.3.3, all results are well-known and

basic to the theory of matrix polynomials. We remark that some of the terms that

were defined for regular matrix polynomials in the introduction are redefined in

this chapter, but for more general matrix polynomials. It is left to the reader to

verify that these new definitions are valid generalizations of the old ones.

2.1 Invariants of matrix polynomials

Let F[λ] be a polynomial ring. A square matrix U(λ) with elements in F[λ] is

called unimodular if detU(λ) ∈ F \ {0}. From the formula

U(λ)−1 =
adj U(λ)

detU(λ)

we see that any unimodular matrix has an inverse that itself is a matrix polynomial.

Further, from detU(λ)−1 detU(λ) = 1 we see that also U(λ)−1 must be unimodular.

It can be shown that any n × n unimodular matrix is a product of elementary

matrix polynomials (this follows from the proof of the Smith form, introduced

below), where an elementary matrix polynomial is defined as one that satisfies

(a), (b) or (c) below, for some i, j ∈ {1, 2, . . . , n}.

(a) I − eieTi − ejeTj + eie
T
j + eje

T
i .

16
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(b) I + (α− 1)eie
T
i for some α ∈ F \ {0}.

(c) I + p(λ)eie
T
j for some i 6= j.

Here ei denotes the ith column of the identity matrix. An application, from left or

right, of an elementary matrix polynomial is called an elementary transformation.

Note that if we apply the elementary transformation above from the left, then (a)

swaps rows i and j, (b) multiplies row i by α, and (c) adds row j times p(λ) to row

i. Obviously, the same holds for the columns instead of rows if the transformations

are applied from the right.

If P (λ) ∈ F[λ]m×n is any matrix polynomial, and U(λ) ∈ F[λ]m×m and

V (λ) ∈ F[λ]n×n are unimodular, then U(λ)P (λ)V (λ) is said to be a unimod-

ular transformation of P (λ). Unimodular transformations form an equivalence

relation ∼ over the set F[λ]m×n and we say that P (λ) and Q(λ) are equivalent, and

write P (λ) ∼ Q(λ), if there exists a unimodular transformation that maps P (λ) to

Q(λ). If P (λ) can be transformed into Q(λ) using constant nonsingular matrices,

then we say that P (λ) is strictly equivalent to Q(λ). Since unimodular matrices

have nonzero determinants independent of λ it follows immediately that equivalent

regular matrix polynomials have the same finite eigenvalues, but this is not the

full story. Unimodular matrices preserve much more information. This leads us

to the Smith form, a canonical form for matrix polynomials with respect to the

equivalence relation defined by unimodular transformations. Any P (λ) ∈ F[λ]n×m

is equivalent to a unique diagonal matrix polynomial

D(λ) =


d1(λ)

. . . 0r,m−r

dr(λ)

0n−r,r 0n−r,m−r

 ∼ P (λ), (2.1)

where r =: rankP (λ) and d1(λ)| · · · |dr(λ) are monic scalar polynomials [26,

Chapter VI, §3]. Here, “|” stands for divisibility, thus dj(λ)|dj+1(λ) means that

dj(λ) is a divisor of dj+1(λ). The diagonal matrix D(λ) in (2.1) is called the Smith

form of P (λ) and its nonzero diagonal entries dj(λ) are called the invariant factors

of P (λ). Write

d1(λ) = φ1(λ)m11 · · ·φs(λ)m1s ,

d2(λ) = φ1(λ)m21 · · ·φs(λ)m2s ,
...

...

dr(λ) = φ1(λ)mr1 · · ·φs(λ)mrs ,

(2.2)
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where the φi(λ) are distinct monic polynomials irreducible over F[λ], and

0 ≤ m1j ≤ m2j ≤ · · · ≤ mrj, j = 1: s, (2.3)

are nonnegative integers. The factors φj(λ)mij with mij > 0 are the finite ele-

mentary divisors of P (λ) with partial multiplicity mij. Notice that when F is

algebraically closed, φj(λ) is linear and when F = R, φj(λ) is either linear or

quadratic.

We denote by F the algebraic closure of F and define a finite eigenvalue of a

matrix polynomial P (λ) with rank r as any scalar λ0 ∈ F such that rankP (λ0) < r,

or equivalently, a root of some finite elementary divisors φj(λ) in (2.2). The

geometric multiplicity of λ0 is defined as the number of nonzero mij and the

algebraic multiplicity of λ0 as
∑r

i=1mij. Note that the geometric multiplicity

is bounded from above by r. In particular, all eigenvalues of an n × n matrix

polynomials have geometric multiplicity at most n.

An n× n matrix polynomial P (λ) is said to be regular if it is of full rank, that

is, if rankP (λ) = n. All other matrix polynomials are said to be singular. This

includes all cases of non-square matrix polynomials.

The elementary divisors at infinity of the matrix polynomial

P (λ) = A`λ
` + A`−1λ

`−1 + · · ·+ A0 (2.4)

are defined as the elementary divisors of rev(P ) at 0, where

rev(P ) := λ`P
(
λ−1
)

= A0λ
` + A1λ

`−1 + · · ·+ A`

is the reversal of P (λ). We omit the notation “(λ)” when referring to the reversal

of P (λ)—unless we evaluate it at some point. If P (λ) has elementary divisors at

infinity, then we say that P (λ) has eigenvalues at infinity. The associated geometric

and algebraic multiplicities are defined as those of zero as an eigenvalue of rev(P ).

We refer to the set of all elementary divisors of P (λ), that is both the finite ones

and those at infinity, as the eigenstructure of P (λ).

For a regular P (λ) ∈ F[λ]n×n of degree `, the Smith form of P (λ) provides the

algebraic multiplicity of the eigenvalues at infinity via the degree deficiency in

detP (λ), that is, `n−
∑r

j=1 deg dj(λ). For singular polynomials, the Smith form

does not detect the presence of elementary divisors at infinity but if rankP (λ) =

r > rank rev(P )(0) then P (λ) has elementary divisors at infinity.
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We remark that for regular matrix polynomials P (λ), the geometric multiplicity

of an eigenvalue λ0 coincides with the nullity of P (λ0) if λ0 is finite, and the nullity

of the leading coefficient otherwise. In other words, the geometric multiplicity of

an eigenvalue is the dimension of the corresponding eigenspace.

For any λ0 ∈ F, the invariant factors di of P (λ) can be factored over F[λ] as

di(λ) = (λ− λ0)αipi, αi ≥ 0, pi(λ0) 6= 0.

The sequence of exponents α1, α2, . . . , αr with 0 ≤ α1 ≤ · · · ≤ αr is called the

partial multiplicity sequence of P (λ) at λ0 and is denoted by

J (P, λ0) = (α1, α2, . . . , αr).

This sequence is usually all zeros unless λ0 is an eigenvalue of P (λ). The partial

multiplicity sequence for λ0 =∞ is defined to be

J (P,∞) = J (rev(P ), 0).

Let (α1, α2, . . . , αr) be the partial multiplicity sequence associated with an eigen-

value λ0. We say that λ0 is simple if
∑r

i=1 αi = 1, semisimple if maxαi = 1 and

defective if maxαi > 1.

Since equivalent matrix polynomials have the same Smith form, it follows that

a matrix polynomial P1(λ) ∈ F[λ]n×m is equivalent to P2(λ) ∈ F[λ]n×m if and

only J (P1, λ0) = J (P2, λ0) for any λ0 ∈ F. Moreover, P1(λ) is said to be strongly

equivalent to P2(λ) if it is equivalent to P2(λ) and J (P1,∞) = J (P2,∞).

The following example shows that unimodular transformations do not neces-

sarily preserve the partial multiplicities of infinite eigenvalues, or, in other words,

that strong equivalence is indeed a stronger property than “plain” equivalence.

Example 2.1.1. The regular matrix polynomial diag(1, 1, λ) has one finite ele-

mentary divisor at zero and two linear elementary divisors at infinity. Multiplying

P (λ) from the left by the elementary matrix polynomial I3 + λe1e
T
2 , where ei

denotes the ith column of the identity matrix, yields

P̃ (λ) =

 1 λ 0

0 1 0

0 0 1

P (λ) =

 1 λ 0

0 1 0

0 0 λ

 ,
which is easily seen to have one finite elementary divisor at zero and one quadratic
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elementary divisor at infinity with partial multiplicity two. Hence P (λ) and P̃ (λ)

are equivalent but not strongly equivalent. N

Finally, we note that strict equivalence implies strong equivalence. The reverse,

however, is not true, so strict equivalence is strictly stronger than strong equivalence.

For example, a quadratic matrix polynomial in C[λ]n×n is in general not strictly

equivalent to a triangular matrix polynomial. An argument for this is given in the

introduction of Chapter 6. However, we will show in Chapter 5 that any matrix

polynomial in C[λ]n×n is strongly equivalent to a triangular matrix polynomial.

2.2 Möbius transformations

The Möbius transformation is a powerful tool when dealing with infinite eigenvalues.

To any nonsingular matrix A =
[
a
c
b
d

]
∈ F2×2 is associated a Möbius function

mA : F ∪ {∞} → F ∪ {∞} of the form

mA(z) =
az + b

cz + d
, ad− bc 6= 0,

where

mA(∞) =

{
a/c if c 6= 0,

∞ if c = 0,
mA(−d/c) =∞ if c 6= 0.

Let P (λ) =
∑`

j=0 λ
jAj ∈ F[λ]n×m with A` 6= 0, and let A =

[
a
c
b
d

]
∈ F2×2 be

nonsingular. Then the Möbius transform of P (λ) with respect to A is the n×m
matrix polynomial MA(P ) defined by

MA(P ) = (cλ+ d)`P
(
mA(λ)

)
=
∑̀
j=0

Aj(aλ+ b)j(cλ+ d)`−j. (2.5)

As with the reversal, we omit “(λ)” when denoting a non-evaluated Möbius

transform of a matrix polynomial. It follows from (2.5) that MI(P ) = P (λ) and

that the reversal of P (λ) is the Möbius transform of P (λ) with respect to
[

0
1

1
0

]
.

We are interested in Möbius transformations due to the property stated in the

next theorem. A proof can be found in [57] and [91].

Theorem 2.2.1. Let P (λ) ∈ F[λ]n×m and let A ∈ F2×2 be nonsingular such

that c 6= 0 and P (a/c) 6= 0. Then J
(
MA(P ),m−1

A (λ0)
)

= J (P, λ0) for any

λ0 ∈ F ∪ {∞}.

In particular, Theorem 2.2.1 allows us to carry over many results for matrix
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polynomials with invertible leading coefficient to the larger class of regular matrix

polynomials. Corollary 2.3.3 is an example of this usage.

Finally, we remark that Möbius transformations leave eigenvectors invariant.

To see this, let (λ0, x) be an eigenpair of P (λ). From (2.5), it follows

MA(P )(m−1
A (λ0))x = (cλ+ d)`P (λ0)x = 0,

so (m−1
A (λ0), x) is an eigenpair of MA(P ).

2.3 Defective eigenvalues

If P (λ) is a regular matrix polynomial, its left and right eigenvectors can be used

to determine whether or not an eigenvalue is defective. For constant matrices, this

follows from the Jordan canonical form: if x and y are right and left eigenvectors,

respectively, corresponding to the same Jordan block, then yTx = 0 if and only

if that Jordan block is nontrivial. Furthermore, if x and y are right and left

eigenvectors corresponding to different Jordan blocks, then yTx = 0. Hence, an

eigenvalue is defective if and only if there exists an associated right eigenvector

x such that yTx = 0 for all left eigenvectors y. This result can be generalized to

matrix polynomials with invertible leading coefficient.

Theorem 2.3.1 (Lancaster [50, p. 65]). Let P (λ) be a matrix polynomial with

invertible leading coefficient. If λ0 is an eigenvalue of P (λ), then λ0 is defective if

and only if there exists an associated right eigenvector x such that yTP ′(λ0)x = 0

for all left eigenvectors y.

Remark 2.3.2. From the proof of Theorem 2.3.1, it follows that x comes from

an arbitrary Jordan decomposition of an associated real linearization (defined in

Section 2.4). For real eigenvalues of real matrix polynomials, we may choose a real

associated Jordan chain and hence assume that x is real.

The assumption that the leading coefficient is invertible may be too strong. A

way to get around this is to employ a Möbius transformation. Let λ0 denote an

arbitrary (possibly infinite) eigenvalue of a regular n× n matrix polynomial P (λ),

and let (α1, α2, . . . , αn) be its partial multiplicity sequence. If

m(λ) =
aλ+ b

cλ+ d
.

is an invertible Möbius function, then Q(λ) := (cλ+ d)degPP (m(λ)) has the same
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eigenvectors as P (λ) and m−1(λ0) is an eigenvalue of Q(λ) with partial multiplicity

sequence (α1, α2, . . . , αn). Suppose now that σ is not an eigenvalue of P (λ). Then

the choice m(λ) = 1/λ + σ implies that Q(λ) has invertible leading coefficient.

Since m−1(λ) = 1/(λ− σ) we arrive at the following corollary.

Corollary 2.3.3. Let P (λ) be a regular matrix polynomial and assume that σ is

not an eigenvalue of P (λ). Define Q(λ) = λdegPP (1/λ+σ). If λ0 is an eigenvalue

of P (λ) then λ0 is defective if and only if there exists an associated eigenvector x

such that yTQ′(1/(λ0 − σ))x = 0 for all left eigenvectors y.

From Remark 2.3.2, it follows that x in Corollary 2.3.3 may be chosen to be

real if P (λ), λ0 and σ are real.

2.4 Linearizations

Let P (λ) be an n × n matrix polynomial of degree `. A pencil Aλ + B of size

n`× n` is said to be a linearization of P (λ) if [32, Section 7.2]

Aλ+B ∼
[
P (λ)

I(n−1)`

]
.

From the Smith form it follows that any linearization of P (λ) has same finite

elementary divisors as P (λ), counting the partial multiplicities. The elementary

divisors at infinity, however, are not necessarily preserved (if they are, the lineariza-

tion is said to be strong). However, if P (λ) has an nonsingular leading coefficient,

so there are no infinite eigenvalues, then any linearization also has nonsingular

leading coefficient. This follows from the equalities

deg det (Aλ+B) = deg detP (λ) = n`.

In this case, the Jordan form J of A−1B is said to be the Jordan form of the

matrix polynomial P (λ). When the Jordan form exists, it carries exactly the same

information as the Smith form. In fact, it is easy to construct the Smith form from

the Jordan form and vice versa. This follows from the following two equivalences.

• Each Jordan block yields an elementary divisor:

I`λ−


λ0 1

λ0
. . .
. . . 1

λ0

 ∼
[

(λ− λ0)`

I`−1

]
. (2.6)
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This is easily shown using elementary transformation.

• If gcd(p(λ), q(λ)) = 1 then, by Bézout’s identity [25, Theorem 46.9], there

exist polynomials s(λ) and t(λ) such that p(λ)s(λ) + q(λ)t(λ) = 1. We have[
p(λ) 0

0 q(λ)

]
∼
[
p(λ) p(λ)s(λ) + q(λ)t(λ)

0 q(λ)

]
∼
[
p(λ)q(λ) 0

0 1

]
.

Note that the partial multiplicities are the sizes of the Jordan blocks. If P (λ) is

regular, but has eigenvalues at infinity, then MA(P ) has only finite eigenvalues

for any nonsingular A =
[
a
c
b
d

]
such that −d/c is not an eigenvalue of P (λ). Thus

the partial multiplicities of P (λ) can be identified with the sizes of the associated

Jordan blocks of MA(P ).

Now, suppose P (λ) in (2.4) is regular. Since any linearization of P (λ) shares at

least its finite eigenstructure with P (λ), one way to compute the finite eigenvalues

of P (λ) is to pick a linearization of P (λ) and solve the associated generalized

eigenvalue problem. If we chose the linearization wisely, we can also obtain the

eigenvectors in this manner. Fortunately, good linearizations are easily constructed

using the coefficient matrices of P (λ) as building blocks. It is, for instance, easy

to see that

C(λ) =


I

. . .

I

A`

λ+


−I

. . .

−I
A0 A1 · · · A`−1

 (2.7)

is a linearization of P (λ). Further, (λ0, x0) is an eigenpair of P (λ) if and only

if [xT0 λ0x
T
0 · · · λ`−1

0 xT0 ]T is an eigenvector of C(λ). Linearizations like (2.7) are

not only valuable for numerical computation, but are also of theoretical interest.

For example, as we will see in Chapter 3, it allows us to carry over eigenvalue

perturbations result from standard matrix theory to the case of matrix polynomials.

If we take the transpose of (2.7) on the block level, we get the left companion

linearization 
I

. . .

I

A`

λ+


A0

−I A1
. . .

...

−I A`−1

 , (2.8)
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which plays an important role in Chapter 6. The left companion linearization can

also be used to write down the solution to the differential equation (1.1) when

the leading coefficient A` is invertible. In this case we can rewrite the equation as

A−1
` P

(
d

dt

)
u(t) = A−1

` f(t), t ∈ [0, T ],

where A−1
` P (λ) is monic. If CL is the left companion matrix of A−1

` P (λ), that is,

the constant part of the associated left companion linearization, then it can be

shown that the general solution of (1.1) is given by

u(t) = PetCLx0 + P

∫ t

0

e(t−s)CLRTA−1
` f(s)ds, (2.9)

where P = [I 0 0 · · · 0] andR = [0 0 · · · 0 I], and x0 is arbitrary [32, Theorem 1.5].

In (2.9), the first and second term correspond to the homogeneous and particular

solution, respectively.

2.5 Floating point arithmetic

The set F of floating point numbers with base β ∈ N, precision t ∈ N and exponent

range [emin, emax] is defined as the set of all real numbers ±βe × .d1d2 . . . dt, where

the di are integers such that 0 ≤ di ≤ β − 1, and e is an integer in the interval

[emin, emax]. We define the associated machine precision or unit roundoff to be

the constant u = 1
2
β1−t. Define F∞ to be the floating point set with same base

and precision as F, but having (−∞,∞) as its exponent range, and consider a

rounding function fl : R→ F∞ that maps any real number to a closest number in

F∞. For x ∈ R, we say that fl(x) overflows if |fl(x)| > maxf∈F |f | and underflows if

|fl(x)| < minf∈F |f |. In the absence of overflow and underflow, the standard model

for arithmetic with two floating point numbers a, b ∈ F is that

|fl(a ◦ b)− (a ◦ b)| ≤ u|a ◦ b|, (2.10)

where ◦ can be any of the four operations +, −, × and ÷. Each of these floating

point operations is called a flop.

In addition to (2.10), it is common to assume the following error bound for

the square root of a nonnegative number a ∈ F

|fl(
√
a)−

√
a| ≤ u

√
a. (2.11)
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Unless stated otherwise, all numerical experiments shown in this thesis have

been carried out in IEEE 754 double precision [42]. This floating point standard

is defined with base β = 2, precision t = 53 and range [emin, emax] = [−1022, 1023],

and guarantees that (2.10) is satisfied, as long as overflow or underflow does not

occur, as well as (2.11). Note that the associated unit roundoff is 2−53 ≈ 10−16.



Chapter

3

Strongly damped

quadratic matrix

polynomials

3.1 Introduction

A way to prevent a structure from vibrating violently is to incorporate viscous

dampers into the design. A viscous damper is a device that resists motion by

producing a force proportional to the relative velocity of its ends raised to a power

α. In this chapter we consider linear damping, which corresponds to dampers

with α = 1. This value of α is the default for certain product lines of seismic

dampers [1]. The resisting force produced by a viscous damper arises when fluid,

trapped in a cylinder, is forced through small holes (see Figure 3.1). By adjusting

the size of these holes, we can make the damper stronger. But stronger is not

necessarily better: if a damper is too strong, it resembles a rigid component and

hence has little purpose. This suggests that a structure with only very strong

dampers should be quite similar to a structure without dampers. The goal of

Figure 3.1: A model of a viscous damper. The larger cylinder is filled with a
fluid which is forced through holes in the piston head as the piston rod moves
horizontally. This causes friction and energy is dissipated and released as heat.

26
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this chapter is to investigate this phenomenon more rigorously for discretized

structures. We will do this by studying the eigenvalues and eigenspaces of a related

quadratic matrix polynomial.

Consider a finite element model of a structure with r viscous dampers. If the

model vibrates freely (that is, only due to initial conditions), the displacements of

its nodes are given by the solutions to the equations of motion:(
M

d2

dt2
+ sD

d

dt
+K

)
u(t) = 0. (3.1)

Here M , sD and K are the mass matrix, damping matrix and stiffness matrix,

respectively. We assume these matrices are n× n, real and symmetric positive

semidefinite, and further that M and K are strictly positive definite. We also

assume that each damper contributes to the damping matrix with a rank one

term, so rankD = r and D = RRT for some real n× r matrix R. If ‖D‖ = 1, say,

the parameter s determines the strength of the dampers, so larger s corresponds

to viscous dampers with smaller holes, and s = 0 yields an undamped system.

We find the solutions to (3.1) by solving the quadratic eigenproblem

Ps(λ)x = 0, s ≥ 0, (3.2)

where

Ps(λ) := Mλ2 + sDλ+K. (3.3)

The spectrum of Ps(λ) lies in the left half plane and is symmetric with respect

to the real axis. Further, if (−γ + iω, x) is an eigenpair of Ps(λ), where γ, ω ∈ R,

and x is real if ω = 0, then

u(t) = e−γt(cos(tω)Re(x)− sin(tω)Im(x)) (3.4)

is a real solution to (3.1) and is called a mode.1 We see that γ and ω correspond to

damping and frequency, respectively. The solution (3.4) describes how the model

switches between two configurations, given by Re(x) and Im(x), as it vibrates. If

x = veiθ for some v ∈ Rn and θ ∈ R, then

u(t) = e−γt(cos(tω) cos(θ)− sin(tω) sin(θ))v = e−γt cos(tω + θ)v,

and we see that these two configurations must coincide and that all nodes in the

1The term “mode” is ambiguous and is sometimes, although not in this thesis, used to refer
to an eigenvector.
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model vibrate in phase. Now, if s = 0, it is well known that all eigenvalues are

nonzero and purely imaginary, and that all eigenspaces have real bases and are

pairwise M -orthogonal [50, Section 7.3]. In particular, all modes of an undamped

model are undamped and those modes that correspond to simple eigenvalues are

such that all nodes in the model vibrate in phase. We will see in Lemma 3.3.4

that this cannot be the case when damping is present.

To see the similarities between strongly damped structures and undamped

ones, we will prove that the eigenvalues of Ps(λ) approach nonzero points on

the imaginary axis as s → ∞, with the exception of 2r real eigenvalues which

correspond to overdamped modes (that is, non-oscillating modes). This implies that

the considered model has n−r practically undamped modes for large enough s. For

the eigenspaces of Ps(λ) as s→∞, we will show the following. If two eigenvalues

converge to distinct points on the imaginary axis, that are not complex conjugates,

then the corresponding eigenspaces become more and more M -orthogonal in terms

of the principal angles (defined in Section 3.2). Further, we will prove that the

span of all eigenvectors associated with eigenvalues converging to a given point has

an M -orthonormal basis that becomes more and more real in the sense that the

norms of the imaginary parts go to zero. In particular, eigenvalues converging to

points to which no other eigenvalue converges, are, for large enough s, associated

with almost real eigenvectors. This corresponds to the case of simple eigenvalues

for the undamped problem, and from (3.4) we see that the associated modes are

such that all nodes in the model vibrate essentially in phase.

The outline of the chapter is as follows. In Section 3.2 we introduce the notion of

principal angles and establish two results, Proposition 3.2.4 and Proposition 3.2.5,

which are needed for Section 3.4. In Section 3.3, we study the eigenvalues of Ps(λ)

as s→∞, and prove an eigenvalue location result which extends some early work

by Lancaster [50]. In Section 3.4 we study the eigenspaces of Ps(λ) as s → ∞.

Finally, in Section 3.5, we discuss the forced response problem. That is, when

we add a nonzero right hand side to (3.1). We also briefly discuss the case when

Ps(λ) has a nearly defective eigenvalue. Here “nearly defective” is with respect to

the damping parameter s and means that Ps+∆s(λ) has a defective eigenvalue for

some small ∆s.

3.2 Preliminaries

In what follows, 〈·, ·〉 denotes an arbitrary positive definite inner product on

Cn and ‖ · ‖ denotes the induced norm. Further, for a subspace X we define
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S(X ) = {x : x ∈ X , ‖x‖ = 1}.
The angle between two nonzero vectors u and v is defined as

](u, v) = arccos

(
|〈u, v〉|
‖u‖‖v‖

)
.

To generalize the concept of angles to subspaces the principal angles (or canonical

angles) are introduced. Given two subspaces U and V, such that p = dimU ≤
dimV = q, there are p principal angles

θ1(U ,V) ≤ θ2(U ,V) ≤ · · · ≤ θp(U ,V),

which all lie in [0, π/2]. For convenience, we shall with θmax(U ,V) refer to θp(U ,V).

The first principal angle is defined as

θ1(U ,V) = min{ ](u, v) : u ∈ S(U), v ∈ S(V)} = ](u1, v1),

where u1 and v1 are some minimizing vectors. The remaining angles are then

defined recursively by

θi(U ,V) = min{ ](u, v) : u ∈ S(U), v ∈ S(V),

〈u, uj〉 = 〈v, vj〉 = 0, j = 1: i− 1}

= ](ui, vi),

where ui and vi are minimizing vectors. It is clear from the definition that θi(U ,V) =

θi(V ,U) for i = 1: p. The vectors u1, u2, . . . , up and v1, v2, . . . , vp are obviously not

unique but the principal angles are. This is easily seen from the next theorem,

which is due to Björck and Golub [13]. The proof in [13] is for the standard inner

product, but it can easily be generalized to an arbitrary inner product. A proof is

provided in Appendix A.

Theorem 3.2.1. Suppose the inner product 〈·, ·〉 corresponds to a Hermitian

positive definite matrix A, so 〈x, y〉 = xHAy for any vectors x and y. If the

columns of U and V form A-orthonormal bases for U and V, respectively, then

θi(U ,V) = arccos(σi),

where σi is the ith largest singular value of UHAV .

When dimU = dimV , it is well-known (see e.g., [73, p. 249] or [76]) that the
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largest principal angle is given by

θmax(U ,V) = max
u∈S(U)

min
v∈S(V)

](u, v). (3.5)

See Appendix A for a proof.

We note that U and V are orthogonal if and only if θ1(U ,V) = π/2, and that

U = V if and only if θmax(U ,V) = 0 and dimU = dimV .

In the following lemmas and propositions the calligraphic notation X (s) refers

to a subspace which depends on the parameter s ≥ 0. Our first lemma shows

that if u1 + u2 is a unit vector, where u1 and u2 are almost orthogonal, then

‖u1‖+ ‖u2‖ ≈ 1.

Lemma 3.2.2. Let ε ∈ (0, 1) and assume that

lim
s→∞

θ1(U1(s),U2(s)) = π/2.

For sufficiently large s, ‖u1 + u2‖ = 1, where u1 ∈ U1(s) and u2 ∈ U2(s), implies

that

1/(1 + ε) < ‖u1‖2 + ‖u2‖2 < 1/(1− ε).

Proof. The limit condition of the lemma implies that |〈u1, u2〉| < ‖u1‖‖u2‖ε for

large enough s. We have

|‖u1‖2 + ‖u2‖2 − 1| ≤ 2|〈u1, u2〉| < 2ε‖u1‖‖u2‖ ≤ (‖u1‖2 + ‖u2‖2)ε,

from which the lemma follows.

We now use Lemma 3.2.2 to show that if a subspace V(s) is almost orthogonal

to two subspaces U1(s) and U2(s), which themselves are almost orthogonal to each

other, then V(s) is almost orthogonal to their span. More formally, we have the

following lemma.

Lemma 3.2.3. Let U(s) = span{U1(s),U2(s)}. If

lim
s→∞

θ1(U1(s),U2(s)) = lim
s→∞

θ1(U1(s),V(s)) = lim
s→∞

θ1(U2(s),V(s)) = π/2,

then

lim
s→∞

θ1(U(s),V(s)) = π/2.
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Proof. Let u ∈ U(s) and v ∈ V(s) be any vectors such that ‖u‖ = ‖v‖ = 1. We

have u = u1 + u2 where u1 ∈ U1(s) and u2 ∈ U2(s) and

|〈u, v〉| = |〈u1, v〉+ 〈u2, v〉| ≤ |〈u1, v〉|+ |〈u2, v〉|. (3.6)

By Lemma 3.2.2 the norms of u1 and u2 are bounded when s is sufficiently large.

Hence the right hand side of (3.6) can be forced to be arbitrarily small by taking

s large enough.

We can now state our first proposition of this chapter. The proposition implies

that if Cn is decomposed into the span of p almost orthogonal subspaces, then

any subspace that is almost orthogonal to all but one of these subspaces must be

close to the remaining subspace in terms of the principal angles.

Proposition 3.2.4. Suppose V(s) ⊆ span{U1(s),U2(s) . . . ,Up(s)} and dimUk(s) =

dimV(s) for a fixed k ∈ {1, 2, . . . , p}. If for any i 6= k and any j 6= `, it holds that

lim
s→∞

θ1(V(s),Ui(s)) = lim
s→∞

θ1(Uj(s),U`(s)) = π/2,

then

lim
s→∞

θmax(V(s),Uk(s)) = 0.

Proof. Let W(s) = span{Ui(s) : i 6= k}. Lemma 3.2.3 implies

lim
s→∞

θ1(V(s),W(s)) = lim
s→∞

θ1(Uk(s),W(s)) = π/2.

Pick N and ε ∈ (0, 1) such that for any s > N it holds that

max
uk∈Uk(s)
w∈W(s)

|〈uk, w〉|
‖uk‖‖w‖

< ε/4 (3.7)

and

max
v∈S(V(s))
w∈S(W(s))

|〈v, w〉| < ε/2. (3.8)

Let v ∈ S(V(s)) and write v = uk + w, where uk ∈ Uk(s) and w ∈ W(s). Due to

Lemma 3.2.2 we may, by possibly choosing a larger N , assume that ‖uk‖ < 2 (for

any choice of v), so (3.7) yields |〈uk, w〉|/‖w‖ < ε/2. We get∣∣∣∣ |〈uk, w〉|‖w‖
− ‖w‖

∣∣∣∣ ≤ max
w̃∈S(W(s))

|〈uk, w̃〉+ 〈w, w̃〉| = max
w̃∈S(W(s))

|〈v, w̃〉| < ε/2,
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where (3.8) is used for the last inequality, and hence ‖w‖ < ε. Further,

‖uk‖2 ≥ ‖v‖ − ‖w‖2 − 2|〈uk, w〉| = 1− ‖w‖2 − 2‖w‖|〈uk, w〉|
‖w‖

> 1− 2ε2.

Note that this holds for any choice of v = uk +w ∈ V(s) for s > N . Now, by (3.5),

we have θmax(V(s),Uk(s)) = arccos(x), where

x = min
v∈S(V(s))

max
ũk∈S(Uk(s))

|〈v, ũk〉| ≥ min
uk+w∈S(V(s))
uk∈Uk(s)
w∈W(s)

∣∣∣∣‖uk‖+
〈w, uk〉
‖uk‖

∣∣∣∣
≥ min

uk+w∈S(V(s))
uk∈Uk(s)
w∈W(s)

‖uk‖ − ‖w‖ >
√

1− 2ε2 − ε.

Since ε can be chosen to be arbitrarily small, the proposition follows.

Finally, we show that if a subspace is close to its complex conjugate subspace,

then there is an orthonormal basis for this subspace that is almost real.

Proposition 3.2.5. Suppose the inner product 〈·, ·〉 corresponds to a real sym-

metric positive definite matrix A, so 〈x, y〉 = xHAy for any vectors x and y. If

dimU(s) = p for s > N and

lim
s→∞

θmax(U(s),U(s)) = 0,

then for any ε > 0, for large enough s the subspace U(s) has an A-orthonormal

basis {u1, u2, . . . , up} with ‖Im(ui)‖ < ε, i = 1: p.

