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This paper provides a review of important results concerning the Geometrical Theory of Diffraction and
Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffrac-
tion of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the
wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane,
including the secondary radiated waves. This leads to a precise representation of the diffraction coeffi-
cient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary
radiated waves are an important step towards finding a formula giving the corner diffraction coefficient
everywhere.
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1. Introduction

The diffraction of acoustic waves by an ideal quarter-plane is a complex problem, which has so far
proved insoluble via classical techniques. This problem is an important canonical model for the Geo-
metrical Theory of Diffraction (GTD) due to Keller (1962). Following the GTD, further work has been
done by Kraus & Levine (1961), Satterwhite (1974) and Hansen (1991), by considering the quarter-
plane as a degenerated elliptic cone and expressing the field as a spherical-wave multipole series. How-
ever, these series are poorly convergent when the source and the observer are located far from the
vertex of the cone. A more extensive review has been undertaken by Blume (1996). In the same paper,
Blume proposes a method to accelerate the convergence of these series and obtains some numerical
results. Radlow (1961) claimed to have found an analytic solution of the acoustic quarter-plane prob-
lem using the Wiener–Hopf method. However, this solution has long been suspected to be wrong (see
Meister, 1987), and indeed it has recently been disproved by Albani (2007). A different way to attack the
quarter-plane problem has been introduced by Smyshlyaev (1990), followed by some work by Babich
et al. (1995), but in this case the solution is still difficult to evaluate numerically. Despite this difficulty,
Babich et al. (2000) describe a numerical method based on the Abel–Poisson-type summation method
and a boundary integral equation that gives the diffraction coefficient for smooth convex cones in the
non-singular directions. However, Shanin (2005a,b), following Smyshlyaev’s work, presents a new ana-
lytical/numerical method, which partially solves the acoustic quarter-plane problem in the Dirichlet
case. The main advantage of this method compared with the one mentioned previously is that in this
case the formulae giving the diffraction coefficient are ‘naturally convergent’ in the sense that they do
not require a special treatment to regularize or accelerate the convergence. This method has been exten-
sively described, adapted to the Neumann case and implemented by Assier & Peake (2012). The main

c© The authors 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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606 R. C. ASSIER AND N. PEAKE

achievement of this method is to allow one to have access to the diffraction coefficient describing the
diffraction by the corner of the quarter-plane.

The present paper has two main motivations. The first motivation is the inconsistency of the rep-
resentation of the diffraction coefficient of the corner. Indeed, for example, two very important papers
on the subject by Shanin (2005b) and Skelton et al. (2010) give a different representation of this coeffi-
cient. The second motivation is the conjecture formulated at the end of Assier & Peake (2012), where
the possibility of an ultimate modified Smyshlyaev formula was expressed. The existence of such a
formula is closely related to the other diffracted fields (not only the diffraction from the corner but
also the scattering and re-scattering by the two edges) involved in the quarter-plane problem. This is
why the present paper aspires to describe precisely those other fields and to precisely define the cor-
ner diffraction coefficient. After a brief reminder (mainly inspired by Borovikov & Kinber (1994)) of
the laws of Geometrical Optics (GO) and the Geometrical Theory of Diffraction (GTD) in Section 2,
a presentation of the main results concerning the problem of diffraction by a half-plane is outlined in
Section 3. The total far field emanating from the diffraction of a time-harmonic plane acoustic wave
by a quarter-plane is then studied in detail in Section 4. Namely, an approach mixing the exact the-
ory of the half-plane and the postulates of both GO and the GTD is applied to the quarter-plane.
Throughout this paper, the cases of Dirichlet (soft surface) and Neumann (hard surface) boundary
conditions shall, when possible, be treated simultaneously. Hence, following the notation of Assier
& Peake (2012), we introduce the indexes d,n such that d refers to the Dirichlet case and n refers to
the Neumann case. This approach is similar in spirit to the approach taken by Budaev & Bogy (2005),
in the first part of their paper, when dealing with the plane sector. Similar ideas have also been used
by Shanin (2011) applied to the diffraction of waves propagating on the surface of the unit sphere
with a cut. In Section 4, the far field will be divided into separate wave fields emanating from the
GTD and an exact mathematical expression will be found for each of them. The wave fields consid-
ered are the incident and reflected waves, the primary waves diffracted by the edges and the secondary
waves diffracted by the edges. Exact formulae are given for each of these wave fields, including for
the secondary diffracted waves, which to the authors’ knowledge is a result that has not been published
previously. Finally, the wave diffracted by the corner of the quarter-plane is described by introduc-
ing the diffraction coefficient f d,n. The evaluation of this diffraction coefficient was the main topic of
Assier & Peake (2012).

2. Theory background

2.1 Laws of geometrical optics

Let us consider an infinite homogeneous medium with sound speed c0. A time harmonic GO wave field
u (with time frequency Ω) propagating in this medium with wave number k0, such that k0 = Ω/c0,
should satisfy the Helmholtz equation

Δu + k2
0u = 0. (2.1)

It can be written as a slowly varying amplitude A multiplied by a rapidly oscillating function and is
hence given by

u = A eik0s, (2.2)

where A and s depend on the spatial coordinates used to describe the space and s is called the eikonal.
The GO law of energy conservation allows one to have more information about the slow variation of
the amplitude A. It states that the energy flux in an elementary ray tube with ray-formed walls confining

 by guest on D
ecem

ber 7, 2014
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 607

Fig. 1. Illustration of different ray tubes and cross-sections.

an elementary cross-section should be conserved. Let us apply the law of energy conservation to three
‘simple’ examples. Let us consider a plane wave, a spherical wave and a conical wave, in a 3D space,
for which the shape of the ray tubes are described in Fig. 1.

The cylindrical wave is propagating along rays on the surface of a cone and the cross-section Sco is
a circle. Hence, its slowly varying amplitude Aco is given by Aco = A0

co/
√

l, where l is the distance from
the source along a ray. In the case of the spherical wave, the wave is propagating throughout 3D space,
and the cross-section Ssp is the surface of the sphere with radius l. Hence, the slowly varying amplitude
Asp is given by Asp = A0

sp/l. In the case of the plane wave, the cross-section Spl is independent of l, which
leads its slowly varying amplitude to be constant (independent of l). Let us now consider a perfectly
reflecting plane surface within the infinite medium. The surface can be either soft, i.e. subject to the
Dirichlet boundary condition or hard, i.e. subject to the Neumann boundary condition. The rays obey
the law of reflection, that is, if an incident ray ui = Ai eik0si encounters the surface, then a reflected ray
ud,n

r = Ad,n
r eik0sr is generated. The angle θi between the incident ray and the normal of the surface at the

point of incidence is equal to the angle θr between the reflected ray and the same normal. Moreover, the
constant amplitudes Ai and Ar are related by Ad,n

r = −dd,nAi, where dd = 1 and dn = −1. As efficient as
the laws of geometrical optics are in describing the propagation of a wave, they however fail to provide
an explanation for the phenomenon of diffraction. The following subsection describes some of the laws
of the GTD that gives a ray approach to this phenomenon.

