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OVERSHOOTS AND UNDERSHOOTS OF LÉVY PROCESSES

By R. A. DONEY and A. E. KYPRIANOU

The University of Manchester and Heriot Watt University

We obtain a new fluctuation identity for a general Lévy process giv-

ing a quintuple law describing the time of first passage, the time of the

last maximum before first passage, the overshoot, the undershoot and the
undershoot of the last maximum. With the help of this identity, we revisit

the results of Klüppelberg et al. (2004) concerning asymptotic overshoot

distribution of a particular class of Lévy processes with semi-heavy tails
and refine some of their main conclusions. In particular we explain how

different types of first passage contribute to the form of the asymptotic

overshoot distribution established in the aforementioned paper. Applica-
tions in insurance mathematics are noted with emphasis on the case that

the underlying Lévy process is spectrally one sided.

1. Lévy processes and ladder processes This paper concerns overshoots
and undershoots of Lévy processes at first upwards passage of a constant boundary.
We will therefore begin by introducing some necessary but standard notation.

In the sequel X will always denote a Lévy process defined on the filtered space
(Ω,F ,F, P ) where the filtration F = {Ft : t ≥ 0} is assumed to satisfy the usual
assumptions of right continuity and completion. Its characteristic exponent will
be given by Ψ(θ) := − logE(eiθX1) and its jump measure by ΠX . We will work
with the probabilities {Px : x ∈ R} such that Px(X0 = x) = 1 and P0 = P . The
probabilities {P̂x : x ∈ R} will be defined in a similar sense for the dual process,
−X.

Denote by {(L−1
t ,Ht) : t ≥ 0} and {(L̂−1

t , Ĥt) : t ≥ 0} the (possibly killed)
bivariate subordinators representing the ascending and descending ladder processes.
Denote by κ(α, β) and κ̂(α, β) their joint Laplace exponents for α, β ≥ 0. For
convenience we will write

κ(0, β) = q + ξ(β) = q + cβ +
∫

(0,∞)

(1− e−βx)ΠH(dx),

where q ≥ 0 is the killing rate of H so that q > 0 if and only if limt↑∞Xt = −∞,
c ≥ 0 is the drift of H and ΠH is its jump measure. The quantity ξ is a true
subordinator Laplace exponent. Similar notation will also be used for κ̂(0, θ) by
replacing q, ξ, c and ΠH by q̂, ξ̂, ĉ and Π bH . Note that when q > 0 we have q̂ = 0.

Associated with the ascending and descending ladder processes are the bivariate
renewal functions U and Û . The former is defined by

U(dx,ds) =
∫ ∞

0

dt · P (Ht ∈ dx, L−1
t ∈ ds)

AMS 1991 subject classifications. 60G51, 60G50
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surance risk process.
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2 R. A. DONEY AND A. E. KYPRIANOU

and taking double Laplace transforms shows that∫ ∞

0

∫ ∞

0

e−βx−αsU(dx, ds) =
1

κ(α, β)
for α, β ≥ 0 (1)

with a similar definition and relation holding for Û . These bivariate renewal mea-
sures are essentially the Green’s functions of the ascending and descending ladder
processes. By U(dx) and Û(dx) we will denote the marginal measures U(dx, [0,∞))
and Û(dx, [0,∞)) respectively. Note that local time at the maximum is defined only
up to a multiplicative constant. For this reason, the exponent κ can only be defined
up to a multiplicative constant and hence the same is true of the measure U (and
then obviously this argument applies to Û).

Let

Xt := sup
u≤t

Xu and Xt := inf
u≤t

Xu.

The symbol eq will always denote a random variable which is independent of X
and distributed according to an exponential distribution with parameter q > 0. In
addition, define for each x ∈ R,

τ+
x = inf{t > 0 : Xt > x} and τ−x = inf{t > 0 : Xt < x}.

2. Asymptotic overshoots Let us now move to the setting of Klüppelberg
et al. (2004) and, in part, the motivation for this paper. For this it will be necessary
to introduce some more notation.