Proof. Let the columns of U = [u1, u2, . . . , up] be any A-orthonormal basis of U(s)

and note that the columns of U form an A-orthonormal basis of U(s). Since A is

real, UTAU is complex symmetric and hence enjoys a singular value decomposition

on the form QΣQT (also known as a Takagi factorization) [40, Corollary 4.4.4].

By the limit assumption and Theorem 3.2.1, all singular values are in (1− ε, 1]

for large enough s. Define Y = [y1, y2, . . . , yp] = UQ, and note that

Y TAY = QHUTAUQ = QHQΣQTQ = Σ.

The columns of Y form an A-orthonormal basis of U(s), and

2‖Im(yi)‖2 = Re(yHi Ayi − yTi Ayi) < ε (3.9)

for i = 1: p.
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Remark 3.2.6. For subspaces U(s) and V(s) with dimU(s) = dimV(s) = k, a

limit condition like lim
s→∞

θmax(U(s),V(s)) = 0 may be interpreted as the distance

between U(s) and V(s) goes to zero. Here the distance is measured with the gap

metric associated with 〈·, ·〉. Using that gap metrics associated with different inner

products are equivalent in the same sense that all norms on Cn are equivalent,

it follows that the condition lim
s→∞

θmax(U(s),V(s)) = 0 is independent of which

positive definite inner product θmax corresponds to. See Appendix A for more

details.

3.3 Eigenvalues

In this section we study the eigenvalues of Ps(λ) defined in (3.3). Let (·)1/2

denote the principal square root, and introduce A = M−1/2DM−1/2 and B =

M−1/2KM−1/2. Clearly, Ps(λ) is equivalent to Iλ2 + sAλ+B, so they have the

same Jordan structure. We will repetitively make use of the linearization Iλ−L(s),

where

L(s) :=

[
sB−1/2A B−1/2

−I

]
︸ ︷︷ ︸

T

[
I

−B −sA

]
︸ ︷︷ ︸

Companion
matrix

[ −I
B1/2 sA

]
︸ ︷︷ ︸

T−1

=

[
B1/2

−B1/2 −sA

]
.

(3.10)

Lemma 3.3.1. If λ1, λ2, . . . , λr are the nonzero eigenvalues of sA in (3.10) (not

necessarily distinct), then we have Gerschgorin-like discs

G0 =
{
z : |z| ≤ ‖B‖1/2

2

}
and Gi =

{
z : |z − λi| ≤ ‖B‖1/2

2

}
for i = 1: r, such that the eigenvalues of Ps(λ) in (3.3) are contained in the

union G0 ∪ G1 ∪ · · · ∪ Gr. Furthermore, k Gerschgorin-like discs contain exactly k

eigenvalues (counting multiplicities) if they are disjoint from the remaining discs.

Proof. Apply a real orthogonal similarity transformation to Iλ2 + Aλ + B, to

obtain Iλ2 + Ãλ + B̃, where Ã is diagonal. Note that all but r of the diagonal

entries of Ã must be zero. Let L̃(s) be the matrix (3.10), with Ã and B̃ in place

of A and B, respectively. Clearly, L̃(s) and Ps(λ) have the same eigenstructure.

Since Ã is normal and ‖B̃‖2 = ‖B‖2 the lemma follows from [62, Theorem 2.1

and Corollary 2.5].

Let ωmax = ‖B‖1/2
2 and ωmin = σmin(B)1/2 (where σmin refers to the smallest
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Re z

Im z

iωmax

iωmin

Figure 3.2: The shaded area is S, and the left and right thick lines are Sout and
Sin, respectively.

singular value) and define the following sets:

Sin = {z : −ωmin < z < 0}, Sout = {z : z < −ωmax} (3.11)

and

S = {z : ωmin ≤ |z| ≤ ωmax, Re(z) ≤ 0}. (3.12)

See Figure 3.2 for an illustration. Lancaster showed that all nonreal eigenvalues of

Ps(λ) lie in the half annulus S [50, Chapter 9]. Hence any eigenvalue that is not

in S must be in either Sin or Sout. Our first goal in this section is to bound the

number of such eigenvalues. To do so, we need the following lemma.

Lemma 3.3.2. All eigenvalues of Ps(λ) in (3.3) that lie in Sin or Sout are

semisimple.

Proof. Let λ be a real defective eigenvalue of Iλ2 + sAλ+B, and note that any

corresponding real right eigenvector is also a left eigenvector. By Theorem 2.3.1

and Remark 2.3.2 there exists a real eigenpair (λ, v), where ‖v‖2 = 1, such that

vT
(
d

dλ
(Iλ2 + sAλ+B)

)
v = vT (2Iλ+ sA)v = 0.

If we define a = svTAv and b = vTBv, we have λ = −a/2. Further,

vT (Iλ2 + sAλ+B)v = λ2 + aλ+ b =
a2

4
− a2

2
+ b = 0,

which implies a = 2
√
b, and hence λ = −

√
b ∈ S.
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Re z

Im z

ωmax

Figure 3.3: An illustration of what the Gerschgorin-like discs may look like for
r = 3 and large enough s. The disc (from left to right) are G1,G2,G3,G0 and the
dots are the nonzero eigenvalues of −sA. Lemma 3.3.1 implies that G1 ∪ G2 ∪ G3

contains three eigenvalues of Ps(λ), counting multiplicities.

We now use Lemma 3.3.2 to prove the following eigenvalue location result.

Theorem 3.3.3. The sets Sin and Sout, defined in (3.11), each contains at most

r eigenvalues (counting multiplicities) of Ps(λ) defined in (3.3). Furthermore, r

eigenvalues go to −∞, and r eigenvalues go to 0, as s→∞.

Proof. By Lemma 3.3.1, r eigenvalues of Ps(λ) approach −∞ as s → ∞, and

all remaining eigenvalues lie in S ∪ Sin (see Figure 3.3 for an illustration when

r = 3). We now show that Sout cannot contain more than r eigenvalues for

intermediate values of s. Let L(s) denote the matrix in (3.10). By Lemma 3.3.2

all eigenvalues in Sout are semisimple and hence differentiable with respect to s

[49, Theorem 6]. Consider an eigenvalue λ ∈ Sout for an arbitrary s. Since λ is

real, the corresponding eigenspace of L(s) has a real basis. If the columns of W

form such a basis, it is easy to see that W = [V TB1/2, λV T ]T , where the columns

of V are real eigenvectors with respect to λ of the corresponding quadratic matrix

polynomial. Furthermore, the columns of [−V TB1/2, λV T ]T form a basis of the

corresponding left eigenspace, and

[−V TB1/2 λV T ]

[
B1/2V

λV

]
= λ2V TV − V TBV

is positive definite since λ2 > ω2
max = ‖B‖2. Suppose, without loss of generality,

that V satisfies

λ2V TV − V TBV = I,

(otherwise we can replace V by V Z for an appropriate Z). Then, the derivatives

of the eigenvalues that equal λ for the considered value of s are given by the
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eigenvalues of the following matrix [49, Theorem 7],

[−V TB1/2 λV T ]
d

ds
L(s)

[
B1/2V

λV

]
= −λ2V TAV,

which is negative semidefinite. Hence all eigenvalues that enter Sout will stay in

Sout as s→∞.

Let ∼ denote the equivalence relation for matrix polynomials. To compute the

number of eigenvalues in Sin, we consider

rev Ps(λ) = Kλ2 + sDλ+M ∼ Iλ2 + sK−1/2DK−1/2︸ ︷︷ ︸
Â

λ+K−1/2MK−1/2︸ ︷︷ ︸
B̂

,

and note that B̂ is similar to B−1. It is easy to see that λ is an eigenvalue of Ps(λ)

if and only if 1/λ is an eigenvalue of revPs(λ) with the same algebraic multiplicity.

The proved part of the theorem implies that r eigenvalues of rev Ps(λ) go to −∞
as s→∞, so r eigenvalues of Ps(λ) must go to zero (along the negative real axis).

Furthermore, rev Ps(λ) has at most r eigenvalues in
{
z : z < −‖B̂‖1/2

2

}
so Ps(λ)

has at most r eigenvalues in{
z : −‖B̂‖−1/2

2 < z < 0
}

=
{
z : −σmin(B)1/2 < z < 0

}
= Sin.

Theorem 3.3.3 gives us rather large regions in which the eigenvalues lie. We

are now interested in how the eigenvalues move within these regions as s→∞.

To this end, we classify the eigenvalues of Ps(λ) based on whether or not they

depend on s. Eigenvalues are said to be affected (by damping) if they depend on s,

and unaffected otherwise. To be more precise, let the columns of V = [V1, V2] be

a real M -orthogonal basis of eigenvectors of P0(λ), such that range(V1) is spanned

by all eigenvectors that are in the null space of D. If we apply the congruence

transformation defined by V to Ps(λ), the resulting matrix polynomial decomposes

into the direct sum of an “undamped part” and a “damped part”:

V TPs(λ)V = (Ikλ
2 +K1)⊕ (In−kλ

2 + sD2λ+K2). (3.13)

Here k = rankV1, V T
1 KV1 = K1, V T

2 KV2 = K2 and V T
2 DV2 = D2. The eigenvalues

of Ikλ
2 + K1 are clearly independent of s and hence unaffected. In particular

they must be purely imaginary. The next lemma shows that the eigenvalues of

In−kλ2 + sD2λ+K2 are the affected eigenvalues, and furthermore that they are

only purely imaginary for s = 0.
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Lemma 3.3.4. If λ is an eigenvalue of In−kλ2 + sD2λ + K2, defined in (3.13),

for some s > 0, then Re(λ) < 0.

Proof. Assume the contrary and let (λ = ωi, x) be an eigenpair such that

ω ∈ R \ {0}. If v = V2x, then

vH(K − ω2M + iωsD)v = 0,

and since vHMv, vHDv and vHKv are real, we must have vHDv = 0. Because

D is symmetric positive semidefinite, this implies that Dv = 0. But then (λ, v)

is an eigenvalue of P0(λ) for which Dv = 0. This contradicts that v ∈ range(V2).

As s→∞ we know from Theorem 3.3.3 that r eigenvalues enter Sout and go to

−∞, and r other eigenvalues enter Sin and go 0. We now focus on the remaining

affected eigenvalues, that is, the ones that stay in S as s→∞.

Theorem 3.3.5. Consider Ps(λ) in (3.3) and the associated set S defined in

(3.12). For large enough s, the affected eigenvalues of Ps(λ) in S are continuous

functions of s that converge to purely imaginary points.

Proof. Recall thatD = RRT with R ∈ Rn×r, and define t = 1/s, p(λ) = det(Mλ2+

K), Q(λ) = λRT (Mλ2 +K)−1R and

qt(λ) = det(tp(λ)Ir + p(λ)Q(λ)).

By Lemma 3.3.4, no affected eigenvalue is a root of p(λ) for s > 0. Thus, for t > 0,

any root λi of qt(λ) that is not a root of p(λ) is an affected eigenvalue. To see this,

we simply note that

0 = qt(λi) = p(λi)
r det (tIr +Q(λi)) = p(λi) det (tIr +Q(λi)) = detPs(λi),

where the matrix determinant lemma (related to the Sherman-Morrison formula)

has been used for the last equality. On noting that (Mλ2 +K)−1 = Adj(Mλ2 +

K)/p(λ), it is easy to see that p(λ)Q(λ) is a matrix polynomial, so qt(λ) is a

polynomial, and further

deg qt(λ) =

2nr if t 6= 0,

2nr − r if t = 0.
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Figure 3.4: Damped beam simply supported at its ends.

From the context, it is natural to consider q0(λ) as a polynomial of grade 2nr

(see [57]), in which case we say that q0(λ) has r infinite roots. Consider a finite

root λi of q0(λ) of multiplicity α. In a neighborhood of t = 0, the solutions λ of

qt(λ) = 0 can be expanded in Puiseux series in t, and α of these series (counting

multiplicities) equal λi at t = 0 [47, Chapter 5]. Thus, α roots of qt(λ), seen as

functions of t, converge to λi as t → 0. This shows that 2nr − r roots of qt(λ)

converge to the finite roots of q0(λ) as t→ 0. Furthermore, from Theorem 3.3.3

we know that the remaining r roots go to −∞ as t→ 0.

To show that the finite roots of q0(λ) are purely imaginary, we note that they

all are eigenvalues of p(λ)Q(λ). Since p(−λ)Q(−λ) = −p(λ)Q(λ)T , p(λ)Q(λ) is

T-odd (by definition), so λi is an eigenvalue if and only if −λi also is an eigenvalue

[56, Theorem 4.2]. Therefore, if q0(λ) has a root with negative real part, it also

has a root with positive real part. But this is impossible. Indeed, qt(λ) has a root

with positive real part for some t > 0 only if there is an affected eigenvalue with

positive real part, a contradiction.

We illustrate Theorem 3.3.5 by a numerical example.

Example 3.3.6. Consider the damped beam problem from the collection NLEVP

[10]. The modes of the QEP describe the vertical displacements of a beam that

is supported at its ends and has a viscous damper attached to it in the middle

(see Figure 3.4). We used the MATLAB function nlevp to create the QEP such

that the coefficient matrices are of size 100 × 100. We then created a strongly

damped version of the same problem by multiplying the damping matrix by 1010.

We used the algorithm described in Chapter 4 to compute all eigenvalues of both

problems. The computed spectra are shown in Figure 3.5, with the exception of

one large negative eigenvalue for the strongly damped problem. The experiment

does indeed confirm Theorem 3.3.5. N
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Figure 3.5: Left: The computed spectrum of the standard damped beam problem.
Right: The computed spectrum of the modified strongly damped problem, with
the exception of one eigenvalue around −6.3×1012 which is far outside the plotted
window.

We end this section by discussing the simplicity of the eigenvalues of strongly

damped matrix polynomials. The matrix L(s) in (3.10), and hence the matrix

polynomial Ps(λ), has a constant number, k, of distinct eigenvalues for all but a

finite number of values of s, known as exceptional points [45, p. 64]. Exceptional

points are in general nonreal, so for the sake of the argument, we temporarily

expand the scope and allow nonreal values of s. Now, in any simple domain not

containing any exceptional points, we have a Jordan decomposition (albeit not in

its usual likeness)

L(s) =
k∑
i=1

Ei(s)λi(s) + Fi(s),

where Ei(s), λi(s) and Fi(s) denote the eigenprojections, (distinct) eigenvalues

and eigennilpotents, respectively, and all are analytic in the considered domain

[45, p. 68]. The following observation was made in [53, Theorem 3.3]: for purely

imaginary s, L(s) is skew-Hermitian so the eigennilpotents must vanish. Because

any simple domain, free of exceptional points, can be expanded to contain an

interval of the imaginary axis, in a manner that avoids including exceptional points,

the eigennilpotents must vanish identically for any non-exceptional s. Put simply,

defective eigenvalues can only exist for a finite number of exceptional values of s.

This implies the following theorem.

Theorem 3.3.7. For large enough s, all eigenvalues of Ps(λ) (defined in (3.3))

are semisimple.
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3.4 Eigenspaces

Let 〈·, ·〉 be the M -inner product and ‖ · ‖ the induced norm. In the undamped

case, s = 0, the eigenspaces of Ps(λ) corresponding to complex conjugate eigen-

values are identical, and any other two eigenspaces are orthogonal with respect

to 〈·, ·〉. Furthermore, all eigenspaces have real bases. The same is, in general,

not true when s > 0. Our goal in this section is to show that for large enough

s, the same properties are almost true if we restrict ourselves to the eigenspaces

corresponding to eigenvalues in S and group together eigenspaces corresponding

to “close” eigenvalues; more precise statements will be made in Theorem 3.4.1

and Corollary 3.4.3.

Suppose N is large enough so there are no exceptional points in (N,∞); such

N exists due to Theorem 3.3.7. Then there is a constant k such that Ps(λ) has

exactly k distinct eigenvalues λ1(s), λ2(s), . . . , λk(s) for s > N , which are analytic

functions of s. Let Vi(s) denote the eigenspace corresponding to λi(s) and define

Uz(s) = span
{
Vi(s) : lim

s→∞
λi(s) = z

}
for s > N. (3.14)

We shall prove the following result.

Theorem 3.4.1. Let 〈·, ·〉 be the M-inner product and z1, z2, . . . , z2p the distinct

nonzero points on the imaginary axis to which some eigenvalue of Ps(λ) converges

as s→∞. If θ1(·, ·) and θmax(·, ·) refer to the smallest and largest principal angles

with respect to 〈·, ·〉, respectively, then the following hold:

(a) If zi 6= zj and zi 6= zj then lim
s→∞

θ1

(
Uzi(s),Uzj(s)

)
= π/2.

(b) lim
s→∞

θ1

(
Uzi(s),U−∞(s)

)
= π/2.

(c) lim
s→∞

θ1

(
Uzi(s),U0(s)

)
= π/2.

(d) lim
s→∞

θmax

(
Uzi(s),Uzi(s)

)
= 0.

(e) lim
s→∞

θmax

(
U−∞(s),U0(s)

)
= 0.

To prove Theorem 3.4.1, we need the following lemma.

Lemma 3.4.2. Let S be defined by (3.12) and consider eigenpairs (λi, vi) and

(λj, vj) of Ps(λ), for some s > 0, for which ‖vi‖ = ‖vj‖ = 1 and λi ∈ S. There are

constants c1 and c2 which are independent of vi, vj and s, such that the following

bounds hold:
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(a) If λj ∈ S then |vHi Dvj| ≤ (c1/s)
2.

(b) |vHi Dvj| ≤ c2/s.

Proof. Recall that D = RRT with R ∈ Rn×r. We have

RRTvi = −(λis)
−1(Mλ2

i +K)vi.

Left multiplication with M−1/2 times the Moore-Penrose pseudo-inverse R†, and

taking norms, yield

‖M−1/2RTvi‖ =
‖M−1/2R†(Mλ2

i +K)vi‖
|λis|

.

Since |λi| is bounded from below and above there is a constant c1 such that

‖M−1/2RTvi‖ ≤ c1/s, for any s and any choice of vi. For case (a), an analogous

argument gives ‖M−1/2RTvj‖ ≤ c1/s and the Cauchy-Schwartz inequality yields

|vHi Dvj| = |〈M−1/2RTvi,M
−1/2RTvj〉|

≤ ‖M−1/2RTvi‖‖M−1/2RTvj‖

≤ (c1/s)
2.

Similarly, for part (b), we have

|vHi Dvj| ≤ ‖M−1/2RTvi‖‖M−1/2RTvj‖ ≤ c2/s.

for c2 = ‖M−1/2RT‖c1.

Proof of Theorem 3.4.1. For i = 1: 2p, define Bi = {z : |z − zi| ≤ δ} where δ > 0

is small enough so Bi ∩ Bj = ∅ for i 6= j, and let

γ = min
i 6=j

dist(Bi,Bj). (3.15)

Choose N > 0 such that for s > N it holds that Bi contains all eigenvalues of

Ps(λ) that converge to zi. The Bi will hereafter be referred to as “limit balls.”

Now, pick ε > 0 and let c1 and c2 be the constants from Lemma 3.4.2. By

possibly choosing an even larger N , we may assume that N > c2
1/(εγ) and that all

eigenvalues in Sout, defined in (3.11), have modulus greater than c2/ε. Consider

two eigenpairs (λi, vi) and (λj, vj) for which ‖vi‖ = ‖vj‖ = 1. If λi and λj belong

to different limit balls that are not complex conjugate sets, then we have for any
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real s that

λ
2

i v
H
i Mvj = (λ2

iMvi)
Hvj

= (−(sDλi +K)vi)
Hvj

= vHi (−(sDλi +K))vj

= vHi (sD(λj − λi)− (sDλj +K))vj

= vHi (sD(λj − λi)vj − (sDλj +K)vj)

= s(λj − λi)vHi Dvj + λ2
jv
H
i Mvj,

and further

− vHi Mvj =
svHi Dvj

λi + λj
. (3.16)

From (3.15) we have |λi+λj| ≥ γ, and by part (a) of Lemma 3.4.2 |svHi Dvj| ≤ c2
1/s.

Thus, |vHi Mvj| < ε for s > N . Since this bound is independent of which normalized

eigenvectors vi and vj we picked, and ε > 0 is arbitrary, we have proved part (a)

of the theorem.

If λi is in a limit ball and λj ∈ Sout, then vi and vj also satisfy (3.16). By

part (b) of Lemma 3.4.2 |svHi Dvj| ≤ c2 and |λi + λj| ≥ |λj| > c2/ε. Hence,

|vHi Mvj| < ε for s > N , and we have shown part (b) of the theorem.

Since revPs(λ) has the same eigenspaces as Ps(λ), part (c) follows immediately

if we consider part (b) for the reversed matrix polynomial.

For s > N , the eigenvectors corresponding to the eigenvalues of Ps(λ) in Bi
and Sout, span the subspaces Uzi(s) and U−∞(s), respectively. Furthermore, due

to Theorem 3.3.7, dimUzi(s) and dimU−∞(s) equal the sums of the algebraic

multiplicities of all eigenvalues in Bi and Sout, respectively. Since z1, z2, . . . , z2p

can be paired into complex conjugates, we may assume, without loss of generality,

that Im(zi) > 0 for i = 1: p. We have

dimUz1 + dimUz2 + · · ·+ dimUzp + dimU−∞ = n.

Part (a) and part (b), which we just proved, imply that

lim
s→∞

θ1

(
Uzi(s),Uz(s)

)
= π/2

for z ∈ {z1, z2, . . . , zp,−∞} \ {zi}. Hence, part (d) follows from Proposition 3.2.4.

Similarly, we have

lim
s→∞

θ1

(
U0(s),Uz(s)

)
= π/2
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for z ∈ {z1, z2, . . . , zp}, so also part (e) follows from Proposition 3.2.4.

The next corollary is an immediate consequence of part (d) of Theorem 3.4.1.

Corollary 3.4.3. For any ε > 0, Uzi(s) in (3.14) has an M-orthonormal basis

{u1, u2, . . . , uk}, where ‖Im(uj)‖ < ε, j = 1: k, for large enough s.

Proof. The corollary follows immediately from Proposition 3.2.5.

We end this section by a numerical experiment that illustrates the impli-

cations of Corollary 3.4.3 to the damped beam problem that was discussed in

Example 3.3.6.

Example 3.4.4. As in Example 3.3.6, we created several versions of the 100×100

damped beam problem by multiplying the original damping matrix by a parameter

s. We then used the algorithm described in Chapter 4 to solve these eigenproblems

for a sequence of increasing values of s. We then used the technique explained in the

proof of Proposition 3.2.5 to compute the normalized eigenvectors y1, y2, . . . , y2n

with smallest imaginary part. For eigenspaces of dimension one, it follows from

(3.9) that this technique indeed gives us the normalized eigenvectors with smallest

imaginary parts. Since the Takagi factorization is trivial to compute for scalars,

such eigenvectors are easily determined once any nonzero vectors in the associated

eigenspaces are known. We then computed the norm of the imaginary parts of

all eigenvectors y1, y2, . . . , y2n and saved the largest one for each value of s. In

Figure 3.6 this norm is plotted as a function of s. The figure confirms the theory:

when the damper gets strong enough the eigenvectors become almost real, meaning

that all nodes in the discretized model vibrate essentially in phase. N

3.5 Forced response

The solution of the homogeneous differential equation (3.1) is known as the free

response. The forced response is the corresponding particular solution when a

nonzero right hand side f(t) is added to the equation. As we saw in Section 1.1,

the forced response is also strongly connected to the eigenvalues and eigenspaces.

We now discuss this in more detail. Consider the differential equation

Ps

(
d

dt

)
u(t) = f0e

iωt, t ∈ [0, T ], (3.17)
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Figure 3.6: The maximum of the norms of the imaginary parts of all the computed
eigenvectors y1, y2, . . . , y2n of the modified damped beam problems as a function
of the damping parameter s.

where Ps(λ) is as in (3.3), and assume iω, ω ∈ R, is not an eigenvalue Ps(λ).

Suppose further that s is large enough so all eigenvalues are semisimple. By (1.8)

up(t) =
n∑̀
j=1

xjy
T
j f0ψj(t), ψj(t) :=

eiωt − eλjt

iω − λj
,

is a particular solution of (3.17), where the λj are the eigenvalues of Ps(λ) and the

yj and xj are the associated left and right eigenvectors, respectively, normalized

such that

yTi

(
d

dλ
Ps(λ)

∣∣∣∣
λ=λj

)
xj = yTi (2λjM + sD)xj = δij if λi = λj. (3.18)

Since our matrix polynomial is real and symmetric, we can derive a nicer “sym-

metric” formula for the response. Because (1.8) followed from (1.4), we aim to

find a “symmetric version” of (1.4). We have the following theorem, which shows

that the assumptions under which Lancaster [50, pp. 127–129] derived formulas

for the forced response are always true.

Theorem 3.5.1. Let P (λ) ∈ R[λ]n×n be symmetric, of degree `, and with non-

singular leading coefficient A`. If all eigenvalues of P (λ) are semisimple, then it
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holds that

λkP (λ)−1 =
n∑̀
j=1

λkjxjx
T
j

λ− λj
+ δk`A

−1
` , k = 1: `,

where the (λj, xj) are eigenpairs such that xTi P
′(λj)xj = δij if λi = λj. Further-

more, if λj is real, then there is an xj that is real or purely imaginary.

Proof. By [50, p. 65], equation (1.4) holds for left and right eigenvectors yj and

xj that satisfy (1.5). Lancaster showed that such eigenvectors existed as long as

all eigenvalues are semisimple. Recall that, for symmetric problems, each right

eigenvector is a left eigenvector and vice versa. Suppose λj has multiplicity s and

let the columns of Yj = [yj1 yj2 · · · yjs ] and Xj = [xj1 xj2 · · · xjs ] be associated

eigenvectors such that (1.5) hold, or equivalently, such that

Y T
j P

′(λ0)Xj = Is. (3.19)

We need to show that there exists an eigenvector matrix Zj such that

ZT
j P
′(λ0)Zj = Is. (3.20)

Since, P (λ) is symmetric, Xj and Yj span the same subspace, so Yj = XjS. We

have

XT
j P
′(λ0)Xj = S−T , (3.21)

where S−T is complex symmetric. If UΣUT is a Takagi factorization of S−T then

Zj = XjUΣ−1/2 satisfies (3.20).

For the second part, we assume that Xj is real. We may do this, since (3.19) was

deduced in [50] by first considering an arbitrary matrix Xj such that range(Xj)

is the right eigenspace associated with λj, and then explicitly construct the

corresponding Yj. Taking the real part of (3.19), yields Re(Yj)
TP ′(λj)Xj = Is,

which shows that Re(Yj) is of full rank. Further, taking the real part of Y T
j P (λj) =

0, shows that all columns of Re(Yj) are (left) eigenvectors associated with λ0.

Hence, we may assume that both Xj and Yj in (3.19) are real. In this case, S−T

in (3.21) becomes real symmetric and thus enjoys a real spectral decomposition

S−T = QΛQT . If we define Zj = XjQjΛ
−1/2, then each column is either real or

purely imaginary, and Zj satisfies (3.20).

Using Theorem 3.5.1 and the discussion in Section 1.1, we can now write down
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“symmetric” formulas for particular solutions of differential equations of the form

P

(
d

dt

)
u(t) = f(t), t ∈ [0, T ],

where P (λ) is as in Theorem 3.5.1 and f(t) is piecewise continuous. In particular,

it follows that

up(t) =
n∑̀
j=1

xjx
T
j f0ψj(t), ψj(t) :=

eiωt − eλjt

iω − λj
, (3.22)

is a solution to (3.17), where the (λj, xj) are eigenpairs such that

xTj (2λjM + sD)xj = 1, (3.23)

and xj is real or purely imaginary if λj is real.

We saw in Section 3.3 that strongly damped matrix polynomials can have

negative eigenvalues arbitrarily close to the origin. This raises the question: what

happens when ω is small and λj is small and negative? In such situations we

certainly have that iω is close to λj, in which case (1.9) shows that ψj(t) can be

quite large. To answer this, we investigate the M -norm of the terms xjx
T
j f0ψj(t)

in (3.22). Define m, d and k through

‖xj‖2
M(mλ2 + dλ+ k) = xTj (Mλ2 + sDλ+K)xj (3.24)

and note that (3.23) and mλ2
j + dλj + k = 0 imply

‖xj‖2
M =

1

|2mλj + d|
=

1

|2mλj −mλj − k/λj|
=

|λj|
|mλ2

j − k|
.

If vj := xj/‖xj‖M , then we can bound the term under investigation as follows:

‖xj‖M |xTj f0|
∣∣∣∣eiωt − eλjtiω − λj

∣∣∣∣ = |vTj f0|
∣∣∣∣eiωt − eλjtiω − λj

∣∣∣∣ ∣∣∣∣ λj
mλ2

j − k

∣∣∣∣ . (3.25)

Furthermore, if λj is negative, then the right hand side of (3.25) is bounded by

2|vTj f0|/|mλ2
j − k|. Now, if λj is a small negative eigenvalue such that

λ2
j � ωmin := min

‖u‖M=1
uHKu,

then |mλ2
j − k| = |k| − |λj|2 & ωmin. Thus the term xjx

T
j f0ψj(t) is well behaved
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provided that the undamped problem does not have a tiny eigenvalue.

3.5.1 A remark on nearly defective systems

We end this chapter by discussing the application of the formula (3.22) to QEPs

that are nearly defective with respect to small perturbations in the damping

parameter s. In view of Theorem 3.3.7, such QEPs are not strongly damped. From

(3.25), we see that the “response in the jth mode,” that is, xjx
T
j f0ψj(t), can be

large when mλ2
j ≈ k (where m and k are defined in (3.24)). We now show that

this can happen when a small perturbation of the damping parameter s yields a

defective eigenvalue. Suppose Ps(λ) has a defective eigenvalue λj for s = a. We are

interested in the behavior of the eigenvalues and eigenspaces in the neighborhood

of s = a. Since the left companion matrix associated with M−1Ps(λ) depends

continuously (in fact linearly) on the real parameter s, we may parametrize the

eigenvalue λj as a continuous function of s [45, pp. 106–110]. In other words, there

exists a continuous function λj(s) such that detPs(λj(s)) = 0 and λj(a) = λj , the

defective eigenvalue of Pa(λ) referred to above. Now, suppose dim nullPs(λj(s)) = 1

near s = a. Then it can be shown that the associated eigenspace is (a) continuous

in s, where the continuity is understood in the gap metric (see Appendix A), and

(b) has a continuous spanning vector vj(s) [31, pp. 408–411]. Define

f(s) :=
vj(s)

T (2λj(s)M + sD)vj(s)

‖vj(s)‖2
M

=
vj(s)

T (Mλj(s)
2 −K)vj(s)

λj(s)‖vj(s)‖2
M

,

and note that f(s) is continuous. By Theorem 2.3.1, we have f(a) = 0, so f(s)

takes arbitrarily small values in a neighborhood of a. For s0 such that λj(s0) ∈ S
(defined in (3.12)) and 0 < f(s0) < ε/ωmax we have

|m(s0)λj(s0)2 − k(s0)| < ε,

where m(s0) = vj(s0)TMvj(s0)/‖vj(s0)‖2
M and k(s0) = vj(s0)TKvj(s0)/‖vj(s0)‖2

M .

In view of (3.25), this shows that if Ps(λ) has a defective eigenvalue for s = a,

then (3.22) can have arbitrarily large terms in a neighborhood of s = a, at, say,

t = t0 > 0, even when iω is bounded away from the spectrum of Ps(λ) for s close

to a. However, from (2.9), it is clear that the solution is bounded at t = t0 for all

s in a small interval (a − ε, a + ε), ε > 0. This shows that when the problem is

nearly defective (in the discussed sense), severe cancellation can take place when

summing up the terms in (3.22).



