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Abstract

We report on a pilot study of dynamic lung electrical impedance tomography
(EIT) at the University of Manchester. Low-noise EIT data at 100 frames per
second were obtained from healthy male subjects during controlled breathing,
followed by magnetic resonance imaging (MRI) subsequently used for spatial
validation of the EIT reconstruction. The torso surface in the MR image
and electrode positions obtained using MRI fiducial markers informed the
construction of a 3D finite element model extruded along the caudal-distal axis
of the subject. Small changes in the boundary that occur during respiration
were accounted for by incorporating the sensitivity with respect to boundary
shape into a robust temporal difference reconstruction algorithm. EIT and MRI
images were co-registered using the open source medical imaging software, 3D
Slicer. A quantitative comparison of quality of different EIT reconstructions was
achieved through calculation of the mutual information with a lung-segmented
MR image. EIT reconstructions using a linear shape correction algorithm
reduced boundary image artefacts, yielding better contrast of the lungs, and
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had 10% greater mutual information compared with a standard linear EIT
reconstruction.

Keywords: 3D lung EIT, MRI, mutual information, image co-registration
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(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical impedance tomography (EIT) is a non-invasive technique that aims to reconstruct
the internal conductivity distribution of a given subject from electrical measurements obtained
on the periphery. Since the development of the technique in the early 1980s by Barber and
Brown (1984), there has been widespread interest in the clinical application of thoracic EIT.
Several review articles by Muders et al (2010), Bodenstein et al (2009), Costa et al (2009a),
Adler et al (2012), Lundin and Stenqvist (2012) and Frerichs (2000) provide the reader with
the current status of clinical activity and also detail the broad spectrum of specific thoracic
EIT application areas. Applications include the assessment of pulmonary ventilation (Frerichs
2000, Zhao et al 2010), lung perfusion (Frerichs et al 2009), pulmonary oedema (Kunst
et al 1999), emphysema (Smit et al 2003) and lung injury (Hinz e al 2007). These studies
demonstrate that thoracic EIT promises to become a routine bedside monitoring tool for
critically ill patients who undergo mechanical ventilation, and is already beginning to play an
important role in optimizing ventilator settings for such patients.

The majority of EIT image reconstruction systems, however, still do not exhibit a
consistent level of performance across different patients, or for the same patient at different data
acquisition times. This is clearly an essential ingredient for the technique to gain credibility
across the medical community as a bedside monitoring tool. A major contributing factor behind
poor reproducibility is a result of inadequate modelling approximations that are used in the
reconstruction algorithm. Additionally, virtually all EIT systems still deploy a single ring of
16 electrodes placed on a transverse plane around the thorax and perform reconstructions onto
a2D transverse slice, and operate at a modest 40 fps (a single frame corresponds to collection of
all measurements for a specific protocol.) Physically, current cannot be constrained to lie in the
2D plane, and mathematically the potential from a point current source has different decay rates
in 2D and 3D (Lionheart 1999). Inaccurately known boundary shape and electrode positions
are also known to result in major artefacts in image reconstruction (Adler et al 2006, Zhang and
Patterson 2005, Lionheart 1998). Many EIT systems assume the boundary shape is circular,
elliptical, or at best a generic thorax shape, which can be a rather crude approximation to a
genuine thorax cross section. The difficulty of obtaining a sufficiently accurate approximation
to the shape is amplified for temporal reconstructions. During respiration the expansion and
contraction of the rib cage causes the displacement of thoracic tissues, the external shape and
the attached electrodes. This movement creates EIT measurements which appear spurious,
with the measured voltage signals often being dominated by movement effects and not the
underlying tissue conductivity changes. This effect can result in large boundary artefacts in
reconstructed images if such measurement data are used on a static geometrical model which
can render the overall reconstruction meaningless.

A crucial step towards EIT reproducibility is to perform a quantitative assessment of
the spatial resolution obtainable for different EIT reconstruction algorithms and to compare
EIT with complementary imaging modalities. The spatial resolution of EIT has been assessed
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(b)

Figure 1. Electrode arrays; (a) electrodes attached during EIT data acquisition and
(b) MRI fiducial markers to inform electrode positions.

in several experimental and clinical studies involving spontaneous and artificial ventilation
against well established imaging techniques e.g. x-ray computed tomography (CT), positron
emission tomography and single photon emission CT (Victorino et al 2004, Costa et al 2009b,
Kunst er al 1998, Richard et al 2009, Hinz et al 2003, Frerichs et al 2002). However, none
of these studies have made direct comparisons, or quantitative assessments, of the spatial
accuracy of EIT with a second high resolution modality using image co-registration and
mutual information as we will present here.