For each α ≥ 0, S(α) will denote the class of non-lattice convolution equivalent
distributions. That is to say distributions, F , with a non-lattice support on [0,∞)
such that F (x) := 1− F (x) > 0 for all x > 0 satisfying

lim
u↑∞

F (u− x)
F (u)

= eαx for each x ∈ R and (2)

lim
u↑∞

F ∗2(u)
F (u)

= 2M for some M > 0.

There are several additional facts which follow from this definition. The constant
M was identified as equal to

∫
[0,∞)

eαxF (dx) (and hence the latter Laplace-
Stieltjes transform is necessarily finite); see Chover et al. (1973), Cline (1987),
Rogozin (2000) and Shimura and Watanabe (2004). The condition (2) implies
that F (dx)/F (x) converges in the weak sense to an exponential distribution with
parameter α. It can also be shown that any measure Π which is tail equivalent
to a distribution F ∈ S(α), that is to say Π(u) := Π(u,∞) ∼ F (u) as u ↑ ∞ for
F ∈ S(α), also belongs to S(α); see Embrechts and Goldie (1982).

The following assumptions are included in the set-up in Klüppelberg et al (2004).

Assumption 1. Fix α > 0.

(i) X0 = 0, limt↑∞Xt = −∞ almost surely and suppΠ ∩ (0,∞) 6= ∅,
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(ii) ΠH ∈ S(α) and

(iii) q + ξ(−α) > 0.

One of the main contributions of Klüppelberg et al. (2004) was the following
result.

Theorem 2. Under Assumptions 1 we have

lim
x↑∞

P (Xτ+
x
− x > u|τ+

x <∞) = G(u)

where

G(u) =
e−αu

q

(
q + ξ(−α) +

∫
(u,∞)

(eαy − eαu)ΠH(dy)

)
. (3)

In this paper we aim to recapture and explain in more detail the above result
by proving stronger versions of asymptotic results concerning the overshoot and
undershoot of both X and X. Specifically we will show that the two components

e−αu

q
(q + ξ(−α)) and

e−αu

q

(∫
(u,∞)

(eαy − eαu)ΠH(dy)

)
in (3) are the consequence of two types of asymptotic overshoot; namely first passage
occurring as a result of

• an arbitrarily large jump from a finite position after a finite time, or

• a finite jump from a finite distance relative to the barrier after an arbitrarily
large time

respectively.
Our method appeals directly to a new fluctuation identity for a general Lévy

process at first passage over a fixed level which specifies the quintuple law of

• the time of first passage relative to the time of the last maximum at first
passage,

• the time of the last maximum at first passage,

• the overshoot at first passage,

• the undershoot at first passage and

• the undershoot of the the last maximum at first passage.

This quintuple law can be expressed entirely in terms of the quantities ΠX , U
and Û .

Once this identity is established, it becomes a straightforward exercise to deal
with the asymptotic behaviour of this quintuple law conditional on first passage
occurring under Assumption 1. Indeed what will prevail in our analysis is the use of
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the facts that under this assumption, U(·,∞) and Π
+

X(·) both belong to S(α). These
two facts can be deduced from the combined conclusions of Proposition 2.5, Lemma
3.5, Theorem 4.1 and Proposition 5.3 in Klüppelberg et al. (2004). Specifically it
was proved that when Assumption 1 (i) and (iii) hold, then U(·,∞), ΠH(·) and
Π

+

X(·) are all in S(α) simultaneously or not at all. In the case they all belong to
S(α),

U(u,∞) ∼ 1
(q + ξ(−α))2

ΠH(u) ∼ 1

(q + ξ(−α))2ξ̂(α)
Π

+

X(u) (4)

as u tends to infinity.
The outline of the remainder of the paper is as follows. In the next section we

prove the new fluctuation identity for first passage of a general Lévy process over
a fixed level. In Section 4 we consider the asymptotic joint laws of the space-time
overshoot of X, the undershoot of X and the space-time undershoot of X, all under
Assumption 1. We conclude with some additional remarks, in particular with regard
to applications in insurance mathematics.