Chapter

4

A quadratic eigensolver for

problems with low rank

damping

4.1 Introduction

In this chapter we consider quadratic eigenproblems with damping matrices of

low rank. More precisely, we consider problems of the form

(
Mλ2 +Dλ+K

)
x = 0, (4.1)

where M , D and K are real, n× n and positive semidefinite matrices, (M,K) is

regular (that is, det(Mλ+K) 6≡ 0) and r := rankD � n. Without the low rank

term Dλ, a simple substitution, ω = −λ2, turns (4.1) into a definite generalized

eigenproblem (GEP):

Kx = ωMx, (4.2)

which is much easier to solve. Our goal is to first develop an algorithm that

solves (4.2) such that all eigenvalues are computed in a symmetry preserving and

backward stable manner. We then design a fast Ehrlich-Aberth iteration that

modifies the solution of (4.2) until we have found the eigenvalues of the damped

problem (4.1). Finally, if the eigenvectors are desired, we compute these using

a special inverse iteration that is based on the Takagi factorization for complex

symmetric matrices.

48
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4.1.1 Motivation

QEPs of the form (4.1) appear naturally in modal analysis of physical structures.

Modal analysis is the study of the vibrational properties of structures. We now

discuss this application briefly. The discussion serves not only as a motivation,

but also allows us to use our intuition of mechanical systems to understand the

choice of starting points used in our algorithm later on.

As we saw in Chapter 3, the homogeneous differential equation(
M

d2

dt2
+D

d

dt
+K

)
u(t) = 0 (4.3)

play an important role in structural engineering. Before we assumed that mass and

stiffness matrices M and K were both symmetric positive definite. In this chapter

we relax these conditions and allow both to be symmetric positive semidefinite, as

long as the pencil (M,K) is regular. The damping matrix D is symmetric positive

semidefinite as before, which implies that Mλ2 + Dλ + K is regular (since it

evaluates to a positive definite matrix for large positive values of λ). In theory, M

should be strictly positive definite, but singular M is common in practice due to

further simplifications by the engineers. Singular M may, for instance, arise when

the lumped mass model is used. In this case there is no inertia with respect to the

rotational degrees of freedom of a beam, say, so the corresponding mass matrix

becomes singular [46, 69]. The stiffness matrix K is positive definite or positive

semidefinite, depending on the boundary conditions. The damping matrix depends

on what kind of damping is modeled. We consider the case of discrete (linear)

damping, which refers to the physical objects called viscous dampers that were

discussed in Section 3.1. When a viscous damper is modeled with finite elements,

it appears as a positive semidefinite rank one term of the damping matrix. Hence,

if the structure only has a few viscous dampers, their contribution to the damping

matrix is of low rank. This is indeed the case in several applications. It is not

uncommon that less than ten dampers are used, and in some cases as few as one

or two [1].

If only a few viscous dampers are used, and (M,K) is regular, then the

corresponding QEP we need to solve has the structure of (4.3). In particular, if

(λ, x) is an eigenpair of (4.1), then u(t) = eλtx is a solution to (4.3). We recall

from Chapter 3 that the spectrum is symmetric with respect to the real axis and

lies in the left half plane. Thus, if (−d+ iω, x) with ω > 0 is an eigenpair of (4.1),
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then so is (−d− iω, x). It follows that the real function

u(t) = e−d(cos(tω)Re(x) + sin(tω)Im(x)).

is a solution to (4.3). Notice how the real and imaginary parts of the eigenvalue

correspond to damping and frequency respectively.

4.1.2 Existing algorithms and our objective

The conventional way of solving (4.1) is through linearization, which means that

the problem is rewritten as GEP of twice the size. This approach does not respect

the special structure of problem (4.1). There do exist symmetric linearizations,

but no stable algorithm that can preserve this symmetry is currently available.

Recently, Hammarling, Munro and Tisseur proposed a linearization based

algorithms for finding all eigenpairs of general regular quadratic eigenproblems [34].

Their algorithm, called quadeig, is backward stable in the unstructured sense

described in Section 2.3, as long as the damping is not too strong. The bulk of the

computation lies in solving the linearized problem, for which the QZ algorithm is

used. The QZ algorithm is estimated to use 50m3 flops (30m3 flops if we only want

the eigenvalues), where m is the size of the matrices [33, p. 413]. Since quadeig

works on a linearization we have m = 2n, where n is size of the coefficient matrices

M , D and K. We get an estimated complexity of 400n3 flops (240n3 flops for

eigenvalues only).

We shall develop an algorithm that exploits the structure of problem (4.1)

and whose main complexity lies in finding all eigenpairs of the definite GEP (4.2).

There are several methods for solving (4.2), but no existing algorithms are both

backward stable and symmetry preserving. We develop an algorithm, based on

an algorithm proposed by Wang and Zhao [89]. Given the pencil (M,K), where

M and K are as in (4.2), the new algorithm computes a nonnegative diagonal

pencil (MD, KD) that is congruent to (M + ∆M,K + ∆K), where ∆M and ∆K

are symmetric and small in norm with respect to M and K, respectively. Thus, it

computes all eigenvalues of (4.2) in a backward stable and symmetry preserving

manner. This new algorithm is interesting on its own, since GEPs of the form (4.2)

are not uncommon in applications. Further, we prove a result that gives expressions

for the number of zero and infinite eigenvalues. These expressions can be evaluated

using quantities that are conveniently computed as byproducts in our algorithm

for (4.2). This allows us to deflate all such eigenvalues as soon as (4.2) has been

solved. Finally, we mention that our algorithm for (4.2) is estimated to need only
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26n3 flops if M and K are nonsingular, and up to 43n3 flops otherwise. This means

that the estimated flop count for our quadratic eigensolver is significantly lower

than QZ-based solvers like quadeig and MATLAB’s polyeig.

The outline of the chapter is as follows. In Section 4.2 necessary background

material is discussed. This includes definitions of backward errors for QEPs and

the Ehrlich-Aberth method. In Section 4.3 we review Wang and Zhao’s algorithm

for definite GEPs and develop a new algorithm based on it that can solve (4.2) in a

backward stable and symmetry preserving manner. In Section 4.4 our algorithm for

solving (4.1) is described and in Section 4.5 we present the results from numerical

experiments. In Section 4.6 we discuss the application to the large scale case, the

possibility of generalizations and related work.

4.2 Preliminaries

4.2.1 Backward errors for polynomial eigenproblems

Let (x̃, λ̃) denote a computed eigenpair of a matrix polynomial

P (λ) =
∑̀
k=0

Akλ
k and let ∆P (λ) =

∑̀
k=0

∆Akλ
k

denote a perturbation of P (λ). If λ̃ is finite, we follow [81] and define the relative

backward error of the computed eigenpair (λ̃, x̃) as

ηP (λ̃, x̃) = min{ε : (P + ∆P )(λ̃)x̃ = 0, ‖∆Ai‖ ≤ ε‖Ai‖, i = 0: `}, (4.4)

and the relative backward error of the computed eigenvalue λ̃ as

ηP (λ̃) = min
x̃ 6=0

ηP (λ̃, x̃). (4.5)

In general ‖ · ‖ can be any matrix norm; in this chapter, however, we will only use

the spectral norm, so ‖ · ‖ = ‖ · ‖2. For the spectral norm, it was proved in [81]

that

ηP (λ̃, x̃) = ‖P (λ̃)x̃‖
(
‖x̃‖

∑̀
k=0

‖Ak‖|λ̃|k
)−1

(4.6)

and

ηP (λ̃) =
(
‖P (λ̃)−1‖

∑̀
k=0

‖Ak‖|λ̃|k
)−1

. (4.7)
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Notice that

ηP (λ̃, x̃) = ηrevP (1/λ̃, x̃) and ηP (λ̃) = ηrevP (1/λ̃)

for λ̃ 6= 0, where

revP (λ) :=
∑̀
k=0

A`−kλ
k.

Since infinite eigenvalues of P (λ) are defined as the zero eigenvalues of revP (λ),

it is natural to define

ηP (∞, x̃) = ηrevP (0, x̃) and ηP (∞) = ηrevP (0).

We also note that if Q(λ) is related to P (λ) via a simple parameter scaling, so

Q(λ) =
∑̀
k=0

(skAk)λ
k,

then

ηP (sλ̃, x̃) = ηQ(x̃, λ̃) and ηP (sλ̃) = ηQ(λ̃). (4.8)

4.2.2 Ehrlich-Aberth iteration

The Ehrlich-Aberth method [3, 23] is an algorithm for simultaneously finding all

roots of a scalar polynomial. If p(λ) = 0 is the scalar polynomial equation we want

to solve, then the algorithm takes starting points λ
(0)
1 , . . . , λ

(0)
` , where ` = deg(p),

and then update these points via

λ
(i+1)
k = λ

(i)
k −

q(λ
(i)
k )

1− q(λ(i)
k )
∑
j 6=k

1

λ
(i)
k − λ

(i)
j

, (4.9)

where q(λ) := p(λ)/p′(λ). Clearly these updates can be done in parallel, which is

nice, but if we insist to update in sequential order we might as well use the latest

approximations available. This leads to the slightly faster Gauss-Seidel version:

λ
(i+1)
k = λ

(i)
k −

q(λ
(i)
k )

1− q(λ(i)
k )

(∑
j<k

1

λ
(i)
k − λ

(i+1)
j

−
∑
j>k

1

λ
(i)
k − λ

(i)
j

) . (4.10)
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In practice, the Ehrlich-Aberth method exhibits rapid convergence to isolated sim-

ple eigenvalues if good starting points are provided. The algorithm also converges

for multiple and tightly clustered eigenvalues, but more iterations are generally

required in these cases.

Recently, Bini and Noferini [11] used the Ehrlich-Aberth method for finding

the eigenvalues of regular matrix polynomials. If P (λ) is such a matrix polynomial,

their algorithm applies the Ehrlich-Aberth iteration to the equation detP (λ) = 0,

and for the selection of starting points, it makes use of Newton polygons. For the

evaluation of p(λ)/p′(λ), which is the most expensive part of the updating process,

they used Jacobi’s formula

d

dλ
detP (λ) = trace

(
P (λ)−1P ′(λ)

)
detP (λ)

to obtain

p′(λ)/p(λ) = trace
(
P (λ)−1P ′(λ)

)
. (4.11)

By using (4.11), each update costs O(n3) flops.

Since the method is iterative, some stopping criterion is needed. Bini and

Noferini gave two suggestions: either stop updating λi when the condition number

of P (λi) is large enough, or when the associated backward error (4.7) is small

enough. Both criteria require O(n3) flops to check.

The Ehrlich-Aberth method can only be used to find the eigenvalues. If also

the eigenvectors are sought, these can be found afterwards using inverse iteration

or the SVD—both techniques requires O(n3) flops per eigenvector.

The algorithm in [11] demonstrated superb accuracy in numerical tests, but

is unfortunately an expensive alternative for solving QEPs. Applied to an n× n
QEP the complexity is O(n4)—assuming the starting points are good enough so

the number of iterations is independent of n.

4.3 GEPs with semidefinite matrices

Wang and Zhao [89] proposed an algorithm for solving

Ax = λBx, (4.12)

where A,B ∈ Rn×n are symmetric positive definite. Their method is outlined in

Algorithm 4.1.
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Algorithm 4.1: Wang and Zhao’s algorithm.

Description : Solves (A− λB)x = 0 where A,B ∈ Rn×n are positive definite.

1 Compute Cholesky decompositions A = LAL
T
A and B = LBL

T
B.

2 Compute the QR factorization [LA LB]T = QR.

3 Define Q1 = [In 0n×n]Q and Q2 = [0n×n In]Q.

4 Compute the singular values σ1(Q1) ≥ σ2(Q1) ≥ · · · ≥ σn(Q1) of Q1.

5 Compute the singular values σ1(Q2) ≥ σ2(Q2) ≥ · · · ≥ σn(Q2) of Q2 and a

corresponding matrix V of right singular vectors.

6 Compute eigenvalues: λi = σi(Q1)/σn−i+1(Q2) for i = 1:n.

7 Compute eigenvectors: xi = R−1(V ei) for i = 1:n.

To see why Algorithm 4.1 works, we note that Q on line 2 has a CS decompo-

sition

Q =

[
U1

U2

] [
C

S

]
V T ,

where Q1 = U1CV
T and Q2 = U2SV

T are singular value decompositions (SVDs).

Since each column of Q has unit norm, so must be the case for each column of

[C S]T . In other words, it must hold that c2
ii + s2

ii = 1 for i = 1:n. If we define

X = R−1V , then we have

XTAX = V TR−TLAL
T
AR
−1V = V TQT

1Q1V = C2 (4.13)

and similarly

XTBX = S2. (4.14)

Now consider the case when A or B (possibly both) are singular but still positive

semidefinite, and the pencil A− λB is regular. For such problems, Algorithm 4.1

still works after a small modification: instead of computing Cholesky factorizations

on line 1, we compute any other factorizations such that

A = LAL
T
A and B = LBL

T
B,

where LA and LB need not be triangular. If A, say, is singular we can, for example,

use the factorization given by LA = UΛ1/2 where A = UΛUT is a spectral

decomposition. Regarding the eigenvectors, we have Rx = 0 only if (A−λB)x = 0

independent of λ. Hence, the assumption that A− λB is regular implies that R is

invertible.
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Wang and Zhao showed that if no rounding errors occur on line 6 of Algo-

rithm 4.1, then the algorithm finds the exact eigenvalues of a perturbed problem

(A+ ∆A)x = λ(B + ∆B)x, (4.15)

where ∆A and ∆B are symmetric and ‖∆A‖/(‖A‖ + ‖B‖) and ‖∆B‖/(‖A‖ +

‖B‖) are both small. Here (and below) “small” refers to a modest multiple of

machine precision that depends on n. Put differently, they showed that the pairs

(σn−i+1(Q2), σi(Q1)), i = 1:n, are the exact eigenvalues in homogeneous form of

the homogeneous pencil α(A+ ∆A)− β(B + ∆B). Note that the same backward

errors ∆A and ∆B apply for all homogeneous eigenvalues. Now, let (λi, xi) be an

exact eigenpair of the perturbed GEP (4.15). If we take into account the rounding

errors on line 6 of Algorithm 4.1, then we have λ̃i = λi(1 + δ) where δ is real and

less than the unit roundoff (in modulus). We get

(A+ ∆A)xi = λi(B + ∆B)xi = λ̃i(B + ∆B)(1 + δ)−1xi = λ̃i(B + ∆Bi)xi,

where ∆Bi is symmetric and ‖∆Bi‖/(‖A‖+‖B‖) is small. Note, that the backward

error ∆Bi depends on λi, so in contrast to the homogeneous case, we no longer

have one pair of backward errors, (∆A,∆B), for all computed eigenvalues.

The error analysis in [89] is oblivious to which factorizations are being done on

line 1 of Algorithm 4.1 as long as LAL
T
A = A+ ∆Ã and LBL

T
B = B + ∆B̃, where

‖∆Ã‖/‖A‖ and ‖∆B̃‖/‖B‖ are both small. Therefore the same backward error

result holds if we compute these factorizations from the spectral decomposition,

which can be computed stably using e.g., the QR algorithm [80], [33, p. 464].

The above backward error result does not say anything about the magnitude

of ‖∆A‖/‖A‖ and ‖∆B‖/‖B‖, and is hence not satisfactory with respect to the

backward error defined in (4.5). Fortunately, this can be fixed by an eigenvalue

parameter scaling. If we use Algorithm 4.1 (possibly with our modification to

handle singular matrices) to solve Ax = λ(sB)x, with s = ‖A‖/‖B‖, rather than

(4.12), then we get computed eigenvalues λ1, λ2, . . . , λn such that the backward

errors ηA−(sB)λ(λi), i = 1:n are small. From (4.8), we see that sλ1, sλ2, . . . , sλn

have small backward errors as eigenvalue approximations to (4.12). Taken together,

our modifications leads to a new algorithm which is summarized in Algorithm 4.2;

the corresponding flop count is shown in Table 17.1

1Wang and Zhao pointed out that the cost of the QR factorization can be reduced if we can
take advantage of the triangular structure of LA and LB (assuming A and B are nonsingular).
For simplicity, this will not be exploited in this thesis.
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Algorithm 4.2: Modified Wang-Zhao algorithm.

Description : Solves (A− λB)x = 0 where A,B ∈ Rn×n are positive

semidefinite and A− λB is regular.

1 if A is nonsingular then

2 Compute Cholesky factorizations A = LAL
T
A.

3 else

4 Compute a spectral decomposition A = UAΛAU
T
A and set LA = UAΛ

1/2
A .

5 end

6 if B is nonsingular then

7 Compute Cholesky factorizations B = LBL
T
B.

8 else

9 Compute a spectral decomposition B = UBΛBU
T
B and set LB = UBΛ

1/2
B .

10 end

11 Let s = ‖A‖/‖B‖ (If ‖A‖ or ‖B‖ are unknown, estimations suffice).

12 Compute the QR factorization [LA
√
sLB]T = QR.

13 Define Q1 = [In 0n×n]Q and Q2 = [0n×n In]Q.

14 Compute the singular values σ1(Q1) ≥ σ2(Q1) ≥ · · · ≥ σn(Q1) of Q1.

15 Compute the singular values of σ1(Q2) ≥ σ2(Q2) ≥ · · · ≥ σn(Q2) of Q2 and a

corresponding matrix V of right singular vectors.

16 Compute eigenvalues λi = sσi(Q1)/σn−i+1(Q2) for i = 1:n.

17 Compute eigenvectors xi = R−1(V ei) for i = 1:n.

Table 4.1: Flop count estimation for Algorithm 4.2.

Cholesky factorization (1/3)n3 [33, p. 164]

Symmetric QR Algorithm 9n3 [33, p. 463]

Householder QR factorization (2n× n) (12 + 2/3)n3 [33, p. 249]

Singular values (2 + 2/3)n3 [33, p. 493]

Singular values + right singular vectors 12n3 [33, p. 493]

Triangular linear system n2 [33, p. 107]

Alg. 4.2: A and B nonsingular 29n3

Alg. 4.2: A xor B singular (37 + 2/3)n3

Alg. 4.2: A and B singular (46 + 1/3)n3
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We remark that the two if-then-else statements in Algorithm 4.2 can be

executed in parallel. Similarly, the computation of the SVD quantities of Q1 and

Q2 (line 14 and 15) can be done in parallel.

The backward error analysis in [89] only concerns the eigenvalues. Since the

eigenvectors are given by R−1V the quality of the computed eigenvectors depend

on the triangular matrix R. As mentioned above, this matrix is always invertible,

but it may be ill-conditioned. In exact arithmetic we have RTR = A+ sB, with

s = ‖A‖/‖B‖, so R is ill-conditioned exactly when there exists a vector v such

that both vTAv/‖A‖ and vTBv/‖B‖ are small.

4.4 Main algorithm

The proposed algorithm for solving (4.1) is outlined briefly in Algorithm 4.3.

Algorithm 4.3: Main algorithm

Description : Computes all eigenvalues/eigenpairs of (4.1).

1 Compute an S ∈ Rn×r such that D = SST .

2 Compute the undamped eigenvalues (that is, the eigenvalues of Mλ2 +K)

and a nonsingular X ∈ Rn×n such that

XT (Mλ2 + SSTλ+K)X = Mdλ
2 + ŜŜTλ+Kd =: P (λ), (4.16)

where Md and Kd are diagonal.

3 Lock undamped eigenvalues that are also eigenvalues of (4.1).

4 Compute the eigenvalues of (4.16) by the Ehrlich-Aberth iteration. Return

the computed eigenvalues if the eigenvectors are not requested.

5 Compute the eigenvectors of (4.16) by inverse iteration.

6 Return (λi, Xvi), i = 1: 2n, where (λi, vi) is a computed eigenpair of (4.16).

For the first step of Algorithm 4.3, we can find S by, for instance, computing

the spectral decomposition of D.

The second step of Algorithm 4.3 essentially reduces to solving a definite

GEP. It is easy to see that X must be an eigenvector matrix corresponding to

K −Mω. Furthermore, if ωk, k = 1:n, are the eigenvalues of K −Mω, then the

undamped eigenvalues are given by ±i√ωk if ωk is finite, and ∞ otherwise. We

use Algorithm 4.2 to find all eigenpairs of K −Mω. Note that there is no need to
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form the matrices XTMX and XTKX explicitly: from (4.13) and (4.14) we see

that Md and Kd are given by the singular values computed in Algorithm 4.2.

The description of step 3, 4 and 5 are more involved, so we discuss these in

separate subsections.

4.4.1 Step 3: Initial locking

It may happen that some undamped eigenvalues are also eigenvalues to (4.1).

Since there is no need to do any further work on such eigenvalues, we declare

them “locked.” When deciding which eigenvalues to lock, we treat zero and infinite

eigenvalues separately from nonzero finite eigenvalues. The reason for this is that

it is not unlikely that zero and infinite eigenvalues of (4.1) are defective. Matrix

polynomials (and constant matrices for that matter) with defective eigenvalues are

often regarded as degenerate cases. Indeed, if we randomly generate the coefficient

matrices of a matrix polynomial, it will almost surely have no defective eigenvalues.

However, we will see that this is not necessarily the case if we impose rank

constraints on the coefficient matrices and force them to be positive semidefinite.

Suppose (λk, xk), where λk 6= 0,∞, is a computed eigenpair of Mλ2 +K and let

η(λk, xk) denote the corresponding backward error with respect to Mλ2 +Dλ+K.

We declare λk “locked” if η(λk, xk) is small enough. In our code, “small enough”

is defined as less than nu where u is machine precision.

The next proposition provides a method to determine how many of the zero

and infinite eigenvalues to lock.

Proposition 4.4.1. Let Q(λ) = Mλ2 +Dλ+K be the matrix polynomial in (4.1),

with (M,K) regular. The number of zero eigenvalues is given by

dim null(K) + dim(null(D) ∩ null(K)),

and the number of infinite eigenvalues is given by

dim null(M) + dim(null(D) ∩ null(M)).

Proof. For readability, we introduce the following variables

k := dim null(K) and ` := dim(null(D) ∩ null(K)).

Pick a real invertible X1 such that XT
1 MX1 and XT

1 KX1 are diagonal and the

first k diagonal elements of XT
1 KX1 are zero. This can be done since (M,K)
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is a definite pencil. Further, pick an invertible X2 ∈ Rk×k such that the first

` ≤ k columns X2⊕ In−k is a basis for null(XT
1 DX1)∩null(XT

1 KX1) and the first

k columns is a basis for null(XT
1 KX1). Let X = X1(X2 ⊕ In−k) and note that

XTQ(λ)X decomposes into a direct sum

XTQ(λ)X = M1λ
2 ⊕ (M2λ

2 +D2λ+K2),

where M1 is `× ` and null(D2) ∩ null(K2) = {0}. Note that M1λ
2 has exactly 2`

zero eigenvalues and Q2(λ) := M2λ
2 +D2λ+K2 has at least k− ` zero eigenvalues.

We need to show that Q2(λ) has exactly k − ` zero eigenvalues, or equivalently,

that all its zero eigenvalues are semisimple. To this end, we observe that Q2(λ)

is real and symmetric, so all right eigenvectors associated with zero are also left

eigenvectors. Next, we pick σ > 0 such that detQ2(σ) 6= 0 and define

Q̂(λ) = λ2Q2(1/λ+ σ).

From Corollary 2.3.3 it follows that zero is a defective eigenvalue of Q2(λ) only if

there exists a real right eigenvector x such that

xT Q̂′(−1/σ)x = xT (D2 +K2/σ)x = 0.

Since D2 and K2 are both positive semidefinite, such x must lie in null(D2) ∩
null(K2) and hence cannot exist.

The number of infinite eigenvalues equals the number of zero eigenvalues of

revQ(λ) := Kλ2 +Dλ+M . Thus, the other half of the proposition can be shown

analogously if we consider revQ(λ) instead of Q(λ).

Remark 4.4.2. The number of “missing eigenvectors” corresponding to the zero

and infinite eigenvalues are given by dim(null(D) ∩ null(K)) and dim(null(D) ∩
null(M)), respectively. Hence, defective eigenvalues are always present if, for

example, rankD = 1 and dim null(K) = 2.

By Proposition 4.4.1, the number of zero and infinite eigenvalues depends

on null(K) and null(M), respectively. These spaces are available from the corre-

sponding spectral decompositions, which are computed in Algorithm 4.2. If the

columns of N1 ∈ Rn×k1 and N2 ∈ Rn×k2 constitute bases for null(K) and null(M),

respectively, then there are 2k1−rank(DN1) zero eigenvalues and 2k2−rank(DN2)

infinite eigenvalues. These quantities can be computed numerically using the SVD.
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4.4.2 Step 4: Computing eigenvalues

We now discuss how to use the Ehrlich-Aberth method to exploit the structure of

(4.16) in order to find all eigenvalues. We focus on the following three questions.

1. How do we pick the starting points?

2. How do we compute (4.11) efficiently?

3. Which stopping criterion should we use?

For starting points we use the undamped eigenvalues with small (in a relative sense)

random perturbations added to the unlocked eigenvalues. These perturbations are

added to break symmetries, since it is well-known that the Ehrlich-Aberth method

may fail to converge due to certain symmetries [3]. Suppose, for example, that

(4.1) has two real simple eigenvalues and all undamped eigenvalues are finite and

nonzero. Assume further that we want to use the update rule (4.9). If we do not

add the perturbations, then starting points can be paired into complex conjugates,

and the update rule (4.9) preserves this symmetry. Hence, convergence to real

simple eigenvalues is impossible. Another problem occurs if two starting points

are the same. In this case we get division by zero in the Ehrlich-Aberth updates.

Also this problem disappears when we add random perturbations to the starting

points.

The rationale behind using the undamped eigenvalues as starting points be-

comes more clear if we think about the application discussed in section 4.1.1.

In this case the eigenvalues correspond to vibrational properties (frequency and

damping) of a physical structure, and the undamped eigenvalues correspond to

vibrational properties of the same structure, but with the strength of the dampers

set to zero. If the damping is small or moderate, our choice of starting points seems

reasonable. But what if the damping is strong? In this case we note that a strong

viscous damper (that is, one with small holes in its piston head, see Figure 3.1) is

in some sense similar to a rigid component. We expect the spectrum to respect

this similarity. In the case when M and K are positive definite, we saw in Chapter

3, that all eigenvalues of Mλ2 + sDλ+K, converge to points on the imaginary

axis as s→∞, with the exception of rankD eigenvalues which go to −∞. This

means that rankD eigenvalues can be arbitrarily far from all the staring points.

Fortunately, as will be seen in section 4.5.3, Ehrlich-Aberth works quite well in

practice when only a few starting points are “way off.”
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The computation of trace (P (λ)−1P ′(λ)) for fix values of λ is the core of our

Ehrlich-Aberth iteration. We compute this trace using the Sherman-Morrison-

Woodbury formula in combination with standard trace laws. The precise procedure

is outlined in Algorithm 4.4; we leave out the tedius algebra that justifies it. If

Md and Kd are stored as vectors and Algorithm 4.4 is implemented accordingly,

then total flop count is only 4n+ 2rn+ 4r2n (counting only terms with a factor

n). Since there are 2n eigenvalues, and we expect each eigenvalue to converge in a

few steps, the complexity in n of our Ehrlich-Aberth iteration is quadratic.

Algorithm 4.4: Computation of trace (P (λ)−1P ′(λ)).

Description : Computes t = trace (P (λ)−1P ′(λ)) where

P (λ) = Mdλ
2 + ŜŜTλ+Kd.

1 A := Mdλ
2 +Kd

2 B := A−1Ŝ

3 C := ŜTB

4 D := Ir + λC

5 E := MdB

6 F := CD−1C

7 G := (BTE)D−1

8 t := 2λtrace(MdA
−1) + trace(C)− 2λ2trace(G)− λtrace(F )

When an eigenvalue has converged, we mark it as “locked” and do not update it

in subsequent iterations. We are done when all eigenvalues are locked. The obvious

question is “When do we declare an eigenvalue ‘converged’?” One approach is

to estimate the backward error (4.7) with respect to (4.16), and lock computed

eigenvalues if their backward errors are smaller than some tolerance, say machine

precision. If we use the normest1 algorithm [38] in combination with the Sherman-

Morrison-Woodbury formula, such estimation requires only O(n) flops if we count

r as a small constant. We found, however, that we often get better results (both in

terms of accuracy and speed) with the following heuristic strategy: lock λ
(i)
k when

∣∣λ(i)
k − λ

(i+1)
k

∣∣ < tol×
∣∣λ(i)
k

∣∣,
where tol is initially set to be machine precision, and is then relaxed by a factor

10 each 50th iteration. This is the stopping condition used in our numerical exper-

iments. Here the number 50 is somewhat arbitrary. From experience, convergence

of most eigenvalues is usually obtained within 10 iterations. Some eigenvalues
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requires more iterations, but the idea is that if 50 is not enough then the problem

is most likely not the number of iterations, but rather that the tolerance is too

stringent. We stress that the argument is based purely on experience, so there may

very well exist examples where this strategy fails. We remark, however, that some

kind of relaxation strategy for the tolerance is necessary also when the eigenvalue

backward error is used as a stopping condition—otherwise the iteration may go

on forever. We comment more on this at the end section 4.5.3.

4.4.3 Step 5: Computing eigenvectors

When all eigenvalues have been found we compute the corresponding eigenvectors.

Since the computation of eigenvectors corresponding to different eigenvalues are

completely decoupled, this phase of the algorithm is embarrassingly parallel.

We now discuss how to determine an eigenvector vi of P (λ) corresponding to a

computed eigenvalue λi. If λi is an undamped eigenvalue, then vi has already

been found; otherwise, more work is required. The next proposition provides one

method for computing vi.

Proposition 4.4.3. Let λi be an eigenvalue of P (λ) but not of Q(λ) := P (λ)−
SSTλ. Then all eigenvectors associated with λi lie in the range of Q(λi)

−1S.

Proof. Suppose (vi, λi) is an eigenpair of P (λ) and write vi = Q(λi)
−1Sx + y

where y ⊥ range(Q(λi)
−1S). We need to show that y = 0. We have

0 = P (λi)vi = P (λi)(Q(λi)
−1Sx+ y)

= (Q(λi) + λiSS
T )(Q(λi)

−1Sx+ y)

= S(Ir + λiS
TQ(λi)

−1S)x+Q(λi)y + λiSS
Ty,

which implies that Q(λi)y ∈ range(S), or equivalently, that y ∈ range(Q(λi)
−1S).

The result now follows from the definition of y.

Remark 4.4.4. A consequence of Proposition 4.4.3 is that the geometric multi-

plicity of λi cannot exceed the rank of S.

Proposition 4.4.3 implies that if λi is computed exactly, then it is enough to

look for eigenvectors in the r dimensional subspace range(Q(λi)
−1S). Furthermore,

we see from the proof that Q(λi)
−1Sx is an eigenvector of P (λ) for any x ∈

null(Ir + λiS
TQ(λi)

−1S). Since x can be computed cheaply from the SVD of

Ir + λiS
TQ(λi)S, this yields a fast method for computing vi. In practice, however,
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the computed eigenvalues contain errors so Proposition 4.4.3 is strictly speaking

not applicable, and the discussed method may lead to inaccurate eigenvectors.

The computed eigenvectors are, however, often very good (frequently with perfect

backward errors of order 10−16) and serve as excellent starting vectors for inverse

iteration.

There are several approaches to inverse iteration for polynomial eigenproblems,

see [64, 65]. The approach we take is (to the author’s knowledge) new. It is

designed for real symmetric matrix polynomials and is slightly cheaper than the

alternatives—although it may be argued that the savings are negligible in our

context. The idea is to iterate according to

v
(k+1)
i = P (λi)

−1v
(k)
i /‖v(k)

i ‖. (4.17)

So, why does this work? To answer this, we note that P (λi) is complex sym-

metric and hence enjoys an SVD on the form UΣUH (also known as the Tak-

agi factorization). If U = [u1 u2 · · · un], Σ = diag(σ1, σ2, . . . , σn) and v
(k)
i =

α1u1 + α2u2 + · · ·+ αnun, then

P (λi)
−1v

(k)
i = UΣ−1UHv

(k)
i =

n∑
j=1

αj
σj
uj. (4.18)

Since σn is tiny when λi is close to an eigenvalue, we expect (4.18) to be huge

in the direction of un. This is delightful, since the vector un is the best possible

eigenvector approximation we can hope for in the sense that ηP (λi, un) = ηP (λi).