The aim of this paper is to systematically address the problems associated with
image reproducibility outlined above, by describing a methodology for 3D thoracic EIT
reconstruction. We report on a study at the University of Manchester involving two healthy
subjects who had MR scans in the supine position, in addition to EIT data acquired with the
Manchester fEITER system (McCann et al 2011) in the supine and seated positions. Potential
reconstruction artefacts associated with inaccurate model dimension, boundary shape and
electrode positions are addressed by using an MR image of the subject to inform the external
shape of a 3D EIT reconstruction model of the thorax. Similarly, magnetic resonance imaging
(MRI) fiducial markers placed at the electrode positions aided electrode positioning within the
model. Small changes in the boundary and electrode positions during the breathing cycle are
addressed by calculating the sensitivity of the EIT forward model with respect to the boundary
shape, and incorporating this into a robust 3D temporal difference image reconstruction
algorithm. Qualitative comparisons are made between the spatial resolution obtained using
both the standard and boundary movement difference reconstruction algorithms on the MRI-
informed reconstruction model, via co-registration with the original MR image. We also
implement a simple and novel performance criterion which enables a quantitative measure of
EIT reconstruction quality by calculating the mutual information of the EIT images with a
lung-segmented MR image of the subject, as discussed in section 2.4.

2. Methods

2.1. EIT and MRI data acquisition

An array of 32 electrodes was arranged on the subject as two transverse planes of 16 electrodes
equidistantly spaced around the chest at approximately the fourth and sixth intercostal spaces,
along with an abdominal reference electrode, as illustrated in figure 1. EIT measurements
were acquired using the EIT sub-system of the biomedical fEITER instrument (McCann et al
2011), which offers not only a high signal-to-noise ratio approaching 80 dB on bench-top
phantoms, but has also been designed to meet the IEC 60601-1 patient safety requirements. In
this study, a nearest-neighbour current injection protocol was used with a total of 20 current
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(b)

Figure 2. FE model generation; (a) segmented MR slice with thorax and lung shapes
highlighted and (b) extruded ‘2.5D’ FE model generated in EIDORS.

patterns which included eight independent horizontal injections per transverse electrode plane.
Sinusoidal current injections of 0.5 mA amplitude at 10 kHz frequency were input and the
EIT instrument recorded nearest-neighbour voltage pairs at 100 fps. EIT data were recorded
whilst the subject carried out basic breathing procedures in 1 min blocks. Breathing procedures
involved normal and progressively deeper tidal breathing regimes interspaced with reference
conditions of typically 5 s breath-holds at both inspiration and expiration. MRI fiducial markers
were substituted for the EIT electrodes at all electrode locations immediately after the last EIT
data collection, before carrying out an MRI scan using a T2-weighted half-Fourier acquired
single-shot turbo spin-echo (HASTE) protocol on a 1.5 T Philips Achieva scanner (Philips
Healthcare, Best, the Netherlands) under the same breathing procedures as used during the
EIT tests. The MR scans consisted of 1 cm thick contiguous axial slices, which were cardiac
gated and tuned for the conditions of normal breath-holding, at maximum inspiration and
expiration. The whole procedure was approved by the local ethics committee and the subjects
gave written, informed consent.

2.2. Finite element modelling of the human torso

The external boundary shape of the subject was obtained from a transverse MR image slice
at the fifth intercostal spacing at a breath-hold at maximum inspiration. The contour of
the external shape was defined by 50 equispaced points and the contour of each lung by
approximately 25 equispaced points. A 3D finite element (FE) forward model extruded along
the caudal-distal axis was then generated using EIDORS 3.6 (Adler and Lionheart 2006°)
calling the Netgen mesh generator (Schoberl 1997). Ider ez al (1990) have previously performed
a mathematical analysis of extruded models with a single transverse plane of electrodes. The
present methodology is an extension of their approach because multiple planes of electrodes
can be incorporated into the model. The method of extrusion has been applied to swine data
as described by Grychtol ef al (2012). The FE forward model consisted of 32 electrodes with
typically 20 000 tetrahedral elements and 5000 vertices, modelled to a depth of 10 cm. The
transverse MR image slice and surface mesh of a typical forward model is shown in figure 2.
All electrodes were modelled to a diameter of 1 cm, which is consistent with those applied to
the subject. A high mesh density was chosen in the vicinity of each electrode where the electric
field is largest. The lungs segmented from the MR image were also included in the forward
model and used as prior information in the forward problem. A 3D FE model was generated