3. A quintuple law for overshoots and undershoots The main purpose
of this section is to prove the following quintuple law for space-time positions of
overshoots and undershoots. We will use the notation

Gt = sup{s ≤ t : Xs = Xs} and Gt = sup{s ≤ t : Xs = Xs}.

Theorem 3. Suppose that X is not a compound Poisson process. Then for a
suitable choice of normalising constant of the local time at the maximum, for each
x > 0 we have on u > 0, v ≥ y, y ∈ [0, x], s, t ≥ 0,

P (τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x−Xτ+

x − ∈ dv, x−Xτ+
x − ∈ dy)

= U(x− dy,ds)Û(dv − y,dt)ΠX(du+ v),

where ΠX is the Lévy measure of X.

Before going to the proof, let us give some intuition behind the statement of
this result by discussing its analogue for random walks. The latter turns out to be
relatively simple to establish.

Suppose then that S = {Sn : n ≥ 0} is a random walk on the probability space
(Ω,F ,P). That is S0 = 0 and Sn =

∑n
i=1 ξi where {ξi : i ≥ 1} are independent and

identically distributed with some law F . Define the random variables

Sn = max(0, S1, . . . , Sn)

θ
n

= max{k ≤ n : Sk = Sn}

σx = min{n ≥ 1 : Sn > x}.

Let {(T ′n,H ′
n) : n ≥ 0} be the weak ascending ladder process and {(T̂n, Ĥn) : n ≥ 0}

be the strict descending ladder height process of S. Associated with each of these
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ladder processes are their Greens functions

U′(dx, i) :=
∑
n≥0

P(H ′
n ∈ dx, T ′n = i) and Û(dx, j) =

∑
n≥0

P(Ĥn ∈ dx, T̂n = j)

for x ≥ 0 and i, j ∈ Z≥0. The equivalent quintuple law for random walks takes the
following form.

Theorem 4. For each x > 0, we have on u > 0, v ≥ y, y ∈ [0, x], i, j,∈ Z≥0

P(σx − 1− θ
σx−1

= i, θ
σx−1

= j, Sσx − x ∈ du, x− Sσx−1 ∈ dv, x− Sσx−1 ∈ dy)

= U′(x− dy, j)Û(dv − y, i)F (du+ v). (5)

Proof. Note first that by duality

Û(dv − y, i) = P(Sm < 0, 1 ≤ m < i, Si ∈ y − dv),

so that

RHS of (5)

= P(Sn < x− y, 1 ≤ n < j, Sj ∈ x− dy)

×P(Sm < 0, 1 ≤ m < i, Si ∈ y − dv)P(S1 ∈ y + du)

= P(Sn < x− y, 1 ≤ n < j, Sj ∈ x− dy,

Sj+m < x− y, 1 ≤ m < i, Sj+i ∈ x− dv, Sj+i+1 ∈ x+ du)

= LHS of (5)

�

Remark 5. From the analysis above, if we let θn = min{k : Sk = Sn} then one
can reason similarly that for each x > 0, we have on u > 0, v ≥ y, y ∈ [0, x], i, j,∈
Z≥0

P(σx − 1− θσx−1 = i, θσx−1 = j, Sσx − x ∈ du, x− Sσx−1 ∈ dv, x− Sσx−1 ∈ dy)

= U(x− dy, j)Û′(dv − y, i)F (du+ v).

Here we have the subtle difference that U and Û′ are the Greens functions of the
strict ascending and weak descending ladder processes.

Note that hints concerning the quintuple law for the random walk case can
already be seen in the discussion concerning the Wiener-Hopf factorization in
Borovkov (1976).

We now move to the proof of the quintuple law for Lévy processes.