As usual with inverse iteration, the ill-conditioning of P (λi) is benign since the

matrix magnifies errors in the direction of the desired vector.

To compute (4.17) we use the Sherman-Morrison-Woodbury formula with the

starting vector described above. Since the starting vector already is a good approx-

imation, we only take one step of inverse iteration in our code. The complexity

for computing one eigenvector of (4.16) with this technique is linear in n.

Another way to solve the linear systems from (4.17) is to use QR factorization

and back substitution. This is an attractive option from a stability point of

view, albeit more expensive. If the technique used in [82] is employed, each QR

factorization can be computed with O(rn2) flops. The idea is to compute, in

a bottom-up fashion, a sequence of (real) Givens rotations U1U2 . . . Un−1 =: U

such that US is trapezoidal and UMd and UKd are r-Hessenberg. This implies

that UP (λi) is r-Hessenberg for any λi, so its QR factorization can be computed

efficiently using Givens rotations. We did not use this approach for our numerical
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experiments. It may, however, be the method of choice when only a few eigenvectors

are sought, or when the eigenvectors are computed in parallel.

We end this section with a negative remark: the approach to first find the

eigenvalues, and then the eigenvectors via inverse iteration, is flawed when multiple

eigenvalues are present. In this case we may approximate the same eigenvector

several times. An obvious “solution” is to compute an invariant subspace rather

than individual eigenvectors; inverse iteration and our choice of starting vector

can indeed be generalized to subspaces. The problem is that it is hard to a priori

decide what the dimension of the subspaces should be.

4.5 Numerical experiments

We implemented Algorithm 4.3 in MATLAB 2012b. Our code is written in serial,

so it does not, for instance, exploit that the workload in steps 4 and 5 of the

algorithm is embarrassingly parallel. Individual MATLAB functions that are

being called, may, however, be multithreaded. For the Ehrlich-Aberth iteration,

we used the Gauss-Seidel updates shown in (4.10). The first part of our algorithm

(step 1–3) make use of MATLAB’s core routines svd and qr. The second part

of our algorithm (step 4–6) is written in “pure” MATLAB code (except for the

computation of small r × r SVDs) and is sometimes slower than the first part

even though the flop count is much lower. Since we expect this speed difference to

wane if the entire algorithm is implemented in a low-level language, we sometimes

state explicitly how much time is spend on the second part.

We compared our algorithm to quadeig, the MATLAB implementation of the

eigensolver in [34] for unstructured QEPs. In the core of this implementation we

find MATLAB’s eig routine, which performs the real QZ algorithm in this case.

The numerical experiments were carried out in MATLAB R2012b in IEEE

double precision arithmetic on a machine with the following specifications.

Memory 16GB (4X4GB) 1333 MHz DDR3 Non-ECC

Processor Intel® Core™ i7-2600 (8M Cache, 3.40 GHz)

Operating System Windows® 7 Professional (64Bit)

4.5.1 The damped beam

The damped beam from the collection of nonlinear eigenvalue problems, NLEVP

[10], was studied earlier in Example 3.3.6 and Example 3.4.4. The construction of

the coefficient matrices is explained in [37], where it is also shown that half of the
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eigenvalues are undamped. This makes it an ideal problem for our algorithm. We

modeled the problem such that the coefficient matrices were of size 1000× 1000.

Algorithm 4.3 computed all eigenpairs in 2 seconds while quadeig needed 112

seconds. The backward errors for the computed eigenpairs are shown in Figure 4.1.

We remark that there is no guarantee that two backward errors plotted with the

same x-coordinate correspond to the same eigenvalue. We see that both algorithm

performed well in terms of backward stability (all backward errors are less than

n times the machine precision). The spectrum, as it was computed by the two

algorithms, are shown in Figure 4.2.

Let us pause a for a while and discuss Figure 4.2. We know that all eigenvalues

must lie in the left half plane, and half of them on the imaginary axis. Hence the

real parts of some of the computed eigenvalues from quadeig must be inaccurate,

even though Figure 4.1 shows all backward errors are about 10−14. In terms of

relative errors, this is consistent with the “approximate bound”

forward error . backward error× condition number,

for the unstructured forward error, if we define the condition number conformably

with the backward error introduced in section 4.2.1. This condition number is

Computed eigenpairs
10−20

10−19

10−18

10−17

10−16

10−15

10−14

10−13

B
a
ck

w
a
rd

er
ro

rs

quadeig

Algorithm 4.3

Figure 4.1: Backward errors of computed eigenpairs for the damped beam. The
dashed line indicates the machine precision.
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Figure 4.2: Computed spectra of the damped beam.

given by

κ(λ) =
‖M‖|λ|2 + ‖D‖|λ|+ ‖K‖
|λ||vT (2Mλ+D)v|

,

if λ is a simple nonzero eigenvalue of (4.1) and v is an associated normalized

eigenvector [81]. If we, for example, evaluate the condition number of the upper-

right-most eigenvalue using the computed quantities from Algorithm 4.3, we find

that the condition number is of order 107. Assuming this answer is of the correct

order of magnitude, the relative forward error is at most of order 10−14×107 = 10−7.

For the absolute forward error, we note that the modulus of the eigenvalue in

question is about 108, so the absolute forward error is at most of order 10−14 ×
107 × 108 = 10. This explains why we see some red circles in the right half plane.

The unstructured forward error bound does not, however, explain the nice pattern

in the spectrum produced by Algorithm 4.3. One explanation is the problem has

a lot of structure that Algorithm 4.3 respects.

Finally, recall that each undamped eigenvalue is computed as ±iωk, for some

real eigenvalue ωk of K −Mω, and is then locked if it is also an eigenvalue of the

damped problem. This explains the straight line of blue crosses on the imaginary
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Figure 4.3: A simple mass-spring-damper system.

axis in Figure 4.2. However, even if we bypass the initial locking phase and add

relative perturbations of order 10−8 to all eigenvalues, our Ehrlich-Aberth iteration

returns half the eigenvalues in a strip centered at the imaginary axis of width

about 10−13.

4.5.2 A mass-spring-damper system

Our next QEP comes from a simple mass-spring-damper system; the particular

setup is shown in Figure 4.3. To make the problem more interesting, we introduced

defective infinite eigenvalues by setting some of the masses, as well as most damping

coefficients, to zero. We defined n = 1000,

mi =

0 if i ∈ {1, n}

1 otherwise,
di =

1/100 if i ∈ J := {12, n/2 + 1, n− 10}

0 otherwise

and ki = 1 for i = 1:n. Notice that there only are three effective dampers, that

is, with nonzero damping coefficients di. The corresponding mass, damping and

stiffness matrices are given by

M = I − e1e
T
1 − eneTn , D =

1

100

∑
i∈J

(ei−1 − ei)(ei−1 − ei)T

and

K =


2 −1

−1 2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 ,

respectively [88, p. 2]. Further, Proposition 4.4.1 implies that the associated QEP

has four defective infinite eigenvalues. We solved the eigenproblem using the new

algorithm and quadeig. Although this QEP has the same size as the damped
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Figure 4.4: Backward errors of computed eigenpairs for the mass-spring-damper
system described in section 4.5.2. The dashed line indicates the machine precision.

beam problem in Section 4.5.1, we expect the computation time for Algorithm 4.3

to be longer for this problem. There are two reasons for this. First, only four

eigenvalues are locked initially (that is, the infinite eigenvalues), in contrast to

half the eigenvalues of the damped beam problem. Second, the damping matrix

of this problem has larger rank. The computation time for Algorithm 4.3 was 5

seconds, where more than half the time was spend on the second part (step 4–6) of

the algorithm; the computation time for quadeig was 110 seconds. The backward

errors for the computed eigenpairs are shown in Figure 4.4. As in Figure 4.1, two

errors plotted with the same x-coordinate may correspond to different eigenvalues.

Once the eigenvalues have been computed, Algorithm 4.3 computes the eigen-

vectors at a negligible cost. As mentioned in the introduction of this chapter, this

is not the case for quadeig, which is significantly faster if only the eigenvalues

are sought. Therefore, we reran this experiment with the modification that only

the eigenvalues were computed. This time quadeig required 74 seconds, while

Algorithm 4.3 still used 5 seconds.

4.5.3 QEPs with random coefficient matrices

We created random coefficient matrices using the MATLAB commands

M = randn(n); D = randn(n,5); K = randn(n);

M = M*M’; D = D*D’; K = K*K’;
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Table 4.2: Backward errors and execution times for the tested algorithms. The
last columns shows how many times, on average, each eigenvalue approximation
was updated in the Ehrlich-Aberth iteration.

n
quadeig Algorithm 4.3

max η(λ, v) time max η(λ, v) time (step 4–6) Av. #upd

200 6.3e−15 0.4 1.7e−15 0.6 (0.6) 8.2

600 1.6e−14 20.4 1.3e−15 3.9 (3.4) 7.9

1000 2.9e−14 110.3 1.3e−15 8.7 (7.2) 7.9

1400 3.7e−14 313.5 2.1e−15 15.8 (12.2) 7.9

1800 5.5e−14 702.2 1.7e−15 43.2 (34.4) 7.7

2200 6.3e−14 1296.6 1.7e−15 42.0 (26.1) 7.7

2600 7.0e−14 2143.2 1.8e−15 58.7 (34.5) 7.7

3000 7.8e−14 3299.6 1.9e−15 84.1 (44.3) 7.7

and solved the corresponding problem for different values of n. Note that the

rank of the damping matrix is 5 for each test problem. The results are shown in

Table 4.2. As expected, Algorithm 4.3 scales much better with n than quadeig.

Our next experiment concerns strongly damped problems, or more precisely,

problems for which ‖D‖ is much larger than ‖M‖ and ‖K‖. Such problems have

badly scaled linearizations, even if parameter scalings are employed [24]. This

implies that linearization based algorithms, such as quadeig, cannot compute

all eigenpairs backward stably, unless the same problem is solved twice using

two different linearizations [92]. The proposed algorithm is “linearization free”

and does not share this drawback. However, it is still worth investigating the

performance on strongly damped problems. There are two reasons for this:

1. There are rankD eigenvalues that are far away from all starting points.

2. As seen in Chapter 3, eigenvalues may cluster around the origin.

We generated test problems using the following MATLAB code:

M = randn(250); D = randn(250,r); K = randn(250);

M = M*M’; D = s*(D*D’); K = K*K’;

The results for different values of s and r are shown in Table 4.3. We see that

the norm of D does affect the accuracy. However, the increase in the worst case



4.5. Numerical experiments 70

Table 4.3: Backward errors and execution time for Algorithm 4.3. As in Table 4.2,
Av. #upd denotes the number of average Ehrlich-Aberth updates per eigenvalue.

s
r = 5 r = 25

max η(λ, v) Av. #upd max η(λ, v) Av. #upd

1e+00 1.1e−15 7.9 1.5e−15 17.0

1e+02 3.0e−15 6.9 1.4e−14 12.8

1e+04 1.8e−14 7.3 8.4e−13 17.0

1e+06 4.6e−14 7.2 8.2e−13 20.9

1e+08 3.7e−14 7.0 6.2e−13 26.0

1e+10 4.3e−14 7.8 1.4e−12 29.8

1e+12 2.3e−14 8.3 9.0e−13 36.1

1e+14 1.3e−14 9.0 3.7e−13 42.2

backward error is modest (a factor 10 or 100) and appears to stagnate as s grows.

The results in Table 4.3 can be explained as follows. When s is large, there are

2r real eigenvalues; half of them cluster around the origin and the other half are

large and negative. As s grows, our algorithm fails to satisfy the initial stopping

condition for some eigenvalues, in particular the real ones, and therefore relaxes

the tolerance (after 50 iterations). This is the reason for the growth in the worst

case backward errors. It also explains the increase in average number of Ehrlich-

Aberth steps taken per eigenvalue. We remark that taking more steps before

relaxing the tolerance does not necessarily improve the accuracy. The problem

is not always that the iterates are “lost” and far away from the eigenvalues

they should approximate, but rather that the Ehrlich-Aberth corrections, which

are computed using the Sherman-Morrison-Woodbury formula, are not accurate

enough. The author has not found any example where the updates computed

using the Sherman-Morrison-Woodbury formula was seriously inaccurate, but has

encountered cases where the associated eigenvalue backward error stagnates before

it reaches nu, while a naive update using MATLAB’s backslash yields backward

errors at machine precision. This is why a relaxed tolerance sometimes is needed

also if the eigenvalue backward error is used as stopping condition, unless the initial

tolerance is known, a priori, to be attainable. Such knowledge, however, would

require a rigorous error analysis of the Sherman-Morrison-Woodbury formula as

well as error bounds for the computed eigenvalue backward error estimates. This
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is outside the scope of this thesis.

4.6 Discussion

4.6.1 The large scale case

Todays models of vibrating structures are often so large that it becomes unfeasible

to find all eigenpairs. Even in cases when it is possible, all eigenpairs are rarely

of interest. Instead subspace based methods are used to target the most impor-

tant eigenvalues. When a good subspace has been found, a smaller “projected”

eigenproblem needs to be formed. There are several ways of forming this smaller

problem. A good approach is to project directly onto the coefficient matrices,

in style of an orthogonal Rayleigh-Ritz procedure [9]. This leads to a smaller

system that shares the essential structure that all coefficient matrices are positive

semidefinite. More precisely, if the columns of U span a computed subspace of

dimension k, then we form

Q(λ) := UT
(
Mλ2 +Dλ+K

)
U,

which is a matrix polynomial of size k × k. The next step is to find all eigenpairs

of Q(λ). If k is significantly larger than the number of discrete dampers (recall

that less than 10 dampers is not uncommon in practice) then we have a problem

on same form as (4.1) to which the proposed algorithm can be applied.

4.6.2 Generalizations

The main idea behind this work was that the structure “diagonal plus low rank”

can be exploited to quickly compute eigenvalues and eigenvectors. We considered

a rather special QEP, but it is also possible to apply this idea to other types of

eigenvalue problems. A major obstacle, however, is the choice of starting points for

the Ehrlich-Aberth iteration. Consider, for example, a rank one modification of a

standard eigenvalue problem Ax = λx. If we already have a spectral decomposition

A = SΛS−1, then for any u and v, S−1(A+ vuT )S is the sum of a diagonal matrix

and a rank one matrix, so we can apply the techniques discussed in this chapter

to quickly compute all its eigenpairs—assuming good starting points are available.

The analogue of the starting points used in our algorithm, would be the eigenvalues

of A. Unfortunately, we cannot, without further insight into the problem, argue

that this choice is any good. In fact, it can be arbitrarily bad: Ackermann’s
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formula (for pole placement) [4] states that a rank one modification—albeit an

extreme one— is enough to change the spectrum of any given nonderogatory

matrix arbitrarily.

One situation where good starting points are available appears in homotopy

methods. Consider, for example, the following problem: Given a vector u and

spectral decomposition A = SΛS−1 such that all eigenvalues of A have negative

real part, find the smallest t ≥ 0 such that A + tuuH has a purely imaginary

eigenvalue. If we define x = S−1u and yH = uHS, then Λ + txyH is similar to

A+ tuuH and on the form “diagonal plus rank one.” Hence one way to attack the

problem is to solve a sequence of eigenvalue problems

Λ + tixy
H , i = 0, 1, 2, . . . , where 0 = t0 < t1 < t2 < · · · ,

by an Ehrlich-Aberth iteration that exploits the structure and uses the eigenvalues

of the previous step as starting points.

4.6.3 Related work

A completely different approach, which applies to a larger family of QEPs with

low rank damping, was recently studied by Lu, Huang, Bai and Su [55]. Their

algorithm is based on a trimmed linearization of a rational eigenvalue problem that

approximates the QEP of interest. This means that the bulk of the computation

comes from solving a non-definite generalized eigenvalue problem of size m×m,

where m is larger than the matrix size n, but significantly smaller than 2n. An

advantage with this approach is that the algorithm is directly applicable to large

scale problems.
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5

Triangularizing matrix

polynomials

5.1 Introduction

In this chapter we consider the following problem: given a matrix polynomial

P (λ) ∈ F[λ]n×m, construct, when possible, a triangular or trapezoidal matrix

polynomial T (λ) ∈ F[λ]n×m, of the same degree and eigenstructure as P (λ). If this

is possible, then P (λ) is said to be triangularizable. Recall that the eigenstructure

of a matrix polynomial refers to the eigenvalues and their partial multiplicities or,

equivalently, to the elementary divisors of the matrix polynomial, including those

at infinity.

To make the text in this chapter more readable, we say that a matrix is

triangular if all entries (i, j) such that i > j are zero; this includes trapezoidal

matrices. Similarly, we say that an n×m matrix is quasi-triangular if the leading

min(n,m)×min(n,m) submatrix is quasi-triangular.

We will show that when F is algebraically closed, any P (λ) ∈ F[λ]n×m with

n ≤ m is triangularizable, thereby extending an earlier but little-known result

by Gohberg, Lancaster and Rodman for square monic matrix polynomials with

complex coefficient matrices [32, proof of Theorem 1.7]. Over the real numbers,

not all matrix polynomials are triangularizable. We will prove, however, that

as long as n ≤ m, all matrix polynomials in R[λ]n×m are quasi-triangularizable,

that is, strongly equivalent to some quasi-triangular matrix polynomial. Our

results extend in a non-trivial way some recent results by Tisseur and Zaballa

for square regular quadratic matrix polynomials [84]. Our proofs concerning the

73
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reduction to triangular and quasi-triangular forms are constructive provided that

the elementary divisors (finite and at infinity) of the original matrix polynomial

P (λ) are available. Since this is the only information that is used, we are solving

the following inverse problem: given a list of elementary divisors (finite and at

infinity) over a field F, determine under what conditions they are admissible by a

triangular/quasi-triangular matrix polynomial in F[λ]n×m of a fixed degree, and,

in case they are admissible, design a constructive procedure to obtain it. We end

this chapter by discussing such inverse problems and state a conjecture for the

inverse Hermitian polynomial eigenvalue problem.

The chapter is organized as follows. In Section 5.2 we discuss how the Möbius

transformation will be employed. Section 5.3 concerns triangularization of matrix

polynomials over algebraically closed fields and Section 5.4 treats the analogous

quasi-triangularization over the real numbers. In Section 5.5 the inverse polynomial

eigenvalue problems solved in the previous sections are identified and the case of

Hermitian matrix polynomials is considered.

Since all derivations in this chapter are carried out over polynomial rings, the

notation “(λ)” is omitted for scalar polynomials.

5.2 Application of the Möbius transformation

Recall the Möbius transformation for matrix polynomials introduced in Section 2.2.

For a given matrix polynomial P (λ) ∈ F[λ]n×m, n ≤ m, we will use the following

technique to prove that it is strongly equivalent to a triangular or quasi-triangular

matrix polynomial of the same degree:

(i) If P (λ) has elementary divisors at infinity, we apply a Möbius transforma-

tion to P (λ) with Möbius function mA such that MA(P ) only has finite

elementary divisors and (MA−1 ◦ MA)(P ) = P (λ) up to a product by a

nonzero scalar. If P (λ) has no eigenvalues at infinity then we take A = I2

so that MA(P ) = P (λ).

(ii) We then show that MA(P ) is equivalent to a triangular or quasi-triangular

matrix polynomial T (λ).

Notice that MA−1(T ) is triangular or quasi-triangular as T (λ) is triangular or

quasi-triangular, respectively. We claim that, provided that F is an infinite field,

a Möbius function always exists that satisfies the two conditions of item (i)

and MA−1(T ) is strongly equivalent to P (λ). In fact, let a, c ∈ F, c 6= 0, such
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that a/c is not an eigenvalue of P (λ) and take b, d ∈ F such that A =
[
a
c
b
d

]
is nonsingular. Write P (λ) = Ã`(cλ − a)` + Ã`−1(cλ − a)`−1 + · · · + Ã0, with

suitable Ã0, . . . , Ã`. Given that a/c is not an eigenvalue of P (λ) it follows that

rank Ã0 = rankP (a/c) = rankP (λ). Also,

MA(P ) = Ã0(cλ+ d)` + (bc− ad)Ã1(cλ+ d)`−1 + · · ·+ (bc− ad)`Ã`

so that the leading coefficient of MA(P ) is c`Ã0. Hence rank rev(MA(P ))(0) =

rank Ã0 = rankP (λ) and MA(P ) has no eigenvalues at infinity. Now, mA−1(z) =

(−dz + b)/(cz − a) and

MA−1

(
MA(P )

)
= (cλ− a)`MA(P )(mA−1(λ)) = (bc− ad)`P (λ).

This proves our claim about the existence of a Möbius function that satisfies

the two conditions of item (i) for each matrix polynomial P (λ). The second part

of the claim (that P (λ) and MA−1(T ) are strongly equivalent) is an immediate

consequence of Theorem 2.2.1.

5.3 Triangularization over algebraically closed

fields

We start with a deflation procedure which will be used to construct upper triangular

matrix polynomials with diagonal entries of a specified degree. The techniques

used to prove the following two results appear for F = C in the proof of a theorem

by Gohberg, Lancaster and Rodman on the inverse problem for linearizations [32,

proof of Theorem 1.7].

Lemma 5.3.1. Let d1| · · · |dn be monic polynomials with coefficients in F and

define `j := deg dj. Assume that for a given positive integer q and a pair of indices

(i, j) such that `i ≤ q < `j, there is a polynomial s with deg s < `j such that

dk−1|sdi|dk for some index k ≤ j. Then D(λ) = diag(d1, . . . , dn) is equivalent to

D̃(λ) + diek−1e
T
j , where ei denotes the ith column of the n× n identity matrix and

D̃(λ) = diag(d1, . . . , di−1, di+1, . . . dk−1︸ ︷︷ ︸
k − 2 terms

, sdi, dk, . . . , dj−1︸ ︷︷ ︸
j − k terms

,−dj/s, dj+1, . . . , dn︸ ︷︷ ︸
n− j terms

).

Proof. We obtain D̃(λ) + diek−1e
T
j by performing the following elementary trans-

formations on D(λ):
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(i) add to column j column i multiplied by s,

(ii) add to row j row i multiplied by −dj/(sdi),

(iii) permute columns i and j,

(iv) successively interchange rows t and t + 1 for t = i : k − 1, so that rows i,

i + 1, . . . , k − 2, k − 1 of the new matrix are rows i + 1, i + 2, . . . , k − 1

and i, respectively, of the former one,

(v) permute columns i to k − 1 in the same way as the rows in (iv).

Theorem 5.3.2. Let d1| · · · |dn be monic polynomials with coefficients in an alge-

braically closed field F. Then there exists a monic triangular matrix polynomial

P (λ) ∈ F[λ]n×n of degree ` and with d1, . . ., dn as invariant factors if and only if∑n
j=1 deg dj = `n.

Proof. The “only if” part is trivial. For the “if” part, suppose that there are

monic polynomials d1| · · · |dn such that
∑n

j=1 `j = `n, where `j = deg dj and let

D(λ) = diag(d1, . . . , dn). If `1 = ` then `i = ` for i = 2:n. Hence D(λ) is a monic

triangular (in fact diagonal) matrix polynomial of degree ` and the construction

is done. If, on the other hand, `1 < `, then `n > ` and so `1 < `1 + `n − ` < `n,

then there is a monic polynomial s of degree `n− ` such that dk−1|sd1|dk for some

index k, 1 < k ≤ n. By Lemma 5.3.1, D(λ) is equivalent to

T1(λ) =



d2
. . .

dk−1

d1s · · · · · · d1

dk
...

. . .

dn−1

...

−dn/s


=

[
D1(λ) t1

−dn/s

]
,

where D1(λ) = diag(d2, . . . , dk−1, d1s, . . . , dn−1) = diag(d
(1)
1 , . . . , d

(1)
n−1) is in Smith

form. If degD1 > ` then we look for a new index k and a monic polynomial s1 of

degree deg d
(1)
n−1−` such that d

(1)
k−1|s1d

(1)
1 |d

(1)
k . Apply the elementary transformations

of Lemma 5.3.1 to the whole matrix T1(λ) so that the obtained matrix has the

degree ` polynomial −d(1)
n−1/s1 as the (n− 1)st diagonal entry. Notice that these

elementary transformations can modify the off-diagonal elements of the nth column
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of T1(λ) but the degree ` polynomial −dn/s in position (n, n) remains unchanged.

We repeat this deflation process until all diagonal entries are of degree `. The

resulting matrix polynomial T (λ) is upper triangular but not necessarily monic or

of degree `. We can, however, use the diagonal entries to eliminate off-diagonal

terms of degree larger than `− 1 in the following way: if deg tij > `− 1 for i < j

then tij = tiibij + cij for some bij and cij such that deg cij < deg tjj = ` or cij = 0.

Then adding to the ith column of T (λ) the jth column multiplied by −bij reduces

the (i, j) entry to zero or to some polynomial with degree strictly less than `.

Note that to reduce the degree of all the off-diagonal entries of T (λ) we must

work bottom up. We now have all degree ` polynomials on the diagonal, and their

leading coefficient is plus or minus 1. Thus, after multiplication by a diagonal sign

matrix, we end up with a monic upper triangular matrix polynomial of degree `.

Notice that for a given list of invariant factors d1| · · · |dn such that
∑n

j=1 deg dj =

`n, there may be more than one monic triangular matrix polynomial of degree `

having d1, . . . , dn as invariant factors, as illustrated by the following example.

Example 5.3.3. Let F = C and d1 = 1, d2 = (λ2 +1)λ2 and d3 = (λ2 +1)λ2(λ−1)

be given. Note that d1|d2|d3 and
∑3

j=1 deg dj = 9 so that by Theorem 5.3.2 there

is a 3 × 3 monic triangular matrix polynomial T (λ) of degree 3 with d1, d2, d3

as invariant factors. To construct T (λ) we first look for a degree deg d3 − ` = 2

polynomial s and an index k such that dk−1|sd1|dk. We have to take k = 2 and for

s we can choose either s = λ2 or s = λ2 + 1. Both choices yield a different upper

triangular cubic matrix polynomial.

• If s = λ2 then by Lemma 5.3.1 D(λ) = diag(d1, d2, d3) is equivalent to

T1(λ) = diag
(
λ2, (λ2 + 1)λ2,−(λ2 + 1)(λ − 1)

)
+ e2e

T
3 . Then we look for

a linear polynomial s1 such that λ2|s1λ
2|λ2(λ2 + 1). We can take either

s1 = λ− i or s1 = λ+ i. The latter choice yields

Ta(λ) =

λ
2(λ+ i) λ2 1

0 −λ2(λ− i) −(λ− i)
0 0 −(λ2 + 1)(λ− 1)

 .
• The choice s = λ2 + 1 leads to the real matrix polynomial

Tb(λ) =

 (λ2 + 1)λ λ2 + 1 1

0 −(λ2 + 1)λ −λ
0 0 −λ2(λ− 1)

 . N
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We are now ready to state the main result of this section, which generalizes

[57, Theorem 9.3].

Theorem 5.3.4. For an algebraically closed field F, any P (λ) ∈ F[λ]n×m with

n ≤ m is triangularizable.

Proof. Assume P (λ) has degree ` and rank r. Since F is algebraically closed, it is

infinite (otherwise we could define the polynomial 1 + Πλi∈F(λ− λi), which does

not have any roots in F) and from the discussion in Section 5.2 it follows that

there is a Möbius function mA induced by a nonsingular matrix A ∈ F2×2 such

that if MA(P ) is triangularizable then P (λ) is strongly equivalent to triangular

matrix polynomial of degree `. We will now show that MA(P ) is triangularizable.

By [57, Proposition 3.29], rankMA(P ) = rankP (λ) = r. Let

D(λ) = diag(d1, . . . , dr, 0, . . . , 0) ∈ F[λ]n×m

be the Smith form of MA(P ). Because all minors of MA(P ) of order r are of

degree at most r`, and because the greatest common divisor of all such minors is

invariant under unimodular transformations (see [26, p. 140] or [32, Theorem S1.2]),

it holds that
∑r

j=1 deg dj ≤ r`. We consider two cases.

Case 1
∑r

j=1 deg dj = r`. By Theorem 5.3.2, the regular part diag(d1, . . . , dr) ∈
F[λ]r×r of D(λ) is equivalent to an r × r upper triangular matrix polynomial of

degree `. Hence MA(P ) is triangularizable.

Case 2
∑r

j=1 deg dj < r`. If r = m, then MA(P ) is square and regular, that

is, MA(P ) has m` eigenvalues, a contradiction. Thus r < m. Starting with

T̃0(λ) = diag(d1, . . . , dr) ∈ F[λ]r×r, we follow the construction in Theorem 5.3.2

until we reach a step, say r − k, such that the matrix polynomial has the form

T̃r−k(λ) =



d̃1 ∗ · · · ∗
d̃2

...
. . .

...
. . .

...
. . .

...

d̃k ∗ · · · ∗
∗ · · · ∗

. . .
...

∗


, (5.1)

where deg d̃j < ` for j = 1: k and the asterisks on the diagonal denote polynomials

of degree `. Now, as in the proof of Theorem 5.3.2, suppose we have applied
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an appropriate sequence of elementary transformations to reduce the degree of

the off-diagonal entries of T̃r−k(λ) to polynomials of degree strictly less than `.

Then MA(P ) is equivalent to the upper triangular matrix polynomial of degree `,

Tr−k(λ) = T̃r−k(λ)⊕ 0n−r,m−r. Note that T̃r−k(λ) has a singular leading coefficient

so rank rev(Tr−k)(0) < r. This means that Tr−k(λ) has elementary divisors at

infinity, and it is hence not strongly equivalent to MA(P ). We now show how to

remove the elementary divisors at infinity while maintaining the upper triangular

form. Note that since r < m, the last column of Tr−k(λ) is a zero column. Thus

permuting the columns according to (1, 2, . . . , n) (cycle notation) preserves the

triangular structure. Define gi through deg(λgi d̃i) = `. Using a sequence of k right

elementary operations we obtain the equivalent matrix polynomial

T (λ) =



λg1 d̃1 d̃1 ∗ · · · ∗
λg2 d̃2 d̃2

...
. . .

...
. . . . . .

...
. . .

...

λgk d̃k d̃k ∗ · · · ∗
∗ · · · ∗

. . .
...

∗


⊕ 0n−r,m−r−1, (5.2)

which is still upper triangular and of degree `. It now remains to show that

rev T (λ) = λ`T (λ−1) has no elementary divisor at zero. For this we write d̃i in

factorized form

d̃i =

{ ∏`−gi
j=1 (λ− λij) if ` > gi,

1 otherwise,

and let

ci =

{ ∏`−gi
j=1 (1− λλij) if ` > gi,

1 otherwise.

Then rev(T ) equals

c1 λg1c1 ∗ · · · ∗
c2 λg2c2

...
. . .

...
. . . . . .

...
. . .

...

ck λgkck ∗ · · · ∗
∗ · · · ∗

. . .
...

∗


⊕ 0n−r,m−r−1.
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By construction, the polynomials represented as asterisks on the diagonal of rev(T )

do not annihilate when evaluated at zero, and similarly, ci(0) 6= 0. Therefore

rank rev(T )(0) = r and so rev(T ) has no elementary divisors at zero. Hence, the

upper triangular matrix polynomial T (λ) in (5.2) is strongly equivalent toMA(P ),

that is, MA(P ) is triangularizable.

Remark 5.3.5. If n > m, we cannot always triangularize; see Example 5.3.7. The

construction fails when we can no longer guarantee that r < m, implying that we

cannot permute the nonzero part of the matrix one step to the right. However,

using similar arguments, we can in this case ensure that r < n. By permuting the

nonzero part of the matrix one step down instead of one step to the right, we can

still build a matrix polynomial with the correct elementary divisors; this matrix

will have Hessenberg structure (all entries (i, j) are zero for i+ 1 > j).

