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Abstract

We measure the importance (centrality) of boards of directors using
the PageRank algorithm from computational graph theory. PageRank is
at the heart of the immensely successful Google web search engine and, we
argue, can be naturally extended to social network settings. In this view,
a board can be represented as part of an affiliation network or, in graph
theoretic-terms, an undirected bipartite graph. But PageRank operates
on directed graphs, so we develop a procedure to pass from an undirected
bipartite graph to appropriately weighted, directed projections. Finally,
we present the rankings of publicly traded US and UK firms using this
method.

1 Introduction

Network researchers have long been interested in the structural properties of
complex systems. A particularly salient stream of analysis has focused on the
properties of vertices within networks.1 A large number of so-called centrality
measures have arisen which gauge the structural importance of a vertex rel-
ative to other vertices within a complex web of associations. Such centrality
measures have been very useful in the field of social networks for understanding
the roles played by different actors (Wasserman & Faust (1994)). In this paper
we describe an alternative measure of centrality. It is the PageRank algorithm
from computational graph theory originally described in Brin & Page (1998)
and Brin, Page, Motwani & Winograd (1999). Our PageRank-based centrality
measure has, as we will explain later in this paper, an interpretation in terms

∗Acknowledgments: E-mail conyon@wharton.upenn.edu or M.Muldoon@umist.ac.uk
with comments. We are indebted to Peter Cappelli, Lerong He, Simon Peck, Mike Useem
and seminar particiapants at the Wharton School for comments and suggestions. We would
like to thank the Leadeship Center of the Wharton School for financial support.

1In the Social Network literature a vertex is often referred to as an actor.

1



of a random walk—a random exploration of the social network. As such it is an
addition to the circle of random-walk centrality measures recently proposed by
Newman (2003a).

PageRank was designed for, and is at the heart of, the immensely popular
Google search engine. The PageRank algorithm, as originally conceived, is a
system designed to rank the overall importance of each page on the web—thus
providing an index to order responses to a user’s web search. The rank that
Google uses can, in addition to its interpretation in terms of random walks,
be interpreted as a measure of a web page’s authority, overall importance, or
influence: Higham & Taylor (2003) give a very clear exposition of both these
interpretations, as well as an excellent introduction to the PageRank algorithm
itself. Although the algorithm was originally designed to determine the im-
portance of web pages, it can be naturally extended to other network settings,
including social networks. In this paper our interest is in the social network of
corporate governance.

The extension of PageRank to social networks, such as boards of directors,
seems a fruitful avenue to pursue. A recurrent theme within the management
and organization science literature has been to understand the power and in-
fluence of boards and directors as determined “structurally”, that is, as it is
determined by their positions as actors within a social network (for example
see the review byPettigrew (1992)). The PageRank centrality measure seems to
offer a fresh insight on this topic.

Previous research on power and influence in top management teams has
focused on the interlocking directorship. (Mizruchi & Bunting (1981); Useem
& Karabel (1986); Useem (1984); Pennings (1980)). A board interlock occurs
when the boards of two separate organizations share a common director. The
shared director, then, creates a link between the two boards. This link provides
the channel by which organizations may potentially influence each other. Of
course, many interesting issues arise when a link between two boards is created.
For instance, how does one measure the directional flow of influence between
two organizations? Also, how does one represent the fact that one organization
might exert more influence than another? There is now a considerable literature
that examines the formation of interlocks and evaluates their consequences. For
instance, see the analysis and review by Mizruchi (1982) and Mizruchi (1996).
To cite just a few research areas of interest: Hallock (1997) demonstrates that
CEO pay is higher in interlocked firms after controlling for other economic de-
terminants. Haunschild (1993) and Haunschild & Beckman (1998) shows that
interlocks are important determinants of corporate acquisition activity. Davis
& Greve (1997) show that interlocks are important in facilitating corporate gov-
ernance changes. Overall, the extant literature points to the fact that corporate
connectivity (interlocks) appear to matter significantly for corporate outcomes.
One can easily recast the idea of a board “interlock” in terms of social network
(or graph) theory2 and interpret it as a centrality measure. We describe how in

2The central themes in social network analysis are comprehensively reviewed by Wasserman
& Faust (1994). The theory of random graphs is given in Bollobás (2001). The application of
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Section 2.
In this paper we propose measuring the importance (centrality) of the board

of directors using a variety of related measures computed with the PageRank
algorithm. The rank assigned to a board derives from two sorts of data: the
first is a numeric measure intrinsic to the board and which one may choose to
be the same for all boards, or, alternatively, which may be calibrated to reflect
differences in firm attributes (such as market value, performance etc.). The
second contribution is essentially a poll of the board’s “neighbors” (those firms
with which it is interlocked), weighted according to both the rank (i.e. esteem
or influence) in which the neighboring board is held, as well as the relative
“strength” of the connection between the boards. In essence, contributions from
boards that are themselves held in high esteem count more towards one’s own
rank. A board’s rank is defined recursively and, as we will show in Section 3,
it can interpreted as a steady state consensus about which boards are deemed
important.

As we mentioned above, PageRank is designed to operate on directed graphs
(these and other graph-theoretic terms are defined carefully in Section 2), while
the usual representation of the social network of corporate governance—as
an affiliation network or bipartite graph—captures only symmetric, or non-
directional relationships and so gives rise to undirected graphs. Accordingly, one
of the challenges in the development of a measure one might term “BoardRank”
is to find a way to incorporate extra information into the construction of the
social network in such a way as to yield directed graphs. In Section 4 we propose
such a method and, in Section 5, apply it to data on the corporate governance
of firms in the United States and in the United Kingdom. Our procedure is not,
however, limited to such data and should be useful to social network researchers
who wish to develop PageRank-like centrality measures for arbitrary affiliation
networks.