Proof of Theorem 3. We prove the result in three steps.
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Step 1. Let us suppose that m, k, f, g and h are all positive, continuous functions
with compact support satisfying f(0) = g(0) = h(0) = 0. We prove

E(m(τ+
x −Gτ+

x −)k(Gτ+
x −)f(Xτ+

x
− x)g(x−Xτ+

x −)h(x−Xτ+
x −))

= Êx

(∫ τ−0

0

m(t−Gt)k(Gt)h(Xt)w(Xt)dt

)
(6)

where w(z) = g(z)
∫
(z,∞)

ΠX(du)f(u− z).
The proof of this result follows by an application of the compensation formula

applied to the point process of jumps with intensity measure dt×Π(dx). We have

E(m(τ+
x −Gτ+

x −)k(Gτ+
x −)f(Xτ+

x
− x)g(x−Xτ+

x −)h(x−Xτ+
x −))

= E

(∑
t<∞

m(t−Gt−)k(Gt−)g(x−Xt−)h(x−Xt−)

×1(x−Xt−>0)f(Xt− + ∆Xt − x)1(∆Xt>x−Xt−)

)
= E

(∫ ∞

0

dt ·m(t−Gt−)k(Gt−)g(x−Xt−)h(x−Xt−)

×1(x−Xt−>0)

∫
(x−Xt−,∞)

ΠX(dφ)f(Xt− + φ− x)

)

= E

(∫ ∞

0

dt ·m(t−Gt−)k(Gt−)h(x−Xt−)1(x−Xt−>0)w(x−Xt−)
)

= Êx

(∫ ∞

0

dt · 1(t<τ−0 )m(t−Gt)k(Gt)h(Xt)w(Xt)
)

which is equal to the right hand side of (6). In the last equality we have rewritten
the previous equality in terms of the path of −X. Note that the condition f(0) =
g(0) = h(0) = 0 has been used implicitly to exclude from the calculation the case
of first passage by creeping.

Step 2. Next we prove that

Ex

(∫ τ−0

0

m(t−Gt)k(Gt)h(Xt)w(Xt)dt

)

=
∫

[0,∞)

∫
[0,∞)

U(dφ,dt)

·
∫

[0,x]

∫
[0,∞)

Û(dθ,ds)m(t)k(s)h(x− θ)w(x+ φ− θ). (7)

(Note however, that this result will be applied in conjunction with the conclusion
of step 1 to the process −X).
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The statement and proof of (7) is a generalization of Theorem VI.20 in Bertoin
(1996). For q > 0,

Ex

(∫ τ−0

0

dt ·m(t−Gt)k(Gt)h(Xt)w(Xt)e−qt

)

= q−1Ex

(
m(eq −Geq

)k(Geq
)h(Xeq

)w(Xeq
−Xeq

+Xeq
); eq < τ−0

)
= q−1

∫
[0,x]

∫
[0,∞)

P (−Xeq
∈ dθ,Geq

∈ ds)k(s)

·
∫

[0,∞)

∫
[0,∞)

P (Xeq −Xeq
∈ dφ, eq −Geq

∈ dt)m(t)h(x− θ)w(x+ φ− θ)

= q−1

∫
[0,x]

∫
[0,∞)

P (−Xeq
∈ dθ,Geq

∈ ds)k(s)

·
∫

[0,∞)

∫
[0,∞)

P (Xeq
∈ dφ,Geq

∈ dt)m(t)h(x− θ)w(x+ φ− θ) (8)

where the Wiener-Hopf factorization and duality have been used in the second and
third equalities respectively. Next note that for a suitable normalization of the local
time at the maximum we have

q = κ(q, 0)κ̂(q, 0)

(cf. equation (3) of Chapter VI in Bertoin (1996)). Further it is also known from
the Wiener-Hopf factorization that

1
κ(q, 0)

E
(
e−αGeq−βXeq

)
=

1
κ(α+ q, β)

(cf. equation (1) Chapter VI of Bertoin (1996)) and hence recalling (1) it follows
that

lim
q↓0

1
κ(q, 0)

P (Xeq
∈ dφ,Geq

∈ dt) = U(dφ,dt)

in the sense of vague convergence. A similar convergence holds for P (−Xeq
∈

dθ,Geq
∈ ds)/κ̂(q, 0). Equality (7) thus follows by taking limits in (8).