We illustrate Theorem 5.3.4 with the following example taken from [87, Exam-

ple 1].

Example 5.3.6. The quadratic matrix polynomial

Q(λ) =

 λ
2 + λ 4λ2 + 3λ 2λ2

λ 4λ− 1 2λ− 2

λ2 − λ 4λ2 − λ 2λ2 − 2λ


has Smith form

D(λ) =

 1 −1 −1

−λ 1 + λ λ

0 −λ 1

Q(λ)

 1 −3 6

0 1 −2

0 0 1

 =

 1 0 0

0 λ− 1 0

0 0 0

 ,
and since det(Q(λ)) = det(D(λ)) ≡ 0,Q(λ) is singular. This matrix polynomial has

only one finite elementary divisor. Note that rank rev(Q)(0) = 1 < 2 = rankQ(λ),

so Q(λ) has elementary divisors at infinity. Now the Smith form of rev(Q), given

by D̃(λ) = diag(1, λ2(λ− 1), 0), reveals an elementary divisors at infinity for Q(λ)

with partial multiplicity 2.

As zero is not eigenvalue of Q(λ), bearing in mind the technique described in

Section 5.2, we can take a = 0 and c = 1. In fact, ifA =
[

0
1

1
0

]
thenMA(Q) = rev(Q)

has no elementary divisors at infinity and we can follow the proof of Theorem 5.3.4

with this matrix. We start the triangularization process with the submatrix

diag(1, λ2(λ− 1)). Lemma 5.3.1 with (i, j) = (1, 2), k = 2 and s(λ) = λ− 1 yields
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T̃ (λ) = diag(λ− 1,−λ2) + e1e
T
2 . Hence, D̃(λ) is equivalent to

T1(λ) =

λ− 1 1 0

0 −λ2 0

0 0 0

 .
The matrix polynomial T1(λ), which is quadratic and upper triangular, has a

singular leading coefficient indicating that T1(λ) and MA(Q) are not strongly

equivalent. Its elementary divisors at infinity can be removed as described in the

proof of Theorem 5.3.4. First we permute the columns according to (1,2,3), to

obtain:

T2(λ) =

 0 λ− 1 1

0 0 −λ2

0 0 0

 .
Second, multiply the second column by λ and add it to the first one. This yields:

T (λ) =

λ(λ− 1) λ− 1 1

0 0 −λ2

0 0 0

 ,
which is strongly equivalent to MA(Q). Finally,

MA−1(T ) = rev(T ) =

λ+ 1 −λ2 + λ λ2

0 0 −1

0 0 0


is quadratic, triangular and strongly equivalent to Q(λ). N

The next example shows triangularization is not always possible when n > m.

Example 5.3.7. The quadratic matrix polynomial Q(λ) =
[
λ
λ2

]
has the Smith

form D(λ) =
[
λ
0

]
. A triangular matrix polynomial T (λ) =

[
q
0

]
has the Smith form

D(λ) if and only if q = λ, but then deg T (λ) 6= degQ(λ). N

5.4 Quasi-triangularization over the real

numbers

We now concentrate on the non-algebraically closed field R. Although some real

matrix polynomials are triangularizable over R[λ] (see for instance Example 5.3.3

and Example 5.3.6), it is shown in [84] that not all quadratic real matrix polynomials
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are triangularizable over R[λ]. A characterization of all matrix polynomials that

are triangularizable over R[λ] is given [79].

We now show that any P (λ) ∈ R[λ]n×m with n ≤ m is quasi-triangularizable.

We start with an analogue of Theorem 5.3.2 for real matrix polynomials.

Theorem 5.4.1. Let d1| · · · |dn be monic polynomials with coefficients in R. Then

there exists a monic quasi-triangular matrix polynomial T (λ) ∈ R[λ]n×n of degree

` and with d1, . . . , dn as invariant factors if and only if
∑n

j=1 deg dj = `n.

Proof. We only prove the “if” part as the “only if” part is trivial. Suppose that

there are monic polynomials d1| · · · |dn such that
∑n

j=1 `j = `n, where `j = deg dj

and `1 < `. Let Tn(λ) = diag(d1, . . . , dn). We start by constructing an upper

triangular matrix polynomial equivalent to Tn(λ) whose diagonal entries have

degree either ` or `+ 1 or `− 1.

Assume that there is a pair of indices (i, j) such that `i < ` < `j for which there

is a real polynomial s of degree `j − ` such that dk−1|sdi|dk for some index k ≤ j.

It is important for us to remark that the existence of such a real polynomial s is

equivalent to the existence of a real polynomial r of degree `j − `− deg(dk−1/di)

such that r|(dk/dk−1). Then by Lemma 5.3.1, Tn(λ) is equivalent to a matrix

polynomial of the form

. . .

sdi di
. . .

−dj/s
dj+1

. . .

dn


.

By permuting rows and columns we can move the degree ` polynomial −dj/s to the

lower right corner while keeping the upper triangular form and the (n−1)× (n−1)

leading submatrix in Smith form. Specifically,

. . .

sdi di
. . .

dj+1

. . .

dn

−dj/s


.
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We say that a polynomial −dj/s has been deflated to the (n, n) position. We

repeat this deflation procedure for all possible pairs of indices (i, j) satisfying

the above conditions. Also, by means of appropriate permutations of rows and

columns which do not introduce nonzero entries in the lower triangular part of

the matrix, we can move (deflate) all the diagonal entries of degree ` down to

the lower right part of the matrix. We end up with a matrix polynomial of the

following form

Tp(λ) =



c1 ∗ · · · ∗
c2

...
. . .

...
. . .

...
. . .

...

cp ∗ · · · ∗
∗ · · · ∗

. . .
...

∗


,

where the ci are polynomials such that c1|c2| · · · |cp (that is, the p × p leading

principal submatrix of Tp(λ) is in Smith form),
∑p

i=1 deg ci = p`, and the asterisks

on the diagonal denote polynomials of degree `. We redefine `i to be the degree of

ci. Note that if `1 = ` then Tp(λ) has all its diagonal entries of degree `.

Suppose that `1 < `, which implies that p ≥ 2. We show that if we cannot

deflate a degree ` polynomial, then we can consecutively deflate two polynomials

of degree `+ 1 and `− 1, respectively. If p = 2 and there is no real polynomial s

of degree `2 − ` such that c1|sc1|c2 then there is no real polynomial r of degree

`2− ` such that r|(c2/c1). This implies that c2/c1 has no linear factor and `2− ` is

odd. Thus there is a degree `2 − (`+ 1) polynomial s1 such that c1|s1c1|c2. Then

using the procedure described in Lemma 5.3.1 with (i, j) = (1, 2), k = 2 and s1,

we deflate a degree `+ 1 polynomial in position (2, 2) leaving s1c1 of degree `− 1

in position (1, 1).

We now assume that p > 2 and that for any pair of indices (i, j) with `i < ` < `j

we cannot find a real polynomial s of degree `j − ` such that ck−1|sci|ck for any

index k, i < k ≤ j. Then there is no real polynomial r of degree `j−`−deg(ck−1/ci)

such that r|(ck/ck−1). It follows then that ck/ck−1 contains no linear factors and

`j − ` (= deg s) and `k−1 − `i (= deg(ck−1/ci)) have different parity. We consider

three cases.

Case 1 `2 < ` < `p−1. Then `1 < ` < `p and there is a degree `p − (` + 1)

polynomial s1 such that for some index k ≤ p, ck−1|s1c1|ck. We use the procedure

described in Lemma 5.3.1 with (i, j) = (1, p), s1 and the index k to deflate the
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degree `+ 1 polynomial −cp/s1 to position (p, p). This produces a matrix Tp−1(λ),

whose (p− 1)× (p− 1) leading principal submatrix is a Smith form still having c2

and cp−1 as diagonal elements. We then repeat the argument using c2 and cp−1

and a polynomial s2 of degree `p−1 − (`− 1) such that ck−1|s2c2|ck for some index

k ≤ p−1 to deflate the degree `−1 polynomial −cp−1/s2 to position (p−1, p−1).

Case 2 `2 > `. As explained above, there are no linear factors in c2/c1, so `1 and

`2 have the same parity. Further, `3− ` is odd and c3/c2 contains no linear factors

(otherwise there would be a real polynomial r of degree `3−`−deg(c3/c1) such that

r|(c3/c2) and so c2|sc1|c3 for some polynomial of degree `3 − `; a contradiction).

Hence `1, `2 and `3 have the same parity. Using c1, c2 and a polynomial s1 of

even degree `2 − `− 1 such that c1|s1c1|c2, we apply the procedure described in

Lemma 5.3.1 to deflate the degree `+ 1 polynomial −c2/s1 to the (p, p) diagonal

entry. This produces a triangular matrix whose (p− 1)× (p− 1) leading principal

submatrix is diag(s1c1, c3, . . . , cp). Note that deg(c3/(s1c1)) is even and `3 − ` is

odd. Note also that `2 > ` implies that 2` ≥ `1 + `2 and so `3 − deg(s1c1) =

`3 − `2 + ` + 1 − `1 ≥ `3 − ` + 1. Hence, we can always find a polynomial s2 of

degree `3 − `+ 1 such that s1c1|s2s1c1|c3 and deflate the degree `− 1 polynomial

−c3/s2 to position (p− 1, p− 1).

Case 3 `p−1 < `. The condition
∑p

i=1 deg ci = p` implies `p−` > 0. Furthermore,

`p−` is odd and `p−`p−1 is even because otherwise there would be a real polynomial

s of degree `p− ` such that s|(cp/cp−1) and so cp−1|scp−1|cp. This would imply that

the degree ` polynomial −cp/s could be deflated by using Lemma 5.3.1. Now we

use cp−1, cp and a polynomial s1 of even degree `p − `− 1 satisfying cp−1|s1cp−1|cp
to deflate the degree `+ 1 polynomial −cp/s1 to position (p, p). We are left with

diag(c1, . . . , cp−2, s1cp−1). Notice that `p + `p−1 ≥ 2`. If deg(s1cp−1) = `− 1 (that

is, `p + `p−1 = 2`) we have already deflated two polynomials of degrees `+ 1 and

`− 1 to positions (p, p) and (p− 1, p− 1). Otherwise, we look for a real polynomial

s2 of degree deg(s1cp−1)− `+ 1 = `p−1 + `p− 2` such that cp−2|s2cp−2|s1cp−1. Note

that deg s2 is even so we can always construct it. Using the procedure described

in Lemma 5.3.1 with (i, j) = (p− 2, p− 1), k = p− 1 and s2, we deflate the degree

`− 1 polynomial −s1cp−1/s2 to the (p− 1, p− 1) position.

We repeat these processes until all diagonal entries of the matrix polynomials

are of degree either `, ` + 1 or ` − 1, and each diagonal entry of degree ` + 1

is directly preceded by a diagonal element of degree ` − 1. It now remains to

transform the resulting upper triangular matrix polynomial to quasi-triangular
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form with entries of degree at most `. We assume that the diagonal entries have

been scaled to become monic. Now suppose that all the entries below row i are of

degree ` or less. If the ith diagonal entry is of degree ` then we use the procedure

described at the end of Theorem 5.3.2 to reduce the entries in row i except the

(i, i) entry to polynomials of degree strictly less than `. If the ith diagonal entry

is of degree `+ 1, then the (i− 1)th diagonal entry is of degree `− 1. We use the

procedure described at the end of Theorem 5.3.2 to reduce the entries in rows i

and i− 1 except those on the diagonal to polynomials of degree at most ` for row

i and polynomials of degree at most `− 2 for row i− 1. Hence rows i− 1 and i

look like[
0 · · · 0 d̃i−1 ♦ ♦ · · · ♦
0 · · · 0 0 d̃i × · · · ×

]
,

deg d̃i−1 = `− 1,

deg d̃i = `+ 1,

deg♦ ≤ `− 2,

deg× ≤ `.

Next, we add λ times row i − 1 to row i, and then −λ times column i − 1 to

column i leading to [
0 · · · 0 d̃i−1 ∗ ∗ · · · ∗
0 · · · 0 λd̃i−1 ei ∗ · · · ∗

]
,

where deg ei ≤ ` and no entry hiding behind the asterisks is of degree larger than

`. By moving upwards through the matrix in this way we end up with real quasi-

triangular matrix polynomial T (λ) =
∑`

j=0 λ
jTj. Since

∑n
j=1 deg dj = `n, T (λ)

has `n finite eigenvalues, implying that the leading coefficient T` is nonsingular.

The matrix polynomial T−1
` T (λ) is of degree `, is monic, real and quasi-triangular,

and has d1, . . . , dn as invariant factors.

Example 5.4.2. Let

D(λ) = diag
(
1, (λ2 + 1)2, (λ2 + 1)2, (λ2 + 1)2

)
= diag(d1, d2, d3, d4)

be the Smith form of a 4 × 4 cubic matrix polynomial. We follow the proof of

Theorem 5.4.1 to construct a quasi-triangular polynomial of degree ` = 3 with

Smith form D(λ). Notice that `1 < ` < `2 = `3 = `4, where `i = deg di and

that there is no real polynomial s of degree `2 − ` = 1 such that 1|s|d2. This

corresponds to Case 2 in the proof of Theorem 5.4.1. Following the instructions

yields s1 = 1, so the first part of Case 2 is simply a permutation of d2 to the

lower right corner. Because d2 = d3 = d4, this does not modify D(λ) but to

follow Case 2 in detail, we now consider the matrix diag(d1, d3, d4, d2). Next, we

look for a degree `3 − ` + 1 = 2 real polynomial s2 such that 1|s2|d3. We have



5.4. Quasi-triangularization over the real numbers 86

to take s2 = λ2 + 1. Then, by Lemma 5.3.1, D(λ) is equivalent to T1(λ) =

diag(λ2 + 1, (λ2 + 1)2,−(λ2 + 1), (λ2 + 1)2) + e1e
T
3 . It remains to apply the last

step of the proof of Theorem 5.4.1 to block triangularize the polynomial. This

leads to

T (λ) =


λ2 + 1 −λ(λ2 + 1) 1 −λ

λ(λ2 + 1) λ2 + 1 λ −λ2

0 0 λ2 + 1 −λ(λ2 + 1)

0 0 λ(λ2 + 1) λ2 + 1

 . N

We can now state the analogue of Theorem 5.3.4 for real polynomials.

Theorem 5.4.3. Any P (λ) ∈ R[λ]n×m with n ≤ m is quasi-triangularizable.

Proof. The proof is along the same line as that presented for Theorem 5.3.4. We

only sketch it and point out the differences.

We apply a Möbius transformMA to P (λ) induced by a real 2× 2 nonsingular

matrix A such that MA(P ) has no elementary divisors at infinity. We compute

the Smith form D(λ) of MA(P ), and let diag(d1, . . . , dr) denote the regular

part of D(λ), where r = rankP (λ). Starting with diag(d1, . . . , dr), we follow

the triangularization procedure in the proof of Theorem 5.4.1 with two small

modifications if
∑r

j=1 deg dj < `r:

(i) We stop the induction procedure when the remaining (non-deflated) diagonal

elements are of degrees strictly less than `.

(ii) If the induction procedure reaches case 3, then item (i) assures that `p > `. We

might, however, have `p+ `p−1 < 2`−1 (`p+ `p−1 is even so `p+ `p−1 = 2`−1

is not possible), in which case we deflate a polynomial of degree ` − 1 to

position (p, p). The remaining diagonal elements are of degrees strictly less

than ` so we stop the induction.

Now, all diagonal elements of degree `+ 1 are preceded by a diagonal element of

degree `−1. Hence, we can perform the block-triangularization as in Theorem 5.4.1.

Finally, we remove unwanted elementary divisors at infinity using the procedure

described in Theorem 5.3.4.

Remark 5.4.4. In the singular case n ≤ m, r < m, the procedure for removing

elementary divisors at infinity moves the nonzero quasi-triangular part of the

matrix polynomial one column to the right. This means that the resulting matrix

polynomial is in fact triangular.
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Remark 5.4.5. If n > m, then we can, similar to Remark 5.3.5, build a strongly

equivalent matrix polynomial that would be quasi-triangular if the first row was

deleted.

5.5 Inverse problems

The main objective of this chapter was the characterization of the real and complex

matrix polynomials that can be reduced to triangular or trapezoidal form while

preserving the degree and the finite and infinite elementary divisors. However,

as a by-product, we solved a structured inverse polynomial eigenvalue problem.

Recall that problems concerning the construction of matrix polynomials having

certain eigenvalues or elementary divisors are called inverse polynomial eigenvalue

problems. In [32, Theorem 1.7] a monic inverse polynomial eigenvalue problem

is solved over C (in fact over any algebraically closed field). Since monic matrix

polynomials have no elementary divisors at infinity, the Smith form contains all

the information about elementary divisors. It is shown in the above reference that

in order to build such an n×n matrix polynomial of degree `, the only constraints

on the list of its elementary divisors are

(i) the geometric multiplicities are bounded by n (because any regular n× n
matrix polynomial has n invariant factors), and

(ii) the sum of the partial multiplicities of all the elementary divisors is n`.

This is generalized to matrices with nonsingular leading coefficients over arbitrary

fields in [60, Theorem 5.2]. From Theorem 5.3.4 and Remark 5.3.5 it follows that

we can realize a list of finite and infinite elementary divisors by an n×m matrix

polynomial of degree ` over an algebraically closed field if and only if condition (i)

above and

(iii) the sum of the partial multiplicities of all elementary divisors, including

those at infinity, is at most `min(m,n),

are satisfied, thereby extending the result in [32, Theorem 1.7] and [60, Theorem 5.2].

Furthermore, from Theorem 5.4.3 and Remark 5.4.5, we get the solution to the

corresponding inverse problem over R[λ]. As one could expect, the only additional

constraint on a complex list of elementary divisors is that nonreal elementary

divisors must come in complex conjugate pairs.

Constraints on the structure of matrix polynomials often impose constraints

on the elementary divisors. We have described these constraints in the case of real
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triangular matrix polynomials and have shown that there are no constraints for

complex ones other that (i) and (iii).

Recall that a matrix polynomial is called Hermitian or self-adjoint if all the

coefficient matrices are Hermitian. If the leading coefficient is nonsingular, it is

well-known that all nonreal elementary divisors come in complex conjugate pairs

[30, Lemma 1.2]. Given a regular Hermitian matrix polynomial P (λ), we can

always find a real Möbius transformation mA such that MA(P ) is Hermitian and

has nonsingular leading coefficient. Hence, it follows from Theorem 2.2.1 that also

the nonreal elementary divisors of P (λ) must come in complex conjugate pairs.

This constraint on the list of elementary divisors is exactly the same constraint

as in the inverse polynomial eigenvalue problem over R[λ]. We have proved the

following result.

Theorem 5.5.1. Any regular Hermitian matrix polynomial is strongly equivalent

to a real matrix polynomial.

We conjecture that the theorem is true in the other direction too.

Conjecture 5.5.2. Any regular real matrix polynomial is strongly equivalent to a

Hermitian matrix polynomial, and vice versa.

Note that the set of Hermitian matrix polynomials of degree ` and size n× n
has exactly the number of same degrees of freedom as the set of real n× n matrix

polynomial of degree `. That is, both sets can be identified with Rn2`.

Since any regular real matrix polynomial can be mapped to a real matrix

polynomial with invertible leading coefficient using a real Möbius transformation,

it is enough to prove the conjecture for matrix polynomials without infinite

eigenvalues.

It is easy to see that the conjecture is true for pencils. Given a real pencil

with invertible leading coefficient, we may, for instance, construct a Hermitian

pencil from the associated Jordan form as follows: permute the diagonal blocks so

Jordan blocks with complex conjugate eigenvalues of the same size appear in pairs

on the diagonal. Then multiply each such pair, Js(λ)⊕ Js(λ) (here s denotes the

size of the Jordan block), by the sip matrix
1

1

. . .

1

1

 ,
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of size 2s× 2s, from left or right. The resulting submatrix is then Hermitian.

Another argument makes use of the fact that any real matrix is the product of

two Hermitian matrices, one of which is invertible [17]. As mentioned above, we

may assume that the real pencil we start with has invertible leading coefficient.

Multiplying the entire pencil with the inverse of this leading coefficient yields a

real monic pencil Iλ− A. If A = H−1
1 H2, where H1 and H2 are Hermitian, then

H1λ + H2 is Hermitian and strongly equivalent (in fact strictly equivalent) to

Iλ− A.

Mackey and Tisseur [59] recently showed that the conjecture is true for quadratic

matrix polynomials. Their proof is constructive and quite involved, and it is unclear

if it can be generalized to higher order matrix polynomials.

We end this chapter by proving that the conjecture is true for 2× 2 matrix

polynomials. We need the following lemma.

Lemma 5.5.3. Let p(λ) =
∑`

i=0 αiλ
i, α` 6= 0, be a scalar real polynomial. For

any k ∈ {1, 2, . . . , `− 1}, there exists a shift σ such that the coefficient in front of

λk in p(λ+ σ) is nonzero.

Proof. By the binomial theorem we have

p(λ+ σ) =
∑̀
i=0

αi(λ+ σ)i =
∑̀
i=0

i∑
j=0

αi

(
i

j

)
λjσi−j,

where the coefficient in front of λk is given by

∑̀
i=k

αi

(
i

k

)
σi−k = α`

(
`

k

)
σ`−k + lower order terms in σ.

Choosing σ large enough yields the result.

Theorem 5.5.4. Any regular real matrix polynomial of size 2 × 2 is strongly

equivalent to a Hermitian matrix polynomial.

Proof. As mentioned above, it is enough to prove the theorem for real matrix

polynomials with invertible leading coefficients. Let diag(d1, d2) be the Smith form

of such a matrix polynomial of degree `. If the coefficient in d1 in front of λ` is

zero, we use Lemma 5.5.3 and consider a shifted matrix polynomial instead. Let

`1 and `2 denote the degrees of d1 and d2 respectively. Multiply d2 by −1 and

consider the ansatz[
1 0

x̄ 1

] [
d1 0

0 −d2

] [
1 x

0 1

]
=

[
d1 d1x

d1x̄ d1xx̄− d2

]
. (5.3)
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Because `1 + `2 = 2` we have that `2 − `1 is even. Write

d2 =
(
pλ`+1 + αλ`1

)︸ ︷︷ ︸
tα

+
(
s− αλ`1

)
,

where deg(s) = ` and α ∈ R. Polynomial long division yields

tα = d1(q + α) + rα,

where deg(rα) < `1 and deg(q + α) = `2 − `1. For large α the real polynomial

q + α has no real roots, and hence q + α = xx̄ for some nonreal polynomial x.

Thus the (2, 2) entry in right hand side of (5.3) is

d1xx̄− d2 = d1xx̄−
(
d1xx̄+ rα + s− αλ`−1

)
=: p.

Note that p is real and of degree `. We reuse the letter q, and do another long

division to obtain d1x = pq+ r. Taking the complex conjugate yields d1x̄ = pq̄+ r̄.

We get [
1 −q
0 1

] [
d1 d1x

d1x̄ p

] [
1 0

−q̄ 1

]
=

[
d1(1− q̄x− qx̄) + pq̄q r

r̄ p

]
.

Since the determinant is of degree 2`, the (1, 1) element on the right hand side

is of degree `. Finally, if we used Lemma 5.5.3, then we shift back to obtain a

matrix polynomial that is equivalent to what we started with, Hermitian and of

degree `.



Chapter

6

Reduction of matrix

polynomials to simpler

forms

6.1 Introduction

In many applications it is beneficial to first reduce matrices to simpler forms. For

example, without the initial reduction to Hessenberg form, the complexity of the

QR algorithm for computing eigenvalues would be O(n4) instead of O(n3). As a

further example, the spectral decomposition S−1DS of an n × n matrix A can

be used to decouple the system of ODEs Au̇(t) = u(t) + f(t) into n independent

scalar ODEs, Dẏ(t) = y(t) + g(t), where y(t) = Su(t) and g(t) = Sf(t). These

equations can then be solved in parallel. In hopes of that reduced forms can also

be useful for computations on matrix polynomials, we discuss in this chapter how

to reduce matrix polynomials to triangular, diagonal and Hessenberg form, and

related block forms, while preserving the degree and eigenstructure. The reductions

are done by means of structure preserving similarity transformations applied to the

left companion linearization. We discuss the construction and existence of these

transformations and illustrate with MATLAB code how they can be performed

in practice. The problem of given a matrix polynomial, finding an equivalent

matrix polynomials of the same degree and of simpler form, in particular diagonal

form, has been studied before [19, 20, 28, 63]. In contrast to previous work, our

construction handles the reduction to the different structures mentioned above in

a uniform manner. Our construction also shed some light on how equivalent matrix

polynomials relate to each other, without mentioning unimodular transformations.

91
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6.1.1 Structure preserving transformations

Consider matrix polynomials

P (λ) = P`λ
` + P`−1λ

`−1 + · · ·+ P0 with det(P`) 6= 0, (6.1)

over F = C or R. It is, in general, not possible to reduce such matrix polynomials to

the simpler forms mentioned above using only strict equivalence. For example, if the

degree ` > 1, then there exist nonsingular matrices E and F such that EP (λ)F is

triangular, only if the first column f1 of F is such that rank[P`f1 · · · P1f1 P0f1] = 1.

But finding such vector f1 is clearly not possible in general.

We saw in Chapter 5, that unimodular transformations provide enough freedom

to reduce any square matrix polynomial to triangular form over C and quasi-

triangular form over R, while preserving the degree. Of course, this includes the case

of Hessenberg form. Further, it is an easy exercise to show that any complex/real

matrix polynomial with semisimple eigenstructure is equivalent to a diagonal/quasi-

diagonal matrix polynomial of the same degree. But how can we compute these

simpler forms in practice? The reductions described in Chapter 5 are based on

applying unimodular transformations to the Smith form, which is not convenient

from a numerical point of view. To avoid this, we work with linearizations instead.

Suppose P (λ) has the same eigenstructure as R(λ) = Iλ` +
∑`−1

j=0Rjλ
j and take

any monic linearization Iλ− A of P (λ). Note that Iλ− A is also a linearization

of R(λ). The Gohberg, Lancaster, Rodman theory [32] tells us that there is an

`n× n matrix X such that (A,X) is a left standard pair for R(λ), which means

that the `n× `n matrix

S = [X AX · · · A`−1X] (6.2)

is nonsingular and

A`X + A`−1XR`−1 + · · ·+ AXR1 +XR0 = 0. (6.3)

Taken together, (6.2) and (6.3) can be rewritten as

S−1AS =


−R0

I −R1
. . .

...

I −R`−1

 =: CL(R) (6.4)
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showing that A is similar to the left companion matrix associated with R(λ). Since

S preserve the left companion structure, we say that the similarity transformation

defined by S is a structure preserving transformation. In fact, for any given monic

linearization Iλ − A of P (λ), any nonsingular matrix S of the form (6.2) will

always transform A into a left companion matrix associated with some matrix

polynomial, as in (6.4). Note that if Y := (e`⊗ I)S−1 and R` = In, then it follows

from [51, Theorem 14.2.5 and Theorem 14.7.1] that

R`−j = −
∑̀

i=`−j+1

Y Ai+j−1XRi, j = 1: `.

The above discussion suggests that in order to reduce P (λ) in (6.1) to a simpler

form, it is enough to find an n`× n matrix X such that S in (6.2) is nonsingular

and S−1AS has the desired zero pattern, where A can be any matrix such that

Iλ− A is a linearization of P (λ).

In the generic case, when all eigenvalues are distinct, it turns out to be surpris-

ingly easy to find X such that S−1AS is the left companion matrix of a matrix

polynomial in triangular, diagonal or Hessenberg form. We illustrate this with

a snippet of MATLAB code. The code below generates a random monic cubic

matrix polynomial, computes the left companion form of an equivalent triangular

matrix polynomial and plots the (numerical) zero pattern of it.

n = 5; deg = 3; % size and degree

P0 = randn(n); P1 = randn(n); P2 = randn(n);

C_P = [ zeros(n) zeros(n) -P0;

eye(n) zeros(n) -P1;

zeros(n) eye(n) -P2 ];

[U,~] = schur(C_P,’complex’);

X = U*kron(eye(n), ones(deg,1));

S = [X C_P*X C_P^(deg-1)*X];

C_R = S\C_P*S;

spy(abs(C_R)>1e-12)

If we replace schur(C P,’complex’) by eig(C P), then C R becomes the com-

panion matrix of an equivalent diagonal matrix polynomial; and if we replace

schur(C P,’complex’) by hess(C P) and ones(deg,1) by eye(deg,1), then

C R becomes the companion matrix of an equivalent matrix polynomial in Hessen-

berg form. The code can be generalized to any degree and works as long as the

block Krylov matrix S is nonsingular, which it is for almost all coefficient matrices.
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Figure 6.1: Spy plots for the reduced matrix polynomials obtained by the code
shown below: triangular (left), diagonal (middle), and Hessenberg (right).

Spy plots from one execution of the above MATLAB code and the two discussed

modifications of it are shown in Figure 6.1. In this chapter we discuss why and

when the above code works. In the rare cases when it fails, we describe whenever

possible what has to be achieved for the reductions to go through.

To be slightly more general, we also consider reduction to certain block forms.

For a given n× n matrix polynomial of degree ` with entries in F = C or R, we

consider the following reduced forms:

• block-diagonal form:

D(λ) = D1(λ)⊕D2(λ)⊕ · · · ⊕Dk(λ) ∈ F[λ]n×n (6.5)

of degree ` with Di(λ) ∈ F[λ]si×si , 1 ≤ i ≤ k and s1 + · · ·+ sk = n,

• block-triangular form:

T (λ) =


T11(λ) T12(λ) · · · T1k(λ)

T22(λ)
...

. . .
...

Tkk(λ)

 ∈ F[λ]n×n, (6.6)

of degree ` with Tjj(λ) ∈ F[λ]sj×sj , 1 ≤ j ≤ k and s1 + · · ·+ sk = n, and

• Hessenberg form:

H(λ) = λ`H` + · · ·+ λH1 +H0 ∈ F[λ]n×n, (6.7)

with coefficient matrices Hi, i = 0: `, in Hessenberg form.
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6.2 Conditions for reduction

Let F = C or R. For matrices A ∈ Fm×m and V ∈ Fm×k we define the block

Krylov matrix

K`(A, V ) = [V AV · · · A`−1V ] ∈ Fm×`k

and the block Krylov subspace

K`(A, V ) = rangeK`(A, V ).

For a subspace X of Fm and a matrix A operating on that subspace we define

AX = {Ax : x ∈ X}.
Assume that P (λ) is given by (6.1) and let λI −A be any monic linearization

of P (λ), for example, the left companion linearization of P−1
` P (λ). Recall that we

are looking for a matrix X ∈ F`n×n such that

(i) S := [X AX · · · A`−1X] is nonsingular, and

(ii) Iλ− S−1AS is the left companion linearization of one of the reduced forms

in (6.5)–(6.7).

If (i) holds, then S−1AS is a left companion matrix associated with a monic

matrix polynomial, say R(λ) = λ`I + · · ·+ λR1 +R0, and

S−1AS(en ⊗ I`) = S−1A`X = −


R0

R1
...

R`−1

 . (6.8)

We see that the (i, j) element of R(λ), i 6= j, is zero if and only if the vector

S−1A`xj has zeros in the entries i, i + n, . . . , i + (` − 1)n, where xj denotes the

jth column of X. From S−1[X AX · · · A`−1X] = I and (6.8) it follows that

[R(λ)]ij ≡ 0, i 6= j ⇐⇒ A`xj ∈ K`(A, [x1 · · · xi−1 xi+1 · · · xn]). (6.9)

We are now ready to state our main theorem, but before we do so we introduce

some new notation. For the block reductions (6.5) and (6.6), it is useful to partition

X as X = [X1 X2 · · · Xk], where Xj ∈ F`n×sj and s1 + · · ·+sk = n. Finally, we let

x1:i and X1:i denote the matrices [x1 x2 · · · xi] and [X1 X2 · · · Xi], respectively.