The data used in Section 5 are, for the US, a snap shot of the board mem-
berships of approximately 1,700 publicly traded firms in 2003. The data for the
UK, collected in 2002, are a snap shot of approximately 2,200 publicly traded
firms. We document which firms receive the highest rank using the PageR-
ank procedure. We also present a simple statistical model illustrating which
firm-level factors (such as size, company performance etc.) help determine the
PageRank of a firm.

The rest of this paper is organized as follows. In Section 2 we introduce
some notions from the mathematical theory of graphs as applied to social net-
works and boards of directors. Then, in Section 3, we discuss the PageRank
algorithm and touch on its application to social networks. In section 4 we de-
scribe a method to pass from unweighted bipartite graphs to weighted, directed
projections. In section 5 we apply PageRank to board data from the United
States & the United Kingdom and, finally, in section 6 we offer some concluding
remarks.

graph theory to social networks, such as boards of directors, is comprehensively reviewed by
(Newman 2003b).

3



2 Corporate Boards and Social Networks

In this section we define terms and briefly review some important features of
graph theory as applied to social networks. A much more extensive discussion
of graphs and their representation, manipulation and application to the social
sciences appears in Wasserman & Faust (1994). Newman (2003b) gives an ex-
cellent review of recent developments in the field of complex systems. Newman,
Watts & Strogatz (2002) discuss specifically the application of random graphs
to social networks.

2.1 Basic terminology

A network (or graph) is a set of items termed vertices (or nodes) with con-
nections between them called edges. In discussions about graphs representing
social networks the nodes are sometimes also called actors. We will restrict
our attention to networks derived from the world of corporate directorship and
adopt the following conventions: our nodes will be of two types, either boards
or the directors who sit on them. Edges will represent, among other things,
membership of a board (in one sort of graph) or an interlock between boards
(in another, related sort of graph).

The latter relationship, an interlock due to a shared director, is clearly a
symmetric one: if board A is interlocked with board B, then B is automatically
interlocked with A as well. This sort of reciprocal connection will be represented
by an undirected edge. But we will also need the notion of a directed edge,
which will represent a unidirectional connection. A typical example of such a
relationship is “has influence on”: one can easily imagine a setting in which
firm A has influence on firm B—perhaps because A is a major shareholder in
B—but this connection is not symmetric: there is no reason to imagine that B
has influence on A. Both directed and undirected edges can also carry weights.
In social networks these weights are usually a measure of the relative strength
of the connection the edge represents and so a weight of zero is often taken to
mean that the edge does not exist—that the corresponding connection is absent.
We will use weights of this kind in PageRank algorithm (see Section 3), but we
will also want consider another sort of weight—something one might term a
“Boolean weight”—whose value is somewhat akin to that of a dummy variable
in statistical modelling. These weights, whose role is discussed in Section 3.1,
assume the values zero and one, but a Boolean weight of zero does not indicate
the absence of the corresponding edge.

Finally, a graph whose every edge is directed is called a directed graph. If, in
addition, all the edges have weights the graph is said to be a weighted, directed
graph. Alternatively, a graph (such as the one pictured in Figure 1) in which
all the edges are undirected and none of them have weights is an unweighted,
undirected graph or, for short, an undirected graph.

4
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Figure 1: A undirected, unweighted bipartite graph representing the boards of
directors of Adobe Systems (ADBE) and Synopsis (SNPS), both software houses,
and that of the Knight Ridder (KRI) chain of newspapers.

2.1.1 Notation for edges and weights

Throughout this paper we will write ej,k to refer to a directed edge that connects
vertex k (at the tail) to vertex j (at the tip). When there is a weight associated
with the edge we will call it wj,k. We will use similar notations, Ej,k and Wj,k,
for undirected edges. Of course, in this latter case E1,2 is the same as E2,1 and
so W1,2 = W2,1.

2.1.2 Paths, length and connectedness

A directed graph is said to contain a path between vertices a and b if it contains
is a sequence of edges ea,k1

, ek1,k2
, . . . , ekl,b. That is, there is a path from a to

b if one can get from one to the other by moving along the directed edges of
the graph. A similar definition applies to undirected graphs. In either case, the
length of the path is the total number of edges involved.

In an undirected graph two vertices are connected if there is a path between
them and the connected component associated with a vertex is that part of the
graph consisting of the vertex itself and all those others that can be reached by
paths running along the edges of the graph. In a directed graph the notions
of connectivity are slightly more complicated: node a is said to be reachable
from node b if there is a path from b to a. But a has two, possibly distinct,
connected components: those nodes reachable from a and those from which a
can be reached.

2.1.3 Degree

The concept of degree will prove important. At it’s simplest, in an undirected
graph, a node’s degree is the just number of edges connected to it.3 By contrast,
a node j appearing in a directed graph has both an in degree (the number of

3The notion of board “interlocks”, discussed in Section 1, is simply the degree of the vertex.
It is akin to the “degree centrality” measure introduced by Freeman (1978).
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Figure 2: The undirected graphs showing board interlocks (left) and the network
of co-directorship as derived from the affiliation network illustrated in Figure 1.

directed edges having j at their tips) and an out degree (the number of edges
with j at their tails). These notions are generalized further, to accommodate
weighted edges, in section 3 below.