Step 3. We combine the conclusions of steps 1 and 2 to conclude that

E(m(τ+
x −Gτ+

x −)k(Gτ+
x −)f(Xτ+

x
− x)g(x−Xτ+

x −)h(x−Xτ+
x −))

=
∫

u>0,y∈[0,x],0<y≤v,s≥0,t≥0

m(t)k(s)f(u)g(v)h(y)

P (τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x−Xτ+

x − ∈ dv, x−Xτ+
x − ∈ dy)

=
∫

[0,∞)

∫
[0,∞)

Û(dφ,dt)
∫

[0,∞)

∫
[0,x]

U(dθ,ds)m(t)k(s)

·h(x− θ)g(x+ φ− θ)
∫

(x+φ−θ,∞)

ΠX(dη)f(η − (x+ φ− θ)).
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Substituting y = x− θ, then y + φ = v and finally η = v + u in the right hand side
above yields

E(m(τ+
x −Gτ+

x −)k(Gτ+
x −)f(Xτ+

x
− x)g(x−Xτ+

x −)h(x−Xτ+
x −))

=
∫

[0,∞)

∫
[0,x]

U(x− dy,ds)
∫

[0,∞)

∫
[y,∞)

Û(dv − y,dt)

·
∫

(0,∞)

ΠX(du+ v)m(t)k(s)f(u)g(v)h(y)

and the statement of the theorem follows. �

The missing case of a compound Poisson process, excluded from Theorem 3, can
be handled similarly to the random walk case.

As a consequence of the above identity, we obtain the following corollary which
relates Π(dt, dh), the Lévy measure of (L−1,H), to ΠX .

Corollary 6. For all t, h > 0 we have

Π(dt,dh) =
∫

[0,∞)

Û(dθ,dt)ΠX(dh+ θ).

Proof. The result will follow by first proving the auxiliary result for the as-
cending ladder process at its first passage time Tx := inf{t > 0 : Ht > x}. Let
∆L−1

Tx
= L−1

Tx
− L−1

Tx−, then

P (∆L−1
Tx

∈ dt, L−1
Tx− ∈ ds, x−HTx− ∈ dy,HTx

− x ∈ du)

= U(x− dy,ds)Π(dt,du+ y) (9)

for t > 0, s > 0, y ∈ [0, x], u > 0. The proof follows from a straightforward calcu-
lations using the compensation formula along the lines of the proof of Proposition
III.2 in Bertoin (1996). We omit the technicalities for the sake of brevity.

To finish the proof of the corollary, note that ∆L−1
Tx

= τ+
x −Gτ+

x −, L−1
Tx− = Gτ+

x −,
x−HTx− = x−Xτ+

x − and HTx
− x = Xτ+

x
− x. Hence from the quintuple law we

also know that

P (∆L−1
Tx

∈ dt, L−1
Tx− ∈ ds, x−HTx− ∈ dy,HTx − x ∈ du)

= U(x− dy,ds)
∫

[y,∞)

Û(dv − y,dt)ΠX(du+ v)

and from here, by comparing with (9), the statement of the theorem follows. �

Note that by integrating out dt in the conclusion of the above corollary, we
recover the recent identity of Vigon (2002) for the Lévy measure of the ascending
ladder height process.

We conclude this section with examples of Lévy processes for which new, ex-
plicit identities can be obtained. Before doing so we make the remark that there
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are limited examples of Lévy processes for which the exponents κ and κ̂ are known
explicitly in terms of elementary or special functions. Further, of these known ex-
amples there are no known cases for which the inversion in (1) can be performed to
give the bivariate measures U and Û explicitly. Not surprisingly then our examples
do not explore the quintuple law to its full generality.

Example 7 (Strictly stable processes). Suppose that X is a strictly sta-
ble process with index γ ∈ (0, 2). That is to say, a Lévy process satisfying the
scaling property Xt

d= t1/γX1 for all t > 0. The Lévy measure is given (up to a
multiplicative constant) by

ΠX(dx) = 1(x>0)
c+

x1+γ
dx+ 1(x<0)

c−

|x|1+γ
dx

where c+ and c− are two non-negative real numbers.
For such processes it is known that the ladder process H is a stable subordinator

with index γρ where ρ = P (X1 ≥ 0) and hence up to a multiplicative constant
κ(0, β) = βγρ for β ≥ 0. Similarly, up to a multiplicative constant κ̂(0, β) = βγ(1−ρ).
For these facts, the reader is again referred to Bertoin (1996).