® The library function ng_mk_extruded_model.m
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with the same boundary shape as the forward model, but with no electrodes and a lower mesh
density, for the reconstruction problem. A reconstruction model typically consisted of 10 000
tetrahedral elements and 2500 vertices. From the forward and reconstruction models a mapping
matrix was generated to transform between the coarse and fine discretizations, as described
by Adler et al (2008), allowing one to solve the forward problem sufficiently accurately on
the fine model as well as representing the reconstructed conductivity on the coarse model.

2.3. Image reconstruction with shape corrections

As previously discussed, a major source of artefacts in thoracic EIT reconstructions is due to
an inaccurately known boundary shape. Given full knowledge of the Neumann-to-Dirichlet
(NtD) on the true domain, with conductivity assumed a priori to be isotropic, it was shown
by Lionheart (1998) that the data measured on the true domain will only be consistent with an
isotropic conductivity in the model domain if the true domain and model domain are related by
a conformal map. Reconstruction algorithms have been proposed that rely on the conformal
structure of a deformed conductivity. It has been shown by Kolehmainen ez al (2013), that the
shape and conductivity in 2D can be determined using techniques from quasi-conformal maps
and minimally anisotropic conductivities. Lastly, it has been shown by Kolehmainen et al
(2007) that the shape and conductivity of an isotropic conductivity in 3D can be determined
up to a rigid motion. Specifically, when the metric corresponding to an isotropic conductivity
is pushed forward by a domain distortion it is conformally flat and this is equivalent to the
vanishing of the Cotton—York tensor. A reconstruction algorithm including a penalty term on
this tensor has been proposed.

Alternative reconstruction algorithms to estimate the shape and conductivity from
knowledge of the NtD map have recently been proposed in the literature. Firstly, a Bayesian
approximation error approach has been proposed by Nissenen ef al (2011) to reconstruct
the conductivity and a low rank estimate of the shape. This approach treats all sources of
modelling error such as the FE discretization and the boundary shape, but not the unknown
conductivity, as ‘nuisance’ parameters. The modelling error covariance is estimated from an
ensemble of 150 CT images of thorax shapes and this covariance is then incorporated into a
standard regularized Gauss—Newton method to reconstruct the conductivity. Secondly it has
been shown by Dardé ef al (2013) that the forward operator F (), now operating on a C!
perturbation of the boundary given by a function £, with o fixed, is also Fréchet differentiable
at the origin. That is, given & € C' (3, R3), and let D, (x) = x + h(x), x € 9%, represent a
perturbation of the boundary, then F' (h) = F(0) + Fyh+ O(]|h| |%1 (ng)) and an explicit form
for the derivative operator, Fy, is calculated. The weak formulation for the derivative falls just
short of the conventional H! Sobolev space desired for a FE method, but a dual formulation is
derived and a sampling method proposed to estimate the derivative and an iterative algorithm
outlined to estimate the shape and conductivity distribution.

The approach outlined here is to calculate the Gateaux derivative of the forward problem
with respect to the boundary shape at the electrodes, leaving the rest of the boundary fixed. This
method could equally be applied to other boundary locations, but since the largest sensitivity of
measured data to shape changes will be at the electrodes, we only calculate this at the electrode
positions. In effect we are assuming the shape has been sufficiently well approximated from
the MR image and are only accounting for small corrections from electrode movement due
to breathing. We denote the domain € C R?® with boundary €2, and the isotropic, real and
positive conductivity o : 2 — R™*. The boundary has L well separated electrodes, E; C 9€2,
[ = 1: L, attached with centre of mass positions v; € R?. We consider a prescribed electrode
current vector, I = [Iz]lel, with Y, I, = 0, with the resulting electrode potential vector,
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U= [UZ]1L=1’ and internal potential u (defined up to a constant). Let z = [zl]le1 > 0, denote the
vector of contact impedances present at the electrode-domain interfaces. A finite difference
method on the FEM formulation of the forward problem is used, and an approximate derivative
with respect to electrode movement, J™ : R3 — R™ is calculated, which can be considered
as the first partial derivative of the forward problem with respect to each coordinate of each
electrode (Soleimani et al 2006, Crabb et al 2012). To calculate this derivative we need
some modelling assumptions on the behaviour of electrode movement. Firstly, the shape of
the electrode can conceivably deform as it moves along the boundary if flexible ‘elastic’
electrodes were used. We use an identical perturbation for each node of a given electrode and
so we are assuming the electrodes move along the boundary rigidly without changing shape.
Secondly, to calculate the normal component of electrode movement in the finite difference
approximation, a small piece of conductivity has to be added under each electrode. We assume
the conductivity is constant in a neighbourhood of the electrode, and so the conductivity of
the small additional piece of tissue added is the same as under the unperturbed electrode. The
GREIT reconstruction algorithm (Adler et al 2009), engineered for 2D linear reconstructions,
includes a variation on the algorithm discussed in this section to compensate for electrode
movement. The array of 32 electrodes, and flexible current injection capability of the fEITER
system, allow us to explore the effectiveness of 2.5D reconstructions.