2.2 Graphs of boards and directors

Data about boards of directors present an immediate problem: how should one
draw a graph to represent it? The issue is that one could treat the board as
the basic unit of analysis and form a graph whose vertices represent boards and
whose edges represent interlocks (that is, shared directors). But alternatively,
one could focus on the director and make a (generally much larger) graph whose
vertices represent directors and whose edges represent shared board member-
ships. There is no obvious way to choose between these two representations and
many authors simply analyze both. In Section 5 we will focus on the board-
and-interlock graph, though our methods are equally applicable to the graph in
which directors are vertices.

But the ambiguity about representation of the corporate world arises from
the structure of the data: there really are two sorts of social entities here,
the directors and the boards, and the network’s edges represent membership of
the former in the latter. The most natural representation of such a network,
sometimes called an affiliation network, is a graph with two sorts of vertices—
one each for boards and directors—that has edges connecting directors with the
boards on which they sit. The result is an example of a bipartite graph: one
whose vertices can be divided into two distinct sets and whose edges only make
connections between the two sets. Figures 1 and 3 are examples. The board and
director graphs mentioned above now appear as “projections” of the bipartite
graph onto one of its two sets of vertices.

Figures 1 and 2 illustrate these issues for that part of social network of

6



corporate governance connected to the board of Adobe Systems Inc., a software
house. The former, Figure 1, shows the full bipartite graph, while Figure 2
shows the two projections. The graph appearing at the left of Figure 2 has the
boards as its nodes and edges connecting interlocked boards while the graph at
right has directors for nodes and includes an edge between two directors if they
sit on the same board. Note that both of the projections are undirected graphs.
But PageRank is, as we will see below, designed to operate on directed graphs.
One of the main technical obstacles in adapting PageRank to the ranking of,
for example, the boards, is to find a way to incorporate extra information into
a bipartite graph such as the one in Figure 1 in such a way as to permit the
construction a board projection that is a directed graph. This issue is touched
on in the following section, then treated in detail in Section 4.

3 PageRank for Boards of Directors

The PageRank algorithm (Brin & Page (1998) and Brin et al. (1999)) assigns a
numerical rank to each vertex in a directed graph. These ranks were originally
intended as an aid to searching the World Wide Web and so have a natural
interpretation in a graph whose vertices represent web pages and whose (direc-
ted) edges represent hyperlinks. PageRank then provides an assessment of the
importance (or authority) of a Web page (node) that is largely independent of
the page’s content.

Here we describe a scheme that generalizes PageRank to the ranking of
boards in the social network of corporate governance. The problem splits nat-
urally into two pieces: deriving weighted, directed projections from the un-
weighted, undirected, bipartite graph that represents the affiliation network of
boards of directors and (ii) computing PageRanks for the two projections.

3.1 Adding weights to a bipartite graph

The top panel of Figure 1 shows a small part of the world of the corporate
governance in the US. The edges connecting boards to their directors in this
graph are all the same: they are unweighted or, equivalently, all have the equal
weight. More generally, one could assign a (non-negative) weight to each such
edge. One might, for example, assign a Boolean weight of zero4 to every edge
that connects a non-executive director to the board on which he or she serves and
a weight of one to those edges that represent the connections between executive
directors and their boards. One can represent this graphically with something
like Figure 3: in Section 4 below we will introduce a scheme that processes
these weights (or any others one might choose to assign) and produces a pair of
weighted, directed projections.

4As mentioned above, this is a somewhat non-standard use of the term “weight”. In normal
graph-theoretic usage an edge with zero weight is simply absent from in the graph, but here
we wish to suppress the usual connection between an edge’s weight and its existence. In the
bipartite graph it will be possible for edges to exist, but have zero weight.
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Figure 3: Another representation of the bipartite graph in Figure 1, but now
with edges weighted according to whether the director is an executive (weight is
1.0, plotted with a heavy blue edge) or a non-executive (weight is 1.0, plotted
with a lighter dashed edge).

3.2 PageRank

Here we offer a brief account of the calculations involved in generating PageR-
anks. For a longer discussion one might begin with the very clear and entertain-
ing introduction by Higham and Taylor (Higham & Taylor 2003), then proceed
to the original references, Brin et al. (1999) and Brin & Page (1998). A more
general analysis of link-based algorithms, including PageRank, appears in Wang
(2004).5

Suppose that one has a weighted, directed graph with N vertices and an
adjacency matrix W whose entries are conventional, positive weights wj,k ≥ 0
satisfying

wj,k > 0 if a (directed) edge connects vertex k (tail) to vertex j (tip);

wj,k = 0 if there is no edge between j and k.

Then define ok, the weighted out-degree of vertex k, to be

ok =

N
∑

j=1

wj,k. (1)

That is, ok is the sum of the weights of all the edges that reach from k to some
other vertex.

The PageRank algorithm uses these quantities, as well as an adjustable
parameter 0 ≤ d < 1, to define a converging sequence of ranks rn

j . Here the
subscript j ranges over the vertices in the graph (that is 1 ≤ j ≤ N) while the
superscript n starts from zero and counts the number of times one has applied

5Other recent papers examining link-based algorithms and social networks include Ding,
Zha, He, Husbands & Simon (2004) and Diligenti, Gori & Maggini (2004)
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the PageRank update rule:

rn+1
j = (1 − d)sj + d

N
∑

k=1

(

wj,k

ok

)

rn
k (2)

The quantities sj are, for reasons that will become clear shortly, sometimes
called source strengths : they should be positive and satisfy

N =
N

∑

j=1

sj . (3)

The sum over k appearing in (2) is best thought of as a sum over (incoming)
neighbors or, in graph-theoretic terms, predecessors, for only those edges that
start at some vertex k and end at j will contribute to the PageRank of the j-th
vertex (that is, only these edges will have weights wj,k 6= 0).