Theorem 6.2.1. Let F = C or R and consider P (λ) ∈ F[λ]n×n of degree ` and

with nonsingular leading matrix coefficient. Let λI −A be any monic linearization
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of P (λ). Then P (λ) is equivalent to a monic matrix polynomial R(λ) of degree `

having one of the reduced forms (6.5)–(6.7) if and only if there exists X ∈ F`n×n

such that

(i) the matrix [X AX · · · A`−1X] ∈ F`n×`n is nonsingular, and

(ii) (a) K`(A,Xi) is A-invariant for i = 1: k for block-diagonal form as in

(6.5),

(b) K`(A,X1:i) is A-invariant for i = 1: k for block-triangular form as in

(6.6),

(c) rangeA`x1:i ⊂ K`(A, x1:i+1) for i = 1: n − 1 for Hessenberg form as

in (6.7).

Proof. (⇒) Suppose that P (λ) is equivalent to R(λ). Then λI −A is also a monic

linearization of R(λ) and as explained in the introduction, there is a matrix X such

that (A,X) is a left standard pair for R(λ), which implies (i) and AS = SCL(R)

where S = [X AX · · · A`−1X].

Now suppose that R(λ) has the block-diagonal form of D(λ) in (6.5). Let

Πi ∈ F`n×`si be the projection matrix such that K`(A,Xi) = K`(A,X)Πi = SΠi.

Then from AS = SCL(D) we have that

AK`(A,Xi) = ASΠi = SCL(D)Πi = SΠiCL(Di) = K`(A,Xi)CL(Di),

which proves (ii)(a). The proofs for (ii)(b)–(c) are similar.

(⇐) Suppose that there exists X such that S = [X AX · · · A`−1X] is

nonsingular. Then the matrix S−1AS is the left companion form of a monic

matrix polynomial of degree `, say R(λ), equivalent to P (λ).

Now AS = SCL(R), (ii)(a) and (6.9) imply that the n× n blocks R0, . . . , R`−1

in the last block column of S−1AS (see (6.8)) are block-diagonal with k diagonal

blocks, the ith diagonal block being si × si, where si is the number of columns of

Xi, i = 1: k. The proofs for (ii)(b)–(c) are similar.

6.3 Construction of the matrix X

We discuss in this section a way to construct the matrix X in Theorem 6.2.1 such

that properties (i) and (ii) hold.

We start by proving some technical results. Let Iλ− A be the left companion

matrix of a monic matrix polynomial P (λ) of size n× n and degree `. Further, let
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Π denote the permutation matrix

[e1 en+1 · · · e(`−1)n+1 e2 en+2 · · · e(`−1)n+2 · · · en e2n · · · e`n].

Then the permuted linearization Iλ−ΠTAΠ is called the left companion lineariza-

tion of P (λ) in controller form. If we view this linearization as an ` × ` block

pencil, then it has the same zero structure as P (λ). Furthermore, the diagonal

`× ` blocks are the companion matrices of the corresponding scalar polynomials

on the diagonal of P (λ).

Using the controller form, it is easy to deduce the next theorem.

Theorem 6.3.1 (Complex case). Suppose A ∈ C`n×`n has no eigenvalue with

geometric multiplicity greater than n. Then A has a Schur decomposition

A = Q


T11 ∗ ∗ ∗

T22 ∗ ∗
. . . ∗

Tnn

QH ,

where the diagonal blocks Tii ∈ C`×`, i = 1:n, are nonderogatory.

Proof. Since A has no eigenvalue with geometric multiplicity greater than n,

it follows from [32, Proof of Theorem 1.7] that Iλ − A is a linearization of an

n× n upper triangular monic matrix polynomial P (λ) of degree `. This matrix

polynomial has a left companion linearization in controller form, which itself

must be monic. Let H denote the constant matrix of this linearization. Then

A = SHS−1 for some S. Further, H is block upper triangular, with blocks of size

`× `, and all diagonal blocks must be nonderogatory (since they are companion

matrices). Let UiTiU
H
i be a Schur decomposition of the ith diagonal block and set

U = U1 ⊕ U2 ⊕ · · · ⊕ Un. Then

H = UTUH , with T =


T1 ∗ ∗ ∗

T2 ∗ ∗
. . . ∗

Tn

 ,
is a Schur decomposition. Finally, let QR = SU be a QR factorization, and note

that A = Q(RTR−1)QH is a Schur decomposition of A. Since the ith diagonal

`× ` block of RTR−1 is similar to Ti the theorem is proved.

We now prove the real analogue of Theorem 6.3.1.
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Theorem 6.3.2 (Real case). Suppose A ∈ R`n×`n has no eigenvalue with geometric

multiplicity greater than n. Then A has a real Schur decomposition

A = Q


T11 ∗ ∗ ∗

T22 ∗ ∗
. . . ∗

Tss

QT , (6.10)

where each Tii is either of size `× ` and nonderogatory or of size 2`× 2` and such

that all eigenvalues have geometric multiplicity one or two.

Proof. Since all eigenvalues of A have geometric multiplicity at most n, it follows

that Iλ − A has a real Smith form D(λ) ⊕ I(`−1)n with deg detD(λ) = n`. By

Theorem 5.4.1, D(λ) is equivalent to some real monic quasi-triangular matrix

polynomial T (λ) of degree `. It follows that

Iλ− A ∼
[
D(λ)

I(`−1)n

]
∼
[
T (λ)

I(`−1)n

]
,

where ∼ denotes the equivalence relation for matrix polynomials. In other words,

A is a linearization of some monic quasi-triangular matrix polynomial of degree

`. If H denotes the constant matrix of the left companion linearization of T (λ)

in controller form, then the rest of the proof is essentially the same as last part

of the proof of Theorem 6.3.1, with the only difference that we consider the real

Schur decomposition instead of the complex.

We now restrict ourselves to the (highly generic) case when no eigenvalue of A

has algebraic multiplicity larger than n. In this case, the Schur decompositions in

Theorem 6.3.1 and Theorem 6.3.2 can be computed relatively easily as follows.

First compute any (real or complex) Schur decomposition. Then reorder the

diagonal entries/blocks using the procedure in [8] according to rules described

below. We discuss the real and complex case separately.

Complex case: Suppose there are k eigenvalues of algebraic multiplicity n,

and note that k ≤ `. Reorder the Schur form such that the leading k×k submatrix

has one instance of each of these eigenvalues. If there are k < ` such eigenvalues,

pick any `− k distinct eigenvalues of algebraic multiplicity less than n and reorder

the diagonal such that these appear after the first k eigenvalues that were deflated.

The leading `× ` submatrix obtained in this way has simple eigenvalues and is

thus nonderogatory. By continuing inductively on the lower left (n− 1)`× (n− 1)`

part of the matrix, we arrive at the desired Schur form.
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Real case: The procedure over R is similar, but to keep the decomposition

real, we need to move nonreal eigenvalues in complex conjugate pairs. First, reorder

the Schur form such that one instance of each eigenvalue of algebraic multiplicity

n appears in the leading k× k matrix (assuming there were k such eigenvalues). If

k = `, continue inductively as in the complex case. If k < ` and k is even, move k2

2× 2 blocks, with pairwise different eigenvalues of algebraic multiplicity less than

n, so they appear directly after the deflated k×k submatrix on the diagonal. Here

k2 ≤ (` − k)/2 should be chosen to be as large as possible. If the leading ` × `
block is nonderogatory, continue inductively as in the complex case. Otherwise

move `− k − 2k2 distinct real eigenvalues of algebraic multiplicity less than n so

they appear after the k2 2× 2 blocks we just deflated. If k < ` and k is odd, divide

into two cases. If there is a real eigenvalue of algebraic multiplicity less than n,

deflate one instance of that eigenvalue and continue by deflating 2× 2 blocks as

above, so the leading `× ` matrix becomes nonderogatory. If there is no such real

eigenvalue available we aim to form a leading 2`× 2` block where all eigenvalues

have algebraic multiplicity at most two. Reorder the Schur form so the leading

2k × 2k submatrix contains two of each eigenvalues of algebraic multiplicity n.

Since 2k < 2` is always even and all real eigenvalues have algebraic multiplicity n,

there are `−k available 2×2 blocks with pairwise distinct eigenvalues of algebraic

multiplicity less than n. Move these so they appear after the leading 2k × 2k

submatrix. The leading 2`× 2` submatrix now has the desired property. Continue

inductively as in the complex case, with n− 2 instead of n.

Theorem 6.3.1 and Theorem 6.3.2 will be used in combination with the following

lemmas.

Lemma 6.3.3 (Complex case). If B ∈ C`×` is nonderogatory, then there exists

x ∈ C` such that the Krylov matrix K`(B, x) is nonsingular.

Proof. Since B is nonderogatory it is similar to the companion matrix C of its

characteristic polynomial [40, Theorem 3.3.15], that is, B = S−1CS for some

nonsingular matrix S. It is now easy to see that K`(C, e1) = I. Hence letting

x = S−1e1 yields the desired result.

The next lemma is the real counterpart of Lemma 6.3.3.

Lemma 6.3.4 (Real case). Let B ∈ R2`×2` have eigenvalues with geometric mul-

tiplicity at most 2. Then there exist two real vectors x and y such that K`(B, [x y])

is nonsingular.
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Proof. We can rearrange the real Jordan decomposition of B so that

S−1BS =

[m1 m2

m1 J1

m2 J2

]
∈ R2`×2`, m1 ≥ m2 > 0

with J1 and J2 nonderogatory. This latter property implies that J1 and J2 are

similar (via real arithmetic) to left companion matrices C1 ∈ Rm1×m1 and C2 ∈
Rm2×m2 , respectively. Hence there exists a nonsingular W ∈ R2`×2` such that

W−1BW = C1 ⊕ C2 =: C.

It suffices to prove that there exist u, v ∈ R2` such that M = [K`(C, u) K`(C, v)]

is nonsingular because taking x = W−1u and y = W−1v then yields the desired

result.

If m1 = m2 then u = e1 and v = e`+1 yield M = I2` and we are done. If

m1 > m2, we let u = e1 and v = e`−m2+1 + em1+1. Then direct calculations show

that

M =



`−m2 m2 m2 `−m2

I

I I

I

I ∗

,
where ∗ denotes some irrelevant m2 × (`−m2) matrix. It is now easy to see that

M has full column rank, and thus is nonsingular.

Finally we have a lemma that can be seen as a block generalization of

Lemma 6.3.3 and Lemma 6.3.4.

Lemma 6.3.5. Let F denote C or R. If all eigenvalues of A ∈ Fk`×k` have

geometric multiplicity at most k, then there exists X ∈ Fk`×k such that K`(A,X)

is nonsingular.

Proof. We will handle the real and complex case simultaneously. Let A = ZTZ−1

be the decomposition from Theorem 6.3.1 or Theorem 6.3.2 and denote the

diagonal blocks by Tii, i = 1: s. For each Tii we define Wi in the following way. If

Tii is of size `× ` take Wi to be the vector in Lemma 6.3.3 such that K`(Tii,Wi)

is nonsingular, and if Tii is of size 2`× 2` take Wi to be the 2`× 2 matrix whose

columns are the two real vectors in Lemma 6.3.4. Letting W = W1⊕W2⊕· · ·⊕Ws

and X = ZW yields K`(A,X) = ZK`(T,W ), which is of full rank.
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6.3.1 Reduced forms

We now have all the necessary results to construct the matrix X in Theorem 6.2.1

such that properties (i) and (ii) therein hold.

Proposition 6.3.6 (Block-triangular form). Let F = C or R. If

A = Z


T11 ∗ ∗ ∗

T22 ∗ ∗
. . . ∗

Tkk

Z−1 ∈ F`n×`n, (6.11)

where Tii is of size si`× si` and each eigenvalue of Tii has multiplicity at most

si, for i = 1: k with s1 + · · ·+ sk = n then there exists X = [X1 X2 · · · Xk] with

Xi ∈ Fn`×si such that S in (6.2) is nonsingular and K`(A,X1:i) is A-invariant for

i = 1: k.

Proof. By Lemma 6.3.5, we can for each Tii pick a Vi such that K`(Tii, Vi) is

nonsingular. Thus, if we form X = Z(V1 ⊕ V2 ⊕ · · · ⊕ Vk), we have that K`(A,X)

is nonsingular. Further, if we let Z1:i denote the first s1 + s2 + · · ·+ si columns of

Z, then we have

AK`(A,X1:i) = rangeAZ1:i


K`(T11, V1) ∗ ∗ ∗

K`(T22, V2) ∗ ∗
. . . ∗

K`(Tii, Vi)



= rangeZ1:i


K`(T11, T11V1) ∗ ∗ ∗

K`(T22, T22V2) ∗ ∗
. . . ∗

K`(Tii, TiiVi)


⊂ K`(A,X1:i),

for i = 1: k.

Remark 6.3.7. The proof of Proposition 6.3.6 provides a means to construct X.

From the proof we see that the columns of X1: i must be a basis for the invariant

subspace of A corresponding to the eigenvalues of T11, T22, . . . , Tii.
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Proposition 6.3.8 (Block-diagonal form). Let F = C or R. If

A = Z


D11

D22
. . .

Dkk

Z−1 ∈ F`n×`n, (6.12)

where Dii is of size si`× si` and each eigenvalue of Dii has multiplicity at most

si, for i = 1: k with s1 + · · ·+ sk = n then there exists X = [X1 X2 · · · Xk] with

Xi ∈ Fn`×si such that S in (6.2) is nonsingular and K`(A,Xi) is A-invariant for

i = 1: k.

The proof is similar to that of Proposition 6.3.6 and is omitted. We have the

following analogue of Remark 6.3.7.

Remark 6.3.9. The columns of Xi are a basis for the invariant subspace of A

corresponding to the eigenvalues of Dii.

Clearly the decomposition in Proposition 6.3.8 is not possible for an arbitrary

number of blocks. Indeed, the linear matrix polynomial Iλ− Jα, where

Jα =


α 1

α
. . .
. . . 1

α


is of size `× `, cannot be reduced to a block diagonal structure with smaller block

size.

Let Iλ − A be a linearization of P (λ) in (6.1). From Theorem 6.2.1 and

Proposition 6.3.8, we see that reduction to diagonal form is possible if we can

partition the Jordan blocks associated with A into n sets, such that

(a) each set has at most one Jordan block of each eigenvalue, and

(b) the sizes of all Jordan blocks in each set sum up to `.

The result also holds in the opposite direction. That is, it is possible to reduce

P (λ) to diagonal form, only if we can partition the Jordan blocks of A such that

(a) and (b) hold. To see this, we simply note that any diagonal monic matrix

polynomial D(λ) = d1(λ)⊕ d2(λ)⊕ · · · ⊕ dn(λ) has left companion linearization

in controller form: Iλ− (CL(d1)⊕CL(d2)⊕ · · · ⊕CL(dn)). The following question

arises: When is it possible to partition the Jordan blocks such that (a) and (b)
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are satisfied? This problem was recently solved by Lancaster and Zaballa [52] for

the special case of quadratic matrix polynomials with nonsingular leading matrix

coefficient, and by Zúñiga Anaya [93] for general regular quadratics. For matrix

polynomial of higher degree the problem is still open.

Proposition 6.3.10 (Hessenberg form). Let F = C or R and consider

A = ZHZ−1 ∈ F`n×`n, (6.13)

where H is upper Hessenberg and partitioned in ` × ` blocks. Assume that the

` × ` diagonal blocks are unreduced. If we let X = Z[e1 e`+1 · · · e(n−1)`+1] then

K`(A,X) is nonsingular and rangeA`x1:i ⊂ K`(A, x1:i+1) for i = 1:n− 1.

Proof. Let j1: i := [e1 e`+1 · · · e(i−1)`+1]. We have K`(A,X) = ZK`(H, j1:n),

which is obviously nonsingular. Furthermore,

rangeA`x1:i = rangeZH`j1: i ⊂ ZK`(H, j1:i+1) = K`(A, x1:i+1),

completing the proof.

In practice we are interested in Hessenberg decompositions A = UHUH , where

U is unitary or real orthogonal, depending on whether we work over C or R. By

the implicit Q-theorem [33, Theorem 7.4.2], the Hessenberg matrix H is uniquely

defined, up to signs, by the first column of U . Hence a random Hessenberg matrix

similar to A via unitary/real orthogonal transformations, can be constructed using,

e.g., the Arnoldi algorithm with a random starting vector. If a matrix has distinct

eigenvalues, the resulting Hessenberg matrix will be unreduced with probability

one. Since this is the generic case for matrix polynomials, Proposition 6.3.8 may

be used to reduce almost all matrix polynomials to Hessenberg form, without

further care.

If a matrix on the other hand has an eigenvalue of geometric multiplicity greater

than one, then any similar Hessenberg matrix is necessarily reduced. Now, according

to Proposition 6.3.8 the reduction to Hessenberg form is still valid if H is reduced,

as long as the diagonal `×` blocks are unreduced. This means that all zeros on the

subdiagonal are in the positions (`+ 1, `), (2`+ 1, 2`), . . . , ((n− 1)`+ 1, (n− 1)`).

If we have a zero in any other position on the subdiagonal, K`(A,X) becomes

singular and the reduction will fail. This raises the following question: is it possible

to move zeros on the subdiagonal, from unwanted to wanted positions, using a

finite number of Givens rotations or Householder reflectors that are constructed
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from the entries in the matrix in the usual manner to introduce zeros? The

following argument shows that the answer is in general “no.” For an introduction

to the algebra the argument is based upon, we refer the reader to [67, Chapter 3]

or [25, Section 56]. Assume that the answer to the above question is “yes” and

suppose we want to compute all eigenvalues of a Hessenberg matrix H ∈ Rn×n.

To make the argument crystal clear we may think of H as the left companion

matrix of an arbitrary monic real polynomial p(x) of degree n. Consider the field

K0 := Q(h11, h12, . . . , hnn), that is, the smallest field containing rational numbers

and all entries of H. Clearly, it holds that H ∈ Kn×n
0 . When Givens rotations or

Householder reflectors are constructed to introduce zeros upon operation on a

matrix with entries in a field F ⊂ R, they have entries in a pure (field) extension

F(s) of F. (By definition, F(s) is a pure extension of F if sm ∈ F for some integer

m ≥ 1.) Suppose, for example, we want to eliminate the second component of

[x, y]T ∈ F2 ⊂ R2 using a Givens rotation G. Then

G =
1√

x2 + y2

[
x y

−y x

]
,

so we have G[x, y]T ∈ K(
√
x2 + y2)2. Thus, if we start with H ∈ Kn×n

0 , one

application of a Givens rotation or Householder reflector—that are constructed

in the usual manner—moves our matrix to a larger set Kn×n
1 := K0(

√
x)n×n, for

some x ∈ K0. Thus, if we apply t, say, Givens rotations or Householder reflectors

to our initial matrix H, we extend the field, in which our matrix entries lie, t

times, using only pure extensions. If Ki denotes the relevant pure extension of

Ki−1, then we have

K0 ⊆ K1 ⊆ · · · ⊆ Kt.

The final field Kt is therefore (by definition) a radical extension of K0.

Now, consider H ⊕ 1 and note that H ⊕ 1 is a reduced Hessenberg matrix with

a zero on the last entry on the first subdiagonal. Suppose we can move this zero

to the middle of the subdiagonal using Givens rotations or Householder reflectors

that are constructed in the usual manner. We get a similar matrix of the form[
H11 H12

H22

]
,

where H11 and H22 are square. The spectrum of H ⊕ 1 is the union of the spectra

of H11 and H22, so we may continue by computing the eigenvalues of these smaller

matrices. If we continue recursively, by forming H11⊕1 andH22⊕1, and successively
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split the spectra, then we eventually end up with several small eigenvalue problems

of size at most 4×4. These small matrices all have entries in a radical extension Kt

of K0. Furthermore, since the associated characteristic polynomials are of degree

at most 4, their eigenvalues lie in a radical extension of Kt. In other words, all

roots of the characteristic polynomial of H, which is p(x), lie in a radical extension

of K0. Thus, p(x) is (by definiton) solvable by radicals over K0. Since p(x) is

arbitrary, this contradicts the Abel-Ruffini theorem, which states that for ` ≥ 5

there are polynomials a`x
` + a`−1x

`−1 + · · ·+ a0 that are not solvable by radicals

over Q(a0, a1, . . . , a`). A classic example is x5 − x+ 1.

We remark that the argument does not depend on the fact that H ⊕ 1 has

the zero we want to move in the last position on the subdiagonal. Indeed, the

argument still holds if we replace H ⊕ 1 by, say, H ⊕ A, for any A ∈ Q2×2.

We end this chapter with two remarks about the usage of the Abel-Ruffini

theorem in the field of numerical linear algebra.

Remark 6.3.11. The Abel-Ruffini theorem is commonly mentioned as an argu-

ment against the existence of a general direct eigenvalue algorithm. If we only

consider algorithms that perform additions, subtractions, multiplications, divisions,

and root extractions, then the argument is indeed valid. This is clearly the case for

any algorithm that only applies a finite number of Givens rotations or Householder

reflectors, that are implemented in the usual manner to introduce zeros. We cannot,

however, reason about an eigenvalue algorithm, that computes, say, a logarithm

at some point, using the Abel-Ruffini theorem.

Remark 6.3.12. As it is stated above, the Abel-Ruffini theorem implies that

we cannot write down a general (finite) formula for the roots of polynomials of

degree ` ≥ 5 using only +, −, ×, ÷, k
√

with k ∈ N, the rational numbers and the

polynomial coefficients. This weaker statement is sometimes also referred to as the

Abel-Ruffini theorem. However, the non-existence of such a general formula for the

roots is of less interest to the field of numerical linear algebra. This weaker result

does not even rule out the existence of a direct algorithm that only performs, say,

Givens rotations to eliminate matrix entries in the usual manner. The subtlety

here is that each polynomial could (hypothetically) have its own set of formulas for

its roots, even though there are no general formulas that applies to all polynomials

of a certain degree. For instance, we need the stronger form of the Abel-Ruffini

theorem stated above to rule out the existence of a Givens rotation based direct

eigenvalue algorithm that makes use of a (nontrivial) pivoting strategy, or contains

any other conditional statements that depend on the input matrix.



Chapter

7

Error analysis of the

shift-and-invert Arnoldi

algorithm

7.1 Introduction

Consider an implementation of the Arnoldi method [7, 90]. Not much meaning can

be given to the computed quantities if they deviate too much from the recurrence

that underpins the algorithm in exact arithmetic:

AVk = Vk+1Hk, Hk = H(1 : k + 1, 1: k).

Luckily, good implementations, where in particular the orthogonalization is done

with care, can be shown to be backward stable [6, 21, 29, 70] in the sense that

the computed quantities Vk+1 and Hk satisfy an exact recurrence with a slightly

perturbed matrix:

(A+ ∆A)Vk = Vk+1Hk. (7.1)

This means that we can compute a basis of an exact Krylov subspace corresponding

to a nearby matrix. Since the basis will in general not be perfectly orthonormal, so

V H
k+1Vk+1 6= I, we use the term “Krylov recurrence” instead of “Arnoldi recurrence”

when referring to recurrences like (7.1). If A is Hermitian, then it can be shown

that the computed basis spans a Krylov subspace associated with a perturbed

Hermitian matrix A+ ∆A [44]. There is a catch in this case, though: the small

(k + 1) × k matrix associated with this Krylov subspace is in general not the

computed Hessenberg matrix.

106
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In this chapter we perform a similar backward error analysis of the shift-and-

invert Arnoldi algorithm. For example, we show that an implementation of the

Arnoldi method applied to A−1, yields computed matrices Vk+1 and Hk such that

(A+ ∆A)−1Vk = Vk+1Hk,

and we give an upper bound for ‖∆A‖2. Perturbed versions of the shift-and-

invert Arnoldi algorithm have been considered in the literature as a part of the

theory of inexact methods, see [54, 61]. However, these results neglect that the

orthonormalization is not performed exactly, and furthermore, assume bounds on

linear system residuals that may be unattainable (more on this in Section 7.2).

We consider more general linear system residuals and take the error from the

orthonormalization into account. Our analysis of how the orthonormalization errors

propagate into the shift-and-invert Krylov recurrence highlights the importance

of columnwise backward error bounds for QR factorizations, and is thus of a

different flavor than the corresponding analysis for standard Arnoldi, done in, for

example [21].

We also use our error analysis to motivate when “breakdown” should be

declared, that is, when hj+1,j may be considered to be “numerically zero.”

The algorithm we study can be divided into two main subproblems: solving

linear systems and orthonormalizing vectors. We state our backward error results

in such a way that they are independent of how these subproblems are being

solved, but we also discuss relevant and commonly used approaches for solving

these two tasks.

7.1.1 Technical outline

We study floating point implementations of Algorithm 7.1, where A is assumed

to be of size n× n, σ is the shift, b is the starting vector, and k is the maximum

number of steps we perform. Throughout the chapter ‖ · ‖ refers to the spectral

norm. In exact arithmetic, the function on line 4 of Algorithm 7.1 is defined as

orthogonalization(wj, Vj) := [wj − Vj(V H
j wj), V

H
j wj],

which corresponds to classical Gram-Schmidt if implemented as it stands. In

floating point arithmetic, however, orthogonalization routines with better numerical

properties, such as modified Gram-Schmidt, are usually employed.

In the jth iteration in Algorithm 7.1, a new vector wj is computed and
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Algorithm 7.1: The Shift-and-invert Arnoldi algorithm

Input: A, σ, b, k

Output : Vk+1 := [v1, . . . , vk+1], Hk = [hij]i=1: k+1,j=1: k

1 v1 = b/‖b‖
2 for j = 1, 2, . . . , k

3 wj = (A− σI)−1vj

4 [w′j, h1:j] = orthogonalization(wj, Vj)

5 hj+1 j = ‖w′j‖
6 if hj+1 j = 0 break

7 vj+1 = w′j/hj+1 j

8 end for

decomposed into a linear combination of v1, . . . , vj and a new component that

will be the definition of vj+1. In exact arithmetic, this can be described by the

Arnoldi recurrence (A− σI)−1vj = Vkh1: j,j + hj+1,jvj+1. When the corresponding

computation is done in practice, however, errors are present in all steps of the

computation. First, we need to solve a linear system. If we use a direct solver the

matrix A− σI needs to be formed. We consider the rounding error in this step as

part of the residual from the linear system. This does not affect the norm of the

residual significantly, because the rounding error is very small,

‖float(A− σI)− (A− σI)‖ < max
1≤i≤n

|aii − σ|u ≤ u‖A− σI‖.

Here float(A−σI) refers to the computed shifted matrix and u is the unit roundoff.

Let rj be the residual from the linear system, so

(A− σI)wj = vj + rj (7.2)

is the actual linear system that has been solved. Then we have the following

equality for the computed quantities:

(A− σI)−1(vj + rj) = wj = Vj+1h1: j+1,j + gj,

where gj is an error coming from the orthonormalization process. Defining

fj = rj − (A− σI)gj and Fk = [f1 f2 · · · fk] yields a perturbed recurrence

(A− σI)−1(Vk + Fk) = Vj+1Hk.
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We discuss the residual rj and the error gj in Section 7.2 and Section 7.3, respec-

tively, and provide bounds for both quantities. In Section 7.4, we use these bounds

in order to bound Fk, and subsequently the backward error for the shift-and-invert

Krylov recurrence. In Section 7.5, we explain how the idea of implicit restarting

can be used to gain further insight into the backward error. We also discuss in

what sense we have Hermitian backward errors if the method is applied to a

Hermitian matrix A. Finally, we talk about breakdown conditions: in floating

point arithmetic, the test if hj+1,j = 0 in Algorithm 7.1 is rarely done. Instead

one usually checks whether hj+1,j is “small enough.” This case is referred to

as breakdown. A sensible definition of “small enough” is when the quantity is

dominated by errors. We discuss this in more detail and derive backward error

bounds for this case.

7.1.2 Notation

The scalar σ refers to a shift while σmin(X) refers to the smallest singular value of

X. The dagger notation X† refers to the Moore-Penrose pseudo-inverse of X. The

lower letter u is reserved to denote the unit roundoff if real arithmetic is used,

and
√

5 times the unit roundoff if complex arithmetic is used (see Appendix B).

When the matrix size is understood from the context, we denote zero matrices

and identity matrices as 0 and I, respectively. Similarly, the vector ei denotes the

ith column of the identity matrix whose size is understood from the context. For a

matrix X, the lower case xi refers to the ith column of X and Xk to [x1 x2 · · · xk],
that is, the first k columns of X.

7.2 Errors from linear systems

In this section we discuss bounds on the residual rj from (7.2).

7.2.1 Backward error bounds

The normwise backward error associated with a computed solution y of a linear

Ax = b is defined as

ηA,b(y) := min{ε : (A+ ∆A)y = b+ ∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖},
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and given by the formula

ηA,b(y) = ‖r‖/(‖A‖‖y‖+ ‖b‖) (7.3)

where r = Ay − b [66]. See also [36, p. 120]. This result is true for any vector

norm ‖ · ‖ and its subordinate matrix norm. Thus, if we solve the linear systems

in Algorithm 7.1, up to a backward error εbw, then it holds that

‖rj‖ ≤ (‖A− σI‖‖wj‖+ ‖vj‖)εbw, (7.4)

where rj is defined in (7.2). If the linear systems are solved by a backward stable

direct method, we have εbw ≤ φ(n)u, where φ(n) is an algorithm dependent

constant. If we are interested in the smallest possible εbw such that (7.4) holds,

then we need to compute ‖rj‖/(‖A− σI‖‖wj‖+ ‖vj‖). However, this may not be

feasible for the spectral norm, due to the term ‖A− σI‖. In these cases we can

replace ‖A− σI‖ by a lower bound (the tighter the better), and thus obtain an

upper bound for εbw. We can for instance do a few iterations of the power method

applied to (A− σI)H(A− σI). MATLAB’s normest function does exactly this.

This would lead to a lower bound of ‖A− σI‖, since convergence is always from

below. Another possibility is to use the (lower) bound in [39]. We can also bound

the matrix spectral norm in terms of the corresponding infinity-norm or 1-norm.

The following proposition shows that such bounds can be satisfactory for many

sparse matrices, in particular those which can be permuted to banded form.

Proposition 7.2.1. Let krow and kcol denote the maximum number of nonzero

entries in a row and column of A, respectively. Then the following two upper and

lower bounds hold:

1√
kcol

‖A‖2 ≤ ‖A‖∞ ≤
√
krow‖A‖2,

1√
krow

‖A‖2 ≤ ‖A‖1 ≤
√
kcol‖A‖2.

Proof. We have ‖A‖∞ = ‖Ax‖∞ for some x with ‖x‖∞ = 1 and at most krow

nonzeros. We get

‖A‖∞ ≤ ‖Ax‖∞ ≤ ‖Ax‖2 ≤ ‖A‖2‖x‖2 ≤
√
krow‖A‖2,
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which is the desired upper bound for ‖A‖∞. Further, we have

‖A‖1 = ‖AT‖∞ ≤
√
kcol‖AT‖2 =

√
kcol‖A‖2,

which is the desired upper bound for ‖A‖1.

The lower bounds follow from [86, Theorem 4.2].

The inequality (7.4) can also be used as a stopping criterion for iterative linear

system solvers [5]. In this case, εbw denotes the desired backward error, which is

given prior to execution. If we replace ‖A− σI‖ with a lower bound, then we get

a more stringent stopping criterion.

7.2.2 Residual reduction bounds

An alternative to (7.4) is to use the bound

‖rj‖ ≤ ‖vj‖εtol. (7.5)

This bound is commonly used as a stopping condition when the linear systems are

solved by iterative methods. Unfortunately, as a stopping condition, (7.5) “may be

very stringent, and possibly unsatisfiable” [36, p. 336]. See also [22, pp. 72–73] for

a 2× 2 example that illustrates the pitfall of comparing the norm of the residual

with the norm of the right hand side. However, since (7.5) is de facto commonly

used in computer codes it is still worth to study it under the assumption that the

stopping criterion is met.