2.2 Laws of geometrical theory of diffraction

The GTD, first introduced by Keller (1962), proposes a set of postulates that explain diffraction using
ray theory. Borovikov & Kinber (1994) classify the postulates of the GTD into two groups, one group
concerning the direction of the diffracted rays and one group concerning their amplitudes. In what
follows, we shall quote and comment on the postulates (taken from Borovikov & Kinber, 1994) that are
relevant to our problem. The first postulate concerning the directions is given as follows.

Postulate 1 Diffracted rays are induced only by those incident rays which are incident on
inhomogeneous areas of the body, such as tips, edges and lines of curvature discontinuity,
or touch the body (tangentially). In other words, diffracted rays are induced only by those
rays of the incident field which form light-shadow boundaries.

 by guest on D
ecem

ber 7, 2014
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


608 R. C. ASSIER AND N. PEAKE

The diffracted rays emanating from incident rays tangential to a smooth body are called creeping waves
and are of extreme importance when considering canonical problems involving smooth surfaces, such
as the problem of diffraction by a cone. In this paper, we shall be mainly interested in the quarter-plane
geometry, which does not involve smooth-curved surfaces. Therefore, the concept of creeping waves
shall not be developed further. Instead, the primary focus will be edges and tips diffraction. The second
postulate concerning the propagation directions of the diffracted ray is quoted below

Postulate 2 Each ray of the primary field satisfying the above conditions produces an
infinite set of diffracted rays. When an incident ray hits a corner, it gives rise to diffracted
rays travelling away in all directions, thus generating an outgoing spherical wave. When a
ray impinges an edge, the fanning out diffracted rays form a cone at each point of the edge.
The angle [. . .] of spread of the cone at each point of an edge is equal to the angle between
the tangent to the edge and the incident ray.

The latter postulate is important and involves two of the ray propagation patterns discussed in the
previous subsection, namely the conical and spherical waves. From the geometrical optics, as seen in
the previous subsection, we know the behaviour of the rays belonging to such wave fields up to a scalar
factor. This is the topic of the next postulate.1

Postulate 3 The amplitude of a diffracted ray is proportional to the amplitude of the
inducing prime ray at the point of incidence. Recalling that the diffracted fields obey the
[. . .] Geometrical Optics laws, it follows that they may be written in the form

ud = A0
i D(ω0, ω)Ad eik0s,

where ω0 and ω are the unit vectors of the incident and diffracted rays, A0
i is the amplitude

of the incident wave at a point of the edge or apex from which the diffracted ray emanates.
D(ω, ω0) is called the diffraction coefficient. Ad is defined as the varying part of the ampli-
tude that depends on the geometry of the diffracted field, as seen in the previous subsection,
i.e. 1/l for a spherical wave and 1/

√
l for a conical wave.

The latter postulate introduces the important notion of diffraction coefficient. Its definition is refined by
the final postulate.

Postulate 4 The coefficient of diffraction is contingent on the local geometry of the body
in the vicinity of the incident ray in the case of corner and edges.

This final postulate, also known as the locality principle, will be used extensively in this paper. The main
advantage of the GTD is that it allows one to describe geometrically the far field structure of a wave
field emanating from the scattering of an incident wave by an obstacle. There are three main limitations
to the GTD. The first one, obviously, is that the description of the field is only valid when the far field
approximation is possible, that is when the product k0l is large. Hence, this theory cannot give any

1 Here the mathematical notations have been modified to fit better with rest of the paper. Also Ad has been defined in a slightly
different way to Borovikov & Kinber (1994).
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 609

Fig. 2. Description of the polar coordinates used to solve the half-plane problem.

information about what happens in a small neighbourhood of an edge or a corner. Another limitation is
that the GTD approximation is not valid in the vicinity of a light-shadow boundary. Such a region in
which the GTD approximation stops to be valid is called a penumbral zone. Finally, the last limitation
is that the GTD does not give any information concerning the value of the diffraction coefficient.

But before considering the quarter-plane problem, let us focus on one of the first (and few) canonical
problems for which an exact solution is known, the problem of diffraction by a half-plane. This problem
should emphasize both the strengths and the limitations of the GTD.

3. An important canonical problem: the half-plane

3.1 The 2D case

3.1.1 The exact solution. Let us consider a plane wave incidence on a Dirichlet or Neumann half-
plane in the cylindrical coordinate system (ρ, α) described in Fig. 2. The total field ud,n

(2) (ρ, α) should
satisfy the 2D cylindrical Helmholtz equation

1

ρ

∂

∂ρ

(
ρ

∂ud,n
(2)

∂ρ

)
+ 1

ρ2

∂2ud,n
(2)

∂α2
+ k2

0ud,n
(2) = 0 (3.1)

throughout the fluid.
Let the incident plane wave u(2) in have an amplitude equal to one. Hence, according to the laws of

GO, the incident plane wave at a point P = (ρ cos(α), ρ sin(α)) is given by

u(2) in(ρ, α) = exp{−ik0ρ cos(α − α0)}. (3.2)

According to the GO law of reflection, this incident plane wave will only be present in the illuminated
zone and will be zero in the shadow zone. The shadow zone S(α0) is defined as follows:

S(α0) =
{

{α, α − α0 > π} if α0 < π ,

{α, α0 − α > π} if α0 > π .
(3.3)
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610 R. C. ASSIER AND N. PEAKE

Hence the contribution of the incident wave to the total field will be

u(2) in(ρ, α) = e−ik0ρ cos(α−α0)H[π − |α − α0|], (3.4)

where H is the Heaviside function. Similarly, according to the same law of reflection, there should be a

reflected wave ud,n
(2) re with wave vector

−→
kre , where

−→
kre = k0(− cos(α0), sin(α0)), and an amplitude −dd,n

such that dd = 1 and dn = −1. Again, according to the laws of GO, this reflected wave should only be
present in the reflection zone R(α0), defined by