Although the iterative rule (2) tells us how to generate rn+1

j given rn
j , it

cannot tell us how to start the process. By convention one chooses r0
j = 1 ∀j.

That is, all the vertices start out with equal rank, then successive applications
of (2) generate successive generations of ranks. It is not too hard to show that,
provided d < 1, this iterative procedure will converge. That is, eventually it
will be true that rn+1

j ≈ rn
j . Indeed, something much stronger is true: given

any small number δ << 1, one can always choose an n⋆ sufficiently large that

max
j

||rn⋆+t
j − rn⋆

j || ≤ δ ∀t > 0.

In words, after n⋆ iterations all subsequent generations of ranks will be within
δ of the rn⋆

j . In practice, we choose some small tolerance δ and repeats (2) until

the first n for which maxj ||r
n+1
j − rn

j || ≤ δ.

3.2.1 Interpretation as a random walk

The intuitive idea behind PageRank is clearest in the algorithm’s original con-
text, the World Wide Web. Imagine a deeply indecisive individual who browses
the web at random. He reads a web page, then chooses a new page at random
by clicking, with equal probability, on any of the links on the page he has just
finished (ignore, for the moment, the possibility that his page has no hyper-
links). If such a reader persisted in his efforts he would eventually visit a very
large proportion of the web’s pages, most of them many times over (also ignore
the fact that pages are continually being added to the web or removed from it).
If he kept a list of all the pages he ever visited and also kept track of how often
he visited each one then, eventually, the ratio

Number of visits to page j

Total number of pages visited
(4)

would tend to a constant, converging in a manner reminiscent of the PageRanks.
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Indeed, the ratio (4) would converge precisely to rj/N where N is the number
of pages in the web and is the PageRank rj produced by applying (2) with d = 1.
The parameter d is, in this view, a probability: it is the probability that our
random reader, having finished his page, decides to proceed as described above.
As an alternative, if d < 1, we could permit our reader to jump, with probability
(1 − d), to an arbitrary new page anywhere in the web, choosing the j-th page
with probability (sj/N). Here, N is the number of pages in the web and sj is the
source strength of the j-th page. If he pursues this mixed strategy—sometimes
choosing a random link from the current page, sometimes jumping arbitrarily—
then the ratio (4) will tend to rj/N where rj is the PageRank produced by
repeated application of (2).

It is not hard to recast this view of PageRank to make it appear relevant
to social networks. Suppose that instead of a random browser wandering idly
through the web, we consider an item of news, information or gossip being
relayed randomly along the connections of a social network. Each actor in
the network, upon hearing the news, either passes it (with probability d) to
a randomly chosen associate or (with probability (1 − d)), relays the news to
some arbitrary third party (perhaps by posting a notice in some public place or
writing a newspaper article). Although this is a drastically abstracted account
of the propagation of information, it’s not wholly implausible to imagine that
it could capture some aspects of the diffusion of ideas as viewed in the large.

3.2.2 Interpretation as a weighted voting scheme

PageRank admits another interpretation suggestive of applications to social net-
works. If we consider a page’s (or a board’s) rank to be a measure of the esteem
in which it is held, then the terms in the update rule (2) have natural inter-
pretations. The source term (1 − d)sj represents a sort of natural, or intrinsic
component of esteem: one may, democratically, set sj = 1 for all boards or, if
it seems more appropriate, assign some boards—perhaps those of particularly
virtuous, innovative or profitable firms—a higher intrinsic esteem. The second
term, the one involving the sum over k, is essentially a poll of the j-th node’s
neighbors, weighted according to both rn

k , the esteem in which the neighboring
k-th vertex is held, and the relative strength of the edge connecting vertex k
to vertex j (this is the factor wj,k/ok, which compares the weight of the edge
connecting k to j with the total strength of k’s outgoing edges). That is, praise
from the praiseworthy—contributions from nodes that are themselves highly
esteemed—counts more.

In this view the iteration of the PageRank update corresponds to the gradual
formation of a consensus about which nodes are most important. At the outset
every node has the same rank, 1. Successive rounds of (2) redistribute esteem,
treating a weighted, directed edge from k to j as a weighted vote of confidence
by node k in favor of node j. Thus it is clear that the weights assigned to
the edges have considerable influence on the final distribution of rank: in the
next section we will describe a method for generating weights on the edges of
the two projected networks from Boolean weights—the sort of Boolean weights

10
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Figure 4: A weighted, undirected bipartite graph in which directors 1–4 serve on
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Figure 5: Directed board (left) and director (right) projections derived from the
bipartite graph of Figure 4. Although all the edges in the directed graph at right
have associated weights, only a few are labelled explicitly.

discussed in Section 3.1—on the edges of the bipartite graph.

4 Making weighted, directed projections

Consider Figure 4, which shows a small, weighted, undirected bipartite graph.
Ignoring for the moment the question of how one assigns weights to the edges,
this figure is an example of the sort of data from which one might hope to derive
PageRank-like measures for the boards, directors, or both. In this section we
develop a method to pass from graphs like that pictured in Figure 4 to the sort
of weighted, directed projections appearing in Figure 5.