Denote the forward operator F,, : Rf — RL/R, mapping a given current pattern
applied to the electrodes to the measured voltages on the electrodes. The vector of measured
voltages over all current patterns can then be written as V = Z;F, I, where Z € R"™*t
is a linear measurement operator mapping the boundary voltages over all current patterns,
I € RL, to the specific measurement protocol. The forward problem is modelled through
the complete electrode model, considered the most physically accurate forward model for
EIT (Somersalo ef al 1992). We discretize the domain into N elements and V nodes and
choose a piecewise constant and piecewise linear basis to represent the conductivity and
interior potential respectively. The conventional EIT reconstruction problem is to determine
o stably from knowledge of V. It is well known that the forward problem in EIT is Fréchet
differentiable with respect to L*™ conductivity perturbations (Kaipio et al 2000). If there
are a total of m measurements over all input current stimulations, and using a piecewise
constant representation of the conductivity, the Fréchet derivative simplifies to a Jacobian
matrix J¢ : RY — R™, readily calculated via a piecewise linear FEM (see Polydorides
(2002) for details.) The forward problem can now be linearized through a Taylor series
expansion as

Vossontsy = Vou +J5 5 (80) + 17, (8v) + O([| (80, 8v) ), ey
where ||(0, v)|| := ||0||eo + ||V]]oo- The estimation of conductivity and electrode positions
x := (o, v) from the data is approached from a probabilistic viewpoint. The voltages are

assumed to be related by V = Z;F (o, v)I + n, where n € R™ represents the measurement
channel noise. We assume mean zero Gaussian noise with covariance matrix I', € R™™
and a Gaussian smoothness prior on the conductivity and electrode positions, with covariance
matrix I, , € R¥*FV3L4N and mean x, := (0,, v,). The measurement noise is also assumed
to be independent and identically distributed (i.i.d) and the conductivity and electrode
position changes are assumed to be independent from one another and separately i.i.d.
These assumptions imply that I';! = I € R™™ and Iy ! is a diagonal matrix with entries
F;’L(i, i) = a?ifi < N and F;L(i, i) = ,82 if N < i < N + 3L. Physically « and 8 can
be interpreted as the ratios of expected changes of conductivity and electrode position to the
measurement noise standard deviation.
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The maximum a posteriori (MAP) estimate of x', at the ith temporal data frame, V;, is
equivalent to

x; = arg min, {(Z,F ()] = V) T, (ZF ()1 = Vo) + (y —x) T, (y — x,)}. (2)

The minimizer of the functional is approached via a linearized Gauss—Newton method to
compute an update Xi(l) at the ith measured temporal data frame. The initial guess is chosen
here as the prior distribution, X,, and we denote V, = Z;F(x,)I and §V; = V; — V,. The
gradient, g,; € RNH3L of the functional (2), at the point X, and ith temporal data frame is

gri = 20" (x)]" 8V =: 2J] 8V 3)

The Gauss—Newton method assumes all second order partial derivatives of the forward
problem F; with respect to o and v can be neglected. This, and the assumption that the

prior covariance matrix is diagonal, allows us to write the Hessian matrix, H, € RN+3xN+3L
of the functional (2) at the point X,, as a 2 x 2 block matrix of the form
Jx)TI(x) 4+ ol JEx) I (%)
H =2 m T ¢ m T ym 2 “4)
J (X)) JUx) I (x) + B
The first update of the Gauss—Newton scheme is then
x =x, —tVH gy, 5)

where 7! is a linesearch parameter. We are only interested in the linearized difference between
two data frames V; and V ;, and so just set 7 = 1. The linearized reconstruction, & X;j, between
two data frames V; and V; is then