R(α0) =
{

{α, α + α0 < π} if α0 < π ,

{α, α0 + α > 3π} if α0 > π .
(3.5)

Hence the contribution of the reflected wave to the total field should be

ud,n
(2) re(ρ, α) = −dd,n e−ik0ρ cos(α+α0)H[Π(α0)],

where Π(α0) = π − (α + α0) if α0 < π and Π(α0) = α + α0 − 3π if α0 > π . Now, according to the
Postulates 1 and 2 of the GTD, the total field (in the far field approximation) should look like

u(2) = u(2) in + ud,n
(2) re + ud,n

(2)D, (3.6)

where ud,n
(2)D is the wave diffracted by the edge of the half-plane. Moreover, in 2Ds, the edge of the

half-plane is equivalent to a corner. Hence, according to Postulate 2, the rays of the diffracted wave
should propagate in all directions of the 2D plane. Moreover, according to Postulate 3, we know that
the diffracted wave should take the form

ud,n
(2)D(ρ, α) = eik0ρ

√
k0ρ

Dd,n(α, α0). (3.7)

Independently of the laws of the GTD, it is possible to find the exact solution of the problem. It can
be solved using various techniques, such as the Wiener–Hopf technique or the Sommerfeld integral.
This problem is considered one of the classic problems of diffraction by canonical geometries and its
solution can be found in many books such as Jones (1989), Felsen & Marcuvitz (1973), Bowman et al.
(1987) or Borovikov & Kinber (1994). Surprisingly, each book seems to have a different way to write
the solution. Here we will choose the notation used by Borovikov & Kinber (1994), as we consider this
is the notation best reflecting the structure of the solution:

ud,n
(2) (ρ, α) = e−ik0ρ cos(α−α0)F

[√
2k0ρ cos

(
α − α0

2

)]

− dd,n e−ik0ρ cos(α+α0)F

[√
2k0ρ cos

(
α + α0

2

)]
, (3.8)

where

F(ξ) = e−i(π/4)

√
π

∫ ξ

−∞
eis2

ds (3.9)

is a Fresnel-type integral. This solution is valid everywhere, including the penumbral zone, which is the
zone in the neighbourhood of the GO boundaries, as presented in Fig. 3.
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 611

Fig. 3. Illustration of the penumbral zones.

3.1.2 The far field behaviour. The useful fact about this function F is that its integral representation
leads to an easy way to evaluate its behaviour as ξ tends to infinity away from the penumbral zone.
Hence, considering the case α0 < π , as k0ρ tends to infinity, away from the penumbral zones, we obtain

F

[√
2k0ρ cos

(
α ± α0

2

)]
≈ H[π − (α ± α0)]

− exp(ik0ρ[1 + cos(α ± α0)]) ei(π/4)

2
√

2πk0ρ
sec

(
α ± α0

2

)
. (3.10)

Putting the two asymptotic expansions (3.10) back into the solution (3.8), we obtain

ud,n
(2) (k0, ρ, α) ≈ e−ik0ρ cos(α−α0)H[π − (α − α0)] − dd,n e−ik0ρ cos(α+α0)H[π − (α + α0)]

− exp(i{k0ρ + π/4})
2
√

2πk0ρ

{
sec

(
α − α0

2

)
− dd,n sec

(
α + α0

2

)}
. (3.11)

This last expansion (3.11) can be compared with the GTD result (3.6) and we can then obtain an expres-
sion for the scattered cylindrical edge wave

ud,n
(2) D ≈ −ei(π/4)

2
√

2π
Td,n(α, α0)

eik0ρ

√
k0ρ

, (3.12)

where the edge diffraction coefficient Td,n is given by

Td,n(α, α0) = sec

(
α − α0

2

)
− dd,n sec

(
α + α0

2

)
. (3.13)
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612 R. C. ASSIER AND N. PEAKE

Fig. 4. Illustration of the conical diffracted field.

3.1.3 The near-field behaviour. Let us now try to evaluate the behaviour of the total field near the
edge. In order to do that, let us expand the function F around zero as follows:

F(ξ) ≈ 1

2
+ e−i(π/4)

√
π

ξ + O(ξ 3). (3.14)

Substituting (3.14) into (3.8) and expanding the exponential into its Taylor series leads to the following
behaviour for the total field:

ud
(2)(ρ, α) ≈ 2 e−i(π/4)

√
2k0

π
sin
(α0

2

)
sin
(α

2

)
ρ1/2 − ik0 sin(α0) sin(α)ρ + O(ρ3/2). (3.15)

un
(2)(ρ, α) ≈ 1 + 2 e−i(π/4)

√
2k0

π
cos
(α0

2

)
cos
(α

2

)
ρ1/2 − ik0 cos(α0) cos(α)ρ + O(ρ3/2). (3.16)

This expansion, up to the term in ρ1/2, can be found, for example, in Jones (1989).

3.2 The 3D case

The extension to the 3D case is surprisingly easy. In this subsection, we shall remind the reader of the
reasoning used by Jones (1989). Let us consider a wave with an incidence angle β0 with the edge (x-
axis) as shown in Fig. 4. The 3D Helmholtz equation can be written as follows in the (x, ρ, α) cylindrical
coordinates

1

ρ

∂

∂ρ

(
ρ

∂ud,n
(3)

∂ρ

)
+ 1

ρ2

∂2ud,n
(3)

∂α2
+ ∂2ud,n

(3)

∂x2
+ k2

0ud,n
(3) = 0. (3.17)

Then, in the Cartesian coordinates, the incident plane wave has a wave vector
−→
k0 given by

−→
k0 =

−k0(cos(β0), cos(α0) sin(β0), sin(α0) sin(β0)) and so the incident wave at a point �r described by �r =
(r cos(β), r cos(α) sin(β), r sin(α) sin(β)) has the form

u(3) in = exp(−ik0(r cos(β0) cos(β) + r sin(β) cos(α) cos(α0) sin(β0)

+ r sin(α) sin(β) sin(α0) sin(β0))).