7.2.3 Auxiliary residual bounds

In order to treat both (7.4) and (7.5) in a unified way, we consider the following

auxiliary bound

‖rj‖ ≤ ‖vj‖ε1 + ‖A− σI‖‖wj‖ε2. (7.6)

Clearly, the substitutions (ε1, ε2)← (εbw, εbw) and (ε1, ε2)← (εtol, 0) give back (7.4)

and (7.5), respectively. We can simplify the bound in (7.6) in cases when A− σI
is not too ill-conditioned with respect to ε2. To see this we need the following

lemma.

Lemma 7.2.2. If κ(A− σI)ε2 < 1 and (7.6) hold, then

‖rj‖ ≤
ε1 + κ(A− σI)ε2
1− κ(A− σI)ε2

‖vj‖.
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Proof. We have

‖rj‖ ≤ ‖A− σI‖‖(A− σI)−1(vj + rj)‖ε2 + ‖vj‖ε1
≤ κ(A− σI)‖vj + rj‖ε2 + ‖vj‖ε1
≤ κ(A− σI)(‖vj‖+ ‖rj‖)ε2 + ‖vj‖ε1.

Reordering gives the result.

The next result yields a family of new residual bounds independent of ‖vj‖.

Proposition 7.2.3. Let (A− σI)−1(vj + rj) = wj and assume (7.6) hold. If

0 <
ε1 + κ(A− σI)ε2
1− κ(A− σI)ε2

≤ γ < 1, (7.7)

then

‖rj‖ ≤
(
ε2 +

ε1
1− γ

)
‖A− σI‖‖wj‖.

Proof. From (7.6) we have

‖rj‖ ≤
(
ε2 + ε1

‖vj‖
‖A− σI‖‖wj‖

)
‖A− σI‖‖wj‖.

Thus we need to show ‖vj‖/(‖A− σI‖‖wj‖) ≤ 1/(1− γ). We have

‖vj‖
‖A− σI‖‖wj‖

=
‖vj‖

‖A− σI‖‖(A− σI)−1(vj + rj)‖
≤ ‖vj‖
‖vj + rj‖

,

and from the reverse triangle inequality,

‖vj‖
‖vj + rj‖

≤ ‖vj‖
|‖vj‖ − ‖rj‖|

.

Now, by Lemma 7.2.2 and assumption (7.7), we have

‖rj‖ ≤
ε1 + κ(A− σI)ε2
1− κ(A− σI)ε2

‖vj‖ ≤ γ‖vj‖.

Putting everything together yields

‖vj‖
‖A− σI‖‖wj‖

≤ ‖vj‖
|‖vj‖ − ‖rj‖|

≤ 1

1− γ
.

In particular if κ(A − σI) ≤ (1 − 2ε1)/(3ε2), then we have κ(A − σI)ε2 < 1
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and can take γ = 1/2 in Proposition 7.2.3, to obtain

‖rj‖ ≤ (2ε1 + ε2)‖A− σI‖‖wj‖. (7.8)

This is the same bound as we get from (7.6) if we replace (ε1, ε2) with (0, 2ε1 + ε2).

In particular, if the linear systems are solved in a backward stable manner so that

(7.4) holds, and κ(A−σI) ≤ (1−2εbw)/(3εbw), then (7.8) holds with 2ε1+ε2 = 3εbw.

7.3 Errors from orthonormalization

In this section we are concerned with the orthonormalization error

gj = wj − Vj+1h1: j+1,j.

Up to signs, this error can be viewed as the backward error in the (j+ 1)st column

of a perturbed QR factorization

[v1 w1 w2 · · · wk] = Vk+1[e1 Hk] + [0 g1 g2 · · · gk]. (7.9)

Thus, we are interested in columnwise backward error bounds for QR factoriza-

tions. The next theorem shows how such bounds can be obtained from normwise

backward error bounds given in the spectral norm or the Frobenius norm. It

applies to floating point algorithms qr(·) that are unaffected by power-of-two

column scalings, in the sense that if [Q,R] = qr(A), then [Q,RD] = qr(AD)

for any D = diag(d1, d2, . . . , dk) where the di are powers of 2. Barring under-

flow and overflow, this covers commonly used algorithms such as classical and

modified Gram-Schmidt with and without (possibly partial) reorthogonalization,

Householder QR and Givens QR.

Theorem 7.3.1. Let qr(A) denote an algorithm that computes an approximate

QR factorization of an n × k matrix A in floating point arithmetic. Suppose

further that [Q,RD] = qr(AD) for any D = diag(d1, d2, . . . , dk) where the di

are powers of 2. If Q and R denote the computed factors, ∆A = A − QR and

‖∆A‖∗ ≤ γ‖A‖∗u, where ‖ · ‖∗ denotes the spectral norm or the Frobenius norm,

then ‖∆ai‖ ≤ 2γ
√
k‖ai‖u for i = 1: k.

Proof. For i = 1: k, we define di = 2−blog2 ‖ai‖c, so 1 ≤ ‖ai‖di < 2. Since ∆AD is
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the backward error from qr(AD) we have

di‖∆ai‖ = ‖∆ADei‖ ≤ ‖∆AD‖∗ ≤ γ‖AD‖∗u < 2γ
√
k‖ADei‖u = di2γ

√
k‖ai‖u,

for i = 1 : k, from which the theorem follows.

The constant γ in Theorem 7.3.1 is obviously algorithm dependent and many

bounds for it exist in the literature. Some of them contain both n and k [72], and

others only k [12, 2], [36, Theorem 19.13]. In [36, p. 361] a columnwise bound

depending on n and k is given. For Krylov methods we usually have n� k, so

bounds independent from n should certainly be favored. We shall assume that

‖gj‖ ≤ η(n, k)‖wj‖u, (7.10)

holds for some function η(n, k).

7.3.1 Columnwise errors in modified Gram-Schmidt

Our next theorem shows that for modified Gram-Schmidt (MGS), with and without

one round of reorthogonalization, η in (7.10) does not depend on n and is given by

η(n, k) = ζk,

where ζ is a modest constant. We need the following forward error result for axpy

operations.

Lemma 7.3.2. Let α be a scalar and x and y vectors. If

s = float(αx+ y)− (αx+ y) then ‖s‖ ≤ 2(‖αx‖+ ‖y‖)u.

Proof. The ith component of αx+y can be viewed as the inner product [xi yi][α 1]T .

Thus the componentwise forward error is bounded by |s| ≤ 2u(|αx|+ |y|) [43] (see

also Appendix B). We get ‖s‖ ≤ ‖2u(|αx|+ |y|)‖ ≤ 2(‖αx‖+ ‖y‖)u.

The next theorem gives columnwise backward error bounds for MGS with and

without one round of reorthogonalization.

Theorem 7.3.3. Let Q and R denote the computed factors in the QR decomposi-

tion of an n×k matrix A, which was obtained by a floating point implementation of

modified Gram-Schmidt with or without one round of reorthogonalization. Assume

(i) ‖qj‖ = 1 for j = 1: k, and
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(ii) (1 + (n+ 3)u)k < 1 + δ for some δ > 0.

Then there exists a ∆A such that A + ∆A = QR with ‖∆aj‖ ≤ cj‖aj‖u, where

c = 4(1 + δ) if no reorthogonalization was done and c = 10(1 + δ)2 if one round of

reorthogonalization was done.

Let us pause for a while and discuss the assumptions before we proceed with

the proof. Assumption (i) is imposed to keep our analysis cleaner; it does not

affect our final bounds in any significant way. Assumption (ii) is needed for the

following reason: if we compute y = float(x− qj(qHj x)) for some 1 ≤ j ≤ k, then,

assuming (i), the quantity 1 + (n+ 3)u = 1 + ‖qj‖2(n+ 3)u is an upper bound for

‖y‖/‖x‖ [36, Lemma 3.9]. Thus, (ii) guarantees that we can apply a sequence of

k elementary “floating point” projections of the form I − qiqHi to any vector x,

and the resulting vector will be bounded in norm by (1 + δ)‖x‖.

Proof of Theorem 7.3.3. Let R(1) and R(2) denote the strictly upper triangular

matrices containing the orthogonalization coefficients corresponding to the first

and second round of orthogonalization, respectively. We define R(2) ≡ 0, if no

reorthogonalization is done. Assume for a while that R(1) and R(2) are given, and

suppose we want to compute

aj −
j−1∑
i=1

r
(1)
ij qi −

j−1∑
i=1

r
(2)
ij qi.

This can be viewed as 2(j − 1) axpy operations. We define a
(0)
j = aj and

a
(i)
j =

float(a
(i−1)
j − r(1)

ij qi) for i = 1: j − 1,

float(a
(i−1)
j − r(2)

(i−j+1)jqi−j+1) for i = j : 2(j − 1).

Using Lemma 7.3.2 yields

a
(i)
j =

a
(i−1)
j − r(1)

ij qi + si for i = 1: j − 1,

a
(i−1)
j − r(2)

(i−j+1)jqi−j+1 + si for i = j : 2(j − 1),

where

‖si‖ ≤

2(‖r(1)
ij qi‖+ ‖a(i−1)

j ‖)u for i = 1: j − 1,

2(‖r(2)
(i−j+1)jqi−j+1‖+ ‖a(i−1)

j ‖)u for i = j : 2(j − 1).

Now, a
(i−1)
j is also the result of applying i−1 elementary floating point projections
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to aj, so the discussion prior to the proof gives ‖a(i−1)
j ‖ < (1 + (n+ 3)u)i−1‖aj‖.

Further, from (ii) we have (1 + nu)‖a(i−1)
j ‖ < (1 + δ)‖aj‖ for i = 1: j − 1 and

(1 + nu)‖a(i−1)
j ‖ < (1 + δ)2‖aj‖ for i = j : 2(j − 1). The forward error of a

computed inner product float(xHy), where x and y are of length n, is bounded by

nu‖x‖‖y‖ [43]. See also Appendix B. It follows that

|r(1)
ij | ≤ |float(qHi a

(i−1)
j )| ≤ |qHi a

(i−1)
j |+ nu‖a(i−1)

j ‖ < (1 + δ)‖aj‖

and, similarly, that |r(2)
ij | < (1 + δ)2‖aj‖. Thus si is bounded by

‖si‖ ≤

4(1 + δ)‖aj‖u for i = 1: j − 1,

4(1 + δ)2‖aj‖u for i = j : 2(j − 1).

We have

aj −
j−1∑
i=1

r
(1)
ij qi −

j−1∑
i=1

r
(2)
ij qi = a

(2(j−1))
j −

2(j−1)∑
i=1

si.

If we define di = float(‖a(2(j−1))
j ‖) and qj = float(a

(2(j−1))
j /dj) and note that

a
(2(j−1))
j = qjdj + fj with ‖fj‖ ≤ ‖a(2(j−1))

j ‖u < (1 + δ)2‖aj‖u,

then we get

aj −
j−1∑
i=1

(r
(1)
ij + r

(2)
ij )qi − djqj = fj −

2(j−1)∑
i=1

si.

Finally, defining R = float(R(1) +R(2)) + diag(d1, d2, . . . , dk) yields

∆aj := aj −
j∑
i=1

rijqi = fj −
2(j−1)∑
i=1

si −
j−1∑
i=1

∆rijqi

where

∆rij = r
(1)
ij + r

(2)
ij − rij, so |∆rij| ≤ |r(1)

ij + r
(2)
ij |u < 2(1 + δ)2‖aj‖u.

Using the above bounds for fj, the si and ∆rij gives ‖∆aj‖ < 10(1 + δ)2j‖aj‖u.
If no reorthogonalization was done, then we have si = 0 for i = j : 2(j − 1),

and ∆rij = 0, ‖fj‖ ≤ (1 + δ)‖aj‖u for all j. Taking this into account yields

‖∆aj‖ < 4(1 + δ)j‖aj‖u.

Remark 7.3.4. Suppose the perturbed QR factorization (7.9) was computed
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using MGS. Then, taking δ = 1/10 and assuming the conditions of Theorem 7.3.3

hold, yield that η(n, k) in (7.10) is bounded by η(n, k) ≤ 5k if standard MGS is

used, and η(n, k) ≤ 13k if MGS with one round of reorthogonalization is used.

We point out that these bounds should not be interpreted as saying that standard

MGS should be favored over MGS with reorthogonalization. In this context of

shift-and-invert Arnoldi, the difference between the constants 5 and 13 is not

significant, and, as we will see in the next section, retaining a well-conditioned

basis (which is the effect of reorthogonalization) is of great importance to the

shift-and-invert Arnoldi algorithm.

7.4 Errors in the shift-and-invert Arnoldi

recurrence

Recall the perturbed Krylov recurrence

(A− σI)−1(Vk + Fk) = Vj+1Hk, (7.11)

where Fk = [f1 f2 · · · fk] and fj, for j = 1: k, is defined by fj = rj − (A− σI)gj.

We discussed in sections 7.2 and 7.3 how to bound rj and gj, respectively. By

using these bounds, we can now easily bound Fk. Assuming (7.6) and (7.10) yields

‖fj‖ ≤ ‖vj‖ε1 + ‖A− σI‖‖wj‖(ε2 + η(n, j)u). (7.12)

Further, from (7.9) we see that

‖wj‖ = ‖Vj+1h1: j+1,j + gj‖ ≤ ‖Vj+1‖‖h1: j+1,j‖+ η(n, j)‖wj‖u,

which in turn implies

‖wj‖ ≤
‖Vj+1‖‖h1: j+1,j‖

1− η(n, j)u
,

assuming that η(n, j)u < 1. We get

‖fj‖ ≤ ‖vj‖ε1 + ‖A− σI‖‖Vj+1‖‖h1: j+1,j‖cjn(ε2)

and further (assuming that η(n, k) is monotonically increasing in k)

‖Fk‖ ≤
√
k‖Vk‖ε1 +

√
k‖A− σI‖‖Vk+1‖‖Hk‖ckn(ε2), (7.13)
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where

ckn(ε2) :=
ε2 + η(n, k)u

1− η(n, k)u
(7.14)

should be thought of as a tiny factor.

Similarly, if we assume the bound (7.8) instead of (7.6), we get

‖Fk‖ ≤
√
k‖A− σI‖‖Vk+1‖‖Hk‖ckn(2ε1 + ε2). (7.15)

This is the same bound we get from (7.13) if we replace (ε1, ε2) by (0, 2ε1 + ε2).

Having established (7.13) and (7.15), we are now ready to reshuffle equation

(7.11) in order to derive backward error bounds for the shift-and-invert Krylov

recurrence. We will derive perturbed recurrences of the form

Vk = (A+ ∆A− σI)Vk+1Hk. (7.16)

If we look at this from a backward error perspective, (7.16) means that we have

taken k steps, without errors, of a shift-and-invert Krylov algorithm applied to a

perturbed matrix, and all linear systems that occurred in the process must have

been consistent. However, in order to rewrite (7.16) as

(A+ ∆A− σI)−1Vk = Vk+1Hk,

we need to ensure that A+ ∆A− σI is invertible. We need the following lemma

to solve this technicality.

Lemma 7.4.1. Let A and V be matrices of size n × n and n × k respectively,

such that rankAV = k. Then for any ε > 0, there exists a matrix X with ‖X‖ < ε

such that A + X is nonsingular and XV = 0. Furthermore, if A is Hermitian,

then we may take X to be Hermitian.

Proof. Find a unitary matrix Q such that

QHV =

[
0

V2

]
(7.17)

for some k × k matrix V2, and define AQ = [A1 A2] where A2 is of size n × k.

From rankAV = k, it follows A2 has rank k. Define Y so its columns span the

orthogonal complement to range of A2, and set Z = [Y − A1 0]. We have that

A+ ZQH = [Y A2]QH is nonsingular and ZQHV = 0. In particular, this means

that the pencil A + λZQH is regular. If λ is any value outside the spectrum of
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the pencil such that |λ| < ε/‖Z‖, then X = λZQH satisfies the conditions of the

theorem.

For the second part, suppose A is Hermitian and Q is such that (7.17) holds.

Write

QHAQ =

[
A11 A12

AH12 A22

]
and W =

[
ωI − A11 0

0 0

]
, ω > 0,

where A11 is of size (n − k) × (n − k). We have that QWQH is Hermitian,

QWQHV = 0, and Q(QHAQ+W )QH = A+QWQH . Thus, for the same reason

as above, it is enough to find one ω > 0 such that QHAQ+W is nonsingular. Let

A22 = U

[
D 0

0 0

]
UH

be a spectral decomposition so D is of full rank and define [B1 B2] = A12U such

that B1 has as many columns as D. We have that QHAQ+W is nonsingular if

and only if  ωI B1 ωB2

BH
1 D 0

ωBH
2 0 0


is nonsingular. Further, since [AT12 A

T
22]T is of full rank, andB1 B2

D 0

0 0

 =

[
I 0

0 UH

] [
A12

A22

]
U,

it follows that B2 is also of full rank. We have ωI B1 ωB2

BH
1 D 0

ωBH
2 0 0


 I −ω−1B1 −ω−1B2

0 I 0

0 0 ω−1I


=

 ωI 0 0

BH
1 D − ω−1BH

1 B1 −ω−1BH
1 B2

ωBH
2 −BH

2 B1 −BH
2 B2

 ,
which is easily seen to be nonsingular for large enough values of ω.

If we use the bound on Fk shown in (7.13), then we can deduce the following

theorem.
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Theorem 7.4.2. Let (A− σI)−1(Vk + Fk) = Vk+1Hk be of full rank and assume

Fk is bounded as in (7.13) and
√
kκ(Vk)ε1 < 1. Then there is a ∆A of rank at

most k such that Vk = (A+ ∆A− σI)Vk+1Hk, and

‖∆A‖ ≤
√
k‖A− σI‖κ(Vk)ε1 + κ(Vk+1)κ(Hk)ckn(ε2)

1−
√
kκ(Vk)ε1

,

where ckn(ε2) is given by (7.14).

Proof. From Vk+Fk = (A−σI)Vk+1Hk and Vk = (A+∆A−σI)Vk+1Hk we see that

any eligible ∆A has to satisfy ∆AVk+1Hk = −Fk. We choose ∆A = −Fk(Vk+1Hk)
†

(which is of rank at most k) implying ‖∆A‖ ≤ ‖Fk‖/σmin(Vk+1Hk). Substituting

‖Fk‖ by the upper bound given in (7.13) yields

‖∆A‖ ≤
√
k‖Vk‖ε1 +

√
k‖A− σI‖‖Vk+1‖‖Hk‖ckn(ε2)

σmin(Vk+1Hk)

≤
√
k‖Vk‖ε1

σmin(Vk+1Hk)
+
√
k‖A− σI‖κ(Vk+1)κ(Hk)ckn(ε2).

For the denominator we get

σmin(Vk+1Hk) ≥ σmin

(
(A+ ∆A− σI)Vk+1Hk

)
/‖A+ ∆A− σI‖

≥ σmin(Vk)/(‖A− σI‖+ ‖∆A‖),

where we used σmin(XY ) ≤ ‖X‖σmin(Y ) which holds for any matrices X, Y . Thus

‖∆A‖ ≤
√
k‖Vk‖(‖A− σI‖+ ‖∆A‖)ε1

σmin(Vk)
+
√
k‖A− σI‖κ(Vk+1)κ(Hk)ckn(ε2)

which can be reordered to the claimed bound.

If the linear systems are solved up to a normwise backward error εbw, and (7.8)

and (7.15) hold for 2ε1 + ε2 = 3εbw, then we get the following corollary.

Corollary 7.4.3. Let (A− σI)−1(Vk + Fk) = Vk+1Hk be of full rank and assume

Fk is bounded as in (7.15) with 2ε1 + ε2 = 3εbw. Then there is a ∆A of rank at

most k such that Vk = (A+ ∆A− σI)Vk+1Hk, and

‖∆A‖ ≤
√
k‖A− σI‖κ(Vk+1)κ(Hk)ckn(3εbw),

where ckn(·) is given by (7.14).

A few remarks are in order.
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Remark 7.4.4. If A+ ∆A− σI in Theorem 7.4.2 and Corollary 7.4.3 is singular,

then we can invoke Lemma 7.4.1 with V = Vk+1Hk to obtain a backward error

∆Â, arbitrarily close to ∆A, such that (A+ ∆Â− σI)−1Vk = Vk+1Hk. The new

backward error ∆Â will in general have rank greater than k, but its numerical

rank is still bounded by k. Here the definition of numerical rank can be arbitrarily

strict, in the sense that we may define the numerical rank to be the number of

singular values that are greater than ε > 0, for an arbitrarily small ε.

Remark 7.4.5. If the orthonormalization is done properly, using, for instance,

MGS with reorthogonalization, then κ(Vk+1) ≈ 1. In this case we can ignore the

factors κ(Vk+1) and κ(Vk) when evaluating the bounds in Theorem 7.4.2 and

Corollary 7.4.3. In particular this means that the bounds can be estimated cheaply

as long as ‖A− σI‖ (or a good estimate of it) is known.

Remark 7.4.6. For the standard eigenvalue problem, shifts are used to find

interior eigenvalues, so any sensible shift satisfies |σ| ≤ ‖A‖. Thus, we have

‖A− σI‖ ≤ 2‖A‖ in practice.

Remark 7.4.7. In view of [14], we note that our bounds do not contain the

loss-of-orthonormality term ‖V H
k+1Vk+1 − I‖. Instead we saw that the condition

number of the computed basis Vk+1 plays a role in the bounds of the backward

error. We note, however, that a small value of ‖V H
k+1Vk+1− I‖ implies that Vk+1 is

well-conditioned:

‖V H
k+1Vk+1 − I‖ < ε < 1 ⇒ κ(Vk+1) <

√
1 + ε

1− ε
.

The next example shows how Theorem 7.4.2 can be used to derive a simple a

posteriori backward error bound.

Example 7.4.8. Suppose a matrix A and a shift σ with |σ| < ‖A‖ are given,

and suppose we perform k steps of the shift-and-invert Arnoldi algorithm. To

solve the linear systems we use an iterative method that employs (7.5) as stopping

condition, that is, the linear systems are considered “solved” when the residuals

are less than some tolerance εtol (we ignore the norm of the right hand side

since it is approximately one). We use a rather crude tolerance so εtol � u. For

the orthogonalization we use MGS with one round of reorthogonalization so

ckn(0) . 13ku (cf. Remark 7.3.4). If

εtol ≥ κ(Hk)ckn(0), (7.18)
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then Theorem 7.4.2, with ε1 = εtol and ε2 = 0, and the following remarks, yield

that the computed quantities satisfy

(A+ ∆A− σI)−1Vk = Vk+1Hk,

where

‖∆A‖ ≤ 4
√
kκ(Vk+1)εtol

1−
√
kκ(Vk)εtol

‖A‖. (7.19)

Here we have used the fact that κ(Vk+1) ≥ κ(Vk). Since MGS with reorthogonaliza-

tion was employed, we expect κ(Vk+1) to be close to one. Thus, (7.19) tells us that

the relative backward error ‖∆A‖/‖A‖ is of roughly the same size as the tolerance

we used to solve the linear systems. So, in this setting the shift-and-invert Arnoldi

algorithm is backward stable. N

We end this section with a numerical experiment. We consider the matrix

A =


−2 1

1 −2 1

1
. . . . . .
. . . . . . 1

1 −2

 ,

of order n = 1000, and the shift σ = −2. It is well-known that the spectrum ofA is a

subset of the interval (−4, 0), and the eigenvalues are given by−2+2 cos(πk/(n+1)),

for k = 1:n. It follows that the shifted matrix A− σI is invertible and has norm

2 cos(π/(n+ 1)) ≈ 2.

We implemented the shift-and-invert Arnoldi algorithm in MATLAB R2013a.

For orthonormalization we used MGS with one round of reorthogonalization. The

matrix A−σI was stored in sparse format, and the linear systems was solved using

MATLAB’s “backslash” and lu routines. We took k = 30 steps with the starting

vector [1, 1, . . . , 1]T , and in each iteration we computed the backward error shown

in (7.3), where the residual was evaluated in extended precision (32 digits) and

then rounded to double precision. We did this using the vpa function from the

Symbolic Math Toolbox. We also computed the error Fk = Vk − (A− σI)Vk+1Hk

in extended precision and rounded the result to double precision. For each j = 1: k,

we computed

B(‖∆A(j)‖) :=
√
j‖A− σI‖κ(Hj)cjn(3εbw),

where εbw was set to be the largest backward error of the linear systems that

was encountered in the algorithm, and cjn(3εbw) := (3εbw + 13ju)/(1− 13ju) (cf.
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5 10 15 20 25 30

j

10−16

10−12

10−8

10−4

B(‖∆A(j)‖)
‖∆A(j)‖

Figure 7.1: Computed backward errors and associated bound.

Remark 7.3.4). As is mentioned in Remark 7.4.5, the above quantity is a good

estimate of the bound in Corollary 7.4.3. We also evaluated the expression for the

backward error, ∆A(j) = −Fk(Vk+1Hk)
†, given in the proof of Theorem 7.4.2, and

estimated its norm. We did this using the MATLAB routines pinv (for the Moore-

Penrose pseudo-inverse) and normest. The quantities B(‖∆A(j)‖) and ‖∆A(j)‖
are shown in Figure 7.1 for j = 1: 30. Even though the (estimated) upper bound

B(‖∆A(j)‖) can be seen to be rather pessimistic, it does show that the backward

error is less than
√
u. In other words, by evaluating B(‖∆A(k)‖) (which is cheap),

we can deduce that the computation is backward stable up to single precision.

7.5 Further topics

7.5.1 Implicit restarting

The bounds in Theorem 7.4.2 and Corollary 7.4.3 contain the factor κ(Hk), so if

κ(Hk)� 1 we cannot guarantee a small backward error. If we recall how Arnoldi

locates eigenvalues [85, pp. 257–265], we have, unfortunately, reason to suspect

that this is the case. Since Arnoldi does not target the largest eigenvalues, but any

isolated eigenvalue cluster, Hk := [Ik 0]Hk is likely to have both large and small

eigenvalues, which suggests that Hk may be ill-conditioned. We will now show

that the situation can be much better than expected if we restrict our attention to

the largest eigenvalues of Hk, that is, the ones corresponding to eigenvalues of A
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closest to the shift σ. The idea is to do an implicit (thick) restart [74], and purge

the small eigenvalues of Hk. In exact arithmetic, a thick restart of an Arnoldi

recurrence

(A− σI)−1Vk = VkHk + hk+1,kvk+1e
T
k ,

refers to a transformation to

(A− σI)−1U = UT + hk+1,kvk+1e
T
kQ,

where Hk = QTQH is a Schur decomposition and U = VkQ, and a truncation

(A− σI)−1U` = U`T` + hk+1,kvk+1e
T
kQ`,

where T` is the leading ` × ` submatrix of T , and U` and Q` denote the first

` columns of U and Q, respectively. The truncation is commonly referred to

as purging. The idea behind purging is to filter out the Ritz values we are not

interested in.

Now, since small eigenvalues of Hk correspond to eigenvalues of A far from

the shift σ, it is reasonable to assume they are of less interest. Suppose

(A− σI)−1(Vk + Fk) = Vk+1Hk

and consider a Schur form Hk = QTQH such that tii, i = `+ 1: k, are the small

eigenvalues to be purged. We have

(A− σI)−1(U + FkQ) = [U vk+1]

[
T

hk+1,ke
T
kQ

]
,

where U = VkQ. Throwing away the last k − ` columns yields

(A− σI)−1(U` + FkQ`) = [U` vk+1]

[
T`

hk+1,ke
T
kQ`

]
,

where Q` = Q( : , 1: `), U` = U( : , 1: `) and T` = T (1 : `, 1: `). Defining u`+1 = vk+1,

T ` =

[
T`

hk+1,ke
T
kQ`

]
,

and E` = FkQ`, results in a compact recurrence

(A− σI)−1(U` + E`) = U`+1T `, (7.20)
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where ‖E`‖ ≤ ‖Fk‖. Note that our bound on E` depends on k and not `. We can

now repeat the proof of Theorem 7.4.2, and use the bounds ‖E`‖ ≤ ‖Fk‖ and

σmin(U`+1) ≥ σmin(Vk+1), and the recurrence (7.20) instead of the one assumed in

the theorem. We get

U` = (A+ ∆A− σI)U`+1T `,

where

‖∆A‖ ≤ ‖A− σI‖
√
kκ(Vk)ε1 +

√
kκ(Vk+1)ckn(ε2)‖Hk‖/σmin(T `)

1−
√
kκ(Vk)ε1

. (7.21)

Comparing this to the bound in Theorem 7.4.2 we see that κ(Hk) has been

replaced by ‖Hk‖/σmin(T `). Further, it holds that

‖Hk‖/σmin(T `) ≤ ‖Hk‖/σmin

([
T

hk+1,ke
T
kQ

])
= κ(Hk).

It follows that if Hk is ill-conditioned due to the small eigenvalues we purged,

then ‖Hk‖/σmin(T `) � κ(Hk) and (7.21) shows that the upper bound for the

backward error corresponding to the part of the spectrum we care about is much

smaller than the upper bound for the general backward error.

7.5.2 Hermitian backward errors

We now restrict the scope to the Hermitian matrix eigenvalue problem, that is,

when A = AH and σ is real. Let us mention that we still consider the shift-and-

invert Arnoldi algorithm, as it is shown in Algorithm 7.1, and not the shift-and-

invert Lanczos algorithm with a three-term recurrence. In the Hermitian case,

Algorithm 7.1 is also known as the shift-and-invert Lanczos algorithm with full

orthogonalization, and it is used in, e.g., MATLAB’s eigs command.

Is it, for a Hermitian A, possible to find a Hermitian backward error ∆A? We

have seen in the proof of Theorem 7.4.2 that ∆A has to satisfy ∆AVk+1Hk = −Fk.
Unfortunately the following Lemma rules out existence of such a Hermitian ∆A

in general.

Lemma 7.5.1. Let X ∈ Cn×k and F ∈ Cn×k. Then there exists a Hermitian E

with EX = F if and only if XHF is Hermitian and FX†X = F . In that case,

there is such an E with rank(E) ≤ 2k and ‖E‖∗ ≤ 2‖F‖∗/σmin(X) where ‖ · ‖∗
denotes the spectral norm or the Frobenius norm.

Proof. The proof is simple and, for k = 1, is contained in [58]. We give it for
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completeness. Let E be any matrix such that EX = F . This implies EXX†X =

FX†X and (using XX†X = X) EX = FX†X, contradicting EX = F if F 6=
FX†X. Thus F = FX†X is necessary for the existence of an E with EX = F .

Now, if E is Hermitian, then so is XHEX = XHF . Hence, ifXHF is not Hermitian,

then there is no Hermitian E with EX = F .

On the other hand, if XHF be Hermitian and F = FX†X, then

E := FX† + (FX†)H −X†HFHXX† = FX† + (FX†)H(I −XX†)

is also Hermitian. Furthermore, rank(E) ≤ 2k, EX = F , and (using that I−XX†

is an orthogonal projector)

‖E‖∗ ≤ 2‖FX†‖∗ ≤ 2‖F‖∗‖X†‖2 = 2‖F‖∗/σmin(X).

The next result shows that one still gets a Hermitian backward error if one

replaces the Hessenberg matrix Hk by some other (k + 1)× k matrix Gk. Before

we state the theorem, we should clarify what we mean by “backward error” in

this case. If we replace Hk by something else, we cannot say that the computed

quantities (Vk+1 and Hk) satisfy an exact Krylov recurrence of a perturbed input

matrix. We can, however, still say that the computed subspace is a Krylov subspace

of a perturbed Hermitian input matrix. We refer to this Hermitian perturbation

as the backward error.

Theorem 7.5.2. Let A be Hermitian and (A−σI)−1(Vk+Fk) = Vk+1Hk. Suppose

it holds for Gk ∈ C(k+1)×k that V H
k Vk+1Gk is Hermitian and Vk+1Gk is of full rank.

Then there is a Hermitian ∆A of rank at most 2k such that

Vk = (A+ ∆A− σI)Vk+1Gk,

and

‖∆A‖ ≤ 2
‖(A− σI)‖‖Vk+1‖‖Hk −Gk‖+ ‖Fk‖

σmin(Vk+1Gk)
.