8xij = x" —xV = —HJI(V; = V). (6)

L

This solution was computed in EIDORS via the following procedure. Firstly the extruded
mesh was generated as described previously and a constant conductivity assigned to the model.
Simulated boundary voltages were acquired from this model using the same measurement
protocol as the experiment, and in order to get a consistent scaling between the simulated
and measured voltages, V; and V,, respectively, a best fit homogeneous reference conductivity,
o,, was computed using a formula derived by Kaipio et al (2000). The prior information
of the lungs was then included by assigning the conductivity in the lung regions as 0.30,.
Using this reference conductivity the movement Jacobian, J™, was calculated in EIDORS
3.6 along with the standard conductivity Jacobian, J¢, using the default Jacobian function®.
Image reconstructions were performed using two linear difference imaging methods. Firstly,
using the described shape derivative method and secondly, a standard EIDORS method using
a one-step linearized Gauss—Newton technique with standard Tikhonov regularization. In the
following section we discuss how optimal regularization parameters « and 8 have been chosen
using a mutual information technique.

2.4. EIT-MR image co-registration and mutual information

In this section we describe the EIT and MR image co-registration process, and the method used
to calculate the mutual information between the EIT and MR images. The image co-registration
process and mutual information calculation provides both a qualitative and quantitative
measure of EIT reconstruction performance. Although mutual information techniques have
been used in previous multimodal imaging studies (see Pluim et al (2003) for a review) such
techniques have yet to be applied in the area of lung imaging using EIT.

7" The library function jacobian_movement_perturb.m
8 The library function jacobian_adjoint.m
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The Manchester Confeitir software (McCormick et al 2007) was used to convert the
reconstructed EIT data from the irregular tetrahedral mesh into a matrix with 2 mm-cubic
isotropic voxels each representing a conductivity change and the coordinates of each voxel
were then transformed so that they were in the same space as the MRI data. The software
efficiently identifies the tetrahedron whose centroid is closest to the centre of any given voxel.
Additionally, the application of a small threshold to the EIT data aided improved clarity of
the subsequent visualizations. This typically involved discarding 5% of extreme points from
the visualization. The EIT images were transformed to the Nifti data format for subsequent
importing into 3D Slicer (Pieper er al 2004). The MRI data were imported into 3D Slicer
separately and co-registered using methods validated with bench-top phantoms by Davidson
et al (2012). This involved marking up a set of control points around the outside of the torso
on both the EIT and MRI data using the fiducial registration module of 3D Slicer, followed by
least squared minimization of the distance between the two sets of data in space.

We denote two images A and B, each with N cubic voxels, and each voxel having a positive
greyscale value. The probability distribution of A, p4(a), is defined as the number of voxels
in image A that have pixel value a, normalized by N. The joint probability distribution of A
and B, denoted py p(a, b), is then calculated as the number of times out of N that pixel in
A contains a and the same pixel in B contains b normalized by N. The Shannon entropy, in
the imaging context, is a measure of the information content of an image, measured in bifs.
The information content of a single event, that is a particular greyscale value of an image,
is proportional to the log of the inverse of the probability of an event. The total information
content of an image, or entropy, is the information content of a single event, weighted by the
probability that the event occurs, summed over all events. The total entropy of A, and the joint
entropy of A and B, are thus expressed as

==Y pal@)log(pa(a)).

Has=—Y_ > pas(a b)log(pas(a,b)), (7)

b

respectively. The mutual information of A and B, 4 g, is defined as the total entropy of A and
B minus the joint entropy, Iy g = Hs + Hp — Hy g, which equates to

pa.p(a, b)
I —E E pa.s(a, b)log —————— 3
e e pa@)pp(b)’
It can be shown that 0 < Hy < log(N), where Hy = O when the image conveys no

information i.e. it is featureless or homogeneous, and Hy = log(N) for white noise. It is
also true that 0 < Iy p < Hy, where Iy 5 = 0 when A and B have no features in common and
Iy p = Hy = Hg = Hy p when A and B are the same. Thus, the larger the mutual information
between two images, the more similarities the two images share.