But note that r sin(β) = ρ and r cos(β) = x in the 3D cylindrical coordinates. Hence we can simplify
u(3) in by writing

u(3) in = exp(−ik0 cos(β0)x) exp(−ik0 sin(β0)ρ cos(α − α0)). (3.18)
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 613

At this stage, it is interesting to note two things. Firstly, there seems to be a natural separation of
variables between x and (ρ, α) and secondly the second exponential looks exactly like the incident
wave (3.2) in the 2D case when k0 has been replaced by k0 sin(β0). Therefore, let us assume that we can
separate the solution as follows:

ud,n
(3) = exp(−ik0 cos(β0)x)v

d,n(k0, ρ, α). (3.19)

Putting the expression (3.19) back into (3.17), we obtain

1

ρ

∂

∂ρ

(
ρ

∂vd,n

∂ρ

)
+ 1

ρ2

∂2vd,n

∂α2
+ (k0 sin(β0))

2vd,n = 0,

which is exactly equation (3.1) when k0 is replaced by k0 sin(β0). Hence we know the solution of
this problem from the 2D case because the boundary conditions do not depend on x. It is given by
vd,n(k0, ρ, α) = ud,n

(2) (k0 sin(β0), ρ, α) and hence, the global solution for the 3D case is

ud,n
(3) (k0, ρ, α) = e−ik0 cos(β0)xud,n

(2) (k0 sin(β0), ρ, α). (3.20)

Again, this is an exact solution valid everywhere, including within the penumbral zones. Once again, it
is possible to have an asymptotic expansion of this expression away from the penumbral zones that will
correspond to the GTD and gives

ud,n
(3) = u(3) in + ud,n

(3) re + ud,n
(3)d .

Hence, at a point P(x, ρ, α), by taking the leading order term (3.12), the diffracted field emanating
from the edge diffraction takes the form

ud,n
(3)d(x, ρ, α) ≈ − exp(−ik0 cos(β0)x)

exp(i{k0 sin(β0)ρ + π/4})
2
√

2πk0 sin(β0)ρ
Td,n(α, α0). (3.21)

Let us attempt to interpret this wave geometrically, assuming that β0 < π/2. For any point P(x, ρ, α),
there is a unique pair (X , R) such that X is the intersection between a straight line making an angle β0

with the x-axis and passing through P, and R is the distance between X and P along this line. In other
word, P is on the semi-cone C(β0, X ) with apex X and semi-angle β0, at a distance R from the apex.
The relationship between (ρ, x) and (R, X ) is given by the equations

X − x = R cos(β0) and ρ = R sin(β0).

Using these relations, it is easy to show that

exp{−ik0 cos(β0)x} exp{ik0 sin(β0)ρ} = eik0R exp{−ik0 cos(β0)X }.
Hence we can rewrite ud,n

(3)d at the same point P in terms of X and R. This leads to

ud,n
(3)d(X , R, α) ≈ − eik0R

√
k0R

{
e−ik0 cos(β0)X ei(π/4)

2 sin(β0)
√

2π
Td,n(α, α0)

}
. (3.22)

Note that all the points P with the same (X , R) have the same phase. Hence the wave fronts are circles
belonging to the cone and we can then see the wave ‘hitting’ P as a wave propagating along the cone
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614 R. C. ASSIER AND N. PEAKE

C(β0, X ). Hence the total diffracted field can be thought of as a set of parallel cones emanating from the
edge, with a semi-angle equal to β0. When β0 → π/2, the cone becomes a plane perpendicular to the
edge and including the point x = X on the edge, which is consistent with the 2D solution. Moreover,
the conical form of the diffracted wave is then in complete agreement with the Postulate 2 of the GTD.

Remark 3.1 If β0 > π/2, the semi-angle of the cone is actually π − β0. However, as one can easily
verify, this would not affect the relationship between (ρ, x) and (R, X ).

The far field structure of the wave field resulting from the incidence of a time-harmonic plane wave
on a half-plane is then completely understood. In the next section, we shall use these results together
with the laws of the GTD to formulate an accurate description of the far field structure of the wave field
resulting from the incidence of a time-harmonic plane wave on a quarter-plane.

4. Description of the far field for the quarter-plane problem

4.1 Coordinate systems and notation

Let us consider an incident time-harmonic plane wave scattered by a quarter-plane defined by (x >

0, y > 0, z = 0). The geometry of the problem is described in Fig. 5. Let us denote the two edges of
the quarter-plane as Λ1 and Λ2. According to the GTD, in the far field approximation away from the
penumbral zones, the total field should have the form

ud,n
tot = uin + ud,n

re + ud,n
co 1 + ud,n

co 2 + ud,n
co 21 + ud,n

co 12 + ud,n
sp , (4.1)

where uin and ud,n
re are the incident and reflected fields, respectively, and ud,n

co 1 and ud,n
co 2 are the primary

conical waves emanating from the edges Λ1 and Λ2. The wave fields ud,n
co 21 and ud,n

co 12 represent the
secondary radiated conical waves. Namely, as will be explained in more detail in Section 4.4, and
illustrated in Fig. 5, it is possible for a ray of the primary conical wave ud,n

co 2 coming from Λ2 to hit the
opposite edge Λ1 and to be diffracted by this edge. The wave field thus created is called ud,n

co 21. Finally,
in (4.1), ud,n

sp represents the spherical wave emanating from the diffraction of the incident field by the
corner of the quarter-plane. One of the reasons why (4.1) is exact is that, for the quarter-plane, the
number of times a ray can be diffracted is limited to two. This is not the case, for example, for a plane
sector with an internal angle smaller than π/2.

The aim of this section is to describe each of the different wave fields involved in (4.1) as accurately
as possible in the spirit of what has been attempted for the plane sector by Budaev & Bogy (2005),
who only described the primary diffracted waves. In order to do so, we need to equip the space with
efficient sets of coordinates as described in Fig. 6. The aim is to describe the position of a point P
belonging to the space. First of all, consider the classic Cartesian coordinates (x, y, z), with the corner of
the quarter-plane being the origin, Λ1 being along the positive x-axis and Λ2 being along the positive
y-axis. Consider also the classic spherical coordinates (r, θ , ϕ), r being the distance to the corner, the
inclination angle θ being measured from the z-axis and the azimuthal angle ϕ being measured from the
x-axis. In addition, let us consider a system of coordinates (ω, r), where ω is defined as the unit vector−→
OP/r and can also be considered a point on the unit sphere. The point/vector ω can be described either
by its spherical coordinates (θ , ϕ) or its projection coordinates (ξ , η) as can be seen in Fig. 6. As hinted
by Fig. 5, the edges are also equipped with their own systems of cylindrical coordinates. A point can be
either described with respect to Λ1 by the coordinates (x, ρ1, α1) or with respect to Λ2 by the coordinates
(y, ρ2, α2). The angle α1 is measured from the upper surface of the quarter-plane, while the angle α2 is
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 615

Fig. 5. Overall structure of the total far field of the quarter-plane problem, taken from Assier & Peake (2012).

measured from the lower surface of the quarter-plane. Finally, let β1 and β2 denote the angles between
the line (OP) and the edge Λ1 and Λ2, respectively.