Proof. From Vk = (A+ ∆A− σI)Vk+1Gk and

Vk + Fk = (A− σI)Vk+1Hk = (A− σI)Vk+1Gk + (A− σI)Vk+1(Hk −Gk)

we see that any eligible ∆A has to satisfy

∆AVk+1Gk = (A− σI)Vk+1(Hk −Gk)− Fk = Vk − (A− σI)Vk+1Gk.
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Since it is assumed that Vk+1Gk is of full rank, Lemma 7.5.1 implies that such a

Hermitian ∆A exists if

(Vk+1Gk)
H(Vk − (A− σI)Vk+1Gk) = (Vk+1Gk)

HVk − (Vk+1Gk)
H(A− σI)Vk+1Gk

is Hermitian. Since the first term on the right hand side is Hermitian by assumption,

this is easily seen to be the case. Also by Lemma 7.5.1, ∆A is bounded by

‖∆A‖ ≤ 2‖(A− σI)Vk+1(Hk −Gk)− Fk‖/σmin(Vk+1Gk)

≤ 2(‖(A− σI)‖2‖Vk+1‖‖Hk −Gk‖+ ‖Fk‖)/σmin(Vk+1Gk),

and is of rank at most 2k.

Remark 7.5.3. If A+ ∆A− σI is singular, then we can use the second part of

Lemma 7.4.1 to find a Hermitian backward error ∆Ã arbitrarily close to ∆A such

that A+ ∆Ã− σI is invertible.

In order to obtain a small Hermitian backward error, we need to find a matrix

Gk close to Hk such that V H
k Vk+1Gk is Hermitian. One possibility is

Gk := R−1
k+1

[
Tk

hk+1,ke
T
k

]
Rk, (7.22)

where Rk, Rk+1 are the upper triangular QR factors of Vk, Vk+1, respectively, and

Tk is the tridiagonal part of the Hermitian part of Hk. Then Gk is Hessenberg and

computing Ritz pairs is particularly easy: we need to find vectors z and scalars µ

such that

V H
k (A+ ∆A− σI)−1Vkz = µV H

k Vkz.

Here we have used Remark 7.5.3 in order to ensure that A+ ∆A−σI is invertible.

By using the Krylov relation (A+ ∆A− σI)−1Vk = Vk+1Gk we obtain

V H
k Vk+1Gkz = µV H

k Vkz.

Inserting the QR factorizations Vj = QjRj, j = k, k + 1 and the formula for Gk

shown in (7.22) yields

RH
k [I 0]Rk+1R

−1
k+1

[
Tk

hk+1,ke
T
k

]
Rkz = µRH

k Rkz,

which simplifies to Tkz̃ = µz̃ where z̃ = Rkz. So, the Ritz values are just the

eigenvalues of Tk (which are real, since Tk is Hermitian). To obtain the Ritz vectors,
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we would have to multiply z̃ with R−1
k . However, since Rk is close to the identity

matrix if the orthogonalization has been done properly (for instance, by using

MGS with reorthogonalization) we can approximate z̃ by z. Thus, (approximations

of) Ritz pairs for the choice (7.22) of Gk can be obtained without computing

Rk, Rk+1. We also note that choosing the eigenpairs of Tk to construct Ritz pairs

is what is done in practice.

7.5.3 Conditions for breakdown

We now discuss how to derive a sensible breakdown criterion based on our error

analysis. We saw in Section 7.1.1 that the computed quantities Vj+1 and Hj satisfy

(A− σI)−1(Vj + Fj) = Vj+1Hj.

This recurrence can be rewritten as

(A− σI)−1(Vj + F̃j) = VjHj,

where F̃j = Fj − (A − σI)hj+1,jvj+1e
T
j . Note that the first j − 1 columns of F̃j

and Fj are identical. For the last column, we have

f̃j = rj − (A− σI)(gj + hj+1,jvj+1),

where rj is the residual from the linear system, and gj the columnwise backward

error from the orthonormalization. It is natural to declare breakdown when the

error introduced by neglecting hj+1,j is of the same order as the errors that are

present in the computation. This leads us to the following breakdown condition:

hj+1,j < ‖gj‖+ ‖rj‖/‖(A− σI)vj+1‖.

We can simplify this condition by replacing ‖gj‖ with its bound in (7.10). This

yields

hj+1,j < η(n, j)‖wj‖u+ ‖rj‖/‖(A− σI)vj+1‖. (7.23)

We now discuss how to evaluate (7.23) in practice. For the residual term ‖rj‖ we

consider two cases. The residual, or a good upper bound of the residual, may be

given to us. This is the case if we, for instance, use an iterative linear system solver

that guarantees a residual less than some tolerance. In this case, we can substitute

‖rj‖ in (7.23) by the given tolerance. If the residual, or any good bounds for it,
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are not given, then we need to compute it. Let m be a constant such that the

following forward error bound holds for an arbitrary vector x

‖float((A− σI)x)− (A− σI)x‖ ≤ mu‖A− σI‖‖x‖.

If A − σI is given as a dense matrix, we have m = n3/2 [36, p. 70]. For sparse

matrices, m can be much smaller. The computed residual r̂j satisfies

‖r̂j‖ ≤ (1 + u)‖float((A− σI)wj)− vj‖

≤ (1 + u)(‖rj‖+mu‖A− σI‖‖wj‖).

By comparing to (7.4), we recognize ‖A− σI‖‖wj‖mu as a part of the norm of a

residual associated with a computed solution with corresponding backward error

mu. Thus, we can compute a satisfactory r̂j if we use an extended precision u

such that mu < u.

For the computation of vector (A− σI)vj+1, we have

‖float((A− σI)vj)− (A− σI)vj‖ ≤ mu‖A− σI‖‖vj‖

≤ muκ(A− σI)‖(A− σI)vj‖,

and, using the reverse triangle inequality, that

‖(A− σI)vj‖
(
1−muκ(A− σI)

)
≤ ‖float((A− σI)vj)‖.

Thus the computed vector is accurate enough as long as muκ(A − σI) � 1. If

A− σI is so ill-conditioned that this is not satisfied, then we can use an extended

precision u such that muκ(A− σI)� 1.

If (7.23) and (7.6) hold, then

‖f̃j‖ ≤ 2
(
‖vj‖ε1 + ‖A− σI‖‖wj‖(ε2 + η(n, j)u)

)
.

By derivations similar to those leading to (7.13), we get

‖F̃j‖ ≤ 2
(√

j‖Vj‖ε1 +
√
j‖A− σI‖‖Vj+1‖‖Hj‖cjn(ε2)

)
. (7.24)

From this we obtain the following “breakdown analogue” of Theorem 7.4.2.

Theorem 7.5.4. Let (A− σI)−1(Vj + F̃j) = VjHj be of full rank and assume F̃j

is bounded as in (7.24) and
√
jκ(Vj)ε1 < 1. Then there is a ∆A of rank at most j
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such that Vj = (A+ ∆A− σI)VjHj and

‖∆A‖ ≤ 2
√
j‖A− σI‖

κ(Vj)ε1 + κ(Vj+1)‖Hj‖/σmin(Hj)cjn(ε2)

1−
√
jκ(Vj)ε1

,

where cjn(·) is given by (7.14).

The proof is omitted since it is essentially the same as the proof of Theo-

rem 7.4.2. In a similar manner, we can get corresponding breakdown analogues to

Corollary 7.4.3 and Theorem 7.5.2.



Chapter

8

Conclusion

In Chapter 3 we studied strongly damped quadratic matrix polynomials, or more

precisely, matrix polynomials Mλ2 + sDλ + K, where all coefficient matrices

are real and positive semi-definite, M and K positive definite, and the damping

parameter s goes to infinity. We showed that such polynomials in many ways

are similar to their undamped counterparts Mλ2 +K. In particular we extended

some of Lancaster’s early work [50], and furthermore, showed how the eigenvalues

move as the damping gets stronger. We saw that strong damping leads to small

negative eigenvalues close to zero, which are harmless in the sense that it does not

cause any term in the response (3.22) to blow up, as long as the corresponding

undamped problem does not have a tiny eigenvalue. This is interesting from a

practical point of view. When no damping is present, the smallest eigenvalues are

the most interesting ones. In this case, they are purely imaginary and correspond

to the modes with the lowest frequencies. Engineers are concerned with these

modes since external forces that commonly come into play (e.g., from car traffic

or earthquakes) are likely to have low frequencies components f0e
iωt, ω ∈ R,

themselves, and if an external force has a frequency close to that of a mode, we

saw in Section 1.1 that resonance is likely to appear (see also [50, p. 125]). The

fact that strong damping leads to small negative eigenvalues suggests that when

damping is present, the region in which the “interesting” eigenvalues lie is much

more complicated to describe than in the undamped case.

We also derived a new “symmetric” formula for the inverse of real symmetric

matrix polynomials with invertible leading coefficient (Theorem 3.5.1), and used
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this to write down the particular solutions for associated ODEs.

In Chapter 4 we first developed Algorithm 4.2 for solving definite generalized

eigenvalue problems Ax = λBx, where both A and B are semidefinite. We assumed

further that A and B were both real, but the algorithm is easily generalized to

complex matrices. Algorithm 4.2 is to the author’s knowledge the first one that

computes all eigenvalues of such problems in a backward stable and symmetry

preserving manner. Here symmetry preserving means that we can compute a

nonnegative diagonal pencil D1 − λD2 such that

XH(D1 − λD2)X = A+ ∆A− λ(B + ∆B),

where ∆A and ∆B are symmetric and small with respect to A and B, respectively.

This means that one backward error ∆A+λ∆B applies to all computed eigenvalues

in homogeneous form. This should be compared to the QZ algorithm, which, applied

to such problems, also computes all eigenvalues in a backward stable manner, but

not with respect to symmetry. However, if a computed eigenvalue is real, then it

can be shown that the symmetric backward error is also small. But contrary to

Algorithm 4.2, different eigenvalues do in general have different backward errors,

even when we consider them in homogeneous form [71, 35].

We used Algorithm 4.2 as a first step in the more involved eigensolver Algo-

rithm 4.3, which computes the eigenvalues, and eigenvectors if desired, of certain

QEPs where the damping matrix is of low rank. In particular, we used the fact

that Algorithm 4.2 can diagonalize the undamped problem via congruence. Al-

gorithm 4.3, which makes use of an Ehrlich-Aberth iteration, was shown to be

both fast and accurate in numerical experiments. The algorithm is linearization

free, which means that it does not have the same problem with strong damping

as, for example quadeig [34]. This allowed us to confirm our theory in Chapter 3

by numerical examples, and we could compute all eigenpairs of a strongly damped

vibrating beam so the worst backward error encountered was smaller than 10−14.

If also the eigenvectors are desired, our algorithm computes these in a final step

using an inverse iteration that is specially designed for real symmetric matrix

polynomials. To motivate why this iteration works, we used the Takagi factoriza-

tion for complex symmetric matrices. Since our quadratic eigensolver computes

all eigenvalues/eigenpairs, it is only suitable for small and moderately sized QEPs.

For large scale quadratics, where only a few eigenvectors can be stored in memory,

some “subspace based” algorithm needs to be applied to construct QEPs of a

size that the new algorithm can handle. Possible future work includes the design
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of such an algorithm. Further, for such an algorithm to be useful, we need to

understand which eigenvalues to look for; as mentioned above, this is a nontrivial

problem.

The degree deficiency n degP (λ) − deg detP (λ), of a regular n × n matrix

polynomial P (λ), equals the algebraic multiplicity of the infinite eigenvalue of

P (λ) (cf. page 18). Similarly, n deg rev(P )− deg det rev(P ) equals the algebraic

multiplicity of the zero eigenvalue. Unfortunately, these expressions are impractical

from a numerical point of view. For the special matrix polynomials considered in

Chapter 4, we derived more convenient expressions for the algebraic multiplicity

of zero and infinite eigenvalues, that could be computed numerically using the

SVD. This result, which was summarized in Proposition 4.4.1, depends on the

special structure of the coefficient matrices and cannot be applied to more general

quadratics. To see this, take for example,

Mλ2 +Dλ+K =

[
λ2 λ2 − λ
λ λ+ 1

]
=

[
1 1

0 0

]
λ2 +

[
0 −1

1 1

]
λ+

[
0 0

0 1

]
.

The algebraic multiplicity of the eigenvalue at infinity is

4− deg det(Mλ2 +Dλ+K) = 2,

but

dim null(M) + dim(null(M) ∩ null(D)) = 1.

An interesting open problem is to derive “numerically computable” expressions,

like the ones in Proposition 4.4.1, for more general matrix polynomials.

In Chapter 5 we solved inverse polynomial eigenproblems. In particular, we

showed that the only additional constraint that is imposed on the eigenstructure of

an n× n matrix polynomial if it has real instead of complex matrix coefficients, is

that all elementary divisors (seen as a matrix polynomial over C) of finite nonreal

eigenvalues come in complex conjugate pairs. We conjectured that the same is

true for regular Hermitian matrix polynomials, and supported the conjecture with

proofs for some special cases. In particular, we saw that the conjecture was easily

verified for pencils. This is of relevance to polynomial eigenproblems that are solved

via linearizations. For instance, it follows immediately that any real regular matrix

polynomial has a Hermitian linearization. Thus, in terms of the eigenstructure

(defined on page 18) a Hermitian linearization is not richer in structure than

an unstructured real linearization. Since a real linearization enforces the same

constraints on the eigenstructure as a Hermitian linearization, one idea is to use
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real (possibly nonsymmetric) linearizations of Hermitian matrix polynomials. If

we use an algorithm that works in real arithmetic, then the symmetry (with

respect to the real axis) in the eigenstructure will automatically be preserved even

though we break all Hermitian structure. The hard part, which is left as an open

problem, is to construct such linearizations in a cheap manner. If we can afford

to double the problem size one approach is the following: let A(λ) + iB(λ), with

A(λ), B(λ) ∈ Rn×n, be a regular Hermitian matrix polynomial we want to find

the eigenvalues of and note that A(λ) + iB(λ) ∼ A(λ)− iB(λ). We have that[
A(λ)− iB(λ)

A(λ) + iB(λ)

]
∼
[
A(λ) B(λ)

−B(λ) A(λ)

]
=: P (λ),

so eigenstructure of P (λ) is the same as that of A(λ) + iB(λ) but each elementary

divisor appears twice as many times. Furthermore, P (λ) is real, so we may pick

any real linearization, for example (2.7), and solve the associated GEP using an

algorithm that works in real arithmetic.

In Chapter 6 we described a method for reducing monic matrix polynomi-

als P (λ) of degree ` to (block) triangular, (block) diagonal and Hessenberg

form, by means of structure preserving similarity transformations applied to

the left companion linearization. Our method made use of block Krylov matrices

[V AV · · · A`−1V ], where A is the constant part of some monic linearization of

P (λ). This ill-conditioning is something we need to worry about, in particular as `

gets bigger. The main problem, however, is to identify applications of the simpler

forms. The diagonal form has received some attention in the literature since it

may be used to transform second order systems of ODEs to equivalent “decoupled”

systems of second order [19, 20, 28, 63]. It is, however, unclear (at least to the

author) what is gained in doing this. In the quadratic case, the diagonal form tells

us what the eigenvalues are—neither more nor less. It was suggested in [63] to

use diagonalization to decouple systems of ODEs and then solve decoupled scalar

second order ODEs. However, since the standard way of solving scalar second

order ODEs is via a linearization, we might as well linearize the system of ODEs

and do the decoupling on the linearization level.

In Chapter 7 we showed that a floating point implementation of the shift-

and-invert Arnoldi algorithm, where errors from all steps of the computation

are taken into account, yields computed quantities that satisfy an exact shift-

and-invert Krylov recurrence of a perturbed matrix. Here, the word “Krylov” is

used instead of “Arnoldi” since the computed basis cannot be guaranteed to be

perfectly orthogonal. We showed that the norm of the backward error depends on
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the condition number of the computed Hessenberg matrix Hk, and argued that

even if this number is large, the restriction to the most important part of the

recurrence (that is, what is left after purging the small eigenvalues of Hk) can have

a small backward error. For Hermitian matrices A, we showed that there is an

Hermitian backward error ∆A such that the computed basis Vk+1 spans a Krylov

subspace associated with A+ ∆A. However, as in the case of standard Arnoldi

[44], the small (k + 1)× k matrix associated with this subspace is generally not

the computed Hessenberg matrix. Finally, we defined a new breakdown condition

based on our error analysis. If this condition is met, we could derive a new set of

backward error bounds, which show that an invariant subspace of a perturbed

matrix has been found.

One problem that is interesting to look into is how the results in Chapter 7

can be generalized to pencils A− λB. In this case the perturbed recurrence

(A− σI)(Vk + Fk) = Vk+1Hk,

studied in Chapter 7, has to be replaced by

(A− σB)(float(BVk) + Fk) = Vk+1Hk.

Thus a new error, that is, the error from the computation of BVk, has to be taken

into account.



Appendix

A

The principal angles and

the gap

A.1 Two results on the principal angles

In this section we prove Theorem 3.2.1 and the equality in (3.5). We need the

following two results; both are well known [41, Section 3.1].

Theorem A.1.1. The singular values σ1 ≥ σ2 ≥ · · · ≥ σp of a matrix A can be

characterized recursively as follows:

σi = max{ |xHAy| : ‖x‖2 = ‖y‖2 = 1,

xHxj = yHyj = 0, j = 1, 2, . . . , i− 1}

= |xHi Ayi|,

where xi and yi are maximizing vectors (in fact singular vectors).

Proof. We have |xHAy| ≤ ‖x‖2‖A‖2‖y‖2 = σ1 and xH1 Ay1 = σ1 where x1 and y1

can be any left and right first singular vectors, respectively. Hence the result is

true for i = 1. Set B =
∑p

k=i σkxky
H
k . For any vectors x and y in the ith set above,

we have |xHAy| = |xHBy| ≤ ‖x‖2‖B‖2‖y‖2 = σi. Since xHi Ayi = σi for any ith

left and right singular vectors xi and yi, the result follows.

Theorem A.1.2. The smallest singular value of a p× p matrix A = UΣV H , is

given by

σp = min
‖x‖2=1

max
‖y‖2=1

|xHAy|.

136
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Proof. Let f denote the right hand side above. We have

f ≤ max
‖y‖2=1

|xHp Ay| = σp,

for any pth left singular vector xp. For any x we can pick y such that ‖y‖2 = 1

and V Hy = UHx. Hence

f ≥ min
‖x‖2=1

|(UHx)HΣUHx| = min
‖w‖2=1

|wHΣw| = σp.

Let 〈·, ·〉 denote the A-inner product for some Hermitian positive definite matrix

A, and let ‖ · ‖ be the induced norm. The proof of Theorem 3.2.1 we present is

a straightforward generalization of the proof given in [13] for the standard inner

product. We will make use of the following fact.

Fact A.1.3. Let f : X → R such that f [X] is a closed interval of the real line.

For any decreasing function g : f [X]→ R it holds that

g

(
max
x∈X

f(x)

)
= min

x∈X
g(f(x)) and g

(
min
x∈X

f(x)

)
= max

x∈X
g(f(x)).

Proof of Theorem 3.2.1. Cosine is a decreasing function on [0, π/2]. Hence, by

using Fact A.1.3, we see that taking cosine on both sides of the definition of

θi(U ,V) yields

cos(θi(U ,V)) = max{ |〈u, v〉| : u ∈ U , v ∈ V , ‖u‖ = ‖v‖ = 1,

〈u, uj〉 = 〈v, vj〉 = 0, j = 1, 2, . . . , i− 1}

= |〈ui, vi〉|.

By defining u = Ux, v = V y and ui = Uxi, vi = V yi we get

cos(θi(U ,V)) = max{ |xH(UHAV )y| : ‖x‖2 = ‖y‖2 = 1,

xHxj = yHyj = 0, j = 1, 2, . . . , i− 1}

= |xHi (UHAV )yi|.

The result now follows from Theorem A.1.1.

We have the following characterization of the largest principal angle between

subspaces of the same dimension.
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Theorem A.1.4. If p = q, then the largest principal angle is given by

θmax(U ,V) = max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

](u, v).

Proof. Using Theorem A.1.2 we get

cos(θmax(U ,V)) = σp(U
HAV ) = min

‖x‖2=1
max
‖y‖2=1

|xHUHAV y|

= min
u∈U
‖u‖=1

max
v∈V
‖v‖=1

|uHAv| = min
u∈U
‖u‖=1

max
v∈V
‖v‖=1

|〈u, v〉|.

Since arccos is a decreasing function on [0, 1], Fact A.1.3 implies that

θmax(U ,V) = arccos

min
u∈U
‖u‖=1

max
v∈V
‖v‖=1

|〈u, v〉|

 = max
u∈U
‖u‖=1

arccos

max
v∈V
‖v‖=1

|〈u, v〉|


= max

u∈U
‖u‖=1

min
v∈V
‖v‖=1

arccos(|〈u, v〉|) = max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

](u, v).

A.2 The gap

In this section we introduce the gap between subspaces of Cn and relate it to the

largest principal angle. As in the previous section, all norms and angles are with

respect to the A-inner product for some Hermitian positive definite matrix A. We

have the following definitions [45, p. 7 and p. 197]:

dist(u,V) = min
v∈V
‖u− v‖,

δ(U ,V) =


0 if U = 0,

max
u∈U
‖u‖=1

dist(u,V) otherwise,

and

gap(U ,V) = max (δ(U ,V), δ(V ,U)) .

Note that we in general have δ(U ,V) 6= δ(V ,U), so gap 6≡ δ. If dimU = dimV,

however, we will see that it always holds that gap(U ,V) = δ(U ,V) = δ(V ,U).

Since we assume that the norm is induced by an inner product, an equivalent
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definition is given by

gap(U ,V) = ‖PU −PV‖, (A.1)

where PU and PV are orthogonal projections onto U and V, respectively [31,

Theorem 13.1.1]. From (A.1) we see that the gap is a metric on the set of subspaces

of Cn. Thus we may talk about continuous subspaces depending on a parameter.

More precisely, we say that U(s) is continuous on I ⊂ R, if for each a ∈ I, it holds

that lim
s→a

gap(U(s),U(a)) = 0.

Variants of the next two lemmas can be found in [73, p. 249–250].

Lemma A.2.1. Let the columns of V and V⊥ be A-orthonormal bases of V and

V⊥ respectively. If ‖u‖ = 1, then sin](u,V) = ‖V H
⊥ Au‖2.

Proof. Define [
V H

V H
⊥

]
Au =

[
c

s

]
.

Since V V HA and V⊥V H
⊥ A are A-orthogonal projectors onto V and V⊥, respectively,

we have

cHc+ sHs = uHA(V V HA+ V⊥V
H
⊥ A)u = uHAu = 1.

Now, cHc and sHs are scalars and equals the squares of 2-norms of V HAv and

V H
⊥ Av, respectively. By Theorem 3.2.1, cos2 θ = cHc, where θ is the principal angle

between span{u} and V . It follows that sin θ = (sHs)1/2.

Using this result we can prove the next lemma.

Lemma A.2.2. If ‖u‖ = 1, then sin](u,V) = min
v∈V
‖u− v‖ = dist(u,V).

Proof. Let V and V⊥ be as in Lemma A.2.1. Write V HAu = ũ and V H
⊥ Au = ũ⊥,

and note that V HAV x = x and V H
⊥ AV x = 0, for any x. We have[

V H

V H
⊥

]
A(u− V x) =

[
ũ− x
ũ⊥

]
.

Further,

‖u− V x‖ =

∥∥∥∥[V H

V H
⊥

]
A(u− V x)

∥∥∥∥
2

=

∥∥∥∥[ ũ− xũ⊥

]∥∥∥∥
2

which is minimized for x = ũ, with minimum ‖ũ⊥‖2 = ‖V H
⊥ Au‖2. By Lemma

A.2.1, ‖V H
⊥ Au‖2 = sin](u,V).



A.2. The gap 140

Now, if dimU = dimV > 0, then we have

max
u∈U
‖u‖=1

dist(u,V) = max
u∈U
‖u‖=1

sin](u,V)

= sin max
u∈U
‖u‖=1

](u,V)

= sin max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

](u, v)

= sin θmax(U ,V),

where the first equality follows from Lemma A.2.2; the second from the fact that

sine is an increasing function on [0, π/2]; the third from the definition of the angle

between a vector and a subspace; and the fourth from Corollary A.1.4. Since

θmax(U ,V) = θmax(V ,U), we have proved the following theorem.

Theorem A.2.3. If dimU = dimV, then gap(U ,V) = δ(U ,V) = sin θmax(U ,V).

Now, consider two gap functions gap(·, ·) and gap′(·, ·) associated with the

norms ‖ · ‖ and ‖ · ‖′, respectively. (These norms need not be induced by inner

products.) Since all norms on Cn are equivalent, there exist α and β such that

α‖u‖ ≤ ‖u‖′ ≤ β‖u‖

for any u ∈ Cn. Using this and the definition of the gap, one can show that

α

β
gap(U ,V) ≤ gap′(U ,V) ≤ β

α
gap(U ,V).

for any two subspaces U ,V ⊆ Cn [75, Theorem 4.4]. See also [31, Theorem 13.8.3].

Thus, if U(s) and V(s) are two subspaces of the same dimension k, depending on

a real parameter s, it follows that a condition like

lim
s→∞

θmax(U(s),V(s)) = 0

is independent of which positive definite inner product θmax(·, ·) refers to.



Appendix

B

Roundoff error in complex

arithmetic

Let F denote the set of finite floating point numbers with base β and precision t.

Consider a sum s = x1 +x2 + · · ·+xn, where the xk ∈ F, k = 1:n, and let ŝ denote

the computed sum. Assuming nu < 1, where u = 1
2
β1−t is the unit roundoff, the

forward error associated with this computation is commonly bounded as

|ŝ− s| ≤ γn−1

n∑
k=1

|xk|, where γk :=
ku

1− ku
.

Recently, Jeannerod and Rump [43] simplified this bound and showed that

|ŝ− s| ≤ (n− 1)u
n∑
k=1

|xk|, (B.1)

with no constraints on n. Using this result, they then deduced the following forward

error bound for the computed inner products of x, y ∈ Fn:

|xTy − float(xTy)| ≤ nu|x|T |y|. (B.2)

When using complex numbers, one can often use the rounding error analysis from

the analogous real computation, if one simply redefines the unit roundoff u to

be a slightly larger value. See e.g., [36, Section 3.6]. We now prove that this can

be done for (B.1) and (B.2). For (B.1), the following theorem shows that we can

keep the same u when summing up complex numbers.
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Theorem B.0.1. If neither underflow nor overflow occurs, then (B.1) also holds

for complex floating point numbers, that is, when xk ∈ F + iF for k = 1:n.

Proof. Write xk = ak + ibk. By (B.1), we have

|x− x̂|2 ≤
(

(n− 1)u
n∑
k=1

|ak|
)2

+
(

(n− 1)u
n∑
k=1

|bk|
)2

= ((n− 1)u)2
∣∣∣ n∑
k=1

|ak|+ i

n∑
k=1

|bk|
∣∣∣2

≤ ((n− 1)u)2
( n∑
k=1

∣∣|ak|+ i|bk|
∣∣)2

= ((n− 1)u)2
( n∑
k=1

|xk|
)2

.

For complex inner product we need to consider complex multiplication. Recently,

Brent, Percival and Zimmermann [15] showed that the forward error for multiplying

two complex number z and w can be bounded as

|zw − float(zw)| ≤
√

5|z||w|u. (B.3)

We use this to prove the next theorem.

Theorem B.0.2. If neither underflow nor overflow occurs, then (B.2) also holds

for complex floating point vectors x, y ∈ (F + iF)n if we replace u by
√

5u.

Proof. Assume n > 1, otherwise we are done. If we define fk = float(xkyk)− xkyk,
then (B.3) and Theorem B.0.1 yield

|xHy − float(xHy)| =
∣∣∣xHy − float

( n∑
k=1

(xkyk + fk)
)∣∣∣

≤
∣∣∣xHy − n∑

k=1

(xkyk + fk)
∣∣∣+ nu

n∑
k=1

∣∣xkyk + fk
∣∣

≤
n∑
k=1

|fk|+ nu

n∑
k=1

(|xk||yk|+ |fk|)

≤ (1 +
√

5/n+ u
√

5)nu
n∑
k=1

|xk||yk|

≤
√

5nu
n∑
k=1

|xk||yk|.
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A collection of nonlinear eigenvalue problems. ACM Trans. Math. Software,

39(2):7:1–7:28, 2013.

143



Bibliography 144

[11] D. A. Bini and V. Noferini. Solving polynomial eigenvalue problems by means

of the Ehrlich-Aberth method. Linear Algebra Appl., 439(4):1130–1149, 2013.
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breakdown, 128–130

implicit restarting, 123

purging, 124

shift-and-invert, 106–130

Arnoldi recurrence, 106

backward error

Arnoldi recurrence, 117–128

Hermitian, 125–128

eigenpair, 51

eigenvalue, 51

linear system, 109

QR factorization, 113

canonical angle, see principal angle

companion matrix, 24, 93

condition number

nonzero eigenvalue, 65

damped beam problem, 38, 64

damper, see viscous damper

damping matrix, 27

definite GEP, 48, 53–57, 132

differential equation, 9–13, 24, 43–47,
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discrete damper, see viscous damper

Ehrlich-Aberth method, 52

eigennilpotent, 39

eigenprojection, 39

eigenspace, 9

eigenstructure, 18

eigenvalue, 8

affected by damping, 36

algebraic multiplicity, 18

of zero and infinity, 58

at infinity, 8, 18

defective, 19, 21–22, 39

derivative, 36

finite, 8, 18

geometric multiplicity, 18

regular matrix polynomial, 19

homogeneous form, 55

inclusion regions for QEPs, 33–36

semisimple, 10, 19

simple, 19

unaffected by damping, 36

undamped, 57

eigenvector, 9

smallest imaginary part, 43

elementary divisor, 18

at infinity, 18

elementary transformation, 17

exceptional point, 39

field extension
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pure, 104

radical, 104

Floating point arithmetic, 24–25

flop, 24

forced response, 43

free response, 43

gap, 33, 138–140

Gerschgorin-like disc, 33

Gram-Schmidt orthogonalization,

114–117

IEEE double precision, 25

invariant factor, 17

inverse iteration, 63

Jacobi’s formula, 53

Jordan form, 22, 39

Krylov reccurence, 106

linearization, 22

left companion linearization, 23

of Hermitian matrix polynomials,

133

real, 134

Möbius transform, 21

Möbius transformation, 20, 74

machine precision, 24

mass matrix, 27

singular, 49

matrix polynomial

degree, 8

elementary, 16

equivalent, 17

strictly, 17

strongly, 19

grade, 38

Hermitian, 88

monic, 8

quasi-triangularizable, 73

regular, 8, 18

reversal, 18

self-adjoint, see Hermitian

singular, 18

T-odd, 38

triangularizable, 73

unimodular, 16

modal analysis, 49

mode, 27

nonderogatory matrix, 72, 99

partial multiplicity, 18

partial multiplicity sequence, 19

polynomial eigenproblem (PEP), 9

principal angle, 29, 136–140

Puiseux serie, 38

QR factorization, 113–117

quadratic eigenproblem (QEP), 9

quasi-triangular structure, 14

QZ algorithm, 50, 132

rank, 17

resonance, 12, 131

roundoff error

axpy, 114

complex arithmetic, 141

floating point operations, 24

matrix-vector multiplication, 129

modified Gram-Schmidt, 114

Schur decomposition, 97–99

singular value, 136–137

sip matrix, 88

Smith form, 17–18

solvable by radicals, 105
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spectrum, 8

standard pair, 92

stiffness matrix, 27

singular, 49

structure preserving transformation,

93

SVD of complex symmetric matrix,

see Takagi factorization

Takagi factorization, 32, 43, 45, 63

unimodular transformation, 17

unit roundoff, 24

viscous damper, 26, 49

Wang and Zhao’s algorithm, 53