To calculate the mutual information, a threshold is first applied to the MR image to
generate a binary image representing just lungs and chest, similar to the segmentation show in
figure 2(a). The intensity values of the cubic voxel based EIT image are then scaled linearly so
they lie within the same range as the binary MR image. Both images have a finite number of
voxels, and the probabilities in (7) are interpreted as histograms with 256 equispaced bins. If a
bin is empty, 0 x log(0) is interpreted as 0. The MR and EIT images are both sampled at their
voxel centres to estimate Hy, Hp and Hy g, and hence Iy p via (8). This calculation is therefore
solely measuring how well a linearized EIT reconstruction is able to find the overall shape
of the lungs. We perform the mutual information calculation over a range of regularization
parameters, («,8), for both a standard (8 = 0) and shape corrected reconstruction algorithm.

870



Physiol. Meas. 35 (2014) 863 M G Crabb et al

211 9
13-14-15-16 1905 1 _

i \ | = 23-24-25-26* 19 1 [ 78.5-10)
. T i '\ : W 5 e —gh— b _j;
E 208 I l T ' § 189 J lT\ 'Tz, ry

i 1 x5 i © s 8 e

E o 1 L E T& 1 i 4 ]‘"f ‘%T
% \ | Iril] = 1.885 % iy L T‘l
£ 206 4 \'J h I g 1 g ' ' !:E.
o 5 ] ]
= I Z a7 %FX. .Lﬂfjt 1\51

N
=
o
———

2.04 187 I u ki
2,03 - : : T 1.865 T T T T T T
0 10 20 30 40 50 60 o 1 2 3 4 5 6 7 8 9 10
Time (s) Time (s)
(a) (b)

Figure 3. Voltage measurement sites for a seated subject; (a) two diametrically opposed
sites with large breathing signal and (b) higher temporal resolution of large breathing
signal.

This effectively results in a numerical parameter study to maximize the mutual information
between MRI and EIT as a function of the parameters o and 8.

3. Results and discussion

3.1. Typical raw EIT measurements

Figure 3(a) shows typical voltage measurement data for two measurement sites, where i—j—
k-l means current injection between electrodes i and j, and voltage measurement between
electrodes k and /; site 13—14—15—16 refers to voltages at an anterior right-hand side (RHS)
location at the fourth intercostal space, whilst site 23-24-25-26 refers to a posterior left-
hand side (LHS) location at the sixth intercostal space. The effect of a brief breath-hold at
approximately + = 20 s can be clearly seen along with periodic changes consistent with the
breathing rate of the subject. Additionally, the significant differences in the phase of the voltage
changes for the two different sites suggests spatial differences of the underlying conductivity
distribution within the lungs. Figure 3(b) illustrates raw measurement data from a fourth
intercostal LHS posterior site (7-8-9-10) over a 10 s period with data points marked every
10 ms. The observations illustrate the excellent low-noise characteristics (<6 ©V rms in
recorded human lung data) of the raw human EIT data from the fEITER system at 100 fps.
(Note that, despite its visual prominence, the approximate 1.5 ©'V rms quantization noise level
evident in figure 3(b) contributes less than 10% of the total noise power.)

3.2. Comparison of standard and shape correction algorithms

Figures 4 and 5 are typical of the 3D EIT image reconstructions acquired at 100 fps using
the fEITER system. All images displayed in this paper are difference images relative to a
maximum exhalation data frame, and blue and red indicate negative and positive conductivity
changes respectively. Figures 4(a) and (b) illustrate difference images for a subject sitting
upright at maximum (max) inhalation with the standard and shape correction reconstruction
algorithms respectively. It can be clearly seen that the shape correction algorithm yields fewer
boundary artefacts and sharper contrast between the lungs and background compared with the
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() (b)

Figure 4. Reconstructions in 3D rendered in MayaVi software (Ramachandran 2001);
(a) and (b) are conductivity changes at max inhalation for a standard and shape corrected
reconstruction respectively. The front of the chest is in the background, and transverse
and coronal scalar-cut planes are shown within the 3D volume.
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Figure 5. Image reconstructions viewed down the caudal-distal axis. Left and right:
mid inhalation (r = 1.50 s) and max inhalation (¢ = 3.00 s). Top and bottom: standard
algorithm and shape correction algorithm. (a) Standard method at = 1.50s. (b) Standard
method at + = 3.00 s. (c) Shape correction at + = 1.50 s. (d) Shape correction at
t =3.00s.
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Figure 6. MRI and EIT image co-registration. Left to right columns: superior and inferior
transverse planes. Top to bottom rows: MRI image, EIT image and co-registered EIT
and MRI images at the transverse slice.

standard algorithm. These effects are also clearly visible in the 2D slices from the 3D image
reconstructions for a second data set shown in figure 5. Figures 5(a) and (b) correspond to the
standard method, @ = 1072, and the bottom figures 5(c) and (d) correspond to the perturbed
method, (a0, 8) = (1072, 4 x 1072). Compensating for movement results in largely lateral
changes in the electrode positions as well as a large reduction in boundary artefacts. This is
promising as we do not expect any physiological mechanisms to produce large conductivity
changes near the boundary.