Obviously, these coordinates are related to each other. In order for our argument to be slightly
smoother in the following subsections, we state in Table 1 a few of the relationships between the differ-
ent systems of coordinates used.

4.2 The incident and reflected wave field

Let us define the incident harmonic plane wave by a point ω0 and a wave vector
−→
k0 =

−k0(ξ0, η0, cos(θ0)) in the Cartesian coordinates described in Fig. 6. Note that without the loss of gener-
ality, we can restrict the study to incident waves coming from the upper half space, that is, we restrict the
problem to cos(θ0) > 0. At a point P defined by the spherical coordinates (r, θ , ϕ) = (ω, r) or similarly
by the vector �r = r(ξ , η, cos(θ)), we can write

uin(r, ω) = ei
−→
k0 .�r

= e−ik0r[ξξ0+ηη0+cos(θ) cos(θ0)]. (4.2)

Using Table 1, it is possible to write the incident wave using the spherical coordinates only as

uin(r, θ , ϕ) = e−ik0r[cos(θ) cos(θ0)+sin(θ) sin(θ0) cos(ϕ−ϕ0)]. (4.3)
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616 R. C. ASSIER AND N. PEAKE

Fig. 6. Description of the coordinates used to describe the quarter-plane problem.

Table 1 Some relationships between the different systems of coordinates.

y = ρ1 cos(α1) = rη ρ1 sin(α1) = r sin(θ) ξ = cos(β1)

x = ρ2 cos(α2) = rξ ρ2 sin(α2) = −r sin(θ) η = cos(β2)

ξ = sin(θ) cos(ϕ) η = sin(θ) sin(ϕ) ρ1,2 = sin(β1,2)

However, this incident wave should only be present in the illuminated zone and thus should be excluded
form the shadow zone. In order to describe the shadow zone more efficiently, using the results obtained
for the half-plane in Section 3, let us try to express the incident wave in terms of the cylindrical coor-
dinates (x, ρ1, α1) and (y, ρ2, α2) attached to the axes Λ1 and Λ2. It is also interesting to consider the
angles β0

1 and β0
2 between the incidence direction and the axes Λ1 and Λ2. Table 1 leads to two different

ways of writing (4.2) in terms of the cylindrical coordinates,

uin(x, ρ1, α1; β0
1 , α0

1) = exp[−ik0 cos(β0
1 )x] exp[−ik0 sin(β0

1 )ρ1 cos(α1 − α0
1)] (4.4)

uin(y, ρ2, α2; β0
2 , α0

2) = exp[−ik0 cos(β0
2 )y] exp[−ik0 sin(β0

2 )ρ2 cos(α2 − α0
2)]. (4.5)

At this stage, it is very important to note the similarity between the incident field in (4.4) and (4.5) and
the way with which we have written the incident wave in the 3D case for the half-plane in (3.18). Here
one must remember that we consider only the case cos(θ0) > 0, which implies that α0

1 < π and α0
2 > π .

Hence, by similarity with the half-plane case, it is now very easy to describe the shadow zone. Indeed,
according to (3.3), we are in the shadow zone if (α1 − α0

1) > π and (α0
2 − α2) > π simultaneously,
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 617

which leads us to the exact contribution of the incident field to the total field at a point P,

uin(P) = e−ik0[ξ0x+η0y+cos(θ0)z]
H(π − (α1 − α0

1))H(π − (α0
2 − α0

2)). (4.6)

Following similar reasoning, but using (3.5) this time, it is also possible to define precisely the contri-
bution of the reflected wave field to the total field at a point P,

ud,n
re (P) = −dd,n e−ik0[ξ0x+η0y−cos(θ0)z]

H(π − (α1 + α0
1))H((α2 + α0

2) − 3π). (4.7)

4.3 The primary radiated conical waves

Let us try to apply the results of the half-plane theory to determine the form of the primary radiated
conical waves ud,n

co 1. First of all, let us note the similarity of the incident waves described by (3.18) and
(4.4) and then apply the locality principle (Postulate 4) of the GTD. We can then use the result stated
for the half-plane in the 3D case. Hence we can write the value of ud,n

co 1 at a point P(x, ρ1, α1) as being

ud,n
co 1(x, ρ1, α1; β0

1 , α0
1) = − exp{−ik0 cos(β0

1 )x} exp{ik0 sin(β0
1 )ρ1} ei(π/4)Td,n(α1, α0

1)

2
√

2πk0 sin(β0
1 )ρ1

H(X ), (4.8)

where X is the projection of P onto the x-axis along the line passing through P and making an angle β0
1

with the x-axis (this is true if β0
1 < π/2, otherwise the angle to consider is π − β0

1 ). The H(X ) factor has
been added in order to take into account that the edge Λ1 is only semi-infinite. Indeed, if X < 0, then
no diffracted cone emanating from X will be generated simply because for X < 0, there is no edge to
interact with the incident wave. Similarly, we can formulate an expression for the diffracted rays coming
from a point Y of the edge Λ2 as

ud,n
co 2(y, ρ2, α2; β0

2 , α0
2) = − exp{−ik0 cos(β0

2 )y} exp{ik0 sin(β0
2 )ρ2} ei(π/4)Td,n(α2, α0

2)

2
√

2πk0 sin(β0
2 )ρ2

H(Y). (4.9)

As mentioned in Section 4.1, a most interesting point is that these diffracted rays can travel on the
surface of the quarter-plane, hit the opposite edge and be diffracted again, leading to the creation of the
secondary radiated waves ud,n

co 12 and ud,n
co 21. These fields will be considered in the following subsection.

4.4 The secondary radiated conical waves

The advantage of the quarter-plane compared with plane sectors with a smaller internal angle is that the
number of times a ray can be diffracted is limited to two. Moreover, it is important to note that these
secondary radiated waves do not necessary appear for all incidence directions. Indeed, a simple geo-
metric approach shows that ud,n

co 12 only appears if ξ0 > 0. Similarly, ud,n
co 21 only appears if η0 > 0. Table 2

summarizes the occurrence (�) or absence (O) of the secondary radiated conical waves in terms of the
azimuthal angle ϕ0, which characterizes the direction of the incident wave.