4.1 Two preliminary attempts and a formula

Here we build up gradually, by way of two intermediates, to our preferred for-
mula for the weights of edges in the bipartite graph. The main observation is
that edges in the projection arise from two-edge paths in the bipartite graph.
So, for example, a pair of boards A and B are connected in the board projec-
tion if they share a director. But this is the same as saying that the bipartite
graph contains a pair of undirected edges, say, EA,k and Ek,B , where the shared
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director has index k. It is natural to choose the weights for the two directed
edges in the projection to be a linear combination of the weights in the bipartite
graph

wA,B = βWB,k + (1 − β)Wk,A

wB,A = βWA,k + (1 − β)Wk,B (5)

where we have introduced a new parameter 0 ≤ β ≤ 1 that controls the relative
contribution of the two weights from the bipartite graph. This is our first
preliminary attempt. Notice that the two lines above are really the same formula
with the roles of A and B interchanged, so one need only state one of them.
Note also that the sum of the weights is conserved. That is

wA,B + wB,A = [βWB,k + (1 − β)Wk,A] + [βWA,k + (1 − β)Wk,B ]

= [βWA,k + (1 − β)Wk,A] + [βWB,k + (1 − β)Wk,B ]

= [β + (1 − β)] WA,k + [β + (1 − β)] WB,k

= WA,k + WB,k

where, in passing from the second line to the third, we have used the fact that,
as the bipartite graph is undirected, WA,k = Wk,A and WB,k = Wk,B .

Of course, as Figure 4 shows, two boards may share more than one director
so one might generalize (5) to

wA,B =
∑

k shared

βWB,k + (1 − β)Wk,A (6)

where the sum runs over all shared directors: this is our second preliminary
attempt. It retains the property that the sum wA,B + wB,A is the same as the
sum of all the weights on the edges that contribute to the formation of eA,B and
eB,A in the projection.

Our second formulation, (6), is reasonably satisfactory, but in practice we
prefer to make a slight modification:

wA,B =
∑

k shared

βWB,k + (1 − β)Wk,A

(WB,k + Wk,A)/2
(7)

That is, we scale the contribution from each pair (in the bipartite graph) by the
average of its weights. This scaling means that each shared director causes the
sum wA,B + wB,A to increase by 2.

This choice of scaling arises naturally in the analysis of Boolean-weighted
bipartite graphs such as the one pictured in Figure 3. The aim of the rescaling
is to permit a distinction between edges that don’t exist in the bipartite graph
(and so don’t give rise to connections in the projections) and those that do
exist (and so should contribute to connections in the projection), but have zero
weight. Such graphs are discussed at greater length below, but we conclude this
section with Table 1, which gives sets of weights for the edges in the projections
pictured in Figure 5.

12



Director Projection Board Projection

Weight Using (6) Using (7) Weight Using (6) Using (7)
w2,1 0.85 1.4167 wA,B 1.375 1.8762
w3,1 0.175 1.1667 wB,A 1.525 2.1238
w1,2 0.35 0.5833
w3,2 1.425 1.9038
w4,2 0.625 1.1364
w1,3 0.125 0.8333
w2,3 0.1475 2.0962
w4,3 0.825 0.8684
w2,4 0.475 0.8636
w3,4 1.075 1.1316

Table 1: Weights derived by applying (6) or (7) to the weighted bipartite graph
shown in Figure 4. In both cases we used β = 0.25.

4.2 Boolean weights: insiders and outsiders

Our original interest was to analyze weighted bipartite graphs such as the one
illustrated in Figure 3. As we mentioned above, the weights here are somewhat
unusual in that a weight of zero does not imply that the edge is absent. Rather,
we imagine that the weights are Boolean variables: they reflect the answer to
some “Yes”-“No” question such as “Is the director an executive director of the
board to which she is connected?” One might refer to such graphs as Boolean
weighted bipartite graphs.

Figure 6 shows three of the simplest possible such graphs: each contains
two boards tied together by a single shared director. To illustrate the role of
the parameter β let us compute the weights in the board projection using our
preferred rule (7). The leftmost graph presents an immediate difficulty since:

wA,B =
∑

k shared

βWB,k + (1 − β)Wk,A

(WB,k + Wk,A)/2

=
βWB,1 + (1 − β)W1,A

(WB,1 + W1,A)/2

=
β × 0 + (1 − β) × 0

(0 + 0)/2

= 0/0.

One way out of this problem is to adhere to the principle that each shared
director should contribute 2 to the sum wA,B + wB,A: combining this with
the observation that, in this problematic case, WA,1 = WB,1 we’ll adopt the
convention that wA,B = wB,A = 1. This has a natural generalization to the
case where the two boards share several directors.

The remaining cases are easier—the formula (7) yields a sensible result
without any further contemplation—and the results are summarized in Table 2.
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Figure 6: Three small bipartite graphs with various sets of Boolean edge weights.
The weights are shown numerically and, additionally, the graphs are colored with
the conventions from Figure 3.

Bipartite Graph Board Projection
WA,1 WB,1 wA,B wB,A

0 0 1 1
0 1 2β 2(1 − β)
1 1 1 1

Table 2: Weights derived by applying (7) to the three weighted bipartite graphs
shown in Figure 6.

These results make qualitative sense in that if WA,1 = WB,1, then wA,B =
wB,A = 1. The more interesting case is when the director is an insider on only
one of the two boards.