3.3. EIT-MR image co-registration and mutual information

Figure 6 shows an image co-registration example of MRI and EIT using 3D Slicer, for the
subject in the sitting position at maximum inhalation. The left and right column are superior
and inferior transverse planes respectively. The top row is the original MR image, the middle
row the EIT reconstruction and the bottom row is the resultant image co-registration. From the
images, it can be seen that the EIT reconstruction typically underestimates the physiological
size of the actual cross-sectional areas of the lung. Inspection of the complete 3D data along
the caudal-distal axis showed this to be true for the entire scanned lung volume.
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Figure 7. MRI and EIT image co-registration. Left to right columns: sitting standard
reconstruction, sitting shape correction reconstruction, supine standard reconstruction
and supine shape correction reconstruction. Top to bottom rows: transverse slices from
superior to inferior.

Another observation to note is that the conductivity distribution exhibits a significant
twisting effect in the superior transverse slice consistent with the 2D linear image
reconstructions obtained by Bikker er al (2011) using the Driger system. This is likely to
be an artefact resulting from the inadequacies of the simple 2.5D extruded model used in the
reconstruction. These inadequacies include the lack of inclusion of the heart in the model and
possibly the model cut-off height along the caudal-distal axis being too small.

Figure 7 shows EIT and MRI co-registration examples for the subject in the seated and
supine positions for the two reconstruction algorithms. The images clearly show that the shape
correction algorithm decreases the boundary artefacts, and the EIT reconstructions again are
typically found to underestimate the total lung volume. The shape correction algorithm also has
an increased tolerance to positional changes of the subject in the supine position. Additionally,
moving towards the superior position, the reconstructed lung regions tend to decrease in
contrast to that of inferior slices, and we believe this could be due to the natural tapering of
the lungs as we move in a superior direction. Three-dimensional ‘image fusion’ video clips
created in 3D Slicer show that the shape correction algorithm provides a more physiologically
meaningful reconstruction compared with the standard algorithm for all the data along the
caudal-distal axis (see supplementary data, available at stacks.iop.org/PM/35/863/mmedia).

Figure 8 shows the mutual information with a lung-segmented MR image as a function
of the parameter «, for the shape corrected and standard reconstruction in both the sitting
and supine positions at maximum inspiration. For comparison, the maximum possible mutual
information, that is the mutual information of the lung-segmented MR image with itself,
was 1.51 bits. From figure 8 it can be seen for the subject in the sitting position, there is a
maximum of mutual information at approximately 1.11 bits for the standard reconstruction
algorithm, with ¢ = 3 x 1072, and 1.21 bits for the shape corrected reconstruction, with
(ar, B) = (1072, 4 x 1072). In the supine position, there is a maximum of mutual information
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Figure 8. Mutual information parameter study as a function of «; (a) and (b) are
for the subject in the sitting and supine position respectively with a shape corrected
(B =4 x 1072) and standard (8 = 0) reconstruction.

of approximately 1.09 bits for the standard reconstruction algorithm, with & = 3 x 1072, and
1.20 bits for the shape corrected reconstruction algorithm, with (o, 8) = (2x 1072, 4 x 1072).
This corresponds to an approximate 10% increase in the maximal mutual information with
the shape correction algorithm. It can also be seen at this particular value of B that the
shape corrected reconstruction generally has increased mutual information with the standard
reconstruction over a wide range of «. The increase in mutual information from a standard
to shape correction reconstruction is also visually evident in the images of figures 4 and 5
(which are reconstructions at («, §) corresponding to the maximum mutual information),
when compared to figure 2(a).