Despite the geometric similarities and the fact that both problems have been treated simultaneously
so far, when it comes to secondary radiated waves, the Neumann and the Dirichlet cases are very differ-
ent and will now be treated separately.

4.4.1 The Neumann case. Now, let us try to describe un
co 21 mathematically. First of all, we have seen

that for it to occur, we need to have η0 > 0. According to Table 1, it implies that 0 < β0
2 < π/2. In this
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618 R. C. ASSIER AND N. PEAKE

Table 2 Occurrence of the secondary radiated waves u
d ,n

co 12 and ud,n
co 21.

ϕ0 domain [0, π/2] [π/2, π ] [π , 3π/2] [3π/2, 2π ]

ud,n
co 21 � � O O

ud,n
co 12 � O O �

Fig. 7. Interpretation of a surface wave as a limit case of reflection.

case, the diffracted rays of un
co 2 propagating on the surface of the quarter-plane will intersect the edge

Λ1. From now on, despite the misnomer, we shall use the term ‘ray’ to describe both the field on the
ray and the ray itself. There are two types of rays satisfying these conditions, the rays propagating on
the upper surface of the quarter plane and those propagating on the lower surface. At this stage, one has
to realize that a surface-propagating wave can be interpreted as a limit case of an incident and reflected
wave system when the angle of incidence (θi on Fig. 7) tends to π/2. For this reason, as illustrated in
Fig. 7, a surface-propagating wave is actually the sum of two components: an ‘incident’ surface wave
and a ‘reflected’ surface wave, both components having the same direction and the same amplitude.

In our case, we are only interested in the ‘incident’ component of the surface wave. Indeed, one can
interpret the edge diffraction of a surface wave as the limit of the diffraction of an incident wave with
same amplitude, when the angle between this incident wave and the surface tends to zero. Moreover,
if one considers a point P(x, ρ, 2π) on the upper surface ray, the total value of the surface wave at P
is given by inputting α2 = 2π into (4.9). Hence, in order to represent the ‘incident’ part of the surface
wave, one needs to divide the amplitude by a factor 2. Let us consider the two ‘incident’ rays Rn+ and
Rn− emanating from the edge Λ2 at Y as shown in Fig. 8. The point P can also be expressed in terms of
the coordinates (R2, Y) (see Fig. 8). Hence, using (4.9), the same reasoning used to obtain (3.22), setting
α2 = 2π for Rn+ and α2 = 0 for Rn− and dividing by 2, we obtain

Rn+(R2, Y ; β0
2 , α0

2) ≈ − eik0R2

√
k0R2

{
e−ik0 cos(β0

2 )Y ei(π/4)

4 sin(β0
2 )

√
2π

Tn(2π , α0
2)

}
, (4.10)

Rn−(R2, Y ; β0
2 , α0

2) ≈ − eik0R2

√
k0R2

{
e−ik0 cos(β0

2 )Y ei(π/4)

4 sin(β0
2 )

√
2π

Tn(0, α0
2)

}
. (4.11)

Let us attempt to express these rays in terms of the coordinates (R1, X , β1
1 ) associated with the edge Λ1

and described in Fig. 8.
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 619

Fig. 8. Detail of the generation of un
co 21.

With simple geometrical considerations, it is possible to derive the following relations between the
two sets of coordinates:

β1
1 = π

2
+ β0

2 , Y = − tan(β1
1 )X , R2 = −X

cos(β1
1 )

− R1. (4.12)

Using these relations, one can easily show that

eik0R2 exp{−ik0 cos(β0
2 )Y } = e−ik0R1 exp{−ik0 cos(β1

1 )X }.

Hence, substituting (4.12) into (4.10), we obtain

Rn+(R1, X ; β1
1 , α0

2) = e−ik0R1√
k0(−X/cos(β1

1 ) − R1)

{
e−ik0 cos(β1

1 )X ei(π/4)

4 cos(β1
1 )

√
2π

Tn(2π , α0
2)

}
. (4.13)

Now, let us apply the locality principle (Postulate 4) to interpret (4.13) as a ray of an incident wave on the
edge Λ1 and to reuse the results of the half-plane. Let us consider the rapidly oscillating part of (4.13).
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620 R. C. ASSIER AND N. PEAKE

For a point P on the ray Rn+, we can write x(P) = X + ρ1 cot(β1
1 ) and ρ1(P) = R1 sin(β1

1 ), and obtain:

e−ik0R1 e−ik0 cos(β1
1 )X = e−ik0 cos(β1

1 )x e−ik0 sin(β1
1 )ρ1

= uin(x, ρ1, 0; β1
1 , 0), (4.14)

where the expression of uin is given by (4.4). Moreover, when getting close to the edge Λ1, it is legiti-
mate to make the assumption that X 	 R1. Hence, using (4.13) and (4.14), as R1 
 X , we can write

Rn+(x, ρ1, X ; β1
1 , α0

2) ∼ −ei(π/4)Tn(2π , α0
2)

4
√

−2πk0 cos(β1
1 )X

uin(x, ρ1, 0; β1
1 , 0). (4.15)

So locally, for the edge Λ1, it is like being hit by a plane wave uin(x, ρ1, α; β1
1 , 0), with an amplitude

−ei(π/4)Tn(2π , α0
2)/4

√
−2πk0 cos(β1

1 )X . As seen before, using the GTD, a ray of an incident plane
wave generates a diffracted cone. This means that the cone itself depends solely on the amplitude of this
particular ray. By the locality principle, we can re-use the result of the half-plane to say that at a point
P2 (see Fig. 8) with coordinates (x(2), ρ(2)

1 , α(2)
1 ) = (X − R(2)

1 cos(β1
1 ), R(2)

1 sin(β1
1 ), α(2)

1 ), we obtain:

un+
co 21(P2) = −ei(π/4)T

n
(2π , α0

2)

4
√

−2πk0 cos(β1
1 )X

⎡
⎣− eik0R(2)

1√
k0R(2)

1

{
e−ik0 cos(β1

1 )X ei(π/4)Tn(α
(2)
1 , 0)

2 sin(β1
1 )

√
2π

H(X )

}⎤
⎦

= iT
n
(2π , α0

2)T
n(α

(2)
1 , 0)