Inverting (1) when α = 0 we find that (up to a multiplicative constant)

U(dx) =
xγρ−1

Γ(γρ)
dx

with a similar identity holding for Û(dx) except that ρ is replaced by 1−ρ. Marginal-
izing the quintuple law to a triple law we now obtain a new identity for stable
processes. Namely,

P (Xτ+
x
− x ∈ du, x−Xτ+

x − ∈ dv, x−Xτ+
x − ∈ dy)

= const.
(x− y)γρ−1(v − y)γ(1−ρ)−1

(v + u)1+γ
dydvdu

for y ∈ [0, x], v ≥ y and u > 0, where the normalizing constant makes the right
hand side a distribution (note that stable processes do not creep and hence there
is no atom on the event {Xτ+

x
= x} to take care of).

Example 8 (Spectrally positive processes). In this case, the downward
ladder height process is a linear drift with gradient 1 killed at rate q̂ ≥ 0. For this
reason it follows that Û(dx) = e−bqxdx. This gives the triple law

P (Xτ+
x
− x ∈ du, x−Xτ+

x − ∈ dv, x−Xτ+
x − ∈ dy)

= e−bq(v−y)U(x− dy)ΠX(du+ v)dv

for y ∈ [0, x], v ≥ y and u > 0.
The Wiener-Hopf factors for spectrally positive Lévy processes are well under-

stood (cf. Chapter VII, Bertoin (1996)). Indeed it is known that κ̂(α, β) = Φ(α)+β
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where Φ is the right inverse of the Laplace exponent ψ(β) = logE(e−βX1) for β ≥ 0.
The identification of U via its Laplace transform in (1) thus simplifies to∫

[0,∞)

e−βxU(dx) =
β

ψ(β)
. (10)

When in addition X has bounded variation and drifts to minus infinity it is
possible to give a more explicit identity for the measure U and hence for the above
expression. In this case X is the difference of a subordinator and a positive drift of
rate c such that E(X1) < 0. It is known then that q̂ = 0 and q = |E(X1)| (see for
example Section 6 of Klüppelberg et al. (2004)). By taking Laplace transforms we
see from (10) that

U(dx) =
1
c

∑
n≥0

ν∗n(dx)

where we understand ν∗0(dx) = δ0(dx)

ν(dx) =
1
c
ΠX(x,∞)dx.

(Note that the assumption E(X1) < 0 ensures that c−1
∫
(0,∞)

ΠX(y,∞)dy < 1).
Our triple law now takes the form

P (Xτ+
x
− x ∈ du, x−Xτ+

x − ∈ dv, x−Xτ+
x − ∈ dy)

=
1
c

∑
n≥0

ν∗n(x− dy)ΠX(du+ v)dv

for y ∈ [0, x], v ≥ y and u > 0.

Remark 9. The latter example is relevant to insurance mathematics. One may
compare against similar results in the papers of Gerber and Shiu (1997), Dickson
and Drekic (2004) and Sun and Yang (2004), which concern the classical Cramér-
Lundberg process (which in our setting is a spectrally positive compound Poisson
process drifting to minus infinity).

4. The asymptotic role of undershoots in overshoots In the following
two theorems, we consider the asymptotic overshoot and undershoot in space and
time at first passage of X, conditional on making first passage, as the barrier tends
to infinity. The spatial undershoot is measured, in the first case, backwards from
the barrier and, in the second case, upwards from the origin.

Theorem 10. Under Assumption 1,

(i) for t ≥ 0, y ≥ 0, v ≥ y and u > 0,

lim
x↑∞

P (τ+
x −Gτ+

x − ∈ dt,Xτ+
x
− x ∈ du,

x−Xτ+
x − ∈ dv, x−Xτ+

x − ∈ dy|τ+
x <∞)

=
α

q
eαydy · Û(dv − y,dt)ΠX(du+ v).
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(ii) For u > 0 we have∫
v∈(0,∞)

lim
x↑∞

P (Xτ+
x
− x ∈ du, x−Xτ+

x − ∈ dv|τ+
x <∞)

=
α

q

∫ ∞

0

eαyΠH(du+ y)dy.