4. Conclusions and future work

This paper demonstrates results of 3D EIT dynamic lung imaging at Manchester using an
array of 32 electrodes with the fEITER system. The implemented shape correction algorithm
explicitly accounts for small changes in the boundary shape which occur when the subject
breathes. This novel algorithm yields a reduction of boundary artefacts and improved contrast
of the lungs when compared to a standard reconstruction algorithm without shape correction.
The co-registration process and the use of a mutual information performance criterion
presented here provides an effective and practical method of directly comparing the spatial
fidelity of EIT images with those obtained from MRI. The shape correction algorithm increased
the maximum mutual information with a lung-segmented MR image by approximately 10%
for both a subject in the sitting and supine positions and we believe this is the first time
mutual information has been used to assess the quality of lung EIT reconstructions. Our
findings suggest that shape correction would be a valuable enhancement to the reconstruction
algorithms used in existing commercial EIT instruments applied to lung imaging, such as the
PulmoVista® 500 system, developed by Driiger (Teschner and Imhoff).

Previous multiple electrode plane studies, such as those by Nebuya ez al (2006) and Bikker
etal (2011), have typically only used successive EIT data collection at different electrode planes
of the chest, resulting in 2D reconstructions of each plane, at low frame rates. One notable
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exception to this trend is the tomography systems of the Rensselaer group (Cook et al 1994,
Saulnier et al 2007) which have previously provided 3D lung and pulmonary images, albeit
using only generic reconstruction models. Although the MRI-informed 3D reconstruction and
high frame rate of our present study address these issues, the use of non-simultaneous data
acquisition across the imaging modalities remains a shortcoming as it requires the subject
to achieve repeatable breathing and posture for the separate data captures. For better model
generation and validation of EIT using MRI, it is thus most attractive to perform simultaneous
data acquisition. If EIT were to be routinely used as a bedside monitoring tool, optical tracking
techniques could plausibly be used to inform electrode positions and an approximate boundary
shape such as those by Forsyth e al (2011) in breast imaging. However, the strength of using
MRI to inform the shape is that we can also assess the spatial resolution of EIT after post
processing using, for example, mutual information as presented here. Additionally, we note
that many patients with serious lung injuries in intensive care units have had MR and/or CT
scans during their course of treatment, and so if this information is available it is logical to use
this as prior information of the external shapes for the EIT forward and reconstruction finite
element models as we have described here.

The present methodology could benefit significantly from improvements in the generation
of the thorax model. Firstly, it was found that the resulting image reconstructions were sensitive
to the somewhat arbitrary caudal and distal cut-off heights chosen for the model. If the model
cut-off height chosen is too small, a non-physical zero current flux boundary condition is set
at the caudal and distal ends of the model and the simulated voltages have logarithmic decays
associated with a 2D model. We believe this is a major contribution to the twisting effects
seen in some image reconstructions, as noted in section 3.3. Choosing a larger cut-off height
resulted in little qualitative change in the reconstruction in the electrode planes, and unrealistic
conductivity changes far away from the electrode planes. A possible way to compensate for
this is to use infinite elements to model the voltage decay at the caudal and distal ends of the
model such as by Vauhkonen et al (2000). Secondly, the image reconstructions presented here
are 2.5D, in the sense that the model cross section did not vary along the caudal-distal axis.
This could be addressed by generating fully 3D models incorporating the electrodes, from
either commercial meshing packages such as Simpleware (2013) or open source projects such
as iso2mesh (Fang and Boas 2009). Although demonstrated here for the MRI case, the use of
imaging-informed EIT modelling and subsequent co-registration are directly transferable to
other high resolution tomographic modalities, most notably CT.

The problems of model dimension and shape described here need to be resolved adequately
before repeatable absolute imaging becomes a realistic possibility in thoracic EIT. With the
introduction of fully 3D thorax models, we can envisage incorporating more spatial prior
information of human tissue and anatomy, such as the liver, heart, ribs and spine into patient-
specific thorax reconstruction models, as well as their in vivo conductivity values (Faes et al
1999). This would be a further development of the finite difference models developed by Zhang
etal (2005). However, these high resolution modelling approaches have not yet had a significant
impact in clinical lung EIT. Fully 3D thorax models with anatomy such as the heart included
would not only improve the forward problem in lung EIT, but also be important to further
improve the image co-registration and mutual information techniques outlined in this work. An
assessment of the best prior smoothness constraints on the conductivity, and the voltage data,
to offset the ill-posedness of EIT reconstruction, is another topic of paramount importance
for absolute lung imaging. The use of classical Tikhonov regularization presented here, which
in the Bayesian viewpoint assumes conductivity changes for all pixels are independent and
identically distributed, is somewhat unrealistic and we feel this could be significantly improved
by using generalized Tikhonov regularization and non-smooth penalization norms.
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