16π sin(β1
1 )

e−ik0 cos(β1
1 )X√

−k0 cos(β1
1 )X

eik0R(2)
1√

k0R(2)
1

H(X ). (4.16)

So, once more, this looks like a conical wave emanating from the point X of the edge Λ1. The main
difference between the primary and secondary radiated cones is that this time the slowly oscillating
part of the wave has a dependency in X . Hence, it is possible to describe the secondary radiated wave
emanating from Λ1 as follows. For any point P2 lying within the cone of semi-angle π − β1

1 with apex
at the origin and the edge Λ1 as axis, there exists a unique set of coordinates (X , R(2)

1 , α(2)
1 ), such that

(x(2), ρ(2)
1 , α(2)

1 ) = (X − R(2)
1 cos(β1

1 ), R(2)
1 sin(β1

1 ), α(2)
1 ). At this point, the contribution of the ray is given

by (4.16). It is possible to express this in terms of ρ
(2)
1 and x(2), but no major simplification arises. If P2 is

outside this cone, then the wave is equal to zero. Following a similar reasoning leads to a corresponding
expression for un−

co 21,

un−
co 21(P2) = iT

n
(0, α0

2)T
n(α

(2)
1 , 2π)

16π sin(β1
1 )

e−ik0 cos(β1
1 )X√

−k0 cos(β1
1 )X

eik0R(2)
1√

k0R(2)
1

H(X ).

Finally, the overall contribution of un
co 21 at the point P2 is given by un

co 21(P2) = un+
co 21(P2) + un−

co 21(P2),
which leads to

un
co 21(P2) = i

2π sin(β1
1 )

e−ik0 cos(β1
1 )X√

−k0 cos(β1
1 )X

eik0R(2)
1√

k0R(2)
1

Dn
21(α

(2)
1 , α0

2)H21, (4.17)
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 621

where

Dn
21(α1, α0

2) = 1

8
(Tn(2π , α0

2)T
n(α1, 0) + Tn(0, α0

2)T
n(α1, 2π))

= − sec

(
α0

2

2

)
sec
(α1

2

)
, (4.18)

and
H21 = H(X )H(η0). (4.19)

Applying the same reasoning and switching the edges would lead to a similar mathematical description
of un

co 12.

4.4.2 The Dirichlet case. The aim of this subsection is to describe ud
co 21 mathematically. Concerning

the secondary radiated waves, the Dirichlet case is more complicated than the Neumann case. Indeed,
in the previous subsection about the Neumann case, we have seen that, close to the edge Λ1, the ray
along the upper surface emanating from a first diffraction by Λ2 is given by (4.15). The main problem
occurring in the Dirichlet case is that Td(2π , α0

2) = 0, and hence we cannot use a similar expression to
(4.15) in this case.

An equivalent formulation. Let us rewrite (4.15) as

Rn+ ∼
α2→2π

−ei(π/4)Tn(α2, α0
2)

4
√

−2πk0 cos(β1
1 )X

uin(x, ρ1, α1).

We can write this because of (4.15) and the fact that

Tn(α2, α0
2) ∼

α2→2π
Tn(2π , α0

2) and uin(x, ρ1, α1; β1
1 , 0) ∼

α2→2π
uin(x, ρ1, 0; β1

1 , 0).

Indeed, when α2 tends to 2π , α1 tends to 0, as shown in Fig. 9. The Dirichlet field incidence on Λ1 can
then a priori be written in a similar form:

R
d+ ∼

α2→2π

−ei(π/4)Td(α2, α0
2)

4
√

−2πk0 cos(β1
1 )X

uin(x, ρ1, α1; β1
1 , 0). (4.20)

Now, let us approximate Td by its Taylor expansion as α2 → 2π , to obtain

Td(α2, α0
2) ∼

α2→2π
(α2 − 2π)∂1Td(2π , α0

2), (4.21)

where ∂1 represents the partial derivative with respect to the first argument. At this stage, it is important
to note that ∂1Td(2π , α0

2) |= 0. Hence, as α2 → 2π and α1 → 0, we have an incident wave of the form

R
d+ ∼

α2→2π

−ei(π/4)∂1Td(2π , α0
2)

4
√

−2πk0 cos(β1
1 )X

{(α2 − 2π)uin(x, ρ1, α1; β1
1 , 0)} (4.22)

at the point P defined in Fig. 9. P(x, ρ1, α1) is chosen to be on the diffracted cone emanating from the
point Y of the edge Λ2, and in a small neighbourhood of the point X of the edge Λ1 that would be hit
by the tangential rays.
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622 R. C. ASSIER AND N. PEAKE

Fig. 9. Illustration of the geometry in the vicinity of the point x = X of the edge Λ1.

Now, let us operate a change of variable, by expressing everything in terms of α1 (instead of α2).
Using the fact that α2 − 2π is small, that we are in a small neighbourhood of X (i.e. we have L2 ∼ l1 ∼
−X/ cos(β1

1 )) and according to simple trigonometry relations related to Fig. 9, we have

α2 − 2π ∼
α2→2π

sin(α2 − 2π)

∼
α1→0

L1 sin(α1 − 0)

l1

∼
α1→0

ρ1/ sin(β1
1 )

−X/ cos(β1
1 )

sin(α1 − 0)

∼
α1→0

−1

X tan(β1
1 )

ρ1 sin(α1 − 0),

and hence, (4.22) can be rewritten as follows, when α1 → 0

R
d+ ∼

α1→0

ei(π/4)∂1Td(2π , α0
2)

4X tan(β1
1 )
√

−2πk0 cos(β1
1 )X

u☼
in (x, ρ1, α1; β1

1 , 0), (4.23)

where
u☼

in (x, ρ1, α1; β1
1 , 0) = ρ1 sin(α1 − 0)uin(x, ρ1, α1; β1

1 , 0),

where the expression of uin is given by (4.4).
A new two-dimensional half-plane diffraction problem.
Expression (4.23) leads us to consider a new 2D diffraction problem. Indeed, let us consider the

problem of an incident wave u☼
(2) in on a half-plane, where u☼

(2) in is written as follows:

u☼
(2) in(ρ, α; α0) = ρ sin(α − α0)u(2) in(ρ, α; α0), (4.24)

where u(2) in is defined by (3.2). The solution to this problem is a priori unknown. However, remembering
that u(2) in also depends on α0, following a similar argument as Shanin (2011), we can write

u☼
(2) in(ρ, α; α0) = i

k0

∂u(2) in

∂α0
(ρ, α; α0). (4.25)

It is now important to note that the half-plane diffraction problem does not depend on α0 in the sense
that neither the Helmholtz equation nor the boundary conditions depend on α0. Therefore, the diffracted
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FAR FIELD DESCRIPTION OF THE QUARTER-PLANE PROBLEM 623

wave u☼d

(2)D of this new problem, using the notations of Section 3 (and equation (3.12) in particular), is
given by

u☼d

(2)D(ρ, α; α0) = i

k0

∂ud
(2)D

∂α0
(ρ, α; α0),

= −i

k0

ei(π/4)

2
√

2π

∂Td

∂α0
(α, α0)

eik0ρ

√
k0ρ

.