Suppose, for example, that the director is an outsider on board A, but an
insider on board B. In this case the directed edges in the board projection receive
different weights that depend on the parameter β. If β ≈ 0 then wA,B ≈ 0 and
wB,A ≈ 2, so the edge pointing from A to B is much more heavily weighted than
the one running from B to A. In this case one might like to think of the heavier
edge as indicating that board A is showing “esteem” for board B by recruiting
one of B’s executives. Alternatively, one might think of the heavily-weighted
edge as indicating “influence”: board A has a strong possibility of influencing
board on B because one of A’s directors is involved in the day-to-day running
of B. When β = 0.5 both edges receive the same weight: wA,B = wB,A = 1 and,
finally, when β ≈ 1, then wA,B ≈ 2 and wB,A ≈ 0 and the imputations about
esteem and influence run in the opposite direction. The relationships between
β and the weights on the directed edges are summarized in Figure 7.

5 Ranking boards of directors

5.1 The data

To implement the PageRank algorithm for the social networks of boards of
directors we use two distinct data sets. One is from the United States, kindly
supplied by the Corporate Library and the other is data set is from the United
Kingdom supplied by Hemmington Scott publishing. Both data sets contain an
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Figure 7: At left, a shared director is an insider on board B, but an outsider on
board A. The three projections at right show how the parameter β influences the
weights of the directed edges arising from this interlock.

expansive list of companies and the directors who serve on their boards.
The data for the United States are a snapshot (i.e. a cross section) of pub-

licly traded US firms at February 2003. The data consist of 12,765 directors
sitting on 1,731 boards. We report results for the largest connected component,
which consists of 10,432 directors sitting on 1,452 boards. The United King-
dom (British) data are a snapshot of publicly traded UK firms at March 2002.
These data describe 11,541 directors sitting on 2,236 boards. Once again we
report results for the largest connected component, which here consists of 8,850
directors sitting on 1,732 boards.

5.2 Board ranks

The importance of each board (firm) is calculated using the PageRank update
rule in Equation 2. We consider a Boolean weighted bipartite graph discussed in
Section 3 where “yes” was the answer to “Is the director an executive director
of the board to which she is connected?” We used a number proportional to
the firm j’s market capitalization as the source strength, sj , in Equation (2).
Of course, PageRanks for boards can be calculated for various values of the
adjustable parameter, d: we set d = 0.7. 6 We then choose values of 0 < β < 1,
the relative contribution of the weights in the bipartite graph. Specifically, we
examined β = 0.5, β = 0.1 and β = 0.9. In Tables 3 and 4 we report the
35 highest ranked board (firms) in the United States and the United Kingdom
(where d = 0.7 and β = 0.5).

In Table 3 General Electric, Microsoft, Exxon Mobil, Pfizer and Wal-Mart

6The choice of d = 0.7 may seem arbitrary but choosing d = 0.85, a value typically
mentioned in discussions of PageRank, does not qualitatively affect the rankings reported here.
For example, in the US data the correlation coefficient between the board ranks calculated
separately for d = 0.7 and d = 0.85, and using β = 0.5, is 0.97.
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turn out to be the 5 highest ranked boards in the United States while, in Table 4,
BP, GlaxoSmithKline, Vodafone Group, Lloyds TSB Group, and HSBC Hold-
ings turn out to be the 5 top ranked boards in the United Kingdom. Our web
sites (see Muldoon & Conyon (2004)) contain the complete list of board ranks for
the firms in the largest connected component of our US and UK data sets. How
are we to evaluate these results? The PageRank algorithm, applied to the board
projection from a bipartite graph, gives the consensus (steady-state) solution as
to which boards attract something that, in the informal motivation above, we
termed “esteem”. Of course, our choices of d, β and the source strengths are
illustrative. We would encourage further investigation based on alternative d
and β combinations and the selection of different sources strengths (e.g. profits
or employees).

But the “esteem” we measure is in a certain narrow sense a structural fea-
ture of the corporate world: it depends simply on the list of companies, the
membership of their boards and their market capitalizations. In this sense our
measure of esteem contrasts to other measures which rely upon the judgments
of people to say whether a board is highly regarded or not, or whether the board
itself promotes itself as an ideal board. Because our centrality measure does not
rely on self- or other-assessment, but computes a rank based mainly on board
interlocks, it is in this respect harder to manipulate and less dependent on ar-
bitrary judgments. This is a property inherited from Page and Brin’s original
PageRank, which is, by design, link-based rather than content-based.

Our rankings agree well with those reported in Fortune magazine’s annual
list of America’s “Most Admired Companies”. Each year Fortune asks a panel
of executives, directors and security analysts to rank a firm according to eight
criteria: innovation, employee talent, use of corporate assets, social responsib-
ility, quality of management, financial soundness, long-term investment value,
and quality of products and services. For the “top ten” survey, respondents are
asked to select the ten companies they admire most in any industry. They chose
from a list of corporations that ranked in the top 25% overall last year, plus
any that finished in the top 20% of their category. Six of the Fortune top 10
firms appear in the list in Table 3. These are Wal-Mart, General Electric, Dell
Inc., Microsoft Corp., Johnson and Johnson and IBM. Also, Fortune produces
a global “World Most Admired Companies”: all of the British companies that
appear in the 2004 Fortune global top 50 also appear in Table 4.