Proof. (i) Starting with the main identity given in Theorem 3, marginalizing
out Gτ+

x − and recalling the Pollaczek-Khintchine identity

P (τ+
x <∞) = qU(x,∞)

(cf. Proposition 2.5 of Klüppelberg et al. (2004)), note that the required asymptotic
is equal to

lim
x↑∞

U(x− dy)
qU(x,∞)

Û(dv − y,dt)ΠX(du+ v).

Note that U(·,∞) ∈ S(α) by Assumption 1 and so by the associated property of
weak convergence, the limit follows.

(ii) Marginalizing from part (i) shows that the required asymptotic is equal to

α

q

∫ ∞

0

dyeαy

∫ ∞

y

Û(dv − y)ΠX(du+ v).

Invoking Vigon’s identity (as a special case of Corollary 6) in the form

ΠH(du+ y) =
∫

[y,∞)

Û(dv − y)ΠX(du+ v)

concludes the proof. �

Theorem 11. Under Assumption 1,

(i) for s, t ≥ 0, u > 0, θ ≥ 0 and φ ≤ θ,

lim
x↑∞

P (τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du,

Xτ+
x − ∈ dφ,Xτ+

x − ∈ dθ|τ+
x <∞)

= U(dθ,ds)Û(θ − dφ,dt)
α(q + ξ(−α))2ξ̂(α)

q
e−α(u−φ)du.

(ii) For u > 0 ∫
φ∈(0,∞)

lim
x↑∞

P (Xτ+
x
− x ∈ du,Xτ+

x − ∈ dφ|τ+
x <∞)

= αe−αu (q + ξ(−α))
q

du.
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Proof. (i) With a change of variable in the main identity of Theorem 3 we
have,

P (τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du,

Xτ+
x − ∈ dφ,Xτ+

x − ∈ dθ|τ+
x <∞)

= U(dθ,ds)Û(θ − dφ,dt)
ΠX(du+ x− φ)

qU(x,∞)
.

From (4) and the associated weak convergence it follows that

lim
x↑∞

ΠX(du+ x− φ)
qU(x,∞)

=
(q + ξ(−α))2ξ̂(α)α

q
e−α(u−φ)du

and the result follows.
(ii) The second part follows by again marginalizing the limiting identity in part

(i) with the help of the well known fact that

α

∫ ∞

0

e−αxÛ(x)dx =
1

ξ̂(α)

(cf. Bertoin (1996) p172). �

We conclude with some additional remarks following from the results above.

Asymptotic independence. Note that in the last theorem we see an intuitively
obvious independence appearing between the overshoot and the undershoot.

Decomposing the law of the asymptotic overshoot. The conclusions of
Theorems 10 and 11 both reprove and provide an interesting explanation for the
identity in Theorem 2. A straightforward calculation on the identity in Theorem 10
(ii) shows that ∫

v∈(0,∞)

lim
x↑∞

P (Xτ+
x
− x > u, x−Xτ+

x − ∈ dv|τ+
x <∞)

=
e−αu

q

{∫ ∞

u

(eαy − eαu)ΠH(dy)
}
.

Similarly from Theorem 11 (ii) we have∫
φ∈(0,∞)

lim
x↑∞

P (Xτ+
x
− x > u,Xτ+

x − ∈ dφ|τ+
x <∞) =

e−αu

q
(q + ξ(−α)).

Adding these two identities together recovers the conclusion of Theorem 2. It also
shows that the distribution of the conditional asymptotic overshoot has a contri-
bution coming from an arbitrarily large jump at a finite position and after a finite
time, or a finite jump from a finite distance relative to the barrier after an arbitrar-
ily large time. Note also from part (i) of the two theorems in this section that when,
asymptotically, the undershoot is close to the barrier, the time of occurrence of the
last maximum prior to first passage was historically close to the first passage time.
Further, when there is asymptotic first passage due to an arbitrarily large jump,
this jump happens early on in the path of the Lévy process.
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For further results concerning asymptotic overshoots of Lévy processes (spec-
trally positive compound Poisson processes) with subexponential tails, see As-
mussen and Klüppelberg (1996).