Final expression for the Dirichlet case. We can now apply the reasoning of the previous paragraph
to the case we are interested in by remarking that

u☼
in (x, ρ1, α1; β1

1 , 0) = i

k0 sin(β1
1 )

∂uin

∂α0
1

(x, ρ1, α1; β1
1 , 0),

and by the locality principle (Postulate 4) we can re-use the result of the half-plane to show that at a
point P2 with coordinates (x(2), ρ(2)

1 , α(2)
1 ) = (X − R(2)

1 cos(β1
1 ), R(2)

1 sin(β1
1 ), α(2)

1 ), the diffraction of the
ray R

d+
by the edge Λ1 leads to the contribution

ud+
co 21(P2) ≈ i

k0 sin(β1
1 )

ei(π/4)∂1Td(2π , α0
2)

4X tan(β1
1 )
√

−2πk0 cos(β1
1 )X

⎧⎨
⎩−e−ik0 cos(β1

1 )X eik0R(2)
1√

k0R(2)
1

ei(π/4)∂2Td(α
(2)
1 , 0)

2 sin(β1
1 )

√
2π

⎫⎬
⎭ ,

≈ e−ik0 cos(β1
1 )X ∂1Td(2π , α0

2)∂2Td(α
(2)
1 , 0)

16π(k0X )3/2 sin2(β1
1 ) tan(β1

1 )
√

− cos(β1
1 )

eik0R(2)
1√

k0R(2)
1

.

A similar study leads to the following expression of ud−
co 21:

ud−
co 21(P2) ≈ e−ik0 cos(β1

1 )X ∂1Td(0, α0
2)∂2Td(α

(2)
1 , 2π)

16π(k0X )3/2 sin2(β1
1 ) tan(β1

1 )
√

− cos(β1
1 )

eik0R(2)
1√

k0R(2)
1

.

Moreover, ud
co 21 is given by ud+

co 21 + u
d−
co 21, which leads to the following description of ud

co 21: for
any point P2 lying within the cone of semi-angle π − β1

1 with apex at the origin and the edge
Λ1 as axis, there exists a unique set of coordinates (X , R(2)

1 , α(2)
1 ), such that (x, ρ(2)

1 , α(2)
1 ) = (X −

R(2)
1 cos(β1

1 ), R(2)
1 sin(β1

1 ), α(2)
1 ), and at this point we have

ud
co 21(P2) ≈ e−ik0 cos(β1

1 )X

8π(k0X )3/2 sin2(β1
1 ) tan(β1

1 )
√

− cos(β1
1 )

eik0R(2)
1√

k0R(2)
1

Dd
21(α

(2)
1 , α0

2)H21, (4.26)

where H21 is defined by (4.19) and

Dd
21(α

(2)
1 , α0

2) = 1

2
(∂1Td(2π , α0

2)∂2Td(α
(2)
1 , 0) + ∂1Td(0, α0

2)∂2Td(α
(2)
1 , 2π)) (4.27)

= − sec

(
α0

2

2

)
tan

(
α0

2

2

)
sec

(
α

(2)
1

2

)
tan

(
α

(2)
1

2

)
. (4.28)
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Finally note that the expressions (4.26) and (4.17) are valid in the far field in the sense that both k0X
and k0R(2)

1 should be large.

4.5 The vertex spherical wave

According to Postulate 2 of the GTD, when an incident ray hits a corner, it gives rise to diffracted rays
travelling in all directions, thus generating an outgoing spherical wave. Therefore, in the far field, we
can write down an asymptotic form for the spherical wave ud,n

sp that is given by

ud,n
sp (ω, r) ≈ 2π

eik0r

k0r
f d,n(ω, ω0), (4.29)

where f d,n is the diffraction coefficient, which depends on both the incident and the observer directions.
As previously stated, this asymptotic expansion can only be valid away from the penumbral zones, and
f d,n is singular when crossing the penumbral zones. We can, however, define a unique function f d,n in
the regions where the expansion is valid, by describing ud,n

sp as the difference between the total field and
the other wave fields determined previously,

ud,n
sp = ud,n

tot − (uin + ud,n
re + ud,n

co 1 + ud,n
co 2 + ud,n

co 21 + u
d ,n

co 12).

To date, no explicit mathematical expression for the diffraction coefficient f d,n exists.

5. Concluding remarks

In this paper, we have derived some explicit mathematical expressions for all the waves emanating from
edge diffraction in the quarter-plane problem. This also led to a precise representation of the diffraction
coefficient describing the spherical wave resulting from the diffraction by the corner of the quarter-
plane. As explained by Shanin (2005b), in order to derive the three modified Smyshlyaev formulae,
one needs to derive three embedding formulae first. The key to the derivation of these three embedding
formulae is that the primary radiated waves can be annihilated by some simple differential operators
with constant coefficients. In the conclusion of Assier & Peake (2012), we conjectured the existence of
an ultimate modified Smyshlyaev formula giving the corner diffraction coefficient everywhere. In order
to obtain such a formula, if one wishes to follow a similar approach as in Shanin (2005b), one needs
to derive an ultimate embedding formula. This implies that a simple differential operator with constant
coefficients that annihilate the secondary radiated waves ud,n

co 21 and ud,n
co 12 should be found. However,

the complex structure of these secondary radiated waves obtained in the present paper makes this task
more complicated than anticipated in Assier & Peake (2012) and success seems quite unlikely. The
constructive approach used by Craster & Shanin (2005) to define the differential operators used in the
case of the wedge embedding formulae also gives a clue to why operators killing the secondary radiated
waves are unlikely to exist in our case. Hence, in order to obtain an ultimate modified Smyshlyaev
formula, new techniques should probably be developed.
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