Our rankings can also be compared to the “Governance Index” introduced
by Gompers, Ishii & Metrick (2003). Using data from the Investor Responsibil-
ity Research Center, they identify 24 distinct corporate governance provisions.
These include poison pills, director indemnification, golden parachutes, classi-
fied / staggered boards, anti-greenmail etc. For each firm they add one point
to the index for every provision that restricts shareholder rights, or equivalently
increases managerial power. This (inverse) measure of governance quality po-
tentially ranges from zero to twenty-four for each firm. They identify IBM, Wal-
Mart, PepsiCo, American International Group as firms with a low “G-Index”.
Again, these appear in Table 3.
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Table 3: America’s highest ranked boards. The Rank is based on the implement-
ation of the PageRank algorithm described in the text where d = 0.7, source
strengths are market capitalization and the β values are as indicated in the table

Rank Rank Rank
Company β = 0.5 β = 0.1 β = 0.9

General Electric Company 15.60 14.97 16.16
Microsoft Corporation 15.46 15.08 15.56
Exxon Mobil Corporation 14.50 14.77 13.99
Pfizer, Incorporated 13.98 13.89 13.92
Wal-Mart Stores, Incorporated 12.80 12.73 12.85
Citigroup, Incorporated 12.79 12.36 13.15
American International Group, Incorporated 10.58 10.23 9.94
Verizon Communications Incorporated 10.41 10.42 10.31
Johnson & Johnson 9.55 9.57 9.48
Coca-Cola Company (The) 9.14 8.81 9.47
Procter & Gamble Company (The) 9.09 9.51 8.64
International Business Machines Corporation 8.69 8.24 9.04
J.P. Morgan Chase & Co. 8.38 8.16 8.71
SBC Communications Incorporated 8.33 8.49 8.17
Bank of America Corporation 8.20 8.28 8.07
Merck & Co., Inc. 8.05 8.68 7.23
Cisco Systems, Incorporated 7.25 7.18 7.05
Fannie Mae 7.22 7.67 6.68
AOL-Time Warner, Incorporated 7.01 6.89 6.94
Viacom, Incorporated 6.65 6.29 6.84
Dell Computer Corporation 6.57 6.41 6.75
Wells Fargo & Company 6.57 6.60 6.49
ChevronTexaco Corporation 6.37 6.32 6.38
PepsiCo, Incorporated 6.28 6.20 6.35
Intel Corporation 6.26 6.38 6.13
Altria Group, Inc. 6.20 6.32 6.21
Eli Lilly & Company 5.96 6.41 5.26
Anheuser-Busch Companies 5.82 5.83 5.86
Home Depot, Inc. (The) 5.79 5.47 6.13
3M Company 5.66 5.30 5.99
Morgan Stanley 5.37 5.20 5.56
BellSouth Corporation 5.23 4.98 5.31
Amgen, Incorporated 5.20 5.47 4.92
Bristol-Myers Squibb Company 5.10 5.10 5.14
Allstate Corporation (The) 4.92 4.59 5.27

17



Table 4: Britain’s highest ranked boards. The Rank is based on the implement-
ation of the PageRank algorithm described in the text where d = 0.7, source
strengths are market capitalization and the β values are as indicated in the table

Rank Rank Rank
Company β = 0.5 β = 0.1 β = 0.9

BP PLC 66.44 63.83 70.20
GlaxoSmithKline PLC 46.96 48.39 45.56
Vodafone Group PLC 36.16 36.49 35.19
Lloyds TSB Group PLC 33.51 33.58 30.97
HSBC Holdings PLC 33.24 34.61 31.85
Shell Transport and Trading Co PLC 25.04 26.18 24.22
AstraZeneca PLC 24.02 27.18 20.49
Royal Bank of Scotland Group (The) PLC 23.84 24.05 23.13
Rio Tinto PLC 21.38 20.12 19.67
Unilever 19.01 23.69 15.26
Diageo PLC 17.71 13.74 20.76
Barclays PLC 15.49 14.29 16.37
Reuters Group PLC 13.23 10.94 15.66
Anglo American PLC 13.16 13.82 12.61
Schroders PLC 12.72 12.77 12.41
HBOS PLC 12.57 12.14 12.53
BT Group PLC 12.53 10.64 14.67
Reckitt Benckiser PLC 12.38 12.95 10.47
Six Continents PLC 11.98 18.32 5.50
Prudential PLC 11.30 11.61 10.86
Standard Chartered PLC 10.60 7.74 11.17
Rolls-Royce PLC 10.31 14.46 7.84
Trinity Mirror PLC 10.14 11.25 9.27
BAA PLC 9.45 9.13 8.32
Johnson Matthey PLC 9.42 9.61 8.84
Boots Company (The) PLC 9.41 7.61 10.79
Legal & General Group PLC 9.18 8.92 9.38
British Airways PLC 9.07 8.52 9.19
Invensys PLC 8.87 9.50 8.30
Allied Domecq PLC 8.72 9.38 8.32
Cable and Wireless PLC 8.39 8.26 7.48
Marconi PLC 8.29 8.18 8.14
Close Brothers Group PLC 8.08 8.19 7.69
Smiths Group PLC 7.81 4.16 9.16
British Sky Broadcasting Group PLC 7.68 7.15 7.31
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5.3 A simple “board rank” model

Having computed a rank for each board (vertex) in the social network, a nat-
ural question arises: What factors lead to, or are associated with, a high page
rank? Here we only briefly investigate this question. To do so, we estimate a
simple statistical model where the outcome variable is the rank of the j-th board
(i.e. it’s “Board Rank”). We identified a set of observable firm-level variables,
described below, that might be thought to influence the rank of a board.