Other identities. There are a number of other identities one can extract from
Theorems 10 and 11. For example one can obtain an expression for the joint law
of the asymptotic overshoot of X and undershoot of H measured from the barrier
or measured from zero. In the latter case, integrating out the overshoot one easily
recovers the identity given in Theorem 4.2 (iii) of Klüppelberg et al. (2004). This
identity says that

lim
x↑∞

P (Xτ+
x − ≤ z|τ+

x <∞) =
(q + ξ(−α))2

q

∫
[0,z]

eαθU(dθ).

The proof is straightforward and left as an exercise.

Asymptotic creeping. From the distribution G given in Theorem 2 one sees
that there is an atom at zero of mass αc/q. This atom corresponds to the asymptotic
conditional probability of creeping over the barrier as it tends to infinity. This can
also be derived directly by noting from Kesten (1969) that when the drift c of H is
positive, U is absolutely continuous and

P (Xτ+
x

= x) = cu(x)

where u(x) = dU(x)/dx. Weak convergence of U(dx)/U(x,∞) under Assumption
1 now ensures that

lim
x↑∞

P (Xτ+
x

= x|τ+
x <∞) = lim

x↑∞

cu(x)
qU(x,∞)

=
cα
q
.

Applications to insurance mathematics. The motivation for the work in
Klüppelberg et al. (2004) came from insurance mathematics and in particular the
classical ruin problem. The refinements of their results given here also offer direct
insight into ruinous behaviour.

Within the current context, one may think of −X as the capital of an insurance
firm, the so called risk process. In which case the event of ruin with an initial capital
of x units corresponds to the process X starting at the origin and making first
passage at x. Understanding the conditional asymptotics as x tends to infinity thus
gives information about how ruin occurs when the initial revenue of the insurance
firm is extremely large.

The classical risk process is the Cramér-Lundberg model which corresponds to
X being a spectrally positive compound Poisson process with negative drift. A
more suitable generalization however corresponds to the case that X is a spectrally
positive Lévy process. In this case, recalling the Lévy-Itô decomposition, one sees
a more realistic features as follows. Large jumps (of magnitude greater than one)
correspond to large claims offset by premiums collected at a constant rate corre-
sponding to linear drift. Large jumps occur spaced out by independent exponentially
distributed periods of time and thus reasonably correspond to disasters. The com-
pensated small jumps which occur with countable but none the less unbounded
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frequency correspond to minor claims; their compensation can be understood as
the aggregate of premiums called in to offset the high intensity of claims.

The case that X is spectrally positive also has the advantage that many of the
identities given above simplify further. Write ψ(θ) = logE(e−θX1) for the Laplace
exponent. Since the descending ladder height process is nothing more than linear
drift, we also have Û(dx) = dx, ξ̂(α) = α and q + ξ(−α) = −ψ(−α)/α. From the
latter, it is also straightforward to deduce that q = |E(X1)| <∞; see Klüppelberg
et al. (2004) for further details. Our earlier results now tell us for example that

lim
x↑∞

P (Xτ+
x
− x ∈ du, x−Xτ+

x − ∈ dv, x−Xτ+
x − ∈ dy|τ+

x <∞)

=
α

|E(X1)|
eαydy · dv ·ΠX(du+ v)

for y ≥ 0, v ≥ y and u > 0 and

lim
x↑∞

P (Xτ+
x
− x ∈ du,Xτ+

x − ∈ dφ,Xτ+
x − ∈ dθ|τ+

x <∞)

=
ψ(−α)2

|E(X1)|
e−α(u−φ)U(dθ) · dφ · du

for θ ≥ 0, φ ≤ θ, u > 0. Note also that the renewal measure U can now be identified
directly in terms of ψ, namely∫ ∞

0

e−βxU(dx) =
β

ψ(β)
, for β > 0.
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the calculations for Lévy processes may also be imitated for random walks to give
the results in Theorem 4 and Remark 5. This work was initiated when both authors
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