At this stage we can only estimate the model for the USA, as the necessary
data for the UK were not available to us. We supplemented the US Corporate
Library data with a secondary firm-level data set from Standard & Poors Ex-
ecucomp database, which tabulates many potentially useful characteristics for
each firm. We used the August 2004 release, which contains company inform-
ation for fiscal year 2003, such as compensation, firm size, sector, etc. After
combining the two data sets, we estimated the following simple linear model for
the available data:

(Board Rank)j = α + γ1x1j + ǫj (8)

where x1 is a matrix containing the following covariates:

(i) The degree of the vertex in the board projection. That is, the number of
other boards with which a given board is interlocked.

(ii) The size of the firm, measured as the log of total sales.

(iii) The total compensation received by the firm’s CEO. This is measured as
the sum of salary, bonus, other payments and the Black-Scholes value of
options granted during the fiscal year.

(iv) Firm performance measured as the five-year total return to shareholders
(including reinvested dividends)

(v) The proportion of outsiders on the main board

(vi) The size of the board.

(vii) The “Governnace Index” defined by Gompers et al. (2003) and available
through the Investor Responsibility Research Center.

(viii) A set of 64 separate industry dummy variables. These are defined at the
2-digit standard industrial classification level.

Finally, γ1 is the parameter to be estimated and ǫj is a stochastic error term.
The variance covariance is made stationary (i.e. robust to arbitrary heterosce-
dasticity) using the method of Huber (1964) and White (1980).

The results are contained in Table 5. Column (1) provides the means of the
independent variables. Column (2) to (4) contain the results from the estima-
tion. Each model in (2) through (4) is estimated under different assumptions
about the weighting parameter β. The results indicate that firms with a higher
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Table 5: Board Rank model: Estimation of Equation 8. The model is estim-
ated using United States data for varying levels of β as specified. Note, + is
significant at the 10% level, ∗ significant at 5% and ∗∗ significant at 1%.

(1) (2) (3) (4)
Variable β = 0.5 β = 0.1 β = 0.9
Mean Influence Influence Influence

Boards degree 7.08 0.14** 0.14** 0.14**
(0.01) (0.01) (0.01)

Log(Sales) 7.21 0.24** 0.24** 0.24**
(0.05) (0.05) (0.05)

CEO pay 5.35m 0.04** 0.04** 0.04**
(0.01) (0.01) (0.01)

Stock returns 7.01 0.01 0.01 0.02
(0.02) (0.02) (0.02)

Proportion outsiders 0.66 -0.17 -0.23 -0.11
(0.23) (0.22) (0.24)

Board size 9.97 0.04* 0.04* 0.04*
(0.02) (0.02) (0.02)

Governance index 9.04 -0.08** -0.08** -0.08**
(0.01) (0.01) (0.01)

Industry dummies Yes Yes Yes
Observations 1263 1263 1263
R-squared 0.68 0.69 0.68
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board degree centrality, greater sales, greater CEO compensation, and board
size are likely to have higher recorded board ranks according to our method.
The governance index (an inverse measure of quality) is correctly signed and
significant. The stock returns and the proportion of outside directors variables
are insignificant. We expected these indicators of corporate governance quality
to contribute positively to board influence (rank). In separate regressions (not
tabulated here) we found that re-estimating Equation 8, but excluding the board
degree variable, resulted in positive and significant coefficient estimates for the
proportion of outsiders. We would, therefore, encourage further modelling to
build upon the preliminary results presented here.

6 Conclusions

In this paper we have used insights from complexity theory to revisit an import-
ant issue in management and organization research—the power and influence
of boards of directors and top management teams. We have proposed a novel,
essentially structural metric by which the authority, importance and influence
of the board can be evaluated and we have argued that our measure, which is
related to the PageRank algorithm, the system at the heart of the extremely
popular Google search engine7, is applicable to the social network of boards of
directors.

Our contribution to social science research can be stated thus. First, we
have reviewed some important features of mathematical graph theory which are
germane to social networks. We began, by restating the idea that the affiliation
network of the board of directors can be represented as a bipartite graph (namely
two sets of vertices with edges running between unlike kinds). We illustrated in
Figure 2 that the resulting projections from such a bipartite representation are
undirected graphs.

We then introduced and explained the PageRank algorithm. It assigns a
numerical value to each vertex in a directed graph according to the update rule
given in Equation (2). We illustrated that the rank of a given vertex j depends
recursively on an adjustable tuning parameter d, source strengths, sj , and the
sum over incoming neighbors for only those edges that start at some vertex k
and end at j (only edges with weights wj,k 6= 0 contribute to the rank of vertex
j). We discussed two interpretations of PageRank first as a random walk and
second as a weighted voting scheme. These interpretations have arisen in sister
sciences, such as physics, applied mathematics and computing science, but their
application to social sciences and management research is novel.

PageRank, as we discussed, is designed to operate on directed graphs. The
simple bipartite representation in Figure 1 does not capture this directionality.
This raises a technical obstacle in adapting PageRank to the ranking of social
networks of boards of directors. One needs to find a way to incorporate extra
information into a bipartite graph (like the one in Figure 1) in such a way as
to generate a board projection that is a directed graph. In Section 4 we have

7Which one of the authors (MRM) uses as his home page.
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proposed such a method. Our paper has therefore described, uniquely, a method
for calculating the PageRank algorithm for weighted directed bipartite graphs.

Finally, we implemented our code and calculated PageRanks of the board
projections for publicly traded firms in the United States and the United King-
dom. We documented which companies can be structurally classified as “esteem-
worthy” in the social network of corporate governance. In summary, we hope
the procedure outlined in this paper is valuable to social network researchers
investigating arbitrary affiliation networks since it permits the ready calculation
of a PageRank centrality measure.
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